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Abstract. Information about snowpack wetness at high temporal and spatial resolutions is important for timely identification

of pre-disposing conditions for avalanche release. However, such information is often available only for specific, instrumented

locations. Space-borne techniques such as synthetic aperture radar (SAR) allow us acquiring information over large areas and

in remote and challenging terrain. Here, we show how Sentinel-1 SAR multi-track composites can be used to monitor snow

wetness evolution over multiple seasons for a study site of 400 km2 around Davos in the eastern Swiss Alps. We validate5

the performance of our method using both in-situ measurements and modelled snowpack data. Moreover, we compared snow

wetness maps and time series with wet avalanches records. We found correlations between SAR backscatter and modelled

liquid water content between -0.25 and -0.59 for Spearman’s rank coefficient and -0.25 and -0.64 for Pearson’s correlation

coefficient. By calculating the percentage of detected wet snow to dry/no snow per elevation, the season-elevation related

melting can be tracked. Moreover, we show that a rise of wet snow ratio above 40% coincides with an increase in wet snow10

avalanches releases in corresponding elevation bands. Our results suggest that wet snow products derived from Sentinel-1 SAR

data may assist in identifying regions featuring a potential increase of wet snow avalanche activity. However, we could not find

evidence of precursors of wet avalanche initiation with the accuracy required for operative monitoring applications.

1 Introduction

Wet snow avalanches can have a high destructive potential, however, they are still difficult to predict (Hendrick et al., 2023). In15

this respect, knowledge of the spatio-temporal distribution of snowpack wetness is of major relevance for wet snow avalanche

hazard assessment, and more in general for accurate run-off modelling (Wendleder et al., 2018; Nagler et al., 2018; Dietz et al.,

2012). Currently, avalanche warning is based on information from local observers, weather forecasts, and in-situ weather station

measurements and spatial models (Hendrick et al., 2023). Temporally and spatially continuous high-resolution monitoring of

wet snow on large spatial scales and in complex terrain could be of great help to improve avalanche forecasting. Remotely20
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sensed data can help to overcome traditional challenges in poorly accessible terrains, thus providing cost-effective methods to

efficiently monitor large and remote areas.

Space-borne synthetic aperture radar (SAR), such as implemented on the Sentinel-1 satellites, offers a promising approach

to monitor snowpack evolution at regional scales. Specifically, changes in the backscattered radar signal can be used to provide

information on snow melt (Karbou et al., 2021; Truckenbrodt et al., 2019; Nagler et al., 2016), but the interaction between the25

snowpack and microwave frequencies is complex and not yet fully understood (compare Lievens et al., 2020). According to

the current understanding, changes on SAR microwave signal can be measured only if the snowpack reaches several meters

thickness (Dietz et al., 2012). Detailed sensitivity analyses between the interactions of SAR and snowpack characteristics is a

focus of ongoing research (e.g., Lievens et al., 2019). On the other end, the presence of liquid water in the snowpack attenuates

the SAR backscattered amplitude (Tsai et al., 2019). This effect is useful to detect wet snow in SAR images by comparing30

signal backscatter amplitudes to a reference image without snow or with only dry snow (Nagler and Rott, 2000). When the

signal decreases below a pre-defined threshold compared to the reference, wet snow is assumed to be present. By developing

a representation style resolving the detected wet snow maps in altitude-time and altitude-orientation diagrams, Karbou et al.

(2021) enabled to efficiently monitor the behaviour of wet snow lines across large spatial scale for avalanche prediction.

Publicly available products featuring wet snow coverage such as the one provided by European Environment Agency (2023),35

currently have several drawbacks, i.e.: (i) they are limited to a resolution of 60x60 m; (ii) they depend on multi-platform

data fusion (optical and radar data) and therefore lack continuous, weather independent coverage; and (iii) they are prone to

artifacts due to the SAR acquisition geometry. Regarding the latter, in mountainous terrain, the oblique, right-looking viewing

geometry of the Sentinel-1 satellites leads to layover, shadowing and highly varying ground resolution. Shadowing effects

can be minimized by producing composites of radiometrically terrain-corrected images from ascending and descending orbits40

(Small et al., 2022). By combining data in this way, mountainous terrain is viewed from two different angles, thus allowing

for compensation of missing data (shadow) in an individual orbit (Small et al., 2022). This approach of generating the so-

called local resolution weighting (LRW) composites further minimizes outlier-effects and thereby reduces noise by averaging

areas visible in both orbits. Furthermore, it allows to combine information gathered from different orbit thereby permitting to

increase temporal resolution to more than the orbit repeat interval.45

In this study, we used LRW composites to mitigate the restrictions of traditional SAR images such as geometric effects. By

optimizing the Sentinel-1 processing workflow, we improved temporal and spatial resolutions compared to current products

such as Karbou et al. (2021). We applied the wet snow detection approach on a regional-scale (400 km2) in the area of Davos,

Switzerland, and compared it to a data set of observed wet snow avalanches. We generated multi-track composites and over-

sampled the SAR data to match all data to 5x5 m ground sampling distance (GSD) over the study region. We validated the50

reliability of our results by cross-correlating the time series with data recorded from three weather stations as well as from the

modelled snowpack information. With this study, we aim at providing information on wet snow avalanche preconditioning.
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Figure 1. Overview of the area of research on three scales. (A) Outline of the Sentinel-1 footprints in relation also to the research site of

interest (© Esri). (b) Area of study (yellow outline, displayed in reference system CH1903+/LV95, with EPSG: 2056, © Esri), extent and

location of the avalanche library (DAvalMap, blue outline (Northwards cut to research area extent)), and the IMIS stations used (yellow dots).

(c) Indication of the 3x3 pixel window used to calculate the Sentinel-1 backscatter median around the corresponding IMIS station (© Google

Maps).

2 Data and methods

The study area is in the region of Davos, Switzerland (see Fig. 1), covering 400 km2 and elevation ranges between 1’542

and 3’225 m a.s.l. (according to Federal Office of Topography and Swisstopo, 2022). The site is characterized by steep,55

mountainous terrain and the presence of seasonal snow cover. Mean values of daily temperature in Davos (1’590 m a.s.l.) vary

from −5◦ to 13◦C (MeteoBlue). The research area was selected due to its high alpine terrain as well as the availability of

numerous reference data sets (station measurements and regular observations).

