

1 **Development and assessment of the physical-biogeochemical ocean regional**
2 **model in the Northwest Pacific: NPRT v1.0 (ROMS v3.9–TOPAZ v2.0)**

4 Daehyuk Kim¹, Hyun-Chae Jung⁴, Jae-Hong Moon^{1,2,3}, Na-Hyeon Lee³

5 ¹ *Center for Sea Level Changes, Jeju National University, Jeju, 63243, Republic of Korea*

6 ² *Department of Earth and Marine Sciences, Jeju National University, Jeju, 63243, Republic of Korea*

7 ³ *Faculty of Earth and Marine Convergence, Earth and Marine Science Major, Jeju National University, Jeju,*
8 *63243, Republic of Korea*

9 ⁴ *Department of Earth and Environmental Sciences, Jeonbuk National University, Jeonju, 54896, Republic of*
10 *Korea*

13 *Corresponding author: Jae-Hong Moon, jhmoon@jejunu.ac.kr*

17 The Northwest Pacific is characterized by the presence of the warm and nutrient-depleted Kuroshio
18 Current and the cold and nutrient-enriched Oyashio Current. In this region, surface primary production
19 leads to increased nutrient consumption and CO₂ exchange. The Yellow and East China Seas (YECS)
20 are predominantly influenced by freshwater input. A high resolution regional numerical model tailored
21 to the specific features of each area is required to reproduce the different characteristics of each region.
22 Therefore, to accurately analyze the physical and biogeochemical system, this study developed a new
23 coupled physical-biogeochemical model combining the three-dimensional Regional Ocean Modeling
24 System (ROMS) and the Generic Ocean Turbulence Model Tracers of Phytoplankton with Allometric
25 Zooplankton (TOPAZ) for the Northwest Pacific, including the YECS. The simulated physical and
26 biogeochemical variables in the ROMS-TOPAZ (NPRT) were evaluated by comparing them with
27 available observational data. NPRT successfully simulated the seasonal variability of chlorophyll and
28 nutrients, capturing two peaks in spring [and autumn](#), which were not captured by the CMIP6 data.
29 Particularly in the YECS, NPRT effectively represented the [high phytoplankton](#) biomass driven by
30 riverine effect, which is difficult to reproduce in global biogeochemical model with low-resolution.
31 However, NPRT still exhibits significant biases in the subarctic region and marginal seas. To minimize
32 the uncertainties in biogeochemical variables, it is necessary to refine the initial and boundary
33 conditions, adjust parameters, and apply discharge forcing based on observational data. Despite these
34 limitations, NPRT is an important tool for studying the interaction between ocean physics and
35 biogeochemistry at a high resolution.

37 1. Introduction

38 The ocean biogeochemical processes are among the most important fields for understanding Earth's
39 carbon and ecosystem cycles, as well as the global climate system (Reid et al., 2009; Kang et al., 2017;
40 Park et al., 2014, 2018, Lee et al., 2022). Previous studies utilized Earth system models to analyze ocean
41 biogeochemistry, climate feedback, and the carbon cycle (Kang et al., 2017; Park et al., 2018; 2019). In
42 particular, significant efforts have been made to analyze physical-biogeochemical features at the global
43 scale as well as at regional scales (Hauri et al., 2020; Zhao et al., 2021; Wu et al., 2023; Na et al., 2024).

44 The North Pacific is a key region where the biological carbon pump occurs effectively (Chierici et
45 al., 2006; Takahashi et al., 2009). Low-frequency physical and ecological variabilities in the North
46 Pacific are closely related to various climatological variability patterns, such as the Pacific Decadal
47 Oscillation (PDO) and El Niño-Southern Oscillation (ENSO). Numerous studies have been conducted

48 on the responses of ecosystems to climatic and environmental conditions influenced by these long-term
49 climatological variability patterns, especially in the Northeast Pacific (Overland et al., 2008; Yatsu et
50 al., 2013; Ma et al., 2020). However, in the Northwest Pacific, including marginal seas, regional-scale
51 oceanographic and ecological variabilities are independent across regions and show relatively weak
52 linkages to climatological variability patterns, such as the PDO and ENSO (Jung et al., 2017; Ma et al.,
53 2020). In particular, the Northwest Pacific is known as the Kuroshio–Oyashio Confluence Region (142–
54 160° E, 35–40° N; Kawai, 1972; Hanawa and Mitsudera, 1987); the Oyashio Current is formed from
55 the East Kamchatka Current, flowing southwestward along the Hokkaido coast while mixing with the
56 Okhotsk Sea Mode Water, and the Kuroshio Current flows northeastward along the east of Japan,
57 originating from Luzon Island (Nitani, 1972). Therefore, this region is known for the convergence of
58 distinct water properties, resulting in a complex frontal structure, thermohaline mixing, and significant
59 variability in the upper layer circulation (Qiu, 2001; Yasuda, 2003; Taguchi et al., 2007). Specifically,
60 the water mass of the Oyashio Current has low temperature and low salinity, i.e., lower than 7 °C and
61 33.7 psu at a depth of 100 m (Kawai, 1972). Conversely, the water mass of the Kuroshio Current has a
62 temperature higher than 14 °C and salinity higher than 34.7 psu (Nitani, 1972; Wang et al., 2022). In
63 this region, the biogeochemical characteristics also exhibit significant regional differences. The
64 cyclonic subarctic gyre, located west of the Oyashio Current, is characterized by high nutrient levels
65 and low chlorophyll concentration (Taniguchi, 1999). Conversely, the anticyclonic tropical gyre,
66 situated in the Kuroshio Current, is characterized by low nutrient levels (Siswanto et al., 2015). The
67 interaction between gyres with distinct biogeochemical characteristics results in increased nutrient
68 availability and the simulation of [high phytoplankton biomass](#) (Shiozaki et al., 2014). Consequently,
69 the Northwest Pacific has been extensively studied from the perspectives of hydrography, climate
70 change, nutrient transport, the carbon cycle, phytoplankton production, and community structure in
71 relation to external conditions (Okamoto et al., 2010; Kuroda et al., 2019; Wang et al., 2021).

72 The Northwest Pacific is an important region for understanding the global carbon cycle and
73 enhancing its predictability. Many previous studies have analyzed the carbon cycle, ecosystems, and
74 future climate change using low-resolution global climate models with biogeochemical modules (Park
75 et al., 2014; [Jung et al., 2020](#); Hauri et al., 2020; Lee et al., 2022). However, coupled physical–
76 biogeochemical ocean models with low horizontal resolutions involve limitations regarding accurately
77 reproducing and analyzing the characteristics of oceanic environmental systems particularly the
78 physical–biogeochemical factors in regional areas. Therefore, in this study, to accurately understand the
79 physical–biogeochemical processes at the regional scale and address uncertainties, a regional ocean
80 model and a biogeochemical model were coupled at a high resolution. Specifically, we employed the
81 Generic Ocean Turbulence Model–Tracers of Phytoplankton with Allometric Zooplankton (TOPAZ)

82 developed by the US National Oceanic and Atmospheric Administration's Geophysical Fluid Dynamics
83 Laboratory (GFDL), in conjunction with the Regional Ocean Modeling System (ROMS).

84 This study introduces a new high-resolution coupled physical-biogeochemical model, named the
85 "Northwest Pacific ROMS–TOPAZ model version 1.0 (hereafter NPRT)", which is a valuable tool for
86 not only understanding the interactions between physical and biogeochemical processes but also for
87 predicting the future ocean carbon system. We describe and evaluate the simulation results of the
88 coupled physical–biogeochemical model (NPRT) through comparison with available observational data.
89 Sections 2.1 and 2.2 describe the characteristics of the models used in this study, and Section 2.3 and
90 2.4 elaborate on the developed NPRT, the methodology behind it, and the specific model design for the
91 study area. In section 3, the model results are evaluated using observations of physical and
92 biogeochemical variables, such as sea surface height (SSH), salinity, chlorophyll, nutrients, dissolved
93 inorganic carbon (DIC), [Alkalinity \(Alk\)](#) and dissolved oxygen (DO). In addition, we analyze the
94 characteristics of the physical–biogeochemistry regional ocean model with high resolution. Finally, a
95 summary is presented in section 4.

96

97 **2. Data and model**

98 **2.1 Physical Ocean model (ROMS v3.9)**

99 For conducting the physical–biogeochemical model coupling in this study, we employed ROMS
100 version 3.9 (hereafter ROMS; Song and Haidvogel, 1994), which is a popular physical regional ocean
101 model. ROMS is a three-dimensional primitive-equation physical ocean model that uses hydrostatic
102 and Boussinesq approximations. The horizontal grid system is the Arakawa-C grid system, which
103 enhances computational stability and efficiency (Arakawa and Lamb, 1977). The vertical coordinate
104 system is the S-coordinate (stretched terrain-following coordinate), which combines the advantages of
105 implementing the z-coordinate for the planetary boundary layer (PBL) and the σ -coordinate for the
106 bottom boundary layer. In this way, it allows for accurate analyses of physical phenomena in the
107 thermocline or bottom boundary layer, while reducing pressure gradient errors that are sensitive to the
108 terrain (Song and Wright, 1998; Shchepetkin and McWilliams, 2003).

109 ROMS can utilize horizontal advection schemes, such as second-, and fourth-order centered
110 differences and a third-order upstream scheme. Various options are available for vertical mixing,
111 including the K-profile parameterization (KPP; Large et al., 1994), M–Y (Mellor and Yamada, 1982),
112 Generic Length Scale (GLS; Umlauf and Burchard, 2003). In addition, bulk parameterization involving
113 the wind, sensible heat flux, and latent heat flux provides better calculations of the heat budget changes,

114 which is essential for elucidating the atmosphere–ocean interactions (Fairall et al., 1996). For more
115 information on ROMS, we refer to Shchepetkin and McWilliams (2005) and McWilliams (2009).

116 **2.2 Biogeochemical model (TOPAZ v2.0)**

117 TOPAZ version 2.0 (hereafter TOPAZ) is a biogeochemical module that simulates the cycles of
118 carbon, nitrogen, phosphorus, silicon, iron, DO, and lithogenic material, while also considering the
119 growth cycles of the zooplankton and phytoplankton. In biogeochemical processes, phytoplankton
120 members are categorized based on their sizes into small and large, including the nitrogen-fixing
121 diazotrophs. Overall, TOPAZ handles a total of 30 prognostic and 11 diagnostic tracers, and the state
122 variable C in various tracers reproduced in TOPAZ can be calculated using the following continuity
123 equation to describe local changes.

124
$$\frac{\partial C}{\partial t} = -\nabla \cdot \tilde{v}C + \nabla K \nabla C + S_c, \quad (1)$$

125 where \tilde{v} and K represent the vector velocity and diffusivity, respectively, and S_c indicates the source-
126 minus-sink terms of the state variable C calculated at each grid. TOPAZ considers eight types of
127 biogeochemical processes: the dissolved organic matter (DOM) cycle, particle sinking, dry/wet
128 atmospheric decomposition, gas exchange, river input, removal, sediment input and scavenging (Dunne
129 et al., 2005; 2007). Various equations for these processes are available, utilizing relationships between
130 variables derived from observational data (Dunne et al., 2012). In addition, TOPAZ includes an “optical
131 feedback” module that considers the chlorophyll photosynthesis. Optical feedback calculates the total
132 surface irradiance($I(z)$) as a function of the solar radiation wavelength (Manizza et al., 2005). This
133 scheme regulates vertically penetrating irradiance due to shortwave radiation absorption in the visible
134 light, which is influenced by the distribution of chlorophyll concentration in the water column of the
135 model.

136
$$I(z) = I_{IR} \cdot e^{-k_{IR}^2 z} + I_{RED(z-1)} \cdot e^{-k_{(r)} \Delta z} + I_{BLUE(z-1)} \cdot e^{-k_{(b)} \Delta z}, \quad (2)$$

137 where the first term in the right hand side represents the penetration of the infrared wavelength band,
138 and the second and third terms represent the photosynthetically active radiation (PAR), which is divided
139 into two visible wavelength bands, namely the red and blue/green bands. PAR is used to calculate the
140 growth rate of phytoplankton groups and is a key factor in biogeochemistry. For more detailed
141 information on TOPAZ, we refer to Dunne et al. (2012).

142 In the TOPAZ model, there are not only the primary 11 diagnostic variables but also many secondary
143 diagnostic variables. Net primary production (NPP) was calculated using the secondary diagnostic

variables such as the maximum growth rate, temperature, nutrients, and light limitation factors (Laufkötter et al. 2015). Unfortunately, the TOPAZ model used in this study does not store secondary diagnostic variables related to NPP. Nevertheless, since it simulates various nutrients, chlorophyll concentrations, and carbon cycles, the TOPAZ model can be effectively used to analyze biogeochemical processes.

