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Abstract.  

As a consequence of climate warming, high-altitude periglacial and glacial environments exhibit the clearest signs of 

cryosphere degradation, and the Alps serve as a natural laboratory for studying the primary effects on permafrost-related 

features. Our research in South Tyrol, North-East Italy, aimed to develop an updated classification system, based on remote 

sensing data and statistical models, for rock glacier activity, categorizing them as active, transitional, or relict according to the 15 

new Rock Glacier Inventories and Kinematic (RGIK) guidelines. While the current regional inventory includes activity 

attributes based on morphological observations and DInSAR coherence, it lacks a comprehensive classification that considers 

also climatic drivers, displacement rates, and morphometric parameters. To fill this gap we utilized the Alaska Satellite 

Facility's InSAR cloud computing, employing Small Baseline Subset (SBAS) and Miami InSAR Time-series 

software  (MintPy) algorithms to extract velocity data for each rock glacier investigated in this study. Additionally, we 20 

analyzed geomorphological and climatic maps derived from in-situ and remote sensing data to obtain descriptive parameters 

influencing rock glaciers development and activity. From a wide range of potential variables, we selected eight key predictors, 

representing physical (e.g. temperature), morphological (e.g. roughness), and dynamic attributes (e.g. velocity and coherence 

indicators). These predictors were integrated in a multiclass generalized additive mixing model (GAM) classifier to categorize 

these mapped landforms. Applying this model to the entire dataset (achieving an AUC over 0.9) allowed us to address gaps in 25 

previous classification methods and provided activity attributes for previously unclassified rock glaciers, along with associated 

uncertainty values. Our approach enhanced the previous classificationthe , leaving only 3.5% of features unclassified compared 

to 13% in morphological classification and 18.5% in DInSAR-based methods. The results revealed a predominance of relict 

features (~75%) and a smaller number of active ones (~10%). Analyzing The result of the distribution of active, transitional, 

and relict classes suggests that the transition from active to relict states is not direct. Instead, an intermediate transitional phase 30 

is commonly observed. This comprehensive approach refines the categorization of mapped features and improves our 

understanding of the factors influencing rock glaciers activity in alpine environment in South Tyrol. 
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High-altitude regions serve as crucial indicators of climate change, with the Alps as a natural laboratory for studying glacial 

and periglacial processes. Examining the activity state of periglacial landforms is pivotal for understanding their ongoing 

transformations, particularly regarding permafrost degradation and potentially related geohazards. Our study, focused on South 35 

Tyrol (North-East Italy), aims at developing an updated and comprehensive activity classification system for all rock glaciers 

present in the current regional inventory. Although the existing rock glaciers dataset already includes a descriptive attribute of 

activity, drawn from independent morphological observations and an estimation based on differential SAR interferometry 

(DInSAR) coherence, it lacks a thorough definition of activity that integrates climatic drivers, displacement rates, and 

morphometric parameters. Utilizing the Alaska Satellite Facility (ASF) Interferometry Synthetic Aperture Radar (InSAR) 40 

cloud computing via Small Baseline Set (SBAS) technique and MintPy algorithm, we extracted velocity attributes for each 

rock glacier in the inventory. Furthermore, we processed geomorphological and climatic maps obtained from both in situ data 

(from weather stations) and remote sensing products (MODIS, Landsat) to extract descriptive parameters potentially 

influencing the development and activity state of rock glaciers. These parameters were then utilized as predictor variables in a 

multiclass generalized additive model (GAM) classifier to categorize the mapped landforms into active, relict, and transitional 45 

classes. By applying the model to the entire dataset, we were able to address the gaps present in the morphological and 

DInSAR-based techniques, providing an activity attribute for the rock glaciers previously lacking one, along with an 

uncertainty value associated with each landform. Our analysis not only improved classification accuracy with only the 3.5% 

of the features remaining non-classified respect to the 13% of the morphological classification and the 18.5% of the DInSAR 

based one, but also offered insights into the factors influencing activity classes. This comprehensive approach refines the 50 

categorization of mapped features and contributes to a more detailed understanding of the factors controlling rock glacier 

activity in the alpine environment. 

1 Introduction 

Rock glaciers are widespread periglacial landforms in mountain regions and are regarded as key geomorphological evidence 

of permafrost presence in alpine environments (Haeberli, 2000). They consist of a continuous, thick seasonally frozen debris 55 

layer (known as active layer), covering ice-supersaturated debris or pure ice. They are characterized by gravity-driven creep 

as a consequence of ice/debris mixtures deformations under permafrost conditions (Haeberli et al., 2006), which promote a 

distinctive surface topography (i.e., ridges and furrows complexes, convex transverse or longitudinal surface undulations). 

The large-scale spatial distribution of rock glaciers is influenced by the complex interaction of topographic factors and climate, 

specifically by mean annual air temperature and precipitation. However, on a local scale, their distribution is dictated by local 60 

factors such as slope and aspect, structure and lithology of bedrock, debris input, heat budget of the ground, shading, and 

duration and thickness of snow cover (Cicoira et al., 2019; Kenner and Magnusson, 2017; Bodin et al., 2009). Rock glaciers 

distribution and evolution, and current permafrost degradation may affect the slope stability, runoff patterns, vegetation 

coverage, and water availability and quality, promoting landslides, geological disasters, debris flows, destabilization 
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phenomena (Pruessner et al., 2021; Marcer et al., 2019; Gruber and Haeberli, 2007), and direct or indirect risk to human 65 

activities and/or facilities (e.g., infrastructures, buildings) (Hassan et al., 2021; Arenson and Jakob, 2017). Furthermore, some 

rock glaciers act as essential hydrological reserve in high mountain systems, prolonging long-term water (and ice) storage, and 

consequently their presence and abundance could affect the amount and properties of runoff from high mountain watersheds 

(Bearzot et al., 2023; Wagner et al., 2021; Brighenti et al., 2019).  

The genesis of rock glaciers has been debated for a long time, with some studies linking them to periglacial conditions and the 70 

presence of permafrost (Knight et al., 2019; Haeberli et al., 2006) or associating them with paraglacial processes (Frauenfelder 

and Kӓӓb, 2000). Others suggest a glacial origin for rock glaciers (Monnier et al., 2013; Krainer and Mostler, 2000; Whalley 

and Palmer, 1998), proposing that they evolve from debris-covered glaciers, with interstitial ice being of glacial origin rather 

than meteoric (i.e., permafrost). The genesis of rock glaciers has been debated for a very long time during which some studies 

claim the relationship between rock glaciers to periglacial conditions and permafrost presence (Knight et al., 2019; Haeberli 75 

et al., 2006), or linked them to paraglacial processes (Frauenfelder and Kӓӓb, 2000) whereas others suggest the glacial origin 

of rock glaciers (Monnier et al., 2013; Krainer and Mostler, 2000; Whalley and Palmer, 1998) in which they originate from 

the evolution of debris-covered glacier and where interstitial ice is glacial origin rather than meteoric (i.e., permafrost). 

Depending on their permafrost content and activity, rock glaciers have been categorized into three categories: (i) active roc k 

glaciers, in which the internal deformation of frozen material and ice produces an effective surface displacement, (ii) inactive 80 

(dynamic or climatic) rock glaciers that still contain ice but have stopped moving and (iii) relict rock glaciers that no longer 

contain ice and consequently with no movement (RGIK, 2023). The active and inactive rock glaciers are commonly grouped 

together into the class called intact rock glaciers.  Although widely used, this classification is strongly dependent on the 

operator skills and, unless having subsurface information regarding the presence or lack of permafrost, remains uncertain. 

Although widely used, this classification brings two relevant limitations both from subjectivity point of view (activity 85 

attribution based on geomorphological approach is depended on the operator skills) as well as categorization since the activity 

of rock glaciers is considered constant over time at the scale of decades to centuries. In response to the ongoing increase in 

permafrost temperature, an acceleration trend has been observed worldwide, although with different phases based on the 

geographical regions and the characteristics of the individual landforms. For these reasons, the existing rock glaciers 

classification was redefined as follow: (i) active rock glaciers (A) which moving move downslope over most of its their surface 90 

and present steep front and lateral margins and contain freshly exposed material on top, (ii) transitional rock glaciers (T) which 

show slow movement to no downslope movement over most of its their surface and can either evolve towards a relict or an 

active state, depending on topographic and climatic context and (iii) relict rock glaciers (R) that show no evidence of recent 

movement, generally characterized by smoothed lateral and frontal margins and by the presence of vegetation and soil cover 

(RGIK, 2023). Therefore, this updated classification does not consider the ground ice content but rather the efficiency of 95 

sediment conveyance, namely the surface movement at the time of observations.  