We used SAR data from the European Space Agency’s Sentinel-1 satellites. The mission provides C-band data with a central

frequency of 5.405 GHz in the two polarizations VV and VH. Sentinel-1 has an orbital repeat cycle over central Europe every60

six to twelve days; however, depending on the location, revisit times can go down to 36 h, when exploiting a combination of

all available tracks and orbits. Our analysis is based on the SAR images acquired on the relative orbits 66 (descending) and

15 (ascending; Fig. 1) in interferometric wide (IW) swath mode, where single-look-complex (SLC) data offer a pixel spacing
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of ∼2.3 m in slant range and ∼14.1 m in azimuth (Bourbigot et al., 2016). The Sentinel-1 images over Davos are acquired

at 05:34 UTC on the descending track and at 17:15 UTC two days later on the ascending track, leading to a time difference65

between the resulting composites of less than 60 h (in other parts of Switzerland a lag of 36 h can be achieved). The revisit

time in our data set is six days, but for current projects this would been reduced to 12 days due to the Sentinel-1B outage in

December 2021 (European Space Agency, 2022).

We applied radiometric terrain correction (gamma0, following Small et al., 2022) to descending and ascending acquisitions

and then combined the data into LRW composites. The latter products are calculated by considering a weighted function on at70

least two different flight tracks (here one ascending and one descending). Weighting is applied according to the local spatial

resolution in the corresponding flight track (Small, 2012). We masked out areas that lie in radar shadow in both tracks, thereby

slightly diverging from the processing chain by Small et al. (2011) and Small et al. (2022). In cases where information is

available in only one track, i.e., lying in radar shadow in the other, only the available orbit was considered (as in Small, 2012;

Small et al., 2022). In total, we produced 206 LRW composites, 58 for the period August 2018 to July 2019, 58 for August75

2019 to July 2020, and 59 for August 2020 to July 2021. Eight composites were discarded because one of the tracks was not

available (see Tab. A1). To minimize noise and artifacts, we calculated a temporal rolling median considering three samples,

thereby trading-off between a loss in detail and the influence of outliers.

Wet snow maps were generated by comparing an acquisition potentially featuring wet snow with a reference without snow

or with dry snow (Nagler et al., 2016). Nagler et al. (2016) defined a threshold of 2 dB signal loss compared to a dry/no snow80

image for Sentinel-1. In case of a stronger signal diminution, wet snow is assumed. No standard approach for the selection of

a reference image is yet established, leaving space for potential differences in results. As reference Nagler et al. (2016) used

a single image from summer, where the least amount of (melting) snow is assumed present in the scene. Rather than relying

on a single image, we calculate a median backscatter value per pixel over the entire available time series and use this value as

reference (indicated in black in Fig. 2). With this approach, we forego the challenge of finding a suitable reference image (see85

Karbou et al., 2021), which becomes less accurate the longer the timespan between reference and acquisition becomes.

We additionally used data of elevation, forest and water bodies to mask out areas where wet snow detection with Sentinel-1

would be less reliable. A 5x5 m digital terrain model (DTM) provided by swisstopo was used (Federal Office of Topography

and Swisstopo, 2022). Aspect dependency analysis was performed by classifying the DTM into four aspect categories (N: 315-

45°, E: 45-135°, S: 135-225°, W: 225-315°). Information on the distribution of water bodies was taken from the high resolution90

water and wetness (WAW) layer created by Copernicus (European Environment Agency, 2020). The data is provided at a 10x10

m grid scale and was acquired between 2012 and 2018 and published in 2020. The land classes were resampled to match the

Sentinel-1 pixel grid using nearest neighbour to assure the consistency of classes. The land cover classes of permanent water,

temporary water, permanently wet and temporarily wet were merged and used for masking. Information on forest cover in the

study area was sourced from the forest mask of the Swiss national forest inventory (Waser et al., 2015). Spatial filtering was95

performed using a spatial median moving window filter with a kernel size of 3x3.
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2.1 Reference data

Two different validation data sets were used. First, we analyzed the sensitivity of SAR backscatter to snowpack characteristics

to identify the features influencing Sentinel-1 signal by computing the correlation with respect to a variety of both measured

and modelled parameters. Second, we compared the wet snow maps from Sentinel-1 to recorded wet snow avalanches.100

2.1.1 Modelled Snowpack characteristics from SNOWPACK

The SNOWPACK snow cover model has been developed to support operational avalanche warning service based on the inter-

cantonal measurement and information system (IMIS) automatic weather station data (Lehning et al., 1999). It models snow

as a three-phase porous medium made of ice, water and air with an arbitrary number of layers in the underlying soil and in the

snow (glacier ice when present is treated as snow layer with the physical properties of ice). It features a very detailed descrip-105

tion of snow properties including weak layer characterization (Stössel et al., 2010), phase changes, water transport in snow

with a simplified model (Hirashima et al., 2010) or with full Richards Equations (Wever et al., 2014) and water vapor transport

in snow (Jafari et al., 2022). SNOWPACK is used by several countries for their operational avalanche warning services (Morin

et al., 2020) but also in research. SNOWPACK is provided alongside its meteorological preprocessor MeteoIO (Bavay and

Egger, 2013) and Graphical User Interface Inishell (Bavay et al., 2022) under an open source licence (LGPLv3).110

In this study, we used the SNOWPACK version from December 2022 (git version: 98a23cd) in an operational setup. This

means that the simulations did not model soil, relying on a Dirichlet lower boundary condition (upper soil temperature).

Moreover, the upper boundary condition (energy exchange between the snow or soil and the atmosphere) relied on either

a measured snow, a soil surface temperature (Dirichlet when the surface temperature is less than -1 °C) or a parameterized

incoming long wave radiation (Neumann) that evaluates the atmospheric cloudiness based on the measured short wave radiation115

(Carmona et al., 2014). These reanalyses additionally used a horizon computed from a 25 m resolution digital elevation model

in order to distinguish shading by the terrain from cloudy sky, when parameterizing the incoming long wave radiation. The

SNOWPACK output includes both measured data at the nearest station as well as modelled parameters. The IMIS stations

SLF2 (1563 m a.s.l.), at DAV5 (2315 m a.s.l.) and WFJ2 (2536 m a.s.l.) are within the boundaries of the research site (Fig.