2.3 The coupled ROMS–TOPAZ model (NPRT version 1.0)

In this study, to couple ROMS with TOPAZ, we employed the stand-alone version of TOPAZ, which was separated from the Modular Ocean Model version 5 (MOM5) developed by the GFDL in a previous study (Jung et al., 2020). In this study for the stand-alone version of TOPAZ, the air–sea gas exchange for CO₂ and O₂ is based on Wanninkhof (1992) and Najjar and Orr (1998), and the optical feedback is based on Manniza et al. (2005). Furthermore, TOPAZ prescribes the surface flux from the atmosphere to the ocean for nitrate (NO₃), ammonia (NH₄), lithogenic aluminosilicate (LITH), and dissolved iron (Fed) (Jung et al., 2020). For these atmospheric chemistry values for the surface flux, this study employs climatological monthly mean data as provided by the official MOM GitHub (<https://mom-ocean.github.io/docs/quick-start-guide/>, last access: 1 March 2023).

Fig. 1 shows the structure of the NPRT. During the initialization process, TOPAZ receives the grid and domain information from ROMS. Subsequently, integration with the *ROMS Main Driver* occurs to calculate S_c within the “time step loop” using Eq. (1). Simultaneously, the chlorophyll optical feedback is also considered in each time step, with the PAR modified by chlorophyll concentrations influencing S_c, whereas the total radiation is used in the physical processes of ROMS. In the *ROMS Main Driver*, the advection and diffusivity terms are calculated considering river runoff (Alk, DIC, NH₄, NO₃, LITH, and PO₄). Information such as prognostic tracers, ocean physical variables, atmospheric forcing, and dry/wet deposition (LITH, NH₄, NO₃, and Fed) are then transmitted to the TOPAZ module, where the source/sink term (S_c) is calculated. In other words, the state variable C is calculated using data related to the transport tendency of the tracers and source/sink term through the *ROMS physics* and *generic_TOPAZ_column_physics* modules (Fig. 1).

2.4 Experimental setup

To operate NPRT, it is necessary to obtain the initial and boundary conditions for the biogeochemical variables considered by TOPAZ; however, it is impossible to encompass all biogeochemical observational data, since TOPAZ considers 30 prognostic and 11 diagnostic tracers. Therefore, in this study, the results of **MOM5–TOPAZ** were employed as the initial and boundary conditions of TOPAZ. To operate MOM5–TOPAZ, the default input datasets provided by the official

178 MOM GitHub were employed for the initial condition. **MOM5–TOPAZ** was initially operated for a 100-
179 year spin-up integration under a pCO₂ environment (369.6 ppm) and ECMWF Reanalysis v5 (ERA5;
180 Hersbach et al. 2020) of year 2000. Séférian et al. (2016) suggested that biochemical models require
181 spin-up times longer than those required by physical ocean models. However, in this study, we adopted
182 a 100-year spin-up time integration because of limited computing and time resources. After the 100-
183 year spin-up time integration, using the results from the last time step as the initial condition, MOM5–
184 TOPAZ was operated for 2000–2014, with a realistic atmospheric CO₂ concentration and atmospheric
185 forcings from ERA5. Through these spin-up process described above, the initial and boundary
186 conditions for the biogeochemical variables required to conduct NPRT were obtained. Nutrient
187 concentrations for dry/wet atmospheric deposition and runoff were obtained from the default input data
188 of the official MOM GitHub.

189 The initial and boundary conditions used for the physical variables were monthly mean data from
190 the Hybrid Coordinate Ocean Model (HYCOM) reanalysis with a 1/12° (**approximately 8 km**)
191 horizontal resolution. We used the six-hourly atmospheric external forcings, as provided by ERA5 as
192 well as climatological monthly mean discharges of 12 major rivers, including the Yangtze, Huanghe,
193 Yungsan, Keum, Han, Haihe, Luanhe, Amnokgang, Taedong, Qiantang, Pearl Rivers (**Fig. 2**; Kwon
194 2007). In addition, to obtain the tidal mixing effect, we considered 10 major tidal and tidal current
195 harmonic components (M₂, S₂, N₂, K₂, K₁, O₁, P₁, Q₁, M_f, and M_m) from TPX07 (Egbert and Erofeeva,
196 2002). The GLS vertical mixing scheme was used for parameterization (Umlauf and Burchard, 2003).
197 The bottom stress is parameterized with a **quadratic drag law** using a drag coefficient (2.5×10^{-3}), and
198 horizontal viscosity and diffusion coefficients are $25 \text{ m}^2 \text{ s}^{-1}$ and $50 \text{ m}^2 \text{ s}^{-1}$, respectively.

199 In this study, the model domain (105–170° E, 13–52° N) is the Northwest Pacific (NWP), which is
200 one of the key regions for conducting global air–sea gas exchange, and includes the East/Japan Sea
201 (**hereafter East Sea**), the Yellow and East China Seas (YECS), and South China Sea (**Fig. 2**). The
202 horizontal resolution is 1/12°, both in longitude and latitude and the number of vertical layers is 50. The
203 bottom topography from GEBCO data (Weatherall et al. 2015) is interpolated onto the model grid.
204 NPRT was operated for a total of 15 years (2000–2014). To address the requirement for a sufficiently
205 long spin-up time for executing the biogeochemical model, we conducted an additional spin-up for the
206 initial five years. Therefore, in this study, the model results averaged over the last 10 years were used
207 for the analysis.

208 To compare NPRT simulations with available observational data, in this study we divided the
209 Northwest Pacific into four regions on the base of physical and biological environments: the NWP,
210 further subdivided into subtropical (south of 40° N) and subarctic regions (north of 40° N), the East Sea,

211 and the YECS (Fig. 2). The SSH distribution was obtained from the Copernicus Marine Environment
212 Monitoring Service (CMEMS) satellite data from 2005–2014. Sea water temperature and salinity are
213 not only key factors in phytoplankton growth but also essential physical factors that determine the water
214 mass distribution in the ocean. In this study, the water temperature and salinity simulated from NPRT
215 were verified via annual and monthly climatological datasets from the World Ocean Atlas 2018
216 (WOA18) at a horizontal resolution of $1^\circ \times 1^\circ$. In addition, to evaluate the reproducibility of chlorophyll
217 concentrations, the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Coupled Model
218 Intercomparison Project phase 6 (CMIP6; Eyring et al. 2016) were employed. As shown in Table 1, this
219 study adopted six models from CMIP6, providing chlorophyll concentrations for the historical period
220 (2005–2014). Each model is a single ensemble member, typically the ‘r1i1p1f1’ model: r, i, p, and f
221 denote the realization, initialization, physics, and forcing indices, respectively (Taylor et al. 2018). For
222 dissolved oxygen and nutrients, we also used annual and monthly climatological datasets from WOA18.
223 In addition, we utilized conductivity–temperature–depth (CTD) measurement data such as DO, from
224 the Japan Meteorological Agency (JMA) along the 137° E line from 2005–2014. The simulated DIC in
225 NPRT was compared with observational data from the Global Ocean Data Analysis Project version 2
226 (GLODAPv2; Lauvset et al., 2016) with a horizontal resolution of $1^\circ \times 1^\circ$ and 33 vertical layers from
227 0 to 5,500 m. GLODAPv2 is the mapped climatology field averaged from 1972–2013 at the Carbon
228 Dioxide Information Analysis Center (CDIAC).

229

230 **3. Results and discussion**

231 **3.1. Physics**

232 The study area is characterized by diverse oceanic environments, which determine the
233 biogeochemical characteristics. For example, in the **Kuroshio–Oyashio Confluence Region**, the
234 distributions of biogeochemical variables are determined by various physical and biological processes,
235 such as advection, horizontal mixing, vertical mixing, photosynthesis, and respiration. In addition, the
236 YECS is a river-dominated marginal sea, where large amounts of nutrients are discharged into the sea
237 along with freshwater (Dai et al., 2022; Na et al., 2024). Therefore, to accurately simulate the
238 biogeochemical properties, validating the oceanic physical characteristics, such as water temperature,
239 current, and salinity, is necessary. The distribution of ocean currents, in conjunction with water
240 temperature and salinity, is essential for determining the oceanic physical characteristics. This key factor
241 plays a fundamental role in direct and indirect assessments of all aspects of the marine environment. To
242 validate the reproducibility of the physical characteristics, the simulated SSH data were compared with

243 satellite-observed altimetry data from CMEMS.

244 Fig. 3 shows the long-term mean SSH distributions in CMEMS and NPRT during 2005–2014. The
245 Kuroshio Current originates from east of the Philippine coast, where it flows northeastward, passes
246 through the Tokara Strait, and continues eastward, meandering along the southern coast of Japan.
247 Furthermore, in the Shikoku Basin, there is a long-standing anticyclonic eddy associated with ocean-
248 bottom topography (Ding et al., 2022). In the subarctic region, the Oyashio Current flows southward
249 and converges with the Kuroshio Current, resulting in the mixing of distinct water masses; the region
250 where this happens is known as Kuroshio–Oyashio Confluence Region (Sugimoto and Hanawa, 2011;
251 Zhu et al., 2019). As mentioned previously, the NPRT results generally agree well with the observed
252 characteristics of the upper-layer circulation system in the NWP.

253 Fig. 4 shows [the annual mean](#) sea surface temperature (SST) in WOA18 and NPRT. The Northwest
254 Pacific exhibits subtropical characteristics, with high temperatures above 25 °C approximately 20° N.
255 Additionally, this region is predominantly influenced by the Kuroshio Current with warm water mass,
256 which results in the northward distribution of isotherms along the Japanese coast. As mentioned above,
257 a significant north–south temperature gradient is also observed between 35° N and 40° N, corresponding
258 to the Kuroshio–Oyashio Confluence Region. The characteristics of the SST distribution in the
259 Northwest Pacific are highly pronounced in NPRT, [although the simulated sea surface temperature](#)
260 [predominantly shows a positive bias, with a particularly significant positive bias \(> 4°C\) observed in](#)
261 [the Kuroshio–Oyashio Confluence Region \(Fig. 4c\)](#). Notably, the location of the Kuroshio–Oyashio
262 Confluence Region, which plays a crucial role in the formation of the North Pacific Intermediate Water
263 (NPIW), is also accurately simulated.

264 The NPIW is characterized by salinity and potential vorticity minima, with its primarily distributed
265 between density 26.6 and 27.2 σ_0 , corresponding to depths of 600–800 m (Lembke-Jene et al., 2017).
266 The NPIW transports large amounts of nutrients to the NWP. Therefore, simulating the NPIW is
267 important for the reproduction of biogeochemical characteristics in the NWP. Comparing the vertical
268 structures of zonal mean salinity between 140° and 160° E to those in the WOA18 data shows that the
269 depth of the salinity minimum layer is approximately 600–800 m, similar to the observational data (Fig.
270 5). However, the salinity minimum layer is about 0.2 psu higher than that of the observations. [This is](#)
271 [attributed to a significant positive bias of salinity simulated in NPRT in Kuroshio–Oyashio Confluence](#)
272 [Region](#). Nevertheless, NPRT adequately reproduces not only the surface currents but also the ventilation
273 for the formation of the NPIW.

274 The YECS are characterized by the dominant effects of tidal mixing and runoff. Freshwater
275 discharged from the Yangtze River, one of the major sources of nutrients in the East China Sea, forms

276 a low-salinity plume that spreads and influences the stratifications of the surrounding areas (Moon et
277 al., 2009). NPRT did not include all rivers in the YECS; nevertheless, a total of 12 rivers, including the
278 Yangtze River, were included (Fig. 2). Regarding the oceanographic characteristics of the YECS, the
279 model exhibits similar patterns with those of the observations from WOA18, despite of a negative bias
280 (Fig. 6 and Supplement Fig. 1). During winter (February; Fig. 6e and Supplement Fig. 1e), the simulated
281 sea surface salinity distribution in the YECS is below 32.0 psu, whereas during the freshwater
282 discharge-intensive summer (August; Fig. 6f and Supplement Fig. 1f), the salinity drops below 30 psu,
283 forming a low-salinity tongue shaped feature extending toward the Korean coast. In the NWP, high
284 salinity water (> 34.0 psu) extends northward to around 40° N during winter and around 35° N during
285 summer. The reproduced distinct seasonal variability is similar to that in the WOA18 data, with all
286 spatial correlation coefficients and root-mean-square error (RMSE) for surface salinity distribution in
287 the annual mean, winter, and summer being over 0.93 and 0.33–0.42 psu, respectively.