In the regional territory of South Tyrol (Eastern Italian Alps), two rock glaciers activity classifications coexist over the same 

inventory, one is the South Tyrol Inventory produced by the Autonomous Province of Bolzano/Bozen (PAB) and the other 
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one is made by Bertone et al. (2019). Although a descriptive attribute of activity from independent morphological observations 

and a SAR coherence-based estimation is already included in the two datasets, a comprehensive definition of activity based 100 

on the integration of climatic drivers, displacement rates, and morphological parameters is lacking. 

The primary innovation of this study lies in the analysis of multiple variables each one describing a key evidence or 

predisposing condition of rock glaciers activity, integrated through multivariate statistical analysis in a predictive GAM model. 

We extracted the input variables by leveraging diverse sources, including multispectral (Landsat, MODIS) and radar (Sentinel 

1) satellites, interpolated ground measurements (weather stations) and digital terrain model (DTM) to derive morphometric 105 

factors. 

To this aim we propose a workflow where i) we first exploit satellite remote sensing products and implement routines to extract 

velocity attributes and environmental descriptors at the regional scale; ii) we then calibrate and validate a predictive multiclass 

generalized additive model (GAM) that maximizes their explanatory potential; iii) we apply the model to the entire dataset 

reclassifying each landform in a specific activity class. Our approach effectively highlights which variables (such as climatic, 110 

morphological, and dynamic parameters) and interactions best control each rock glaciers’ class of activity in the area 

investigated. Throughout this paper, the recent classification (A, T and R classes) was considered to define the activity of rock 

glaciers. 

2 Study area 

The study area covers the entire South Tyrol region (Northeast Italy, ~7400 km2) and extends over altitudes between 115 

approximately 200 m a.s.l. in the valley bottoms to 3900 m a.s.l. of Ortler Peak. The Periadriatic Line (P.L.; Fig.1a) separates 

the central eastern part, where sedimentary and metasedimentary rocks of the South Alpine domain outcrop, from the western 

regions characterized by the metamorphic lithologies of the Austroalpine and Pennidic domain, outcropping in the north 

easternmost sector (Stingl and Mair, 2005). The climate of South Tyrol is characterized by exhibits a a ratherpredominantly 

continental character, with mean annual precipitation sum (period 1981-2010; Crespi et al., 2021) generally around 1000 mm. 120 

However, the precipitation varies largely in South Tyrol from a regional point of view: the western sector, which includes Val 

Venosta (Fig.1b) and its side valleys such as Val Senales, Val di Trafoi, Val Martello, and Val d’Ultimo, has less precipitation 

(average annual precipitation ≤ 825.2 mm) than the central and eastern sector, which includes the vast highland in central and 

eastern South Tyrol (average annual precipitation > 825.2 mm) (Hao et al., 2019). Mean annual temperature extracted over the 

same period 1981-2010, are around 12°C in the valley bottoms and decrease on the slopes till reaching the 0°C isotherm around 125 

at 2400-2500 m a.s.l. (Crespi et al., 2021; Carturan et al., 2023). 
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Regarding the permafrost map (www.provincia.bz.it/edilizia/progettazione/alto-adige.asp), the region is characterized by 

discontinuous mountain permafrost which develops from a minimum height of 2300-2400 to 2500 m.a.s.l. (Fig.1b), according 

to sectors and site-specific climate conditions (Boeckli et al., 2012). 

3 Data collection and analysis 130 

Multi source and multi platforms data from remote sensing products and ground-based measurements were collected and 

jointly analysed. Using MODIS and Landsat satellite data allows the extraction of environmental parameters such as snow 

cover duration and land surface temperature. MODIS, on board of Terra and Aqua satellites, with its multispectral capabilities 

and daily repeat time, demonstrated efficacy in extracting the snow cover area both regionally and globally (Notarnicola, 

2020). Using Landsat 8 (nominal spatial resolution 100 m), operational line imager and thermal infrared Sensor (OLI and 135 

TIRS) satellite data we extracted Land surface temperature (LST) which has been acknowledged as one of the Essential 

Climate Variables (ECVs) by both the Global Climate Observing System (GCOS) and the Climate Change Initiative (CCI) of 

the European Space Agency (ESA) (Galve et al., 2022; Parastatidis et al., 2017; Ermida et al., 2020). Sentinel-1 SAR images 

were processed using HyP3 software (section 2.3) to retrieve dynamic attributes i.e., velocity and coherence values over the 

entire area of interest (AOI).  140 

Figure 1: South Tyrol region: a) lithological and structural map of the main geological units and faults in South Tyrol. 

Rock glaciers of the autonomusautonomous province of Bozen dataset are highlighted in black; b) digital elevation model 

with permafrost and glaciers distribution. 

http://www.provincia.bz.it/edilizia/progettazione/alto-adige.asp
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These variables, coupled with a range of data pertaining to rock glaciers morphometry and encompassing factors such as slope 

angle, elevation, lithology, and climate conditions, lead to a redefinition of activity classifications for all the mapped landforms 

within the pre-existing dataset. The overall workflow is sketched in Fig. 2. 

3.1 Rock glaciers dataset  

This study utilized a comprehensive rock glaciers dataset (yr. 2010) covering the entire South Tyrol region. This dataset is 145 

freely available on the WebGIS portal of the provincial administration of South Tyrol 

(https://geokatalog.buergernetz.bz.it/geokatalog) and accounts for 1779 rock glaciersfeatures.  The identification and mapping 

of periglacial landforms were conducted by using LIDAR (Light Detection and Ranging) Digital Terrain Models (DTMs) with 

a ground sample distance of 2.5 meters, supplemented by orthophotos from 2000, 2006, 2008 and 2014. The resulting catalogue 

includes not only boundary polygons but also incorporates descriptive features and qualitative aspects, determined through 150 

visual morphological inspection of each form. Employing this approach, a classification attribute has been assigned, 

categorizing forms, where feasible, into active, inactive, and relict states (table1). 

Figure 2:Schematic workflow illustrating the variables employed and the steps involved in the statistical analysis to derive 

the final activity class. 
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Among all the features, 13.5% are classified as active, 70% as relict, and 3.3% as inactive.This dataset is freely available on 

the WebGIS portal of the provincial administration of South Tyrol (https://geokatalog.buergernetz.bz.it/geokatalog) and 

accounts for 1779 features. The 13.5% is active, 70% classified as relict and 3.3% as inactive. The remaining part could not 155 

be classified (not defined - n.d.) based on a simple geomorphological approach. Starting from the same catalogue, Bertone et 

al., 2019 reclassified all the features by adopting an interferometric coherence-based approach, that was used as indicator of 

displacements. Considering only a kinematic approach the features were reclassified as (i) “moving”, for those rock glaciers 

with displacement detectable using coherence and (ii) “no-moving” rock glaciers where displacement was not detectable 

(table1). Based on this classification, 13 % of the mapped features is moving, 68% is not moving and the remaining 18% could 160 

not be classified simply with the SAR interferometric (InSAR) coherence approach because of vegetation cover, too small 

dimensions of the rock glaciers or layover and shadowing conditions. 

The two classifications offer distinct kinematic attributes, with one (Autonomous Province of Bolzano/Bozen Inventory) 

focusing on the potential presence of inner permafrost and its morphological expression, while the other (Bertone’s Inventory) 

provides an indication of surface movements. To integrate both perspectives and gather a singular and consistent activity 165 

indicator aligned with the newly proposed RGIK classes (RGIK, 2023), we categorized rock glaciers as "active" (A) only if 

they exhibited movement in both classifications. The "relict" (R) class was assigned to rock glaciers showing no movement in 

both datasets and determined to be either inactive or relict. For the remaining cases, which did not fall into the aforementioned 

categories, we classified them as "transitional” (T), excluding features that could not be classified (table 1). 

This reclassification serves to diminish uncertainty in categorizing the A and R forms, as these groups align more consistently. 170 

However, greater uncertainty is associated with the T class, where the two classifications do not converge.  

 

 

 

 

 

 

PAB classification (2010): morphological approach  

Active Inactive Relict n.d. 