1), the IMIS measurements are hence covering different elevations within the region of interest in a flat field simulation.120

Timespan covered by available SNOWPACK data is September 2017 to August 2020. Due to a sensor failure, data from SLF2

are not available for season 2018-19 and hence the corresponding SNOWPACK data was not used in this analysis due to lower

reliability.

Our SNOWPACK runs provided outputs every 3 hours and we used the time closest to Sentinel-1 acquisition on the cor-

responding day: namely 06:00 to match descending SAR image acquisition and 18:00 to match the ascending acquisition125

(UTC+1). We averaged the data from these two SNOWPACK timestamps, refraining from calculating a composite according

to the applied weighting in the SAR images, as the IMIS stations are generally situated in flat terrain and so the weighting of

the two orbits is similar. SNOWPACK data was run between January 2018 and August 2020.
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Finally, and in order to test the factors influencing the SAR backscatter time series, we performed a cross-correlation analysis

between diverse variables in SNOWPACK against at the corresponding station location over time (see appendices A3, A4130

and A5). We considered Pearsons correlation coefficient including RMSE values, as well as Spearmans rank coefficient. To

minimize correlation coefficient bias due to the effect of over-represented numerical values (e.g. zero is used by SNOWPACK

when void), entries occurring more than 25% of the time were ignored in the correlation analysis. Significance level for both

tests were set to p-values below 0.05.

After detection, we classified wet snow within different elevation classes, and calculated the ratio of pixels identified as wet135

snow in comparison to no/dry snow images following the plot design by Karbou et al. (2021). Elevation classes have been set

to 100 m and the range defined between 1500 and 3000 m a.s.l., resulting in 15 different elevation steps. Temporal classes were

aligned according to the ascending Sentinel-1 acquisitions. Areas with a slope angle below 28° have been masked out to focus

on avalanche release areas (Bühler et al., 2018). We calculated the ratio by dividing the amount of wet snow pixels by the total

amount present pixels available at each elevation band.140

2.1.2 Wet snow avalanche catalogue

As a further ground reference, we considered data from the Davos Avalanche Mapping Project (DAvalMap, detailed description

in Hafner et al. (2021)). This data set has been set up by the swiss avalanche warning service and is designed to be an avalanche

inventory covering about 180 km2. Systematic mapping has been performed within the illustrated perimeter in Fig. 1 (Hafner

et al., 2021) and is thus smaller than our study area. A part of DAvalMap in the North has been excluded to match the research145

area, which has been fitted to be within the national boundaries for data consistency. Mappings outside the DAvalMap are only

sporadic. Spontaneous avalanches considered small according to their type (50 m for slab avalanche and glide-snow avalanche,

100 m for loose snow avalanches in either dimension) are not recorded, thereby setting a minimum size of avalanches within

the data set. The data includes information on the release date, the snow conditions (wet/dry snow avalanche) and the elevation

zone at release.150

For this study, we select only the avalanches that are classified as wet snow avalanches and are situated within the research

site (see Fig. 1) and time range (January 2018 to August 2021). The recorded avalanches from DAvalMap were matched to wet

snow ratio plots according to the elevation of the release zone and the date of release (Karbou et al., 2021). Temporal matching

was performed by pooling the observed avalanches into one elevation-time bin by combining the avalanches occurring up to

three days before ascending image acquisition, the ones occurring at the acquisition date itself and until to two days after the155

ascending image acquisition (for illustration see appendix Fig. A2). This allowed to cover a continuous time frame by means of

a six day interval. This temporal matching also includes avalanches after image acquisition. However, this is a robust solution

to approximate the wetness state of the snowpack and its corresponding proneness to wet snow avalanches for it minimized

temporal differences between avalanches to acquisitions. In season 2019-20 the size restriction of the recorded avalanches

was handled less strict also including smaller loose snow avalanches which would have been excluded in the other years. The160

used data from DAvalMap contains 77, 723 and 261 wet snow avalanches for the seasons 2018-19, 2019-20 and 2020-21,

respectively.
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Figure 2. Time series of wet-snow evolution from January 2018 until August 2020 at Weissfluhjoch (WFJ2). The upper panel (a) shows the

time series extracted from the pixel within which the IMIS station is situated in both co- and cross-polarization states using a three sample

rolling mean over the time series. The horizontal line indicates the time series median and the shading background displays the times during

which the backscatter falls lower than 2 dB below the calculated median in the corresponding polarization. The lower panel (b) shows the

time series of measured liquid water content (LWC) and measured snow height (HS) at the station as extracted from SNOWPACK data.

3 Results

3.1 Polarization dependent Sentinel-1 backscatter time series analysis

The time series for both the VV and VH polarization over two and a half years at the IMIS station of WFJ2 are shown in165

Fig. 2a, with the corresponding median value indicated with dashed lines. Backscatter falling 2 dB below the median (see Fig.

2a) is categorized as presence of wet snow (indicated in shading in Fig. 2). Generally, the cross-polarized data shows a lower

backscatter value (e.g. see Fig. 2a), its median at WFJ being 8.35 dB below the median of the co-polarized data (see Tab. 1).

The median backscatter of the DAV5 station is found several dB lower than the other stations (see Tab. 1).

At WFJ, the backscatter in both polarizations (VV & VH) fell clearly (> 3 dB) below the set threshold for wet snow in170

late spring/early summer in each season, thereby coinciding with snow melt in high alpine altitudes. Sporadic signal losses

reaching below the threshold can be found, where SNOWPACK data does not suggest presence of snow wetness, however

only one of such events (February 2018) is detected in both polarizations. In other spurious events, such as February 2019
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Table 1. Median of rolling mean of Sentinel-1 backscatter per polarizations at the three different stations.

Polarization SLF2 DAV5 WFJ2

VV -10.13 -14.19 -9.54

VH -17.71 -20.25 -17.88

or December 2019, results diverge depending on the polarization. The combination of VV and VH polarization (indicated by

overlaid shadings in Fig. 2) shortens the timespan of detected wet snow, while minimizing the detection during off-season175

periods. While similar results were found in the station SLF2, the time series of the DAV5 station does not show a clear trend

but rather extreme short lived peaks and hence unstable signal. This also results in lower backscatter median as shown in Tab.