288 Overall, NPRT reasonably simulates the major characteristics observed in each region and is,
289 therefore, suitable for analyzing the spatiotemporal distribution and characteristics of chlorophyll
290 concentration, nutrients, and the carbon cycle influenced by these physical properties.

291

292 **3.2. Biogeochemistry**

293 **3.2.1 Nutrients**

294 The results of the simulated nitrates, phosphates, and silicates, which are essential for the growth of
295 phytoplankton, were compared with the results of the observationally base WOA18 climatology (Figs.
296 7–9). Fig. 7a–c shows the comparison of the simulated surface annual mean nitrates with the observed
297 ones. The distribution of the annual mean surface nitrate concentration in the observational data reveals
298 a characteristic increase from low to high latitudes, with concentrations exceeding $15 \mu\text{mol kg}^{-1}$ in the
299 subarctic region (Fig. 7a). In the model results, the annual mean concentration of nitrate also increases
300 with increasing latitude and is predominantly distributed in the East Sea, Okhotsk Sea, and the Oyashio
301 extension region (Fig. 7b). Compared with that in the observations, the overall distribution of annual
302 mean surface nitrate concentrations is underestimated (Fig. 7c). In particular, in the subarctic region,
303 the model results exhibit a large negative bias of over $-10 \mu\text{mol kg}^{-1}$, whereas in the East Sea and the
304 Kuroshio and its extension regions, it exhibits a positive bias. The pattern correlation and RMSE for
305 nitrate in the study area are 0.83 and $5.70 \mu\text{mol kg}^{-1}$, respectively. The distribution of the annual mean
306 surface phosphates in NPRT is similar to that in WOA18 (pattern correlation: 0.83; Fig. 8a, b). However,
307 there is a negative bias in the subarctic region and a positive bias in the eastern coast of Sakhalin and

308 the East Sea (Fig. 8c). The bias range is approximately -1.2–0.5, and the RMSE is approximately 0.53
309 $\mu\text{mol kg}^{-1}$. Unlike other nutrients, the simulated silicate exhibits a significant positive bias ($> 30 \mu\text{mol}$
310 kg^{-1}) and a negative bias ($> 30 \mu\text{mol kg}^{-1}$) in the YECS and the subarctic region, respectively (Fig. 9c).

311 The vertical errors of the zonally averaged annual mean nutrients (nitrate, phosphate, and silicate) in
312 the NWP were overestimated south of the Kuroshio–Oyashio Confluence Region (40°N) until a depth
313 of 500 m (Fig. 10). However, in the 500–1500 m, the underestimation error in the 500–1500 m appears,
314 which seems to be related to the NPIW simulation. In the intermediate layer of the NWP, the subarctic
315 intermediate water nutrient pool (SINP) with high nutrient concentrations appears along with the NPIW
316 formed in the Kuroshio–Oyashio Confluence Region (Nishioka et al., 2020; 2021). However, it is
317 considered that the SINP is not distinct in NPRT due to the negative bias in the subarctic region, which
318 is the source of the SINP. Positive biases for nutrients were distributed within a depth of 500 m in all
319 seasons, similar to the annual mean bias, whereas negative biases exhibited in deeper depths (black
320 solid line in Fig. 10c, f, i). Regardless of the season, the depth of the positive bias peak for all nutrients
321 is approximately 100–300 m.

322 The simulated surface nutrient concentrations in NPRT exhibited a clear seasonal variability (Figs.
323 7–9). In winter, high nitrate concentrations distributed in the subsurface are supplied to the surface by
324 vertical mixing, resulting in an increase in the upper-layer nutrient concentrations from winter to spring.
325 In summer and autumn, distinct seasonal variability is observed, with concentrations gradually
326 decreasing owing to enhanced stratification. The temporal correlation coefficients between the model
327 results and observations (WOA18) for nutrients (nitrate, phosphate, and silicate) are approximately
328 0.78–0.98, indicating that the seasonal variability is well represented, except for the silicate
329 concentration in the YECS (temporal correlation coefficient: 0.47). In the subarctic region, all nutrients
330 are consistently underestimated regardless of the season, which is likely attributed to the initial and
331 boundary biogeochemical conditions. The initial conditions for nutrients derived from the MOM5–
332 TOPAZ results are approximately $10 \mu\text{mol kg}^{-1}$ lower than those derived from the WOA18 data (not
333 shown here).

334 In addition, we need to give particular attention to the overestimation of silicate in the YECS (Fig.
335 9). In TOPAZ, silicate is regulated through biogeochemical processes such as dissolution and uptake by
336 large phytoplankton within the mixed layer, as well as by particles sinking into the deep ocean (Dunne
337 et al. 2012). In NPRT, the overestimation of the silicate concentration can be attributed to two possible
338 factors. The first possibility is that silicate, unlike other nutrients, is only considered taken up by large
339 phytoplankton. The second factor is that the YECS, which is a shallow marginal sea with a maximum
340 depth of less than 50 m, experiences strong vertical mixing throughout the entire water column due to

341 strong winds, surface heat fluxes during winter, and tidal effects. In shallow marginal seas, rather than
342 a decrease in the upper layer silicate concentration due to particles sinking into the deep ocean, it is
343 speculated that particles remain within the mixed layer, continuously increasing through dissolution. To
344 address the large bias in silicates observed in marginal seas such as the YECS, it is necessary to consider
345 the specific marine environment of each region and adopt accurate parameters and external forcings.

346 To statistically evaluate the reproducibility of NPRT, this study calculated the monthly Taylor
347 diagram score (TD score; Taylor, 2001; Jin et al. 2023) in each region (Table 1) via the following
348 formulation.

349
$$TD \text{ (Taylor diagram) Score} = |1 - R| + \left|1 - \frac{\sigma_M}{\sigma_O}\right| + \frac{E'}{\sigma_O} , \quad (3)$$

350 where R is the pattern correlation, and where σ_M and σ_O indicate the standard deviations in the
351 model and observations, respectively. E' is the RMSE. The TD scores for nitrate and phosphate
352 concentrations tend to increase from summer to winter, except in the Subarctic region. In particular, the
353 TD scores for nitrate in the subtropical region sharply increase in November and December (Table 1),
354 which is due to the large bias distribution in the Kuroshio–Oyashio Confluence Region (not shown
355 here). The positive bias distributed in this region is thought to be due to the relatively high nutrient
356 concentrations in the subsurface in NPRT, which are transported to the surface layer through vertical
357 mixing (Fig. 10). In the Subarctic region, the TD scores for all nutrients are greater than 2.5 (Table 1),
358 but as mentioned above, the seasonal variability is well reproduced. Therefore, the dominant negative
359 bias is expected to improve significantly with the use of more accurate initial and boundary conditions.
360 The TD scores for nitrate and phosphate in the East Sea and the YECS are approximately 1.0–2.5 higher
361 than those in the subtropical region. In the case of silicate, the TD score was greater than 10.0 for all
362 months.

363

364 **3.2.2 N:P ratio**

365 The study area, the Northwestern Pacific, can be broadly divided into three limitation regions: the
366 subtropical and subarctic regions and the YECS, which are characterized by nitrogen limitation
367 (Browning et al. 2022), Fe limitation (Watson, 2001; Zhang et al 2021), and phosphate limitation (Lee et
368 al. 2023), respectively. The N:P molar ratio in seawater is commonly used to evaluate whether the
369 growth of phytoplankton is potentially limited by nitrogen or phosphorus. Fig. 11 shows the distribution
370 pattern of the N:P molar ratio in the Northwestern Pacific. In the subtropical region, the N:P molar ratios
371 in WOA18 and NPRT were approximately 3.4 and 4.3, respectively. However, NPRT shows a clear
372 positive bias in the Kuroshio Current and its extension region. This characteristic is also evident in the

373 distribution of nutrient biases (Fig. 11c). The large meander of the Kuroshio Western Boundary Current
374 significantly influences not only physical characteristics but also biological processes (Hayashida et al.
375 2023). Therefore, to analyze the biological processes in the Kuroshio meandering region in accurately
376 the future, improving the model's representation of Kuroshio meandering is important. In WOA18, the
377 N:P molar ratio in the YECS was approximately 7.3, with the ratio exceeding 16.0, particularly in the
378 Yangtze River estuary, where a distinct phosphate limitation region was observed (Fig. 11a). However,
379 the simulated N:P ratio was relatively lower than the observed values in the Yangtze River estuary (Fig.
380 11b). As mentioned earlier, despite the significant influence of river discharge in regions such as the
381 YECS, the relatively low N:P molar ratio simulated in this study is likely due to inaccuracies in the
382 estimated nutrient input from riverine sources.

383

384 **3.2.3 Chlorophyll**

385 The characteristics of the simulated chlorophyll distributions were compared with those inferred
386 from the MODIS satellite data (Fig. 12). The chlorophyll concentrations derived from satellite data
387 include both sea surface and mixed layer components because of the backscattering effect of reflected
388 light (Park et al., 2014; Jochum et al., 2019; Jung et al., 2020). Therefore, in this study, 0–20 m depth-
389 averaged chlorophyll concentrations from NPRT were compared with satellite data from 2005–2014.
390 Although NPRT was conducted with external forcings that include interannual variations, the results
391 may have several uncertainties due to insufficient spin-up time and/or climatological data for river input
392 and atmospheric deposition. In addition, we analyzed the characteristics of the high-resolution regional
393 model (NPRT) compared with the global biogeochemical models in the CMIP6 datasets.
394 Biogeochemical models include various variables, among which the chlorophyll concentration is
395 influenced by physical factors (temperature and circulation system), light, and various nutrients, and it
396 exhibits distinct seasonal variability. In this study, we considered it a representative variable for
397 evaluating the performance of biogeochemical models and used a total of 13 ensemble members in the
398 CMIP6 models (Table 2). Among the 13 members (Table 2), ensemble numbers 1 to 8 were calculated
399 using the 0–20 m depth averaged chlorophyll concentration, whereas the remaining ensembles provided
400 only surface data. In addition, we compared the chlorophyll concentrations of GFDL-ESM2M and
401 GFDL-ESM2G (hereafter ESM2M and ESM2G), which are published in the Fifth Assessment Report
402 of Intergovernmental Panel on Climate Change (IPCC AR5), with the NPRT results. Since the historical
403 data for ESM2M and ESM2G are available only up to 2005, we analyzed the data from 1996 to 2005.

404 Since the chlorophyll distribution and seasonal variation exhibit different characteristics in each
405 region, the analysis in this study was divided into subtropical and subarctic regions, the East Sea, and

406 the YECS. First, when the data from subtropical and subarctic regions and the East Sea are analyzed,
407 the chlorophyll concentrations generally increase from low to high latitudes according to observations
408 (Fig. 12a). In NPRT, the distribution of the annual mean chlorophyll concentration was similar to the
409 observations in the subtropical region and East Sea (pattern correlations: 0.72 and 0.61, respectively).
410 However, a positive bias is dominant regardless of season, primarily due to the positive bias in nutrients
411 related to phytoplankton growth (Figs. 7–9). Despite the positive biases in the chlorophyll concentration
412 distributions in the subtropical and subarctic regions and the East Sea, as represented in NPRT, the
413 seasonal variation in the chlorophyll concentration, which has spring and autumn biomass peaks, was
414 similar to the observations (Fig. 13a, b, c). The reproducibility of seasonal variability in NPRT is
415 comparable to the results of ESM2M and ESM2G. However, most of the results of the CMIP6 models
416 do not adequately capture the autumn peak in the subtropical and subarctic regions and East Sea. The
417 pattern correlation ranges of the annual mean chlorophyll concentrations for each ensemble member of
418 CMIP6 in the subtropical and subarctic regions and the East Sea are -0.06–0.61, -0.39–0.65 and -0.15–
419 0.17, respectively (Fig. 14). Some models in the CMIP6 datasets show negative pattern correlations.
420 Although ESM2M and ESM2G were well represented, the range of pattern correlation coefficients was
421 quite low, ranging from -0.12–0.26. As a result, the TD scores in NPRT are lower than those in the
422 ESM2M, ESM2G, and CMIP6, especially in the East Sea, and the reproducibility of the chlorophyll
423 concentration distribution has significantly improved (Table 3).