Bertone et al., 

2019: DInSAR 

coherence 

Moving A T T n.d. 

Not moving T R R n.d. 

n.d. n.d. n.d. n.d. n.d. 

Table 1: table reporting the activity attributes of the Autonomous Province of Bozen (PAB) classification (row) and those from 

Bertone coherence-based classification (column). A (= active), T (= transitional), R (= relict) and n.d. (= not defined) correspond to 

the new preliminary labels attributed combining the two initial attributes. 
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3.2 Rock glaciers dataset  175 

To comprehensively characterize the rock glacier area, we extracted terrain attributes linked to local topographic and climatic 

site conditions, along with area characteristics that can influence debris supply, like the main lithology of the area (table2). 

Type of 

variable 
Parameter 

Unit of 

measure 
Description 

Morphometric 

Lithology categorical  
Affects the debris supply capability of the 

catchment and the size of blocks 

Total insolation kWh / m2 Measure of the solar radiation energy received 

on a given surface  

Slope ° Effect on frost- and gravity-driven processes 

Aspect ° 
Dip direction of the landform. Controls on the 

received solar radiation 

Elevation m.a.s.l. 
Influence on climatic conditions controlling 

permafrost distribution 

Vector Ruggedness 

Measure (VRM) 
/ Index of surface heterogeneity and harshness 

Convergence / 
Outlines channels (convergent) and ridges 

(divergent) 

Profile Curvature 1/m 

Parallel to the direction of maximum slope. 

Distinguish between concave (negative) and 

convex (positive) topography 

Climatic 

Land surface temperature 

(LST) 
°C 

Radiative skin temperature of the land surface: 

related to the energy budget of permafrost 

environments 

Precipitations  mm 
Liquid and solid precipitations from 

interpolation of ground weather stations data 

Snow cover duration 

(SCD) 
days 

Number of days a particular place was covered 

by snow 

Table 2: spatial environmental parameters extracted for each rock glacier. 

 

 180 

3.2.1 Morphometric variables 
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The lithology varies significantly across the AOI (Fig.1) due to the juxtaposition of rocks from different geodynamic settings. 

Starting from a geological map of South Tyrol (scale 1:25000 derived from CARG surveys at 1:10000 scale; 

http://www.provincia.bz.it/costruire-abitare/edilizia-pubblica/geologia-e-prove-materiali.asp), and based on the lithologies 

origin (sedimentary, igneous, or metamorphic), we categorized them into four macro classes: i) granitoids and volcanic rocks; 185 

ii) metasediments and low metamorphic facies; iii) facies from middle to high metamorphism; iv) sedimentary cover. Then, 

as our main goal is on classifying the activity class of mapped rock glaciers rather than analyzinganalysing factors contributing 

to their initiation, we also incorporated morphological indexes sensitive to various permafrost dynamics (table 2). Active 

landforms should in fact display a more swollen appearance due to the presence of inner permafrost and their deformation that 

often leads to the formation of furrows and transversal ridges inducing a consequent increase in surface roughness. On the 190 

other hand, relict rock glaciers, with limited or absent permafrost core, may have a more convex and flatter surface with 

consequent lower values of Vector Ruggedness Measure (VRM) and positive profile curvature. 

Terrain attributes obtained from a smoothed 10 m DEM resolution (down sampling of the 2006 digital elevation model at 2.5 

m from the Autonomous Province of Bozen http://geokatalog.buergernetz.bz.it/geokatalog/#!) were incorporated into the 

analysis as they are expected to capture the overall characteristics of the topographic niche of rock glaciers. All the analyses 195 

have been done in SAGA GIS and ARCGIS 10.8. 

 

3.2.2 Climatic variables 

Land surface temperature 

Land surface temperature (LST, Fig.S1) represents the radiative skin temperature of the land surface, as measured in the 200 

direction of the remote sensor. While acknowledging the disparities between ground surface temperature (GST) and LST, this 

latter generally displays a pattern that may closely follow the GST variability suggesting the possibility of linking GST to LST 

products (Serban et al., 2023; Sun et al., 2015). As consequence, due to the lack of ground measurements that could be used 

to retrieve the GST, we considered a Landsat derived LST as indicator of surface temperature variability, sensitive to factors 

such as elevation, slope, aspect, soil structure, snow, and vegetation cover.  205 

Analyses were carried out on Google Earth Engine (GEE) platform by using the code proposed by Ermida et al., 2020 to 

process thermal infrared (TIR) band signals provided by Landsat 8 over the period 2013 to 2023 (Table 3).  

Satellite Bands Wavelength (μm) Dataset 
ground 

resolution 
time period 

Landsat 8 

(OLI; TIRS) 

Red: B4 

NIR: B5 

TIR: B10 

0.64–0.67 

0.85–0.88 

10.6–11.19 

C01/T1_SR 

C01/T1_SR 

C01/T1_TOA 

30 m 

30 m 

100 m * 

Septembers from 

2013 

to 2023 

Table 3:dataset used to compute LST in GEE.        * Resampled to 30m 
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The distribution of the rock glaciers spread across a wide range of elevation (1850-3100 m a.s.l.). Since several of them, 

especially those classified as R, occupy low altitude sectors and can be covered by bushes and shrubs, some precautions were 210 

imposed on the algorithm to quantify the LST properly such as the correction of NDVI (Normalized Difference Vegetation 

Index) to emissivity to adjust it for the surface vegetation contribution (Malakar et al., 2018, Parastatidis et al., 2017, Ermida 

et al., 2020). A cloud filter was also added to exclude images with a cloud coverage exceeding 20% over the scene. For the 

analyses, we then only consider images acquired in September to emphasize potential spatial differences between rock glaciers 

bearing permafrost and areas with no permafrost. In September, as the air temperature begins to drop, the differing response 215 

rates of permafrost and rocks to this change can lead to a more pronounced temperature delta.  In addition, after the warmer 

summer months, permafrost may still be in the process of thawing during which heat absorption phenomena occurs, 

contributing to a slower increase in temperature compared to rocks without permafrost. 

Precipitations 

Mean seasonal precipitation maps (Fig. S2, S3) were extracted starting from high-resolution gridded datasets (cell size of 250 220 

m) of daily precipitation records for Trentino South Tyrol (Crespi et al., 2021). 

We analyzed a twenty-year timeframe spanning from 2000 to 2018, calculating the average precipitation values for both 

summer (July to September) and winter (from October to June) seasons. This differentiation is crucial in high-altitude 

environments due to the necessity of discerning between periods dominated by liquid precipitation in summer and those 

characterized by solid precipitation in winter months. This is particularly important because the weather station in South Tyrol 225 

collects precipitation data without distinguishing between these two contributions. 

Snow Cover Duration 

Snow cover duration (SCD, Fig.S4) on the ground significantly affects the ground thermal regime modifying the heat 

insulation, water storage and runoff contribution, but the interaction of ground temperature and snow cover is not entirely 

straightforward and its effects on permafrost conditions can change according to snow depth, type, and water content (meaning 230 

snow water equivalent, SWE; Bender et al., 2020). However, the analysis of the thickness and SWE of the snow cover goes 

behind the scope of this study and would require additional information from ground measurements. Here, we only consider 

the snow cover duration, retrieved from MODIS satellite with 250 m spatial resolution, as number of days per year having a 

multispectral indication of snow on the ground (Notarnicola et al., 2013). However, in this context, we do not consider SCD 

as a predisposing factor for the formation of rock glaciers due to its implications for the thermal state of permafrost. Instead, 235 

we consider  the temporal duration of snow cover in relation to the observed activity of rock glaciers, viewing SCD primarily 

as a factor influencing the modulation of activity states rather than as a prerequisite for their formationUsing this SCD 

parameter, a potential correlation between the rock glaciers’ activity at a regional level was made. In fact, SCD was used not 

only to investigate into the predisposing factors that lead to the formation/absence of rock glaciers but also to understand how 

the temporal duration of snow cover might relate to the observed activity of the rock glaciers in the specific AOI. 240 
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3.3 InSAR data 

We utilized Copernicus Sentinel-1 C-band single-look complex (SLC) radar data acquired in the snow free period between 

July and October spanning the years 2020 to 2022. The combination of Sentinel-1's extensive swath width and rapid revisit 

time renders it well-suited for monitoring widespread landscape-scale deformations. The data were collected in interferometric 245 

wide (IW) swath mode with a swath width of 250 km, employing vertical co-polarization (VV) along both ascending orbits 

Figure 3: First and second steps of the DInSAR processing chain: a) workflow implemented in HyP3-MintPy and CNN 

correction; interferometric pairs elaborated for the ascending (b) and descending (c) geometry; d) example of an 

unwrapped interferogram without CNN APS filtering and with CNN APS filter (e). 
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117 (68 SAR images-165 interferograms), as well as descending orbit 168 (57 SAR images-133 interferograms). The Sentinel-

1 SLCs exhibit a spatial resolution of 22 m in the azimuth (along-track direction) and 2.7-3.5 m in the range (across-track 

direction).  