1.

Increasing Liquid Water Content (LWC) percentage coincides with a decrease in snow height (see Fig. 2b). In each melting

season an increase in LWC can be found as well as sporadic peaks matching early snow melting events e.g. in November 2018.180

With a time shift of a couple of days the backscatter signal diminishes soon after the sudden increase in LWC and the decrease

in snow height. This behaviour can be found across all three melting seasons (see Fig. 2).

Indication for negative correlation between S1 backscatter and SNOWPACKS modelled liquid water contents could be found

across all stations, polarizations and kernel sizes (see appendices A3, A4 and A5). These correlations ranged between -0.25

to -0.59 (spearmans rank) and -0.25 to -0.64 (Pearsons) with an RMSE between 2.05 and 4.35 (see appendix A3). At WFJ2185

station, S1 indicated a positive correlation with SNOWPACK’s potential albedo, however this could not be found in the other

stations locations.

3.2 Spatial distribution and elevation dependent melting

Time-elevation dependent melting seasonality was detected across the time series independent of polarization and slope aspect

(Fig. 3): In season 2018-19 the highest wet snow ratios were measured (VV polarization, mid March, classified into wet snow190

ratio of 80-90 %). Increasing ratio values (above 0.2) were detected earlier in the season of 2019-20 between September to May

in elevations ranging from 1800 to 2400 m a.s.l. The maximum ratios that were reached throughout this season amounted to 60-

70 %. In 2020-21 (see Fig. 3) the wet snow ratio rose again, achieving up to 70-80 % between end of April to end of March. Wet

snow ratio mainly diverged between polarization states in late summer and autumn periods, where VV polarization indicates

maximum wet snow ratio values of up to 2 %, whereas VH polarization indicates a continuous time-elevation dependent195

increase in wet snow ratio with up to 40 % wet snow pixels per elevation class. VH indicates higher ratio values than VV

polarized data in lower elevation classes (1500-1900 m a.s.l.).

Masking of landcover classes such as forest and water bodies had little influence on the resulting time-elevation plots. Large

water bodies such as lakes are mainly situated in the lowest classes and in flatlands, thereby already getting masked out by

focusing on hillsides via the minimal slope threshold (hence not extra shown in App. A1). On the other end, the exclusion200

8

https://doi.org/10.5194/egusphere-2024-1510
Preprint. Discussion started: 21 June 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 3. Time-elevation plots of wet snow ratio evolution for VV and VH polarization across three seasons (2018-19, 2019-20 and 2020-

21) featuring the area of Davos as indicated in Fig. 1, resolved at 100 m elevation bands. The wet snow ratio is the percentage of pixel per

elevation band that was detected as wet snow using S1 data. Circles indicate a top-down view of a histogram featuring the recorded wet snow

avalanches per time step according to the DAvalMap data set (Hafner et al., 2021). The hue of the circles corresponds to the avalanche count,

black corresponds to 4 or more avalanches. Forest areas were masked out and a moving median filter was applied to minimize the ffect of

noise. Letters a-d correspond to the timeframes of the wet snow maps displayed in Fig. 5. Plot design was inspired by Karbou et al. (2021)

and Karbou et al. (2022)

of forest results in measurable changes in elevation-based wet snow mapping (see App. A1.A to B) as they also occur in

non-flat areas. Forests are known to influence radar backscatter and cover a larger and more diverse landscape than water

bodies. However, also their influence is mainly focused on a specific elevation range below 2000 m a.s.l. (see App. A1.A to B)

Applying a moving median filter allows to smooth the time-elevation plots (see App. A1.A to C). The achieved noise reduction

has less impact in high alpine areas. This is likely because less signal disturbance is present in the first case. Elevation classes205

in lower elevation regions result in classification differences between with and without noise reduction of two classes (from

0-10 % to 30-40 % wet snow ratio values).

The time-elevation plots also clearly shows differences in aspects (see Fig. 4). South and East facing slopes showed an earlier

increase in wet snow ratio to values above 40 % in the season than West and especially North facing slopes (compare Fig. 4.B

and C to A and D). Highest ratios reaching 90-100 % wet snow ratio values are mainly located in North facing slopes, where210

melting occurs later in the season and over a shorter time period. The same behaviour across time-elevation can be found in
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VH polarized data as well as across all seasons. The aspect-dependency is more relevant if a minimal slope steepness to e.g.

45° (high avalanche danger according to Bühler et al. (2018)) is defined.

Wet snow ratios do not show relevant changes before the first surge of wet avalanches recorded in DavalMap (see Figs. 3a, 4

and 5). Instead, a second increase of avalanche occurrence observed in 2018-19 and 2020-21 ranging across various elevation215

classes (Fig. 3b), is coinciding with a wet snow ratio values of 30 to 40 % in altitudes from 2000-2200 m a.s.l. After this second

event a further increase in wet snow ratio characterizes the melting season (Fig. 3). Events of multiple avalanche occurrences

recorded in DavalMap coincide with wet snow ratios above 40 % (Fig. 3).

4 Discussion

In this study, we analyzed SAR-based wet snow maps by implementing a new processing chain and validating it with in-220

situ measurements and modelled information. By relying on LRW composites, Sentinel-1 data has been exploited to combine

different orbits as well as different tracks. Thus, the information on snow wetness in our study is provided with higher frequency

compared with methods used at present (European Environment Agency, 2023).

The available Sentinel-1 based snow cover products SAR Wet Snow or Wet/Dry Snow by Copernicus offer a spatial grid

sampling distance of 60x60 m (European Environment Agency, 2023) and hence may not suffice to adequately resolve the vari-225

ability of alpine topography. Additionally, as the Wet/Dry Snow layer fuses Sentinel-1 and -2, it is restricted to i) cloud-free

Sentinel-2 acquisitions and to ii) dates were both Sentinel-1 and -2 were acquired. This results in a restricted temporal avail-

ability of the product (European Environment Agency, 2023). The discrepancy between the available products and our results

is partly linked to the use of the higher resolved SLCs instead of the ground range detected Sentinel-1 European Environment

Agency (2023); Karbou et al. (2021). Moreover, by using LRW composites, the influence of typical SAR geometry effects,230

such as shadowing and layover, could be minimized (see Fig. 5). Having fewer areas which lack data and a better temporal

resolution is important, for example for avalanche forecasting where accurate timing of capturing the start of the wetting of the

snowpack, a key factor to estimate the hazard of wet snow avalanche releases.