424 In the YECS, the spatial correlation coefficient in NPRT was approximately 0.45 (Fig. 12a, b and
425 14d), which was relatively low compared with that in the other regions. However, the NPRT-simulated
426 biomass blooms near the Yangtze River and along the Chinese coast were driven by high freshwater
427 discharge (Fig. 12b). In addition, NPRT, ESM2M and ESM2G effectively reproduced the seasonal
428 variability (spring peak and increasing from summer) that was not captured by the CMIP6 models. In
429 the case of the CMIP6 models, negative bias is dominant regardless of the season (Fig. 13d), and they
430 also lack clear seasonal variability in the chlorophyll concentration. In the YECS, the discharge of
431 freshwater and nutrient concentrations from rivers is one of the most important input forcings
432 determining the spatiotemporal pattern and variability (Zhou et al., 2008). In this study, to apply
433 observation data for freshwater discharge and nutrient concentrations from river outflows, tracer
434 concentrations were determined with a volume flux at the river source point, following an approach
435 similar to that adopted in regional biogeochemical models such as FENNEL (Fennel et al. 2006) and a
436 modified version of the Carbon, Ocean, Biogeochemistry and Lower Trophic (COBALT; Hauri et al.
437 2020). However, the chlorophyll concentrations in NPRT still tend to be underestimated (RMSE: 1.62
438 $\mu\text{mol kg}^{-1}$) in the YECS, including the Yangtze River estuary (Fig. 12c). Nonetheless, the TD score in
439 NPRT was approximately 2.32, which is lower than that in ESM2M, ESM2G, and CMIP6 (2.23–3.5)

440 (Table 3), and NPRT reproduced the seasonal variability (Fig. 13d) and spatial characteristics such as
441 biomass blooms near the Yangtze River and along the Chinese coast, driven by high freshwater
442 discharge (Fig. 12b).

443 In the YECS, the underestimated chlorophyll concentration in NPRT may also be related to the
444 distribution of low nutrient concentrations in the YECS. Furthermore, this can be attributed to the
445 incomplete consideration of the influences exerted by numerous rivers along the Chinese and Korean
446 coasts as well as the utilization of default data provided by MOM GitHub, which deviates from the
447 actual diverse biogeochemical variables (LITH, NH₄, NO₃, and Fed) introduced from the atmosphere.
448 In addition, we need to consider the uncertainties associated with the satellite observational data from
449 MODIS. MODIS indirectly estimates chlorophyll concentrations by measuring the spectrum of light
450 reflected from the sea surface (visible and near-infrared); however, completely eliminating the influence
451 of colored dissolved organic matter (CDOM) and suspended particles in the water is difficult. Coastal
452 regions, classified as type II waters, are particularly prone to bias in estimated surface chlorophyll
453 concentrations because of the high concentrations of CDOM and suspended particles (Mauri et al.
454 2007). The CDOM calculated using MODIS data was significantly greater in the YECS than in the
455 other regions (Supplement Fig. 2), and the absorption of blue light by CDOM can lead to an
456 overestimation of the chlorophyll concentration (Fig. 12 and Supplement Fig. 2). In other words, owing
457 to the influence of CDOM, the chlorophyll distribution observed by MODIS may be overestimated,
458 potentially leading to a negative bias in the chlorophyll simulated by NPRT in the YECS. Furthermore,
459 CDOM enhances shortwave heating at the surface while reducing it below the surface (Kim et al.
460 2016). This process can influence penetrating shortwave radiation, mixing, and surface heat flux.
461 Focusing on the variability in physical processes caused by CDOM could greatly contribute to
462 future research on the interactions between biogeochemistry and physical oceanography.

463

464 3.2.4 Dissolved inorganic carbon and alkalinity

465 The variables of the carbon system, including dissolved inorganic carbonic (DIC) and alkalinity
466 (Alk), simulated in NPRT were analyzed. First, DIC is a crucial component of ocean biogeochemistry
467 and is directly linked to plankton photosynthesis and respiration; hence, it is a valuable parameter for
468 the analysis of the carbon system (Ding et al., 2018). The results of NPRT, averaged from 2005–2014,
469 were compared with the observed climatological data obtained from GLODAPv2 (Fig. 15a–c). For both
470 the model results and observational data, the annual mean surface DIC concentration in the subarctic
471 region is significantly higher than that in the subtropical region. The simulated annual mean surface
472 DIC concentration in NPRT generally exhibited a positive bias. However, in the YECS, there was a

473 significant negative bias of over $-300 \mu\text{mol kg}^{-1}$. In particular, low DIC concentrations (below 1,900
474 $\mu\text{mol kg}^{-1}$) appeared in the Yangtze River estuary. The bias range for the entire study area is
475 approximately between -650 and $180 \mu\text{mol kg}^{-1}$, with a pattern correlation of approximately 0.41 and a
476 RMSE of $99.84 \mu\text{mol kg}^{-1}$. The GLODAPv2 dataset does not seem to adequately reproduce the low
477 DIC concentrations caused by discharge from the Yangtze River. This is because previous studies using
478 ship-based observations reported that low concentrations are distinctly observed in the Yangtze River
479 estuary (Zhai et al., 2007; Wang et al., 2016). If the YECS are not considered, the pattern correlation
480 and RMSE excluding the YECS are approximately 0.81 and $95.67 \mu\text{mol kg}^{-1}$, respectively.

481 The Alk simulated in NPRT also exhibited a significant positive bias ($> 400 \mu\text{mol kg}^{-1}$) in the study
482 area, excluding the YECS (Fig. 15d–f). The overestimation of Alk in NPRT facilitates the accumulation
483 of pCO_2 from the atmosphere into the ocean, which may contribute to the increase in the surface DIC
484 concentration. The simulated annual mean surface CO_2 flux was predominantly characterized by an
485 influx from the atmosphere to the ocean (Fig. 16). However, it may be premature to conclude that the
486 results of carbonate variables in NPRT are positively biased because the time series of DIC
487 concentrations in MOM5–TOPAZ did not reach the equilibrium state during the spin-up period
488 (Supplement Fig. 3). Consequently, the initial and boundary conditions derived from the MOM5–
489 TOPAZ model results exhibit significantly higher DIC concentrations and Alk values than the
490 observations do. In particular, the DIC concentration at the eastern boundary is higher than that
491 observed, which may contribute to the elevated DIC levels in the subtropical region due to the influence
492 of the North Equatorial Current and Kuroshio Current. To improve this bias, more accurate boundary
493 conditions must be considered.

494

495 3.2.5 Dissolved Oxygen

496 DO is important for analyzing the ecological and physical characteristics of marine
497 ecosystems and serves as a tracer. It is associated with ocean temperature, air–sea exchange,
498 and phytoplankton photosynthesis. The simulated DO results were compared with the WOA18
499 climatological data and observations from the JMA (Figs. 17 and 18). Both the observations (i.e.,
500 WOA18) and the model results demonstrate a typical increase in surface DO concentrations from low
501 to high latitudes, with high concentrations of DO more than $300 \mu\text{mol kg}^{-1}$ being distributed in the
502 Okhotsk Sea and the Oyashio region (Fig. 17). With respect to that of the WOA18 observations, the
503 model tends to underestimate DO exhibiting a dominant negative bias (up to approximately $-30 \mu\text{mol}$
504 kg^{-1}) in the Oyashio region. The pattern correlation and the RMSE of DO concentration between the
505 model results and WOA18 data are 0.99 and $9.99 \mu\text{mol kg}^{-1}$, respectively. The primary cause of the

506 negative bias in the simulated DO is related to the positive bias in surface temperature (Fig. 4c and 17c),
507 which is thought to be due to the weakening of thermal solubility. To compare the vertical structures of
508 DO, ship measured DO data from the JMA were employed along the 137° E line across the Kuroshio
509 main path in January and June (Fig. 18). Both the observations and the model results show the presence
510 of an oxycline layer, where the DO decreases sharply with depth. Below this layer, DO minimum zone
511 is evident. However, the depth of the DO minimum zone in NPRT appears below 500 m regardless of
512 the season, similar to the observations (JMA); however, the minimum DO concentrations are
513 approximately 25 $\mu\text{mol kg}^{-1}$ higher than the JMA data. This is presumed to be caused by the weak NPIW
514 formation. These characteristics are also evident in the results obtained using the TOPAZ module (Lee
515 et al., 2022). Consequently, NPRT adequately qualitatively reproduces the spatiotemporal distribution
516 of the DO circulation system. However, sufficient observational data, accurate initial and boundary
517 conditions, improvement in physical processes simulation, and adequate spin-up times are required for
518 quantitative and reproducibility improvements, particularly in the intermediate layer.

519

520 4. Conclusions

521 The coupled physical–biogeochemical ocean model developed in this study, namely ROMS–TOPAZ
522 (NPRT v1.0), is a preliminary investigation that reflects the characteristics of local regions with high
523 resolution, enabling analysis of the interactions between the physical and biogeochemical processes in
524 the ocean. The study area comprises the NWP, East Sea and YECS, which exhibit diverse characteristics
525 depending on the region. The study area is one of the main regions where nutrients are consumed by
526 primary production. CO_2 exchange between the air and sea is dominant in the NWP (Takahashi et al.,
527 2009; Ishizu et al., 2021); however, in the YECS, the biogeochemical environment is significantly
528 influenced by riverine discharge (Zhou et al., 2008). In these oceanic regions with such diverse features,
529 we evaluated the reproducibility of the spatial distribution and seasonal variability of the physical and
530 biogeochemical variables derived using NPRT. To generate the initial and boundary data for the
531 biogeochemical variables required to simulate NPRT, first, MOM5–TOPAZ was integrated for 100
532 years under the pCO_2 environment, and ERA5 was integrated for 2000, after which it was conducted
533 for an additional 15 years under actual atmospheric CO_2 concentration conditions (2000–2014). Using
534 the biogeochemical variables reproduced by MOM5–TOPAZ and the physical variables from HYCOM,
535 NPRT was subsequently integrated for 15 years (2000–2014). In this study, model results from the last
536 10 years (2005–2014) were used in the analysis.

537 NPRT successfully reproduced the overall spatial distributions, such as upper-layer circulation, the
538 NPIW formation via ventilation, and salinity in the YECS influenced by freshwater input, as well as the

539 seasonal variability in biogeochemical variables. For nutrients (nitrate, phosphates, and silicate), there
540 was a high pattern correlation coefficient for the annual mean surface nutrient concentrations. In
541 particular, both pattern correlation coefficients for nitrate and phosphate concentrations in the study
542 area are approximately 0.83, but the coefficient for silicate is low (approximately 0.42). All nutrients
543 were underestimated in the subarctic region regardless of season, likely because low values were
544 prescribed for the initial and boundary conditions. In contrast, the Kuroshio–Oyashio Confluence
545 Region, characterized by strong vertical mixing, exhibited a positive bias, especially during winter, due
546 to the relatively high nutrient concentrations at the subsurface in NPRT. Although biases are distributed
547 depending on the region, the overall seasonal variability in all nutrients is well simulated. The temporal
548 correlation coefficients for nutrients are approximately 0.78–0.98 in the study area, except for the
549 silicate content in the YECS. In marginal seas at shallow depths, such as the YECS, silicate is presumed
550 to accumulate continuously because of insufficient reduction caused by phytoplankton uptake and
551 particles sinking into the deep ocean due to strong vertical mixing, leading to a significant positive bias.
552 In other words, parameter adjustments considering physical and biogeochemical environments are
553 necessary.

554 For chlorophyll concentration, although NPRT showed positive and negative biases in the study
555 area, it effectively reproduced not only the seasonal variation in the subtropical and subarctic regions,
556 East Sea, and YCES, but also the improved TD scores in all regions compared with the ESM2M,
557 ESM2G, and CMIP6 data. In addition, in the YECS, because a significant amount of nutrients is
558 discharged from the Yangtze River along with a large amount of freshwater, leading to biomass blooms
559 around the Yangtze River estuary, the chlorophyll concentrations start to increase in July. As a result,
560 low DIC concentrations associated with river effects were also simulated around the Yangtze River.
561 These regional characteristics are difficult to reproduce via low-resolution global models. Furthermore,
562 in the subtropical and subarctic regions, significant positive biases for DIC and Alk were predominantly
563 simulated, which is due to the spin-up time (100 years) in this study being insufficient for reaching the
564 equilibrium state.

565 In summary, the coupled model NPRT developed in this study is an important tool for studying the
566 interactions between ocean physics and biogeochemistry at a high resolution, enabling research at the
567 regional scale. In the future, this tool is expected to provide a basis for understanding the mechanisms
568 of oceanic physics and biogeochemical environments in various regions, ultimately improving the
569 accurate assessment and predictability of carbon cycling.

570
571

572 *Acknowledgments.*

573 This work has been supported by Basic Science Research Program through the National Research Foundation
574 of Korea (NRF) funded by the Ministry of Education (RS-2024-00451970 and RS-2024-00461585), and the
575 National Research Foundation of Korea (NRF) grant funded by the Korea government (MIST) (NRF-
576 2022M3I6A1086449). The main calculations were performed by using the supercomputing resource of
577 the Korea Meteorological Administration (National Center for Meteorological Supercomputer).