We set a revisit time range of 6, 12, 24 and 30 days and computed interferometric pairs employing the Small Baseline Subset 250 

(SBAS) processing of Sentinel-1 data through Alaska Satellite Facility's Hybrid Pluggable Processing Pipeline (ASF HyP3, 

Fig 3), a web-based SAR data processing platform that primarily utilizes Amazon services. Multi-looking was performed, 

involving 10 looks in range and 2 looks in azimuth, resulting in interferograms with a pixel spacing of about 40 m. ASF HyP3 

then utilized the 2021 release of the 30 m Copernicus "GLO-30" digital elevation model (DEM) product to eliminate the 

topographic component of the phase and geocode the interferograms. The Atmospheric Phase Screen (APS) contribution in 255 

interferograms was filtered through a convolutional neural network (CNN) approach (Brencher et al.,2023). This method was 

employed to eliminate both stratified and turbulent atmospheric noise. 

The key strengths of this approach stem from its independence of external atmospheric data or synthetic training data; instead, 

corrections are derived directly from the observed ones. After the atmospheric filtering, unwrapped interferogram were re-

ingested in Python-based Miami InSAR Time-series software MintPy (Yunjun et al., 2019) to produce mean Line-of-Sight 260 

(LOS) displacement rate maps. MintPy works based on a weighted least squares inversion formula (Augustan et al., 2022, 

Yunjun et al., 2019). By default, and starting from the interferometric stack, it estimates the average velocity as the slope of 

Figure 4:Third step of the DInSAR processing chain: a) workflow adopted to filter velocity product applying 

coherence, velocity, and topographic masks; b) visibility map; c) coherence map; d) final filtered velocity map. 
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the best fitting line to the displacement time-series corrected for the APS contribution. All deformations are referred to a single 

point within the analysis that is automatically selected among the pixels with high average spatial coherence (>0.85, Yunjun 

et al., 2019). 265 

For each polygon we selected the most suitable acquisition geometry, and we provided the corresponding C index (Notti et al. 

2014) to indicate how well each landform is caught from the satellite according to the combination of slope, aspect and satellite 

orbit parameters (LOS, orbital and azimuth angle). In refining the velocity maps, we employed coherence, velocity, and 

topographic filters (Fig.4) to remove pixels with high uncertainty due to geometric and displacement uncertainties. Areas 

affected by layover and shadowing were discarded from the displacement map, as well as areas with coherence values under 270 

0.25.  

3.4 Data extraction and integration 

3.4.1 Extraction of environmental and climatic statistics 

For each rock glacier polygon, mean values for environmental and climatic variables were assigned based on the values within 

the polygon boundary. Furthermore, for DInSAR-related variables (i.e., velocity and coherence), additional statistical 275 

descriptors were extracted such as variance, 25th-75th, and 90th percentiles. Finally, each rock glacier was given an estimation 

based on how much of its area is covered by the filtered SAR data (Fig.4). This information can be considered a measure of 

uncertainty associated to the data based on the spatial coverage within each polygon.  

Starting from the distribution map of the rock glaciers and considering their displacement range, we then made two distinctions: 

(i) movements strictly related to periglacial processes that are confined within mapped rock glacier boundaries and (ii) 280 

movements less influenced by permafrost creep and deformation mechanisms and lacking respective morphological evidence 

that are placed in the surrounding areas of polygon boundaries. To accomplish this diversification, around each mapped 

landform, at a distance of 100 m, a 100 m wide buffers (Fig.S5) was generated to address areas with no visible displacement 

ascribable to periglacial deformations. The selection of a 100 m buffer was chosen since it provides a balance that ensures 

meaningful data extraction for analysis while avoiding excessive noise from unrelated features. In the case of adjacent forms 285 

or multiple rock glaciers coalescing into one body, these rims were cut to avoid overlaps between different features. 

The delineation of surrounding areas external to the rock glaciers serves a dual purpose: facilitation in the comparison step 

between parameters measured inside the periglacial landform and its immediate surroundings and secondly it permits the 

differentiation of contributions from permafrost movement and potential deformations (such as gravitational movements) 

which could affect the slope stability. Consequently, we also computed the delta of values between the interior and exterior of 290 

the rock glaciers. This calculation accentuates variations (e.g. velocity difference) that may be attributed to the presence and 

activity of permafrost or other sources of deformations. 

 

3.4.2 Statistical modelling 
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To discern the key factors influencing the distinction between A, R, and T rock glacier classes, we performed an initial 295 

Exploratory Data Analysis. This exploration served to inform the selection of explanatory variables by assessing their potential 

impact on defining the activity class and examining their relationships with the response variables. Subsequently, a GAM was 

employed to investigate the associations between the chosen predictor variables derived from both environmental and DInSAR 

datasets and the response variables. 

GAM provides a versatile framework for examining non-linear associations between the response variables (here, the three 300 

activity classes of rock glaciers: A, T and R) and continuous variables (e.g., morphometric and DInSAR indexes) by enabling 

the incorporation of both parametric and non-parametric covariates, facilitating the exploration of individual effects (Brenning, 

2010, Thiessen et al, 2024). GAMs are often used in environmental and geomorphological studies (Miska and Jan 2005; Rudy 

et al. 2017) to investigate  the non linearnon-linear interaction between variables andbut also, as in Brenning et al., 2007, to 

model the spatial distribution of rock glaciers in remote regions (as in Brenning et al., 2007). 305 

 The initial phase of the model construction involved the determination of smoothing parameters, which control the flexibility 

of the model, for continuous variables. This process utilized internal cross-validation, with a constraint of four effective degrees 

of freedom for spline parameterization. The significance of each term was assessed based on p-values, with the null hypothesis 

(no effect of the term) being rejected at a threshold of 0.05. Consequently, only terms demonstrating a significant effect (p -

values < 0.05) were incorporated into the final model (Wood, 2013).  In the model set up, we examined not only the individual 310 

predictors influence outcomes but also considered interaction terms. Interactions can in fact reveal relationships that may n ot 

be apparent when considering single predictors. For example, understanding how morphometric characteristics and DInSAR 

indexes interact can help to uncover the mechanisms driving the activity classes of rock glaciers.  Additionally, we utilize the 

Accumulated Local Effects (ALE; Apley and Zhu 2020) approach for GAM to interpret the influence of each predictor variable 

on the model, providing insights into their respective impacts on the response variable. The GAM model was then fitted to the 315 

data and its performance evaluated using receiver operating curve (ROC) analysis for a multinomial response variable with 

three classes. Once verified its performance, the model was finally applied for the classification of unknown features, and 

predictive performance estimates were computed through multiple independent test sets employing 2, 5, and 10 k-fold cross-

validation selections. The calculation of predictive performance involved iteratively dividing the original dataset into training 

data (utilized for model fitting), and test data (employed for calculating the AUROC metric). 320 

4 Results 

4.1 Exploratory Data Analysis 

The exploratory data analysis allowed first insights into empirical associations between the rock glaciers classes and potential 

predictor variables. 

Considering the classification in Table 1, we analyzed the distribution of morphometric and environmental variables among 325 

the A, T and R classes. In this step, boxplot and conditional density plots were used to highlight the distribution of continuous 
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variables over the three classes, specifically focusing on parameters where the interquartile ranges display higher divergence 

among classes. Boxplot in Fig.5 are constructed so that the lower edge corresponds to the 25th percentile (Q1), the middle line 

is the median, the 50th percentile, and the upper edge the 75th percentile (Q3). The whiskers extend to the most extreme data 

points that are not considered outliers. This range is considered between 1.5*IQR from Q3 and 1.5*IQR from Q1. Beyond 330 

these limits points are considered outliers. 

 In this analysis, both rock glaciers related values (computed inside the boundary of the landforms), and delta values (computed 

as difference between rock glacier and the corresponding outer area), were considered. 