Validation of spatially continuous products providing information, where there was previously hardly any, is challenging.

Consequently, we relied on comparing data with in-situ measurements, where available, to minimize uncertainties in the ref-235

erence data. The SAR Wet Snow and Wet/Dry Snow layer were validated by a pixel-wise comparison to other remote sensing

products such as snow cover maps from Landsat (European Environment Agency, 2023; Karbou et al., 2022). Since the acqui-

sition technique is still based on remote sensing approaches the biases contained might also be similar, hence we believe our

comparison to an independent product, though not covering the same area, is less prone to bias. Also, we compare the results

to snowpack characteristics instead of snow extent, thereby more reliably approximate what is actually influencing the signal.240

The SAR backscatter is influenced by many factors, therefore to identify wet snow a threshold needs to be set in comparison

to a dry/no snow reference. This threshold is usually set between 2 and 3 dB signal loss relative to a reference image or

annual median (this work) and is based on histogram analysis (e.g., Nagler et al., 2016). Adaptive thresholds based on the

underlying land cover class (Liu et al., 2022) have recently been suggested. However, we have used the established and widely
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applied threshold of 2 dB for Sentinel-1 data (Nagler et al., 2021, 2016, results indicated in Fig. 2). Even though an adaptive245

backscatter analysis sounds promising, there are no widely available and regularly updated land cover products with suitable

spatial resolution available for our case and we try to minimize the input data.

As previously mentioned, no standard approach for the generation of a reference image has been established. The Copernicus

SAR Wet Snow layer is based on a reference image calculated as the median from a stack of summer acquisitions (assumed no

snow; European Environment Agency, 2023). Other studies calculate the mean over dry or no snow images (e.g., Karbou et al.,250

2021) or use a single reference image featuring either dry or no snow conditions (e.g., Mendes et al., 2022). Increasing temporal

baselines between the image of interest and the reference image, also result in increase of errors due to changes over time. In

the application of wet snow avalanche now- and forecasting time efficiency and accuracy is of major importance. By choosing

an all season median, we have wet snow contamination in the reference; however the results of our study indicate applicability

of the method (see Fig. 2) and follow the process applied in Lievens et al. (2019). The advantage of reference image generation255

in that way are low processing costs, low amount of input, high automation level, data and easy update-ability.

Validation has been performed using SNOWPACK data at three IMIS stations SLF2, DAV5, WFJ2 (appendixes A3, A4

and A5). This allows us to include both modelled and measured variables, thereby also allowing to check the validity of the

gained results. The stations are all situated on mountain slopes but in rather flat areas. Hence, they are unlikely to accurately

represent the conditions in highly variable topography limiting the possibility to validate LRW products. Additional limitations260

may come from the immediate surroundings of some of the stations having an impact on the radar backscatter, such as the

infrastructures around the WFJ2 station.

We have tested the cross-correlation of values recorded on a single pixel to diverse variables contained in SNOWPACK

at IMIS station locations. However, single pixel analyses are prone to radar noise (e.g., speckle) and uncertainties, we have

therefore performed the same analysis on a 3x3 window (indicated in Fig. 1) and at three different locations. Across all tests,265

the liquid water content was among the strongest correlation values (see appendixes A3, A4 and A5). This coincides with the

ongoing understanding of the measured signal loss being related to the amount of liquid water within a snowpack (e.g., Lund

et al., 2022; Nagler et al., 2021). With increasing water presence, radar attenuation increases and measured signal decreases.

Already with a LWC of 5 % in a snowpack, SAR penetration depth is found to be minimized to one wavelength and hence

SAR backscatter is already very low (Lund et al., 2022; Nagler et al., 2016).270

The correlation values show similar trends between the different polarization modes (see appendixes A3, A4 and A5). The

strongest divergence between the wet snow ratio extracted from VV and VH polarization can be found in late summer early

autumn, when the VH polarization indicates higher ratio values than VV. This might be related to a remaining influence of

seasonal activity of vegetation (e.g. by non-masked shrub forest). The time series shows similar results for both polarization

modes. A combination of both polarization’s as done by e.g. Karbou et al. (2021) could result in fewer misclassification,275

however, the approach will also result in a loss of detail. A separate analysis of the polarization state also solves the issue of

using a thresholding approach developed by Nagler et al. (2016) on a dB scale on a ratio value as done by (Karbou et al., 2021).

Future research might examine the potential of a hotspot approach based on separate mapping of wet snow per polarization

state for wet snow monitoring.

11

https://doi.org/10.5194/egusphere-2024-1510
Preprint. Discussion started: 21 June 2024
c© Author(s) 2024. CC BY 4.0 License.



We observed a time lag between the decrease in snow height, the associated increase in LWC, and the detection of wet snow280

from Sentinel-1 (see Fig. 2). We believe this gap may be attributed to the combination of four aspects: i) the temporal gap

between variables, as we make use of Sentinel-1 data acquired only every 6-12 days, ii) the potential filtering out of the onset

of wetting in a snowpack as noise due to temporal or spatial filters applied, iii) the limited sensitivity of the sensor up to a

certain minimum water content threshold and iv) the dependence of the abundance of the LWC on the acquisition time of, in

our case, descending images as the snowpack might refreeze during a clear cold night. If and how these factors contribute to285

the miss of the first avalanche surge needs to be investigated further in the future.

Our results show an earlier start of the melting season in lower elevation zones with increasing melting later in the season in

higher elevation zones (see Fig. 3). This agrees with the station data, where at the higher situated stations winter lasts longer and

they have a more pronounced and later melting season. Lower elevations typically have a shorter and warmer winter season.

This is leading to a shorter period of signal attenuation during the melting phase than in stations with more snow coverage in290

higher elevation zones.