578

579 *Code Availability.*

580 ROMS–TOPAZ (NPRT v1.0) used in this study is archived on Zenodo
581 (<https://doi.org/10.5281/zenodo.11218350>). In addition, the input data (initial, boundary, atmospheric
582 forcings, atmospheric deposition data) for conducting NPRT and the model results are archived on
583 Zenodo (<https://zenodo.org/records/13941078>).

584

585 *Data availability statement.*

586 The data analyzed in this study are available from public websites. Bathymetric data were
587 provided by GEBCO (GEBCO Compilation Group, 2021; GEBCO_2021 Grid,
588 <https://doi.org/10.5285/c6612cbe-50b3-0cff053-6c86abc09f8f>, GEBCO, 2022, last access: 1 March
589 2023). The atmospheric forcings were provided by ECMWF Reanalysis v5 (ERA5;
590 <https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset>:1 March 2023). For conducting the
591 MOM–TOPAZ model, the input data for initial, boundary, and dry/wet atmospheric deposition were
592 provided by MOM GitHub (<https://mom-ocean.github.io/docs/quick-start-guide/>, last access: 1 March
593 2023). For conducting NPRT, the physical ocean initial and boundary data were used from Hybrid
594 Coordinate Ocean Model (HYCOM; <https://tds.hycom.org/thredds/catalog.html>:1 December 2023).
595 The SSH data were obtained from the Copernicus Marine and Environment Monitoring Service
596 (CMEMS; <http://marine.copernicus.eu>, last access: 15 November 2023). The data used to evaluate the
597 model results in this study are freely available online from Japan Meteorological Agency (JMA;
598 https://www.data.jma.go.jp/gmd/kaiyou/db/vessel_obs/data-report/html/ship/ship_e.php), World
599 Ocean Atlas 2018 (WOA18; <https://www.ncei.noaa.gov/access/world-ocean-atlas-2018>), , Moderate
600 Resolution Imaging Spectroradiometer (MODIS; <http://www.daac.gsfc.nasa.gov/data/dataset/MODIS/>) for chlorophyll concentration, and GLODAPv2 (GLODPAv2;
601 https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/GLODAPv2_2022) for dissolved inorganic carbon. The CMIP6 model datasets are freely
602 available online (<https://aims2.llnl.gov/search/cmip6>, last access: 1 December 2023). **Discharge data**

605 for Yangtze River dataset are available online (<https://www.cjh.com.cn/>, last access: 24 September
606 2023). Unfortunately, discharge data for other rivers cannot be made publicly available. The colored
607 dissolved organic matter (CDOM) is freely available online (<https://oceandata.sci.gsfc.nasa.gov/I3/>,
608 last access: 15 January 2025).

609

610 *Author Contribution.*

611 DK, HCJ, and JHM designed the study. DK and HCJ conducted the models and the simulations
612 and primarily responsible for developing ROMS–TOPAZ (NPRT v1.0). NHL analyzed CMIP6 data.
613 All authors analyzed and discussed the results and contributed to writing and editing of the article.

614

615 *Competing interests.*

616 The authors declare that they have no conflict of interest.

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637 **References**

638

639 Arakawa, A. and Lamb, V. R.: Computational design of the basic dynamical processes of the UCLA general
640 circulation model, in: General circulation models of the atmosphere, Meth. Comput. Phys., edited by: Chang,
641 J., Elsevier, 17, 173–265, <https://doi.org/10.1016/B978-0-12-460817-7.50009-4>, 1977.

642 Browning, T. J., Liu, X., Zhang, R., Wen, Z., Liu, J., Zhou, Y., Xu, F., Cai, Y., Zhou, K., Cao, Z., Zhu, Y.,
643 Achterberg, E. P., and Dai, M.: Nutrient co-limitation in the subtropical Northwest Pacific, Limnol. Oceanogr.
644 Lett., 7, 52–61, <https://doi.org/10.1002/lo2.10205>, 2022.

645 Chierici, M., Fransson, A., and Nojiri, Y.: Biogeochemical processes as drivers of surface $f\text{CO}_2$ in contrasting
646 provinces in the subarctic North Pacific Ocean, Global Biogeochem. Cycles, 20,
647 GB1009, <https://doi.org/10.1029/2004GB002356>, 2006.

648 Dai, M., Su, J., Zhao, Y., Hofmann, F. E., Cao, Z., Cai, W.-J., Gan, J., Lacroix, F., Laruelle, G. G., Meng, F., Müller,
649 D., Regnier, P. A.G., Wang, G., and Wang, Z.: Carbon fluxes in the coastal ocean: synthesis, boundary processes,
650 and future trends, Annu. Rev. Earth Planet. Sci., 50, 593–626, <https://doi.org/10.1146/annurev-earth-032320-090746>, 2022.

652 Ding, L., Ge, T., Gao, H., Luo, C., Xue, Y., Druffel, E.R.M., and Wang, X.: Large variability of dissolved inorganic
653 radiocarbon in the Kuroshio extension of the Northwest North Pacific, Radiocarbon, 60, 691–704,
654 <https://doi.org/10.1017/RDC.2017.143>, 2018.

655 Ding, Y., Yu, F., Ren, Q., Nan, F., Wang, R., Liu, Y., and Tang, Y.: The physical-biogeochemical responses to a
656 subsurface Anticyclonic eddy in the northwest Pacific. Front. Mar. Sci. 8.
657 <https://doi.org/10.3389/fmars.2021.766544>, 2022.

658 Dunne, J. P., Armstrong, R. A., Gnanadesikan, A., and Sarmiento, J. L.: Empirical and mechanistic models for
659 the particle export ratio, Global Biogeochem. Cycles, 19, GB4026, <https://doi.org/10.1029/2004GB002390>,
660 2005.

661 Dunne, J. P., Sarmiento, J. L., and Gnanadesikan, A.: A synthesis of global particle export from the surface
662 ocean and cycling through the ocean interior and on the seafloor, Global Biogeochem. Cy., 21, GB4006,
663 <https://doi.org/10.1029/2006GB002907>, 2007.

664 Dunne, J. P., John, J. G., Adcroft, A. J., Griffies, S. M., Hallberg, R. W., Shevliakova, E., Stouffer, R. J., Cooke,
665 W., Dunne, K. A., Harrison, M. J., Krasting, J. P., Malyshev, S. L., Milly, P. C. D., Phillipps, P. J., Sentman, L.
666 T., Samuels, B. L., Spelman, M. J., Winton, M., Wittenberg, A. T., and Zadeh, N.: GFDL’s ESM2 Global
667 Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation
668 Characteristics, J. Climate, 25, 6646–6665, <https://doi.org/10.1175/jcli-d11-00560.1>, 2012.

669 Egbert, G. D. and Erofeeva, S. Y.: Efficient inverse modeling of barotropic ocean tides, J. Atmos. Ocean.
670 Technol., 19, 183–204, [https://doi.org/10.1175/1520-0426\(2002\)019<0183:EIMOBO>2.0.CO;2](https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2), 2002.

671 Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the
672 Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci.
673 Model Dev., 9, 1937–1958, <https://doi.org/10.5194/gmd-9-1937-2016>, 2016.

674 Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B., and Young, G. S.: Bulk parameterization of air-sea fluxes
675 for tropical ocean-atmosphere Coupled-Ocean Atmosphere Response Experiment, J. Geophys. Res., 101,
676 3747–3764, <https://doi.org/10.1029/95JC03205>, 1996.

677 Fennel, K., Wilkin, J., Levin, J., Moisan, J., O'Reilly, J., and Haidvogel, D.: Nitrogen cycling in the Middle Atlantic
678 Bight: Results from a three-dimensional model and implications for the North Atlantic nitrogen budget, Global
679 Biogeochemical Cycles, 20(3), 2005GB002456, <https://doi.org/10.1029/2005GB002456>, 2006.

680 Hanawa, K., and Mitsudera, H.: Variation of water system distribution in the Sanriku coastal area, J. Oceanogr.
681 Soc. Jap., 42, 435–446, <https://doi.org/10.1007/BF02110194>, 1987.

682 Hauri, C., Schultz, C., Hedstrom, K., Danielson, S., Irving, B., Doney, S. C., Dussin, R., Curchitser, E. N., Hill,
683 D. F., and Stock, C. A.: A regional hindcast model simulating ecosystem dynamics, inorganic carbon
684 chemistry and ocean acidification in the Gulf of Alaska, *Biogeosciences*, 17, 3837–3857,
685 <https://doi.org/10.5194/bg-17-3837-2020>, 2020.

686 Hayashida, H., Kiss, A. E., Miyama, T., Miyazawa, Y., and Yasunaka, S.: Anomalous nutricline drives marked
687 biogeochemical contrasts during the Kuroshio Large Meander. *J Geophys Res (Oceans)* 128:e2023JC019697,
688 <https://doi.org/10.1029/2023JC019697>, 2023.

689 Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C.,
690 Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellán, X., Balsamo, G., Bechtold, P., Biavati,
691 G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming,
692 J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
693 Keeley, S., Laloyaux, P., Lopez, P., Lupo, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume,
694 S., and Thépaut, J.-N.: The ERA5 global reanalysis, *Q. J. Roy. Meteor. Soc.*, 146, 1999–2049,
695 <https://doi.org/10.1002/qj.3803>, 2020 Ishizu, M., Miyazawa, Y., Tsunoda, T., and Guo, X.: Seasonal
696 variability in the inorganic ocean carbon cycle in the Northwest Pacific evaluated using a biogeochemical and
697 carbon model coupled with an operational ocean model, *Clim. Change*, 162, 877–902,
698 <https://doi.org/10.1007/s10584-020-02779-2>, 2020.

699 Ishizu, M., Miyazawa, Y., and Guo, X.: Long-term variations in ocean acidification indices in the northwest
700 Pacific from 1993 to 2018, *Clim. Change*, 168, <https://doi.org/10.1007/s10584-021-03239-1>, 2021.

701 Jin, S., Wei, Z., Wang, D., and Xu, T.: Simulated and projected SST of Asian marginal seas based on CMIP6
702 models, *Front. Mar. Sci.*, 10:1178974, <https://doi.org/10.3389/fmars.2023.1178974>, 2023.

703 Jochum, M., Yeager, S., Lindsay, K., Moore, K., and Murtugudde, R.: Quantification of the feedback between
704 phytoplankton and ENSO in the community climate system model, *J. Clim.*, 23, 2916–2925,
705 <https://doi.org/10.1175/2010JCLI3254.1>, 2009.

706 Jung, H. K., Rahman, S. M., Kang, C.-K., Park, S.-Y., Lee, S. H., and Park, H. J.: The influence of climate
707 regime shifts on the marine environment and ecosystems in the East Asian Marginal Seas and their
708 mechanism, *Deep-Sea Res. II*, 143, 110–120, <https://doi.org/10.1016/j.dsr2.2017.06.010>, 2017.

709 Jung, H.-C, Moon, B.-K., Lee, H., Choi, J.-H., Kim, H.-K., Park, J.-Y., Byun, Y.-H., Lim, Y.-J., and Lee, J.:
710 Development and assessment of NEMO(v3.6) –TOPAZ(v2), a coupled global ocean biogeochemistry model,
711 *Asia-Pac. J. Atmos. Sci.*, 56, 411–428, <https://doi.org/10.1007/s13143-019-00147-4>, 2020.

712 Kang, X., Zhang, R.H., Gao, C., and Zhu, J.: An improved ENSO simulation by representing chlorophyll-
713 induced climate feedback in the NCAR community earth system model, *Sci. Rep.*, 7, 1–9,
714 <https://doi.org/10.1038/s41598-017-17390-2>, 2017.

715 Kawai, H.: Hydrography of Kuroshio extension, in: *Kuroshio: Its Physical Aspects*, edited by: Stommel, H. and
716 Yoshida, K., University of Tokyo Press, 235–352, 1972.

717 Kim, G.E., Gnanadesikan, A., and Pradal, M.A.: Increased surface ocean heating by colored detrital matter (CDM)
718 linked to greater Northern Hemisphere ice formation in the GFDL CM2MC ESM. *J. Climate*, 29(24), 9063–
719 9076. <https://doi.org/10.1175/jcli-d-16-0053.1>, 2016.

720 Kuroda, H., Toya, Y., Watanabe, T., Nishioka, J., Hasegawa, D., Taniuchi, Y., and Kuwata, A.: Influence of
721 Coastal Oyashio water on massive spring diatom blooms in the Oyashio area of the North Pacific, *Ocean. Prog.*
722 *Oceanogr.*, 175, 328–344. <https://doi.org/10.1016/j.pocean.2019.05.004>, 2019.

723 Kwon, K.M.: A numerical experiment on the currents along the eastern boundary of the Yellow Sea in summer
724 2007. M.D Thesis, Kunsan National University, 89p.