 In particular, the variables that resulted most significative are LST, SCD, VRM, mean and variance values of coherence, 

coherence difference (from inside the rock glacier and the area outside), variance in velocity and highest velocity (Fig.5).  Land 335 

surface temperature (Fig.5a) serves as a discerning factor delineating among distinct categories of landforms: R, T, and A rock 

Figure 5: variables retained for the discrimination of the three activity classes of rock glaciers. Both boxplots and conditional 

density plots are reported for each variable. Boxplots shows the distribution of values for each variables in each class, 

conditional density plots  describe how the conditional distribution (0-1) of the categorical variables A-T-R and y changes 

over a numerical variable; a) land surface temperature-LST; b) snow cover duration- SCD; c) vector ruggedness measure- 

VRM; d) mean coherence; e) variance of coherence representing the variability of coherence values inside rock glacier 

polygons; f) coherence ∆, computed as difference between the mean values inside the 100m rim of each rock glacier and 

mean value inside the rock glacier; g) variance of velocity; h) highest velocity values. Negative values are considered to 

retain only movements away from the satellite. 
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glaciers. R landforms exhibit the highest temperature regime, characterized by a mean LST value of approximately 17°C. T 

landforms occupy an intermediary position, displaying a mean LST value of around 14°C. Meanwhile, A rock glaciers share 

a similar mean LST value to T ones, albeit with lower maximum temperatures. This differential temperature ranges across the 

rock glacier classes underscores the utility of LST as a diagnostic parameter for delineating the thermal conditions favouring 340 

or limiting the activity of these landforms. Similarly, snow cover duration (SCD) exhibits notable discriminative characteristics 

among the various rock glacier classes. R rock glaciers demonstrate a mean SCD of 225 days, whereas T and A classes display 

longer durations, with respective values of 290 and 310 days of snow cover (Fig. 5b). Here SCD solely reflects the presence 

of snow cover on the ground without providing details regarding snow depth or water content within the snowpack. Surface 

roughness (Fig.5c), expressed by vector ruggedness measure (VRM), also provides an indication of the surface conditions 345 

controlled by permafrost deformation, with T and A classes holding a slightly higher VRM than R ones. Therefore, recognizing 

its significance in representing potential surface variations, we retained this parameter and incorporated it into the subsequent 

analysis in conjunction with other parameters. Coherence-related metrics such as mean coherence value (Fig. 5d), coherence 

variance (Fig. 5e), within each polygon, and coherence delta (Fig. 5f), between the rock glacier landform and the surrounding 

100 m rim emerge as highly discriminative indicators among the three activity classes, as evidenced by boxplots that exhibit 350 

minimal overlap. Generally, A rock glaciers have a low coherence value, mean value around 0.5, while R rock glaciers, which 

keep a higher surface stability, reach values of 0.8. Velocity values prove to be an effective classificatory too, especially 

considering vLOS variance (Fig.5g), related to internal surface variations of velocity, possibly between discrete sectors or 

lobes, and the highest velocity value recorded in each rock glacier (Fig.5h). 

We opted not to include mean velocity because it may not adequately represent displacement rates. Averaging positive and 355 

negative velocities could significantly underestimate the magnitude of movement for various features. Instead, we chose to 

focus on the highest negative velocity, as it provides a more accurate representation of displacement rates without averaging 

opposing values. 

 Less influence is exerted by other morphometric indexes (Fig.6) like as aspect, slope, total insolation, curvature, and 

convergence that did not lead to an evident distinction among the classes. In contrary, elevation shows a high capacity in 360 

separating R class from T and A classes. However, we did not consider this variable since its contribution also affects the LST 

measure that has a strong elevation related trend. Keeping the elevation parameter would have added redundancy in data. 
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Figure 6: morphometric variables that were not retained in the analysis due to their little discriminant capacity between activity 

classes: a) elevation; b) aspect, computed as mean direction towards north; c) total insolation coming from the combined contribution 365 
of direct and diffuse insolation; d) slope angles; e) profile curvature: positive values indicate concave structure of the landform, 

negative values convex shapes; f) convergence: positive values indicate divergent areas, negative values convergent areas. 
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4.2 Multiclass GAM model 

After the above steps, we considered the eight selected variables (Fig.5) as predictor variables in a multinomial response 

variable GAM model which included smooth terms for specific variables and tensor product smooth interactions between pairs 370 

of variables, all using thin-plate regression splines with a smoothness parameter of 4. The decision to incorporate tensor product 

interactions, specifically between variables such as mean coherence and coherence ∆, as well as variance of coherence and 

variance of velocity, was driven by considering that diverse values of coherence might also be reflected in higher variations of  

coherence between the inside and outside of the landform. Similarly, variations in variance of coherence may be associated 

with variations in variance of vLOS as consequence of increased surface deformations and terrain alterations. These 375 

interactions aim to capture the potential interplay and mutual influence between these variables, acknowledging that their jo int 

effects on the response variable may not be adequately captured by single smooth terms. 

Figure 7: ALE plot for predictor variables. Each plot shows how the predicted outcome varies with changes in individual 

predictor variables, while holding other variables constant. Movement of the line indicates shifts in predicted probability 

for a class as the predictor variable changes: steeper slopes denote greater influence of the predictor variable on the 

predicted probability. x axis represents the range of values of each variable, the y axis refers to the main effect of the feature 

compared to the average prediction of the data. 
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 In addition, considering the interaction between these terms also led to an improvement in model performance, as indicated 

by lower Akaike Information Criterion (AIC; Akaike, 1974) values (AIC=1264 considering tensor product interactions, 

AIC=1271 considering single smooth terms). 380 

As feature effect method we adopted an accumulated local effect (ALE; Apley and Zhu, 2020) representation to inspect the 

effect of changes in the value of each predictor variable on the model’s predictions. 

The value of the ALE can be interpreted as the main effect of the feature at a certain value compared to the average prediction 

of the data. In Fig.7, it’s evident that the mean coherence and the SCD values (Fig.7a and 7d, respectively) are the major 

control factors in distinguish the T, A, R classes. For the A class, the ALE plot exhibited a descending trend as coherence 385 

increased. Notably, higher coherence values are associated with lower predicted responses, suggesting a negative impact or a 

diminishing effect on outcomes within the A class as coherence increased. On the contrary, R and T classes initially displayed 

negative y-values for low coherence, indicating that lower coherence is associated with lower predicted responses. However, 

as coherence increased, the effect transitioned to positive y-values, resulting in an overall ascending trend. This observed 

pattern suggests that higher coherence values are associated with higher predicted responses for the T and R classes. An 390 

opposite trend is found for SCD (Fig.7d) which shows how, over a certain number of days, there is a positive effect of snow 

cover duration on A and T rock glaciers, while R are influenced negatively. Slight differences in the LST (Fig.7f) and veloci ty 

which can also be correlated to a different capability in predicting the activity classes. LST values around 5°C are more 

representative of conditions proper of A and T rock glaciers. This is probably due to the presence of internal permafrost and 

the occupied topographic area (Fig.6a). Higher temperatures on the contrary correspond to an increase in predictability of R 395 

classes. 

4.3 Fitting performance evaluation and model extension 

We used the Receiver Operating Characteristic (ROC) and in particular the area under the curve (AUC) metric to evaluate the 

performance of our classification model across different thresholds. In the case of multiclass classification, a notion of TPR 

(True Positive Rate) and FPR (False Positive Rate) is obtained after binarizing the output. This can be done according two 400 

different schemes: i) one-vs-rest scheme, which compares each class against all the others (assumed as one); ii) one-vs-one 

scheme, which compares every unique pairwise combination of classes.  

The evaluation of our multi-class classification model yielded an AUC of 0.87 in the One-vs-One (OvO) scenario and 0.95 in 

the One-vs-Rest (OvR) scenario (Fig.8). These AUC values signify a strong overall performance in distinguishing between 

the three rock glacier classes, further supporting the effectiveness of the GAM in capturing the relationships within the data.  405 

The lower AUC value for T class vs. A class and T vs R classes might indicate that the model faces challenges in discriminating 

between these classes, possibly due to the disparity in class frequencies (higher number of relict forms vs active and transitional 

ones) or a higher uncertainty associated with the identification of T landforms. These AUC values signify the model's 

consistent ability to distinguish between individual classes when compared to the rest and the effectiveness of discriminating 
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one class against the collective set of other classes. The metrics, surpassing the 0.5 baseline, underscore the model's efficacy 410 

in capturing relationships within the dataset, suggesting its potential utility for accurate classification across diverse categories.  