The DAvalMap library contains recorded avalanches within the area of the perimeter indicated in Fig. 1 (Hafner et al.,

2021). Multiple aspects must be considered when interpreting the wet snow ratio per elevation to this data set: i) The monitored

perimeter is smaller than the research site, so avalanches outside of the parameter are not systematically monitored and mapped.

This results in elevation bins above approx. 2800 m a.s.l. to contain little to no recorded avalanche activity. ii) The avalanches295

used in the study were all wet snow avalanches, so the snowpack in the starting zone of the avalanches was assumed wet.

Since this classification of snow wetness in the starting zone is challenging from a distance, some avalanches might have been

wrongly included. We assume that this influenced the miss of the first wet snow avalanche surge in our analysis, where the

avalanches had wet snow deposits even though they started out as dry snow avalanches and we only considered start zone

coordinates. Later when the snowpack is wet from the valley to the mountaintops, this potential classification error becomes300

negligible. iii) The information is based on in-situ observations dependent on good visibility, so the assigned release date may

include uncertainties up to several days. However, with our Sentinel-1 timeframe of six days the influence will be minimal.

Despite those challenges, DAvalMap provides a unique opportunity to compare observed activity with snow wetting from

Sentinel-1 data.

The first surge of wet snow avalanches could not be matched to a relevant increase in the wet snow ratio across all seasons305

(see Fig. 3). This might be due to i) uncertainties in the DAvaMap library such as dry/wet classification errors (see above), ii)

the use of a median potentially biased by wet snow as reference value, iii) an insufficient capability of temporally resolving the

avalanche release dynamics based on the used SAR data.

We encourage future research to make use of not only multi-platform but also multi-frequency data such as a combination

of X- and L-band with the upcoming NISAR mission (Oveisgharan et al., 2024). This would allow to capture different stages310

of the melting due to differences in sensitivity to water presence with varying wavelengths, thereby enabling to better estimate

the LWC and not only the presence of liquid water.
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5 Conclusions

We used Sentinel-1 SAR multi-track composites to derive snow wetness at different elevations and slope aspects in alpine

areas. By exploiting LRW composites created on SLC data, we were able to more accurately resolve spatial variability of315

the snow wetness in alpine terrain. We validated the performance of our approach by cross-correlating the data to in-situ

measured, modelled snowpack variables and a wet snow avalanche inventory, finding relevant correlation between Sentinel-1

backscatter and modelled liquid water content, as well as good agreement with release of wet snow avalanches coincided with

the wetting of the corresponding elevations, with the exception of the first wet snow avalanche surge. Our results indicate

potential of Sentinel-1 based monitoring of wet snow avalanche preconditioning factors provided the availability of data with320

higher spatiotemporal resolution than provided by the Sentinel-1 orbit repeat interval

Follow-up research in the area of Davos should make use of other available Sentinel-1 tracks, namely 117 and 168 to

improve temporal resolution to the available revisit time instead of being restricted to the orbit repeat interval. This could help

understand the underlying mechanisms better, even though the multi-orbit data is only available for selected regions. Despite

this, our results suggests that the wet snow ratio per elevation bin calculated from SAR data may in the future help increase325

the accuracy of forecasting wet snow avalanches by nowcasting wet snow distribution also over large, challenging and remote

areas.

13

https://doi.org/10.5194/egusphere-2024-1510
Preprint. Discussion started: 21 June 2024
c© Author(s) 2024. CC BY 4.0 License.



References

Bavay, M. and Egger, T.: MeteoIO 2.4.2: a preprocessing library for meteorological data, Tech. rep., 2013, http://models.slf.ch/p/meteoio.,

2013.330

Bavay, M., Reisecker, M., Egger, T., and Korhammer, D.: Inishell 2.0: Semantically driven automatic GUI generation for scientific models,

Geoscientific Model Development, 15, 365–378, https://doi.org/10.5194/gmd-15-365-2022, 2022.

Bourbigot, M., Johnsen, H., Piantanida, R., Hajduch, G., and Poullaouec, J.: Sentinel-1 product definition, Tech. rep., 2016.

Bühler, Y., Von Rickenbach, D., Stoffel, A., Margreth, S., Stoffel, L., and Christen, M.: Automated snow avalanche release area delineation-

validation of existing algorithms and proposition of a new object-based approach for large-scale hazard indication mapping, Natural335

Hazards and Earth System Sciences, 18, 3235–3251, https://doi.org/10.5194/nhess-18-3235-2018, 2018.

Carmona, F., Rivas, R., and Caselles, V.: Estimation of daytime downward longwave radiation under clear and cloudy skies conditions over

a sub-humid region, Theoretical and Applied Climatology, 115, 281–295, https://doi.org/10.1007/s00704-013-0891-3, 2014.

Dietz, A. J., Kuenzer, C., Gessner, U., and Dech, S.: Remote sensing of snow - a review of available methods, International Journal of Remote

Sensing, 33, 4094–4134, https://doi.org/10.1080/01431161.2011.640964, 2012.340

European Environment Agency: High Resolution layer: Water & Wetness (WAW) 2018, https://land.copernicus.eu/pan-european/

high-resolution-layers/water-wetness/status-maps/water-wetness-2018?tab=metadata, 2020.

European Environment Agency: High Resolution layer: Wet/Dry Snow 2016-present; Algorithm theoretical basis document for snow prod-

ucts based on Sentinel-1 and Sentinel-2, Tech. rep., Pan European high-resolution snow & ice monitoring of the Copernicus land moni-

toring service, https://land.copernicus.eu/en/products/snow/high-resolution-wet-dry-snow, 2023.345

European Space Agency: Mission ends for Copernicus Sentinel-1B satellite, https://www.esa.int/Applications/Observing_the_Earth/

Copernicus/Sentinel-1/Mission_ends_for_Copernicus_Sentinel-1B_satellite, 2022.

Federal Office of Topography and Swisstopo: swissALTI3D: The high precision digital elevation model of Switzerland, Tech. rep., https:

//www.swisstopo.admin.ch/en/geodata/height/alti3d.html, 2022.

Hafner, E. D., Techel, F., Leinss, S., and Bühler, Y.: Mapping avalanches with satellites-Evaluation of performance and completeness,350

Cryosphere, 15, 983–1004, https://doi.org/10.5194/tc-15-983-2021, 2021.