725 Large, W. G., McWilliams, J. C., and Doney, S. C.: Ocean vertical mixing: a review and a model with a nonlocal
726 boundary layer parameterization, *Rev. Geophys.*, 32, 363–403, <https://doi.org/10.1029/94RG01872>, 1994.

727 Laufkötter, C., Vogt, M., Gruber, N., Aita-Noguchi, M., Aumont, O., Bopp, L., Buitenhuis, E., Doney, S. C., Dunne,
728 J., Hashioka, T., Hauck, J., Hirata, T., John, J., Le Quère, C., Lima, I. D., Nakano, H., Seferian, R., Totterdell,
729 I., Vichi, M., and Völker, C.: Drivers and uncertainties of future global marine primary production in marine
730 ecosystem models, *Biogeosciences*, 12, 6955–6984, <https://doi.org/10.5194/bg-12-6955-2015>, 2015.

731 Lauvset, S. K., Key, R. M., Olsen, A., van Heuven, S., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T.,
 732 Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Perez, F. F., Suzuki, T., and Watelet, S.: A
 733 new global interior ocean mapped climatology: the $1^\circ \times 1^\circ$ GLODAP version 2, *Earth Syst. Sci. Data*, 8, 325–
 734 340, <https://doi.org/10.5194/essd-8-325-2016>, 2016.

735 Lee, D.-G., Oh, J.-H., Noh, K. M., Kwon, E. Y., Kim, Y. H., and Kug, J.-S.: What controls the future phytoplankton
 736 change over the Yellow and East China Seas under global warming?, *Front. Mar. Sci.*, 10:1010341,
 737 <https://doi.org/10.3389/fmars.2023.1010341>, 2023.

738 Lee, H., Moon, B.-K., Jung, H.-C., Park, J.-Y., Shim, S., La, N., Kim, A.-H., Yum, S.S., Ha, J.-C., Byun, Y.-H.,
 739 Sung, H.M., and Lee, J.: Development of the UKESM-TOPAZ Earth System Model (Version 1.0) and
 740 preliminary evaluation of its biogeochemical simulations, *Asia-Pac. J. Atmos. Sci.*, 58(3), 379-400,
 741 <https://doi.org/10.1007/s13143-021-00263-0>, 2022.

742 Lembke-Jene, L., Tiedemann, R., Nürnberg, D., Kokfelt, U., Kozdon, R., Max, L., Röhle, U., and Gorbarenko, A.:
 743 Deglacial variability in Okhotsk Sea Intermediate Water ventilation and biogeochemistry: Implications for
 744 North Pacific nutrient supply and productivity, *Quat. Sci. Rev.*, 160, 116-137,
 745 <https://doi.org/10.1016/j.quascirev.2017.01.016>, 2017.

746 Ma, S., Tian, Y., Li, J., Yu, H., Cheng, J., Sun, P., Fu, C., Liu, Y., and Watanabe, Y.: Climate variability patterns
 747 and their ecological effects on ecosystems in the Northwestern North Pacific, *Front. Mar. Sci.*, 7, 546882,
 748 <https://doi.org/10.3389/fmars.2020.546882>, 2020.

749 Mauri, E., Poulaïn, P., Juznic-Zonta, Z.: MODIS chlorophyll variability in the northern Adriatic Sea and
 750 relationship with forcing parameters, *J. Geophys. Res.*, 112, 1–14, <https://doi.org/10.1029/2006JC003545>,
 751 2007

752 Manizza, M., Le Quéré, C., Watson, A.J., Buitenhuis, E.T.: Bio-optical feedbacks among phytoplankton, upper
 753 ocean physics and sea-ice in a global model. *Geophys. Res. Lett.* 32, L05603,
 754 <https://doi.org/10.1029/2004GL020778>, 2005.

755 McWilliams, J. C.: Targeted coastal circulation phenomena in diagnostic analyses and forecast, *Dynam. Atmos.*
 756 *Oceans*, 49, 3–15, <https://doi.org/10.1016/j.dynatmoce.2008.12.004>, 2009.

757 Mellor, G. L. and Yamada, T.: Development of a turbulence closure model for geophysical fluid problems, *Rev.*
 758 *Geophys.*, 20, 851– 875, <https://doi.org/10.1029/RG020i004p00851>, 1982.

759 Moon, J.H., Hirose, N., and Yoon, J.-H.: Comparison of wind-tidal contributions to seasonal circulation of the
 760 Yellow Sea, *J. Geophys. Res.*, 114, <https://doi.org/10.1029/2009JC005314>, 2009.

761 Na, R., Rong, Z., Wang, Z.A., Liang, S., Liu, C., Ringham, M., and Liang, H.: Air-sea CO₂ fluxes and cross-
 762 shelf exchange of inorganic carbon in the East China Sea from a coupled physical-biogeochemical model,
 763 *Sci. Total Environ.*, 906, 167572, <https://doi.org/10.1016/j.scitotenv.2023.167572>, 2024.

764 Najjar, R. and Orr, J. C.: Design of OCMIP-2 simulations of chlorofluorocarbons, the solubility pump and
 765 common biogeochemistry, Internal OCMIP Report, LSCE/CEA Saclay, Gif-surYvette, France 1998.

766 Nishioka, J., Obata, H., Ogawa, H., Ono, K., Yamashita, Y., Lee, K., Takeda, S., and Yasuda, I.: Subpolar
 767 marginal seas fuel the North Pacific through the intermediate water at the termination of the global ocean
 768 circulation, *P. Natl. Acad. Sci. USA*, 117, 12665–12673, <https://doi.org/10.1073/pnas.2000658117>, 2020.

769 Nishioka, J., Obata, H., Hirawake, T., Kondo, Y., Yamashita, Y., Misumi, K., and Yasuda, I.: A review: iron and
 770 nutrient supply in the subarctic Pacific and its impact on phytoplankton production, *J. Oceanogr.*, 77, 561–
 771 587, <https://doi.org/10.1007/s10872-021-00606-5>, 2021.

772 Nitani, H.: Beginning of the Kuroshio, in: *Kuroshio: Its Physical Aspects*, edited by: Stommel, H. and Yoshida,
 773 K., University of Tokyo Press, 129–163, 1972.

774 Overland, J., Rodionov, S., Minobe, S., and Bond, N.: North Pacific regime shifts: definitions, issues and recent
 775 transitions, *prog. oceanogr.*, 77, 92-102, <https://doi.org/10.1016/j.pocean.2008.03.016>, 2008.

776 Qui, B.: Kuroshio and Oyashio currents, in: edited by Steele, J. H., Thorpe, S. A., Turekian, K. K., *Encyclopedia*
 777 of Ocean Sciences. Academic, London, 1413-1425, <https://doi.org/10.1006/rwos.2001.0350>, 2001

778 Park, J.-Y., Kug, J.-S., Seo, H., and Bader, J.: Impact of bio-physical feedbacks on the tropical climate in

779 coupled and uncoupled GCMs, *Clim. Dyn.*, 43, 1811–1827, <https://doi.org/10.1007/s00382-013-2009-0>, 2014.

780 Park, J.-Y., Dunne, J.P., and Stock, C.A.: Ocean chlorophyll as a precursor of ENSO: An Earth system modeling
781 study, *Geophys. Res. Lett.*, 45, 1939–1947, <https://doi.org/10.1002/2017GL076077>, 2018.

782 Park, J.-Y., Stock, C.A., Dunne, J.P., Yang, X., and Rosati, A.: Seasonal to multiannual marine ecosystem
783 prediction with a global earth system model. *Science*, 365, 284–288, DOI: 10.1126/science.aav6634, 2019.

784 Okamoto, S., Hirawake, T., and Saito, S.: Internal variability in the magnitude and timing of the spring bloom in
785 the Oyashio region, *Deep Sea Res. II*, 57, 1608–1617, <https://doi.org/10.1016/j.dsr2.2010.03.005>, 2010.

786 Reid, P.C., Fischer, A.C., Lewis-Brown, E., Meredith, M.P., Sparrow, M., Andersson, A.J., Antia, A., Bates,
787 N.R., Bathmann, U., Beaugrand, G., Brix, H., Dye, S., Edwards, M., Furevik, T., GangstØ, R., Hátún, H.,
788 Hopcroft, R.R., Kendall, M., Kasten, S., Keeling, R., Le Qur, C., Mackenzie, F.T., Malin, G., Mauritzen, C.,
789 Olafsson, J., Paull, C., Rignot, E., Shimada, K., Vogt, M., Wallace, C., Wang, Z., and Washington, R.: Chapter
790 1 Impacts of the Oceans on Climate Change. Academic Press, 56, 1–150, [https://doi.org/10.1016/S0065-2881\(09\)56001-4](https://doi.org/10.1016/S0065-2881(09)56001-4), 2009.

791 Séférian, R., Gehlen, M., Bopp, L., Resplandy, L., Orr, J.C., Marti, O., Dunne, J.P., Christian, J.R., Doney, S.C.,
792 Ilyina, T., Lindsay, K., Halloran, P.R., Heinze, C., Segschneider, J., Tjiputra, J., Aumont, O., and Romanou,
793 A.: Inconsistent strategies to spin up models in CMIP5: implications for ocean biogeochemical model
794 performance assessment. *Geosci. Model Dev.* 9, 1827–1851, <https://doi.org/10.5194/gmd-9-1827-2016>, 2016.

795 Shchepetkin, A. F. and McWilliams, J. C.: A method for computing horizontal pressure-gradient force in an
796 oceanic model with a nonaligned vertical coordinate, *J. Geophys. Res.*, 108, 3090,
797 <https://doi.org/10.1029/2001JC001047>, 2003.

798 Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling system (ROMS): a split-explicit, free-
799 surface, topography-following-coordinate oceanic model, *Ocean Model.*, 9, 347–404,
800 <https://doi.org/10.1016/j.ocemod.2004.08.002>, 2005.

801 Shiozaki, T., Ito, S.-I., Takahashi, K., Saito, H., Nagata, T., and Furuya, K.: Regional variability of factors
802 controlling the onset timing and magnitude of spring algal blooms in the northwestern North Pacific, *J.
803 Geophys. Res.*, 119, 253–265, <https://doi.org/10.1002/2013JC009187>, 2014.

804 Siswanto, E., Matsumoto, K., Honda, M. C., Fujiki, T., Sasaoka, K. and Saino, T.: Reappraisal of meridional
805 differences of factors controlling phytoplankton biomass and initial increase preceding seasonal bloom in the
806 northwestern Pacific Ocean. *Remote Sensing of Envir.*, 159, 44–56, <https://doi.org/10.1016/j.rse.2014.11.028>,
807 2015.

808 Song, Y., and Haidvogel, D.: A semi-implicit ocean circulation model using a generalized topography following
809 coordinate system, *J. Comput. Phys.*, 115, 228–244, <https://doi.org/10.1006/jcph.1994.1189>, 1994.

810 Song, Y. T. and Wright, D. G.: A general pressure gradient formulation for ocean models, Part II: Energy,
811 momentum, and bottom torque consistency, *Mon. Weather Rev.*, 126, 3231–3247,
812 [https://doi.org/10.1175/1520-0493\(1998\)126<3231:AGPGFF>2.0.CO;2](https://doi.org/10.1175/1520-0493(1998)126<3231:AGPGFF>2.0.CO;2), 1998.

813 Sugimoto, S., and Hanawa, K.: Roles of SST anomalies on the wintertime turbulent heat fluxes in the Kuroshio–
814 Oyashio confluence region: influences of warm eddies detached from the Kuroshio extension. *J. Clim.*
815 <https://doi.org/10.1175/2011jcli4023.1>, 2011.

816 Taguchi, B., Xie, S.-P., Schneider, N., Nonaka, M., Sasaki, H., and Sasai, Y.: Decadal variability of the Kuroshio
817 Extension: Observations and an eddy-resolving model hindcast, *J. Climate*, 20, 2357–2377,
818 <https://doi.org/10.1175/JCLI4142.1>, 2007.

819 Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B.,
820 Friederich, F., Chavez, F., Sabine, C., Watson, A., Bakker, D. C.E., Schuster, U., Metzl, N., Yoshikawa-Inoue,
821 H., Ishii, M., Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson,
822 T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C.S., Delille, B., Bates, N.R., and de Baar,
823 H. J.W.: Climatological mean and decadal change in surface ocean pCO₂, and net sea-air CO₂ flux over the
824 global oceans, *Deep-Sea Res. II*, 56, 554–577, 2009.

825 Taniguchi, A.: Differences in the structure of the lower trophic levels of pelagic ecosystems in the eastern and

827 western subarctic Pacific, *Prog. in Oceanogra.*, 43, 289-315, [https://doi.org/10.1016/S0079-6611\(99\)00011-7](https://doi.org/10.1016/S0079-6611(99)00011-7),
828 1999.