Once evaluated the predictivity capability of the model, we applied it to the entire regional dataset, considering also the n.d. 

landforms (Table1) to predict the most probable class. The model's performance was evaluated by assessing the match between 

predicted and true classes, as well as measuring the proximity to the nearest class in terms of probability.  

The robustness and discriminative performance of the classification model were assessed through repeated k-fold cross-415 

validation (Fig.9a). The cross-validation approach, employing 2-fold, 3-fold, 5-fold, and 10-fold splits, was implemented to 

systematically evaluate the model's generalization across various train-to-test ratios. The performance of the model was 

quantified using the AUROC. The resulting boxplot visually depicts the distribution of AUROCs across different cross-

validation scenarios, offering insights into the model's stability and discriminative prowess. 

1716 rock glaciers over 1779 were classified and 63 could not be classified due to the lack of data, such as the invalid velocity 420 

pixels which were excluded for coherence or topographic effects. The spine plot in Fig.9b illustrates the correspondence 

between predicted and initial classes, with each spine representing a predicted class and the height of its segments indicating 

the proportion of observations assigned to each initial class within that prediction. The conditional density plot (Fig. 9c, 9d) 

further delves into model behaviour by showcasing the distribution of predicted classes across varying degrees of uncertainty, 

depicted along the x-axis as the uncertainty index. Fig.9c depicts the distribution of uncertainty in the complete dataset, while 425 

Fig.9d only represents the uncertainty distribution in the n.d. cases. Values close to 1 points out a higher confidence level, 

while lower values indicate a higher uncertainty in the classification. Being the most abundant ones, the R features, are 

Figure 8: multiclass model performance evaluated for each class as a) One vs One and b) One vs Rest. 
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characterized by a high confidence level, whereas this level decreases considerably for the T class which show the highest 

uncertainty in the prediction. 

 430 

 

Upon reclassification, approximately 67% of the initially proposed classifications remained unchanged, i.e. rock glaciers 

classification fitted Bertone and PAB label as reported in Table 1. Conversely, approximately 32% of the landforms were 

reclassified into different categories. Figure 12 illustrateThe spatial distribution of newly attributed activity classes and the 

agreement/not agreement among the three methodsthe initial classification label and the  is shown in Fig.10a, not classified 435 

rock glaciers on a regional scale (Fig.12a) whereas in Fig.120b the regional distribution of the rock glaciers, adopting the new 

classification, is shown. Respect to other methods, our model additionally offers estimations of predicted probabilities for each 

class (Fig.120c), with Rrelict forms exhibiting the highest level of confidence (indicated with different border colour lines in 

the figure). Respects the other two categories, Tthis heightenedincreased confidence of the R (Fig.120d) respects the other two 

categories is partly attributed to the great diversity in number of the rock glaciers into each class. The R class shows the highest 440 

level of confidence (> 0.8) probably due to the greater abundance of them (1345) respect to T and A. The A class (formed by 

171 rock glaciers) shows an intermediate confidence interval in our dataset whereas the T (formed by 200 features) exhibits 

the lowest confidence level (< 0.4), primarily due to the inherent mismatch between their geomorphological parameters and 

coherence-based attributes, as evident in Table 1. 

 445 

Figure 9: Model performance and fractional breakdown of the obtained activity classes: a) boxplot showcasing the AUC 

metric for each k-fold cross-validation.; b) spinogram illustrating the distribution of classified rock glaciers based on both 

our model and the initial classification.; c) conditional density plot for uncertainty values over all  the observations; d) 

conditional density plot  of uncertainty values only over not determined (n.d.) features. Red histograms indicate the 

distribution of uncertainty index values for the plotted observations (all the observations in Fig.8c, only n.d. observations 

in Fig. 8d). 
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5 Discussions 

5.1 Classification approaches  

The growing interest in periglacial landforms, particularly rock glaciers within alpine mountain systems, emphasizes the 

importance of understanding their dynamics in the context of climate change and its far-reaching implications. As climate 450 

change effects intensify, with temperature fluctuations and alterations in precipitation patterns, comprehensively quantification 

of the activity and deformation of these landforms becomes increasingly crucial since it provides knowledge of ongoing 

changes in the high mountain cryosphere (Kääb et al., 2007). 

Figure 1012: model classification outputs: a) distinction between matching and not matching activity class between the 

initial label and the new one; b) new rock glaciers classes; c) example of the attributes associated to some rock glaciers in  

the area identified within the red square. The colours of the borders correspond to the confidence interval (CI) for each 

feature in the activity classes. Values close to 1 point out a higher confidence, lower values higher uncertainty in the 

prediction; d) distribution of classification uncertainty in each class.  
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Various approaches exist for assessing the activity of landforms at a broad scale. These include: i) a morphological method, 

which involves visually inspecting orthophotos, satellite images, or conducting field surveys to identify diagnostic features 455 

associated with permafrost deformation, such as furrows, ridges, steep fronts, and lateral margins (Scotti et al., 2013); ii) an 

interferometric coherence method, as utilized by Bertone et al., 2019, which relies solely on kinematic analysis to different iate 

between moving and non-moving landforms based on coherence values; and iii) a velocity method, typically derived from 

DInSAR data, particularly for regional scale investigations (Kääb et al., 2021, Strozzi et al., 2020; Zhang et al.,2021). While 

each of these approaches has demonstrated effectiveness in defining the activity state of rock glaciers, they also possess 460 

significant limitations when considered alone. The accuracy of geomorphic-based classification is heavily dependent on image 

quality and operator expertise, leading to subjective mapping outcomes. Conversely, InSAR-based methods encounter intrinsic 

limitations inherent to the technique itself, particularly evident in complex environments like the high alpine terrain.  

Commonly these techniques are integrated by validating findings from one method with evidence from another (Bertone et al., 

2024; Ma et al., 2024), for instance visually inspecting the presence of morphostructures and displacements related to features 465 

with DInSAR surface patterns (Agliardi et al., 2024). 

In our study, we just not simply compare the results gathered from the interferometric approach and morphological and climatic 

ones, but we aimed to integrate outcomes from these diverse approaches starting from existing datasets and extracting 

descriptive variableswe jointly exploit their descriptive potential to develop a comprehensive method statistical model for 

categorizing mapped landforms into the three activity classes proposed by RGIK 2023: active (A), transitional (T), and relict  470 

(R). 

We processed both geomorphological and climatic maps (Table2), incorporating data from in situ measurements obtained from 

weather stations, as well as remote sensing products such as MODIS and Landsat. Through exploratory data analysis, we then 

selected variables that proved to have a higher discriminatory power in classifying rock glaciers across the three activity 

classes.  475 

In delineating the activity of rock glaciers, we found that three variables, namely snow cover duration (SCD), vector roughness 

measure (VRM), and land surface temperature (LST), hold greater significance, with higher quartile distinction between the 

boxplots of each activity class or with p values <0.1 as smooth terms in the GAM, compared to traditional topographic factors 

like slope, aspect, and curvature.  

SCD, for instance, plays a crucial role in regulating the energy balance of the land surface, thereby directly influencing melting 480 

and refreezing rates within rock glaciers, and thus also controlling the displacement patterns. This result is also supported by 

previous studies which highlighted the relevance of the snow cover in determining permafrost occurrence at a local scale 

(Apaloo et al., 2012), and at the regional scale (Marcer et al., 2017), influencing rock glaciers activity distribution by altering 

the ground thermal regime. 

Similarly, the VRM, associated to velocity variations, offers valuable insights into surface roughness variations, which directly 485 

reflect the flow dynamics within rock glaciers. These two variations manifest as the formation of furrows and ridges, resulting 

from compressive and tensile stresses associated with different flow velocities and internal deformation interactions with the 
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topography. Additionally, LST serves as a key indicator of heat exchange processes, offering valuable information on areas 

potentially hosting permafrost. Despite not being a direct measure of in situ land surface temperature, LST from Landsat proves 

to be reliable in studying the spatial variability of surface temperature in complex topography (Gök et al., 2024). Here, Iits 490 

application to the periglacial environment here proved to result effective in discriminating areas with lower temperatures 

influenced by a combination of factors namely: altitude, exposition, ground conditions and as consequence potentially affected 

by permafrost conditions. Therefore, using LST as a descriptive variable is acceptable, even though it does not directly 

correspond to the temperature of the deeper ground surface.a  

Although not immediately evident, the relatively minor influence of the other morphometric indexes (i.e., slope, aspect, 495 

curvature), likely stems from their primary role as predisposing factors to the initiation of rock glaciers within the study area, 

rather than exerting significant control over their ongoing activity.  