Hendrick, M., Techel, F., Volpi, M., Olevski, T., Pérez-Guillén, C., Herwijnen, A. V., and Schweizer, J.: Automated prediction of wet-snow

avalanche activity in the Swiss Alps, Journal of Glaciology, 50, 1–14, https://doi.org/10.1017/jog.2023.24, 2023.

Hirashima, H., Kamiishi, I., Yamaguchi, S., Sato, A., and Lehning, M.: Application of numerical snowpack-model to estimate full-depth

avalanche danger, Tech. rep., 2010.355

Jafari, M., Sharma, V., and Lehning, M.: Convection of water vapour in snowpacks, Journal of Fluid Mechanics, 934,

https://doi.org/10.1017/jfm.2021.1146, 2022.

Karbou, F., Veyssière, G., Coleou, C., Dufour, A., Gouttevin, I., Durand, P., Gascoin, S., and Grizonnet, M.: Monitoring wet snow over an

alpine region using sentinel-1 observations, Remote Sensing, 13, 1–22, https://doi.org/10.3390/rs13030381, 2021.

Karbou, F., James, G., Fructus, M., and Marti, F.: On the Evaluation of the SAR-Based Copernicus Snow Products in the French Alps,360

Geosciences (Switzerland), 12, https://doi.org/10.3390/geosciences12110420, 2022.

Lehning, M., Bartelt, P., Brown, B., Russi, T., Stöckli, U., and Zimmerli, M.: SNOWPACK model calculations for avalanche warning based

upon a new network of weather and snow stations, Cold Regions Science and Technology, 30, 145–157, https://doi.org/10.1016/S0165-

232X(99)00022-1, 1999.

14

https://doi.org/10.5194/egusphere-2024-1510
Preprint. Discussion started: 21 June 2024
c© Author(s) 2024. CC BY 4.0 License.



Lievens, H., Demuzere, M., Marshall, H.-p., Reichle, R. H., Brangers, I., Rosnay, P. D., Dumont, M., Girotto, M., Immerzeel, W., Jonas,365

T., Kim, E. J., Koch, I., Marty, C., Saloranta, T., Schöber, J., and De Lannoy, G. J.: Snow depth variability in the Northern Hemisphere

mountains observed from space, Nature Communications, 10, 1–33, https://doi.org/10.1038/s41467-019-12566-y, 2019.

Lievens, H., Demuzere, M., Marshall, H., Reichle, R., Brucker, L., Brangers, I., Rosnay, P. D., Dumont, M., Girotto, M., Immerzeel, W.,

Jonas, T., Kim, E., Koch, I., Marty, C., Saloranta, T., Schöber, J., and De Lannoy, G. J.: Snow depth observations from Sentinel-1 over the

Northern Hemisphere mountain ranges The importance of snow, 2020.370

Liu, C., Li, Z., Zhang, P., Huang, L., Li, Z., and Gao, S.: Wet snow detection using dual-polarized Sentinel-1 SAR time series data considering

different land categories, Geocarto International, 37, 10 907–10 924, https://doi.org/10.1080/10106049.2022.2043450, 2022.

Lund, J., Forster, R. R., Deeb, E. J., Liston, G. E., Skiles, S. M. K., and Marshall, H. P.: Interpreting Sentinel-1 SAR Backscatter Signals

of Snowpack Surface Melt/Freeze, Warming, and Ripening, through Field Measurements and Physically-Based SnowModel, Remote

Sensing, 14, https://doi.org/10.3390/rs14164002, 2022.375

Mendes, C. W., Neto, J. A., Hillebrand, F. L., DE FREITAS, M. W., Costi, J., and Simões, J. C.: Snowmelt retrieval algorithm for the Antarctic

Peninsula using SAR imageries, Anais da Academia Brasileira de Ciencias, 94, https://doi.org/10.1590/0001-3765202220210217, 2022.

MeteoBlue: Climate Archive Davos, https://www.meteoblue.com/en/weather/historyclimate/climateobserved/davos_switzerland_2661039.

Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz, C., Gobiet, A., Hagenmuller, P., Lafaysse, M., Ližar, M., Mitterer,

C., Monti, F., Müller, K., Olefs, M., Snook, J. S., van Herwijnen, A., and Vionnet, V.: Application of physical snowpack mod-380

els in support of operational avalanche hazard forecasting: A status report on current implementations and prospects for the future,

https://doi.org/10.1016/j.coldregions.2019.102910, 2020.

Nagler, T. and Rott, H.: Retrieval of wet snow by means of multitemporal SAR data, IEEE Transactions on Geoscience and Remote Sensing,

38, 754–765, https://doi.org/10.1109/36.842004, 2000.

Nagler, T., Rott, H., Ripper, E., Bippus, G., and Hetzenecker, M.: Advancements for snowmelt monitoring by means of Sentinel-1 SAR,385

Remote Sensing, 8, 1–17, https://doi.org/10.3390/rs8040348, 2016.

Nagler, T., Rott, H., Ossowska, J., Schwaizer, G., Small, D., Malnes, E., Luojus, K., Metsämäki, S., and Pinnock, S.: Snow cover monitoring

by synergistic use of sentinel-3 SLSTR and sentinel-1 SAR data, in: International Geoscience and Remote Sensing Symposium (IGARSS),

pp. 8727–8730, https://doi.org/10.1109/IGARSS.2018.8518203, 2018.

Nagler, T., Schwaizer, G., Keuris, L., and Rott, H.: SEOM S1-4Sci Snow Development of Pan-European Multi-Sensor Snow Mapping390

Methods Exploiting Sentinel-1 Final Report Deliverable 4.2 PREPARED BY ISSUE / REVISION: 1.2, Tech. rep., 2021.

Oveisgharan, S., Zinke, R., Hoppinen, Z., and Marshall, H. P.: Snow water equivalent retrieval over Idaho - Part 1: Using Sentinel-1 repeat-

pass interferometry, Cryosphere, 18, 559–574, https://doi.org/10.5194/tc-18-559-2024, 2024.