829 Taylor, K.E.: Summarizing multiple aspects of model performance in a single diagram, *J. Geophys. Res.-Atmos.*
830 106, 7183–7192, <https://doi.org/10.1029/2000JD900719>, 2001.

831 Taylor, K., Juckes, M., Balaji, V., Cinquini, L., Denvil, S., Durack, P., Elkington, M., Guilyardi, E., Kharin, S.,
832 Lautenschlager, M., Lawrence, B., Nadeau, D., and Stockhouse, M.: CMIP6 Global Attributes, DRS,
833 Filenames, Directory Structure, and CV's, [https://github.com/WCRP-CMIP/WGCM_Infrastructure_Panel/](https://github.com/WCRP-CMIP/WGCM_Infrastructure_Panel/blob/main/Papers/CMIP6_global_attributes_filenames_CVs_v6.2.7.pdf)
834 [blob/main/Papers/CMIP6_global_attributes_filenames_CVs_v6.2.7.pdf](https://github.com/WCRP-CMIP/WGCM_Infrastructure_Panel/blob/main/Papers/CMIP6_global_attributes_filenames_CVs_v6.2.7.pdf) (last access: 15 January 2021), 2018.

835 Umlauf, L., Burchard, H., and Hutter, K.: Extending the κ - ω turbulence model towards oceanic applications,
836 *Ocean Model.*, 5, 195–218, 5. <https://doi.org/10.1357/002224003322005087>, 2003.

837 Wang, X., Luo, C., Ge, T., Xu, C., and Xum Y.: Controls on the sources and cycling of dissolved inorganic
838 carbon in the Chanjiang and Huanghe River estuaries, China: ^{14}C and ^{13}C studies, *Limnol. And Oceanogra.*,
839 61, 1358-1374, <https://doi.org/10.1002/limo.10301>, 2016.

840 Wang, Y., Kang, J., Sun, X., Huang, J., Lin, Y., and Xiang, P.: Spatial patterns of phytoplankton community and
841 biomass along the Kuroshio extension and adjacent water in late spring, *Mar. Biol.*,
842 <https://doi.org/10.1007/s00227-021-03846-7>, 2021.

843 Wang, Y., Bi, R., Zhang, J., Gao, J., Takeda, S., Kondo, Y., Chen, F., Jin, G., Sachs, J. P., and Zhao, M.:
844 Phytoplankton distributions in the Kuroshio-Oyashio Region of the Northwest Pacific Ocean: Implications for
845 marine ecology and carbon cycle, *Front. Mar. Sci.*, 9, 865142, <https://doi.org/10.3389/fmars.2022.865142>,
846 2022.

847 Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean. *J. Geophys. Res.* 97, 7373–
848 7382m <https://doi.org/10.1029/92JC00188>, 1992.

849 Watson A. J.: Iron limitation in the oceans. In *The Biogeochemistry of Iron in Seawater*, Turner DR, Hunter KA
850 (eds). Wiley: Chichester; 9–39, 2001.

851 Weatherall, P., Marks, K. M., Jakobsson, M., Schmitt, T., Tani, S., Arndt, J. E., Rovere, M., Chayes, D., Ferrini,
852 V., and Wigley, R.: A new digital bathymetric model of the world's oceans, *Earth Space Sci.*, 2, 331–345,
853 <https://doi.org/10.1002/2015EA000107>, 2015.

854 Wu, Q., Wang, X., He, Y., and Zheng, J.: The relationship between chlorophyll concentration and ENSO events
855 and possible mechanisms off the Changjiang River estuary, *Remote Sens.*, 15, 2384,
856 <https://doi.org/10.3390/rs15092384>, 2023.

857 Yasuda, I.: Hydrographic structure and variability in the Kuroshio–Oyashio transition area, *J. Oceanogr.*, 59,
858 389–402, <https://doi.org/10.1023/A:1025580313836>, 2003.

859 Yatsu, A., Chiba, S., Yamanaka, Y., Ito, S., Shimizu, Y., and Kaeriyama, M.: Climate forcing and the
860 Kuroshio/Oyashio ecosystem, *ICES J. Mar. Sci.*, 70, 922-933, <https://doi.org/10.1093/icesjms/fst084>, 2013.

861 Zhai, W.-D., Dai, M.-H., and Guo, X.-H.: Carbonate system and CO₂ degassing fluxes in the inner estuary of
862 Changjiang (Yangtze) River, China. *Mar. Chem.*, 107, 342-356,
863 <https://doi.org/10.1016/j.marchem.2007.02.011>, 2007.

864 Zhang, H.-R., Wang, Y., Xiu, P., Qi, Y., and Chai, F. (2021b). Roles of iron limitation in phytoplankton dynamics
865 in the Western and Eastern subarctic pacific, *Front. Mar. Sci.*, 8. <https://doi.org/10.3389/fmars.2021.735826>,
866 2021.

867 Zhao, H., Dai, M., Gan, J., Zhao, X., Lu, Z., Liang, L., Liu, Z., Su, J., and Cao, Z.: River-dominated pCO₂
868 dynamics in the northern South China Sea during summer: A modeling study, *Prog. Oceanogr.*, 190, 102457,
869 <https://doi.org/10.1016/j.pocean.2020.102457>, 2021.

870 Zhu, K., Chen, X., Mao, K., Hu, D., Hong, S., and Li, Y.: Mixing characteristics of the subarctic front in the
871 Kuroshio-Oyashio confluence region. *Oceanologia.*, 61, 103–113,
872 <https://doi.org/10.1016/j.oceano.2018.07.004>, 2019.

873 Zhou, M.J., Shen, Z.L., and Yu, R.C.: Responses of a coastal phytoplankton community to increased nutrients
874 input from the Changjiang (Yangtze) River, *Cont. Shelf Res.*, 28, 1483-1489,

875 https://doi.org/10.1016/j.csr.2007.02.009, 2008.

876

877

878

879

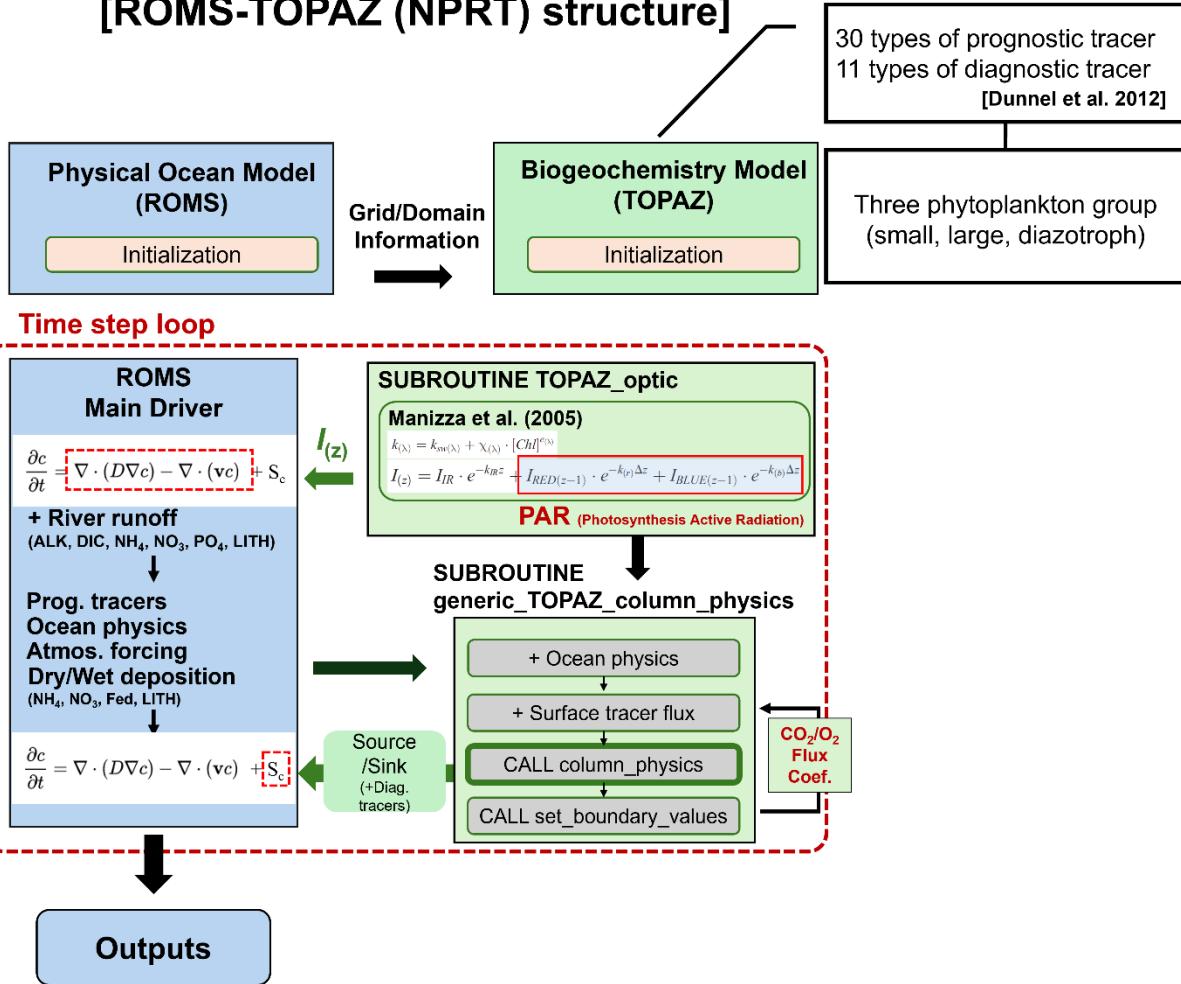
880

881

882

883

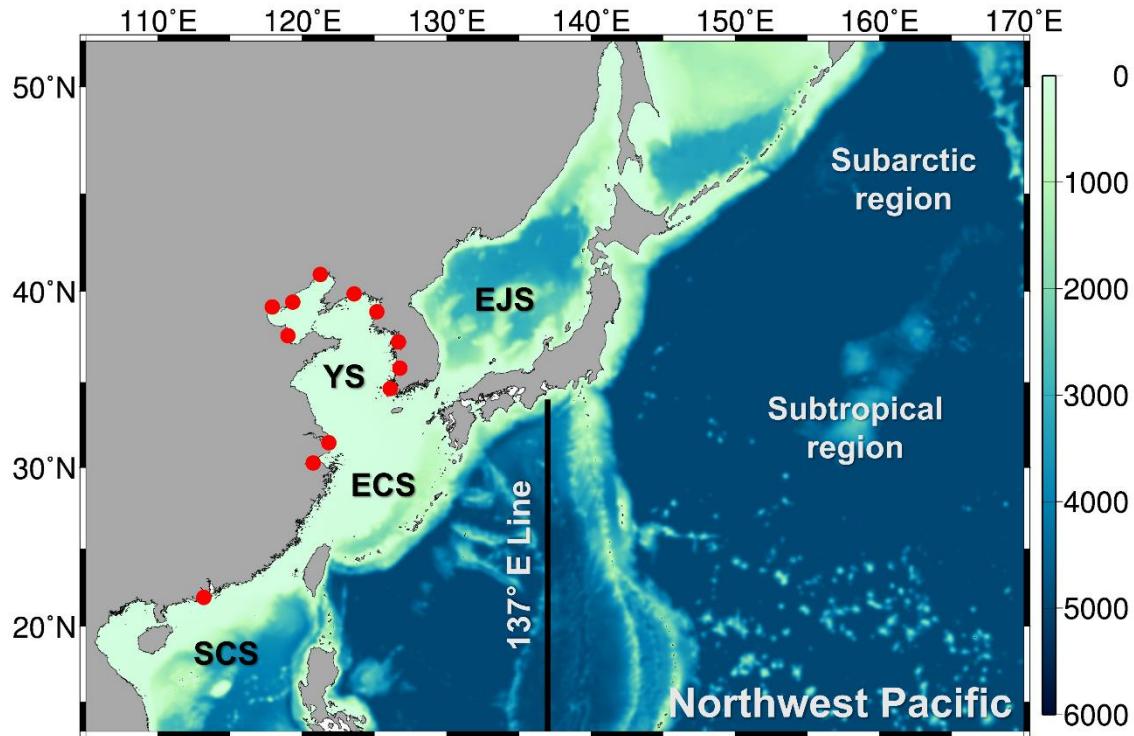
884


885

886

887

888


[ROMS-TOPAZ (NPRT) structure]

889

890 **Fig. 1.** Flow diagram of the ROMS-TOPAZ model (NPRT). Blue (green) boxes represent the
 891 ocean physical (biogeochemical) module. The black arrows indicate the process of
 892 transferring oceanic physical information to biogeochemical modules, and the green arrows
 893 represent vice versa process.