For istanceinstance, Sslope should for instance play an important role in controlling surface velocities which can be described 

through a creep law by the joint interaction of slope angle and rock glacier thickness (Cicoira et al., 2020. Kaab et al., 2023). 

However, our findings do not outline such a clear dependency between velocity and steepness, as also reported in Buchelet et 500 

al., 2023.  

AlsoIn addition, considering the aspect alone, we could not find meaningful links with the activity rate. Bertone et al., 2024 

got similar results over a sub portion of our same area of study, thus confirming that using the aspect as a topographic proxy 

for inferring the permafrost content, and the activity class, may be problematic. 

However, to Therefore, to establish the true impact of changes in these variables on activity classes local scale detailed analyses 505 

should be conducted. It is crucial to explore their local influence in site-specific cases, as local conditions, such as lithology, 

permafrost distribution, and local changes in slope, can significantly influence the activity of rock glaciers. These aspects may 

modulate factors like ice content, ground temperature, and frictional behaviour, thereby shaping the dynamics of rock glacier 

movement and activity patterns. 

An additional consideration should be given to the precipitation values, which did not display a clear correlation between mean 510 

summer and winter values and activity classes at the regional scale. Despite precipitation events are likely contributors to short-

term and seasonal variations in the velocity of rock glaciers (Kenner and Magnusson, 2017; Kenner et al., 2021), when analysed 

at a broader regional scale further investigation is required to catch the quantitative relationships between their class of activity 

and precipitation levels (Zhang et al., 2023). This is due to local factors that may exert a more significant influence on 

controlling rock glaciers activity than broader precipitation patterns alone. Precipitation cannot be considered as a singular 515 

influencing factor, rather, it strongly interacts with other local conditions (temperature, exposition etc.) in regulating the 

activity and evolution of periglacial features. 
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To incorporate these variables into our analysis, alongside DInSAR derived parameters, we utilized a multiclass GAM 

classifier. The model addressed gaps in the morphological and DInSAR based techniques, enabling the classification of a 

greater number of landforms that were previously undefined in one or both inventories made by PAB and Bertone. Upon 520 

reclassification, approximately 67% of the initially proposed classifications remained unchanged, i.e. rock glaciers 

classification fitted Bertone and PAB label as reported in Table 1. Conversely, approximately 32% of the landforms were 

reclassified into different categories. Figure 110a visually depicts these changes, illustrating the number of features that 

changed classes (arrows) and those that remained within the same category (vertices). A ternary graph (Fig.110b) represents 

the associated probability of the rock glaciers to fall in each class. As evident from the graph, the direct class-shift from A to 525 

R (and vice versa) is a rarely frequent process (only 7 cases), and an intermediate transition passage into T class is more 

frequent and evident, as highlighted by the curve trend. The observed reclassification shows that there is a common trend that 

transforms A into R, shifting previously through a T phase, highlighting the dynamic response of rock glaciers to environmental 

(fluctuations in air temperature and changes in precipitation) and geomorphological (slope orientation, ice content, debris 

cover) factors ( as described in Barsch, 1993). . The transitional phase serves as a critical buffer, enabling gradual adjustments 530 

to these changing environmental drivers and facilitating smoother transitions to the relict state. This dynamic interplay is 

further underscored by the complex interactions between ice presence, debris material, permafrost content, and other external 

factors like temperature and precipitation, often leading to non-linear responses but rather to a more transitional process 

(Etzelmüller et al., 2011). In our case, the transition of rock glaciers from A to R classes is also supported by velocity changes, 

with a decreasing trend in detected velocities processing from A to R states (Fig.101b). 535 

This phenomenon is particularly pronounced when considering the velocity delta between the rock glaciers and their 

surrounding areas not involved in the creeping process. As rock glaciers evolve towards an active state, the differential velocity 

between the rock glacier and its surroundings increases, indicating heightened activity and movement within the landform. 

Figure 1011: Distribution of rock glaciers according to the activity class; a) number of rock glaciers retaining their 

original class after reclassification (vertices of the triangle) and reclassified into different categories (arrows on the sides); 

b) distribution of reclassified data based on their probability of belonging to each class. The size of the circles is related 

to the spatial cover of SAE data over each landform. Higher coverage reflects in larger circles and vice versa. 
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This observation underscores the dynamic nature of rock glaciers and highlights the significance of velocity changes in track ing 

their evolution and behaviour over time. 540 

Considering the integration of DInSAR and environmental features, a specific class may undergo reclassification when 

alternative or integrated approaches are utilized. This variability underscores the importance of considering multiple factor s 

and methodologies in landform classification, especially in situations where input variables are incomplete or uncertain. 

Figure 1112: Examples of rock glaciers with different activity labels. Panels a,c and d report DInSAR velocity patterns 

over the selected features; b,d and f show the surface morphology through hillshade maps; g) summary table with the 

original activity label for each dataset, the new class and the confidence level . 
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Moreover, relying solely on a single classification approach may be misleading, as factors such as inaccurate morphological 

mapping or the inability to recognize subtle features can compromise the accuracy of the classification.  545 

Figure 112 shows some examples regarding the different classification among the three approaches (PAB, Bertone, and our 

new approach). Rock glacier in Fig.121a,b, even if it shows the presence of swollen furrows and lobes, was classified as R by 

the PAB. In Bertone and in our classification, this rock glacier is identified as A because there is both a clear velocity InSAR 

signal and for the presence of distinct morphological features indicate surface displacement. Opposite situation happens 

considering the rock glacier IV (Fig.112c,d). This rock glacier is A for the PAB, while Bertone et al., 2019 classify it as F and 550 

from our classification it results T. Even if this rock glacier has typical superficial structures dictated by downslope 

displacements, the results derived from the coherence approach (made by Bertone) and the velocity data (from our approach) 

indicate that these morphological features are presumably ‘’paleo’’ structures, i.e. nowadays stable and therefore evidence of 

a direction flow happened in the past. Relying exclusively on a single remote sensing approach that is based solely on coherence 

may prove inadequate for detecting the slow movements of rock glaciers. This is especially true when these movements do 555 

not cause noticeable changes in surface characteristics over the specified temporal baseline. Furthermore, movement may 

occur primarily due to vertical deformation caused by ice melting over gentle slopes, where shear movement does not occur. 

In such instances, the absence of discernible flow structures can offer valuable indications for accurately characterizing the 

activity state of the rock glacier (Fig.121e.f, rock glacier VII). Other factors, such as thermal variations or vegetation cover, 

may also influence activity patterns, highlighting the need for a comprehensive and diverse approach to classification to ensure 560 

accurate representation of landscape dynamics. 

Figure 12 illustrate the agreement/not agreement among the three methods and the not classified rock glaciers on a regional 

scale (Fig.12a) whereas in Fig.12b the regional distribution of the rock glaciers, adopting the new classification, is shown. 

Respect to other methods, our model additionally offers estimations of predicted probabilities for each class (Fig.12c), with R 

forms exhibiting the highest level of confidence (indicated with different border colour lines in the figure). This heightened 565 

confidence of the R (Fig.12d) respects the other two categories is partly attributed to the great diversity in number of the rock 

glaciers into each class. The R class shows the highest level of confidence (> 0.8) probably due to the greater abundance of 

them (1345) respect to T and A. The A class (formed by 171 rock glaciers) shows an intermediate confidence interval in our 

dataset whereas the T (formed by 200 features) exhibits the lowest confidence level (< 0.4), primarily due to the inherent 

mismatch between their geomorphological parameters and coherence-based attributes, as evident in Table 1. 570 
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5.2 DInSAR limitations 

Our results suggest that DInSAR proxies, especially the coherence statistics (Fig.5 and Fig.7), as also demonstrated by Bertone 575 

et al., 2019, effectively discriminate the active class from the relict and inactive ones. Low coherence indicates a diminished 

similarity between SAR images within the interferometric pair, typically resulting from variations in surface scattering 

properties, wherein displacement emerges as a primary contributor. Conversely, high coherence values reflect stability in target 

properties, signifying minimal disturbances affecting the surface of the landform. This stability results in reduced deformat ion 

and displacement rates. 580 

Velocity from DInSAR analysis still displays a discriminative effect, even if less sharp than coherence. This can be attributed 

to the steps of the processing and filtering techniques used at a regional level, which introduce more disturbances and might 

make the final velocity estimation less accurate compared to coherence. Following the specifics proposed by the IPA group 

Figure 1112: model classification outputs: a) distinction between matching and not matching activity class between the 

initial label and the new one; b) new rock glaciers classes; c) example of the attributes associated to some rock glaciers in  

the area identified within the red square. The colours of the borders correspond to the confidence interval (CI) for each 

feature in the activity classes. Values close to 1 point out a higher confidence, lower values higher uncertainty in the 

prediction; d) distribution of classification uncertainty in each class. 
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(RGIK 2023), the identification of moving areas is in fact based on the manual delineation and classification polygons, 

manually drawn around InSAR pattern, usually in wrapped interferograms to have a better visualization of fringe pattern 585 

(Bertone et al., 2022, RGIK 2023). 