Small, D.: SAR backscatter multitemporal compositing via local resolution weighting, in: IGARSS 2012, pp. 4521–4524,

https://doi.org/10.1109/IGARSS.2012.6350465, 2012.395

Small, D., Zuberbühler, L., Schubert, A., and Meier, E.: Terrain-flattened gamma nought Radarsat-2 backscatter, Canadian Journal of Remote

Sensing, 37, https://doi.org/doi.org/10.5589/m11-059, 2011.

Small, D., Rohner, C., Miranda, N., Ruetschi, M., and Schaepman, M. E.: Wide-Area Analysis-Ready Radar Backscatter Composites, IEEE

Transactions on Geoscience and Remote Sensing, 60, https://doi.org/10.1109/TGRS.2021.3055562, 2022.

Stössel, F., Guala, M., Fierz, C., Manes, C., and Lehning, M.: Micrometeorological and morphological observations of surface hoar dynamics400

on a mountain snow cover, Water Resources Research, 46, https://doi.org/10.1029/2009WR008198, 2010.

15

https://doi.org/10.5194/egusphere-2024-1510
Preprint. Discussion started: 21 June 2024
c© Author(s) 2024. CC BY 4.0 License.



Truckenbrodt, J., Freemantle, T., Williams, C., Jones, T., Small, D., Dubois, C., Thiel, C., Rossi, C., Syriou, A., and Giuliani, G.:

Towards sentinel-1 SAR analysis-ready data: A best practices assessment on preparing backscatter data for the cube, Data, 4,

https://doi.org/10.3390/data4030093, 2019.

Tsai, Y. L. S., Dietz, A., Oppelt, N., and Kuenzer, C.: Remote sensing of snow cover using spaceborne SAR: A review, Remote Sensing, 11,405

https://doi.org/10.3390/rs11121456, 2019.

Waser, L. T., Fischer, C., Wang, Z., and Ginzler, C.: Wall-to-wall forest mapping based on digital surface models from image-based point

clouds and a NFI forest definition, Forests, 6, 4510–4528, https://doi.org/10.3390/f6124386, 2015.

Wendleder, A., Dietz, A. J., and Schork, K.: Mapping snow cover extent using optical and SAR data, Tech. rep., 2018.

Wever, N., Fierz, C., Mitterer, C., Hirashima, H., and Lehning, M.: Solving Richards Equation for snow improves snowpack meltwater runoff410

estimations in detailed multi-layer snowpack model, Cryosphere, 8, 257–274, https://doi.org/10.5194/tc-8-257-2014, 2014.

Data availability. SAR data can be downloaded from the Copernicus Open Access Hub or from the Alaska Space Facility. SAR processing

has been performed using the gamma software. The DAvalMap library and SNOWPACK data for WFJ station can be requested from SLF.

16

https://doi.org/10.5194/egusphere-2024-1510
Preprint. Discussion started: 21 June 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 4. Time-elevation plots of wet snow evolution for VV polarization for the exemplary seasons of 2020-2021. Displayed are the time

series resolved into the different aspects: A: North, B: South, C: East and D: West. The plot encompasses data featuring the area of Davos

as indicated in Fig. 1, resolved at 100 m elevation bands. The wet snow ratio is the percentage of pixel per elevation band that was detected

as wet snow using S1 data. Circles indicate a top view of a histogram featuring the recorded wet snow avalanches per time according to the

DAvalMap data set (Hafner et al., 2021). Letters a-d correspond to the timeframes of the wet snow maps displayed in Fig. 5. Plot design was

inspired by Karbou et al. (2021) and Karbou et al. (2022)
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Figure 5. Spatial distribution of the wet snow ratio and the recorded avalanches in DAvalMap (Hafner et al., 2021) are displayed for four

exemplary, different time intervals (a-d) as indicated in Fig. 3 and Fig. 4. The acquisition times of the SAR images are indicated in the title

per subplot on the left, while the DAvalMap indicates the time frame of summarized wet snow avalanches.
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Appendix A
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Figure A1. Time-elevation plots of wet snow evolution following Karbou et al. (2021) and Karbou et al. (2022) for VV polarization for the

exemplary seasons of 2020-2021. It shows the effect of filtering and masking: A) no filtering or masking applied, B: forest mask applied, C:

spatial median filter with a window size of 3x3 applied, D: forest mask and spatial filtering combined (same as in 3). The plot encompasses

data featuring the area of Davos as indicated in Fig. 1, resolved to 100 m spatial elevation classes. Circles indicate a top view of a histogram

featuring the recorded wet snow avalanches per time according to the DAvalMap data set (Hafner et al., 2021). Letters a-d correspond to the

timeframes of the wet snow maps displayed in Fig. 5.
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Figure A2. Exemplary illustration of performed temporal binning featuring the SAR acquisition times in descending (Desc) and ascending

(Asc) track to corresponding local resolution composites (shading) in combination with the summed wet snow avalanches. Binning has been

optimized to include all recorded wet snow avalanches (from DAvalMap catalogue, indicated in circles) while minimizing the temporal offset

between an acquisition towards the avalanche to best match the wet snow condition.
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Table A1. Dates of acquisition of ascending orbit information of the discarded composites.

02.03.2019 16.09.2019

20.01.2021 01.02.2021

07.02.2021 03.03.2021

15.03.2021 27.03.2021
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Table A2. Abbreviation table for the variables from SNOWPACK, which are also used in the following tables containing the cross-correlation

variables.

Measured relative humidity RH

Measured air temperature TA

Measured surface temperature TSS_meas

Modelled surface temperature TSS_mod

Modelled hoar size hoar_size

Measured snow height HS_meas

Modelled snow height HS_mod

Measured wind direction DW

Measured wind velocity VW

Measured wind drift velocity VW_drift

Modelled 24h wind wind_trans24

Modelled rain rate MS_Rain

Modelled solid precipitation MS_Snow

Modelled snow water equivalent (SWE) SWE

Modelled total liquid water content (LWC) MS_Water

Modelled sublimation MS_Sublimation

Modelled evaporation MS_Evap

Modelled erosion mass loss MS_Wind

Modelled surface mass flux MS_SM_Flux

Modelled snow runoff (virtual lysimeter) MS_SN_Runoff

Potential albedo pAlbedo
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