Given our objective to classify all mapped landforms without delving into the internal activity of individual lobes or sectors at 

this stage, we opted to treat entire rock glacier polygons as moving areas and subsequently analyzeanalyse their internal 

velocity patterns. To speed up these analyses and facilitate application at the regional scale, we employed interferometric 

synthetic aperture radar analysis utilizing Sentinel-1 data over the entire AOI. The analysis leveraged the GAMMA procedure 590 

implemented within the HyP3 plugin on OpenSARlab, a service developed by ASF in conjunction with the MintPy package 

(Yunjun et al., 2019). To enhance result reliability, we iteratively repeated the time series inversion on smaller subsets of  the 

interferometric stack. This iterative approach facilitated the selection of reference points in closer proximity to the landforms 

within the AOI, ensuring thorough consideration of topographic and atmospheric conditions specific to the selected area. 

Despite the efficiency demonstrated by such a large-scale classification and velocity analysis approach, it is essential to 595 

acknowledge the inherent limitations associated with InSAR measurements. A significant source of uncertainty in extracting 

LOS velocities arises from the distance between the reference point used in the inversion and the actual landforms. Topographic 

variations inherently influence error propagation, especially impacting velocity measurements as the distance from the 

reference point increases, particularly in regions characterized by significant elevation relief. In addition, while the mean 

annual vLOS provides a valuable first-order approximation, we also have to remind that it does not fully capture the 3D 600 

movement across all areas of the landform, particularly in features where multiple lobes overlap and the direction of movement 

diverges from the satellite vLOS. Despite this limitation, we retain the mean annual vLOS as a reference measure within this 

study, recognizing its utility for large-scale classification and initial assessments of rock glacier kinematics. Previous studies 

(e.g., Brencher et al., 2021) have applied various methods such as reprojecting LOS measurements along the maximum slope 

direction or integrating both ascending and descending geometries to extract vertical and east-west movement components. 605 

However, in our approach, we chose to utilize the vLOS while taking into account the reliability index provided by the C factor 

(Notti et al., 2014) associated with each rock glacier. This decision was made to mitigate the introduction of additional biases 

and assumptions that may arise from geometrical reprojections, while always considering the C factor to get valuable insights 

into the satellite's favorable orientation relative to the landform.  

Another potential factor that may adversely affect the measured vLOS displacement is attributable to the CNN-APS method 610 

(Brencher et al., 2023). Since CNN methods operate directly on the data, they have the capability to filter out real portions  of 

displacement signals rather than simply blurring them, resulting in a reduction of the displacement associated with each feature. 

Consequently, while the considered vLOS provides descriptive information regarding the dynamics of each feature, this 

filtering effect may need to be considered when compared to the actual displacement rate.  

Active phenomena in fact show displacement ranges in the order of cm/yr, while knowledge of some case studies from previous 615 

works suggests higher displacement rates exceeding tens of cm/yr. However, these are detailed specific site studies (Kofler et 
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al., 2021, Bertone et al., 2023) where more refined DInSAR approaches, with higher resolution and control on the area 

investigated, have been applied overcoming the inevitable biases associated with a regional scale problem. 

Despite the general underestimation of the measured signal, related to intrinsic limitations of the SBAS approach (Pepin and 

Zebker, 2021) and post processing steps, the distinction between A and R features according to our model results effective as  620 

proved by the high AUC and its application to predict activity class for not defined features provided good results (Fig.8).  

 

5.3 Geomorphological factors and related rock glaciers spatial distribution 

After completing the classification process, a final evaluation of the classification plausibility was conducted, integrating 

elevation and permafrost indicators, which were initially excluded as predictor variables. This supplementary analysis 625 

confirmed that the identified patterns align with established knowledge in periglacial environments. A and T rock glaciers are 

typically situated at higher elevations (generally above 2600 m a.s.l.), while R classes are more commonly found at lower 

elevations (between approximately 2200-2500 m a.s.l.), which are consistent with widespread observations in periglacial 

landscapes (Fig.13a). Additionally, an assessment of permafrost occurrence probabilities (Fig. 13b) within the reclassified 

features unveiled a significant correspondence between higher probabilities and activity classes. In fact, R is characterized by 630 

lowest elevation and lower permafrost probability respect the T and A classes, with highest elevation and more probability of 

preserve permafrost presence nowadays. This underscores the influential role of permafrost dynamics in shaping rock glacier 

activity patterns. Furthermore, the impact of lithology on controlling rock glaciers’ activity is often minimal or negligible 

compared to the previous two factors (Fig.13c). Studies have demonstrated that lithology alone does not exert significant 

control over rock glaciers’ activity (Kääb et al., 2005).  635 

Given that rock glaciers primarily consist of unconsolidated debris, their movement is predominantly driven by internal 

deformation processes rather than lithological properties (Haeberli et al., 2006). Additionally, the insulating effect of debris 

cover can mitigate thermal variations in the substrate, diminishing the influence of lithological disparities on permafrost 

Figure 12133:distribution of elevation (a), permafrost presence (b) and percentage of lithologies (c) in the three activity classes: 

active (A), transitional (T) and relict (R). The lithology names indicated on the line at the bottom of the figure are referred only to 

the (c) panel.  



31 

 

conditions and rock glacier dynamics. Therefore, while lithology may play a secondary role in modulating rock glacier activity 

in specific contexts, its impact is generally overshadowed by other factors such as topography, climate, and permafrost 640 

distribution. Moreover, the need to aggregate lithologies into macro classes for regional-scale studies limits the detailed 

examination of their effects on rock glacier activity, highlighting the challenge of incorporating fine-scale geological variability 

into broader analyses. 

5 Conclusions 

This study introduces an updated classification for the state of activity of the rock glaciers in South Tyrol (Italy). The ma in 645 

strength of our comprehensive approach lies in the use of replicable routines (i.e., HyP3-MintPy tools) and multivariate 

statistical methods. This workflow can be adjusted and modify (for example, by selecting known stable reference points if 

possible, considering different snow free months, and adopting a different atmospheric correction), and successively applied 

to other areas, allowing to partially fill the gaps of the traditional techniques, morphological and dynamic classifications. 

Through the integration of regional-scale spaceborne DInSAR processing with both geomorphological and climatic 650 

descriptors, we have unified the two primary classification methods of activity of periglacial features, gathering a higher 

classification spatial coverage for the mapped rock glaciers and a more robust distinction between active, inactive, and 

transitional features. The integration of the kinematic information with environmental variables was accomplished through a 

multiclass GAM model. This model effectively leveraged both linear and nonlinear relationships between features, providing 

a statistical definition of the key variables influencing the activity classification of rock glaciers at the regional scale.  655 

The achieved results underscore a predominance of relict features (1345 landforms mapped in total), in contrast to a 

significantly smaller number of active ones (only 171). Looking at the distribution of these three classes (A, T, and R), it was 

found that a transition state from active to relict rock glaciers is not a direct process. Instead, an intermediate transition phase 

between A and R landforms seems to represent a common feature. At a regional scale, this transition is likely controlled by 

local factors that influence not only the activity state and the evolution of rock glaciers but also affect the velocity phase of 660 

this transition process, allowing changes from one more active class to the relict one. These local settings, characterized by the 

dynamic and complex interplay of factors such as slope, lithology, and climate, shape the dynamics of rock glaciers, leading 

to varying rates of progression between different states of activity. 
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