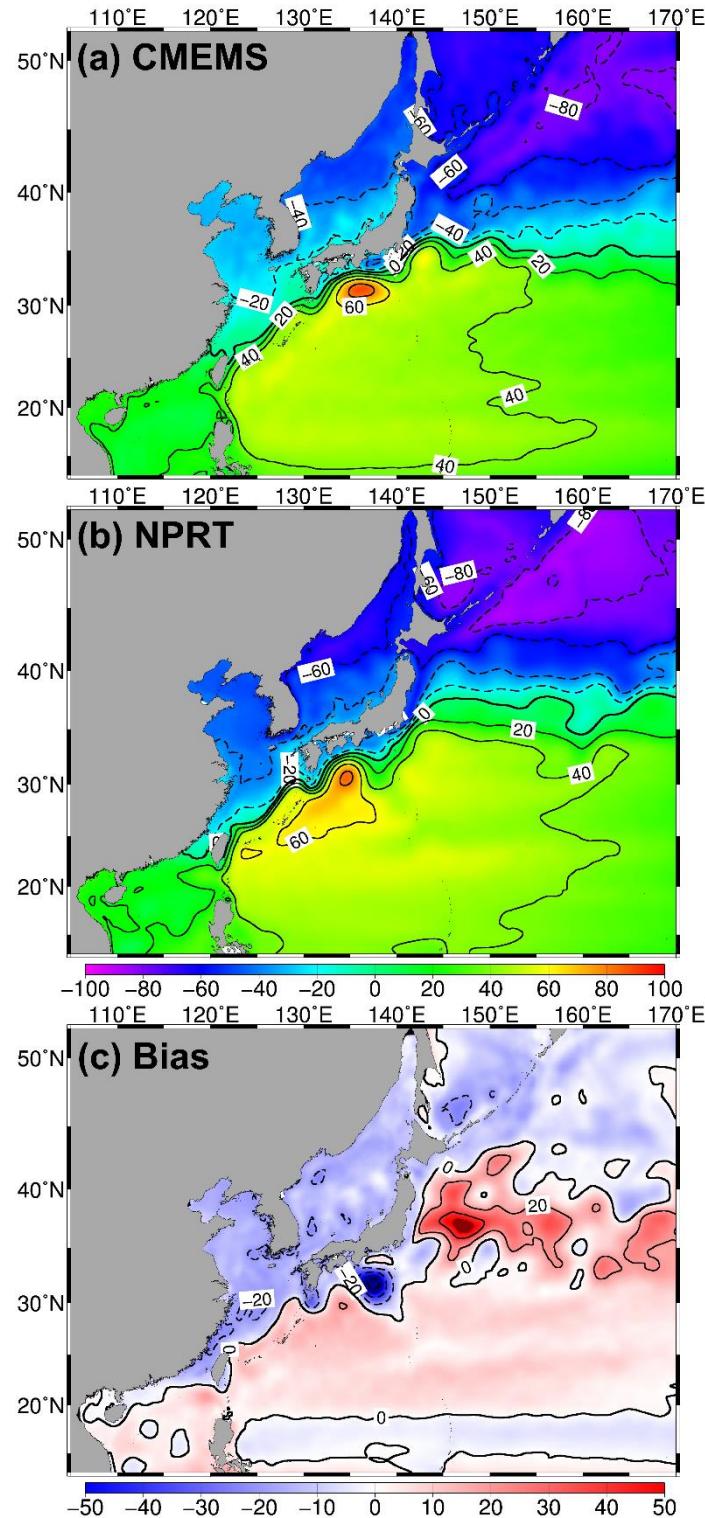
894

Fig. 2. Model domain and bottom topography for NPRT coupled modeling system. EJS: East/Japan Sea, YS: Yellow Sea, ECS: East China Sea, SCS: South China Sea. The red circles indicate river runoff points, and the black line (137° E line) is the observation line of the Japanese Meteorological Agency (JMA).

895

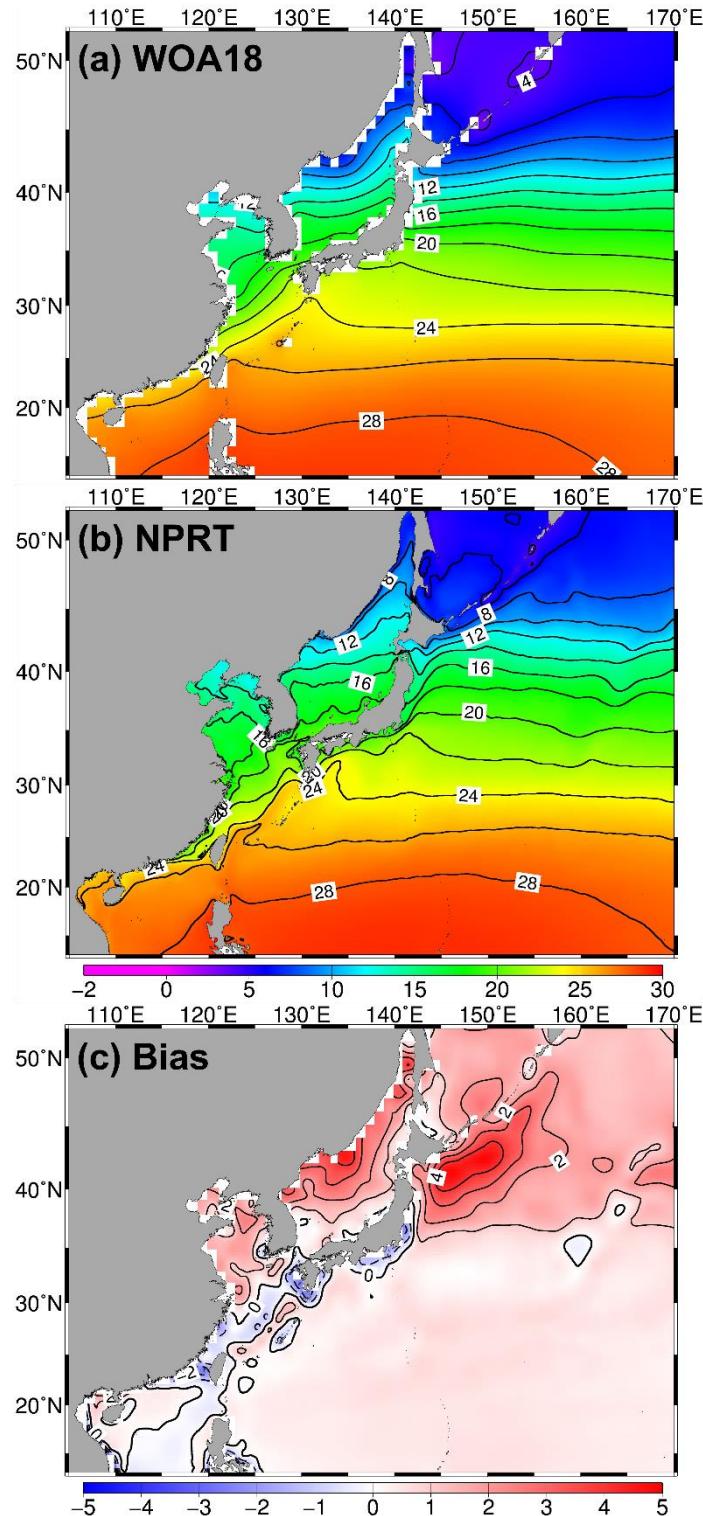
896
897
898
899

900


901

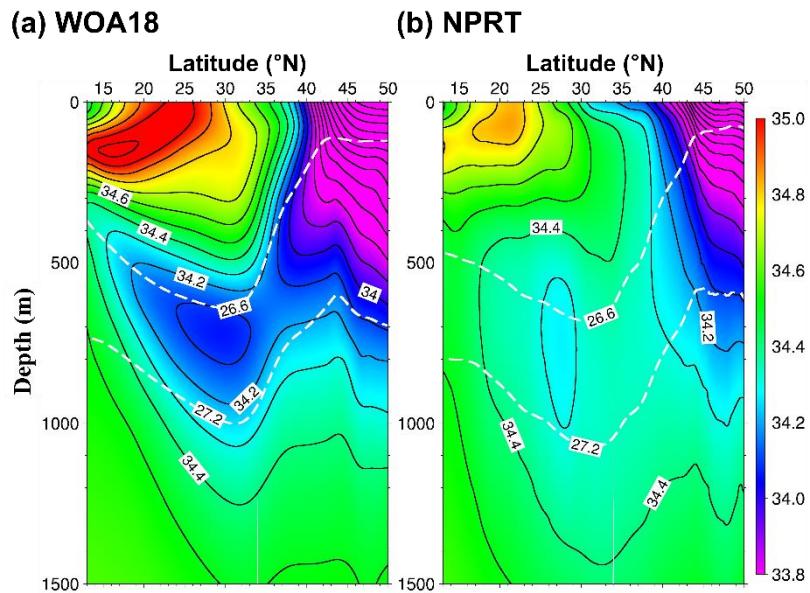
902

903


904

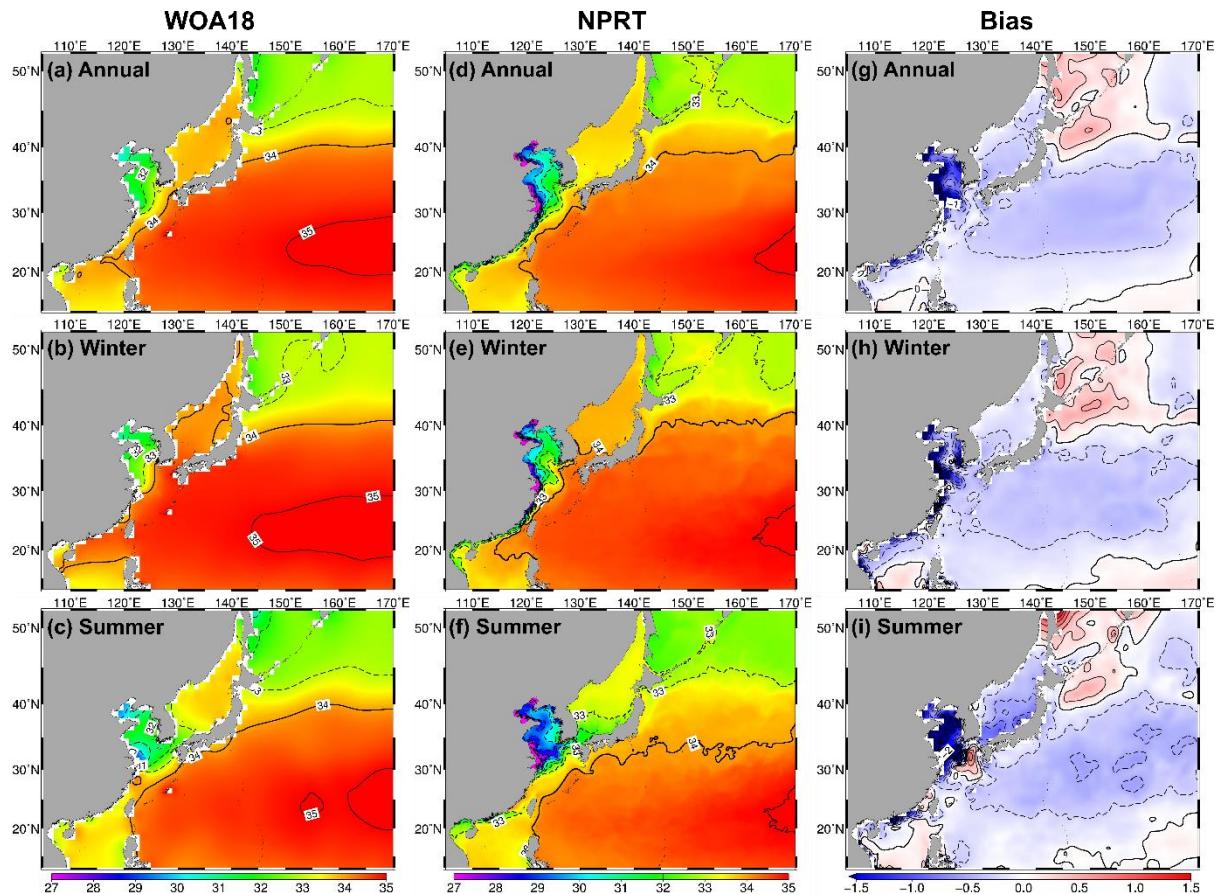
905

906

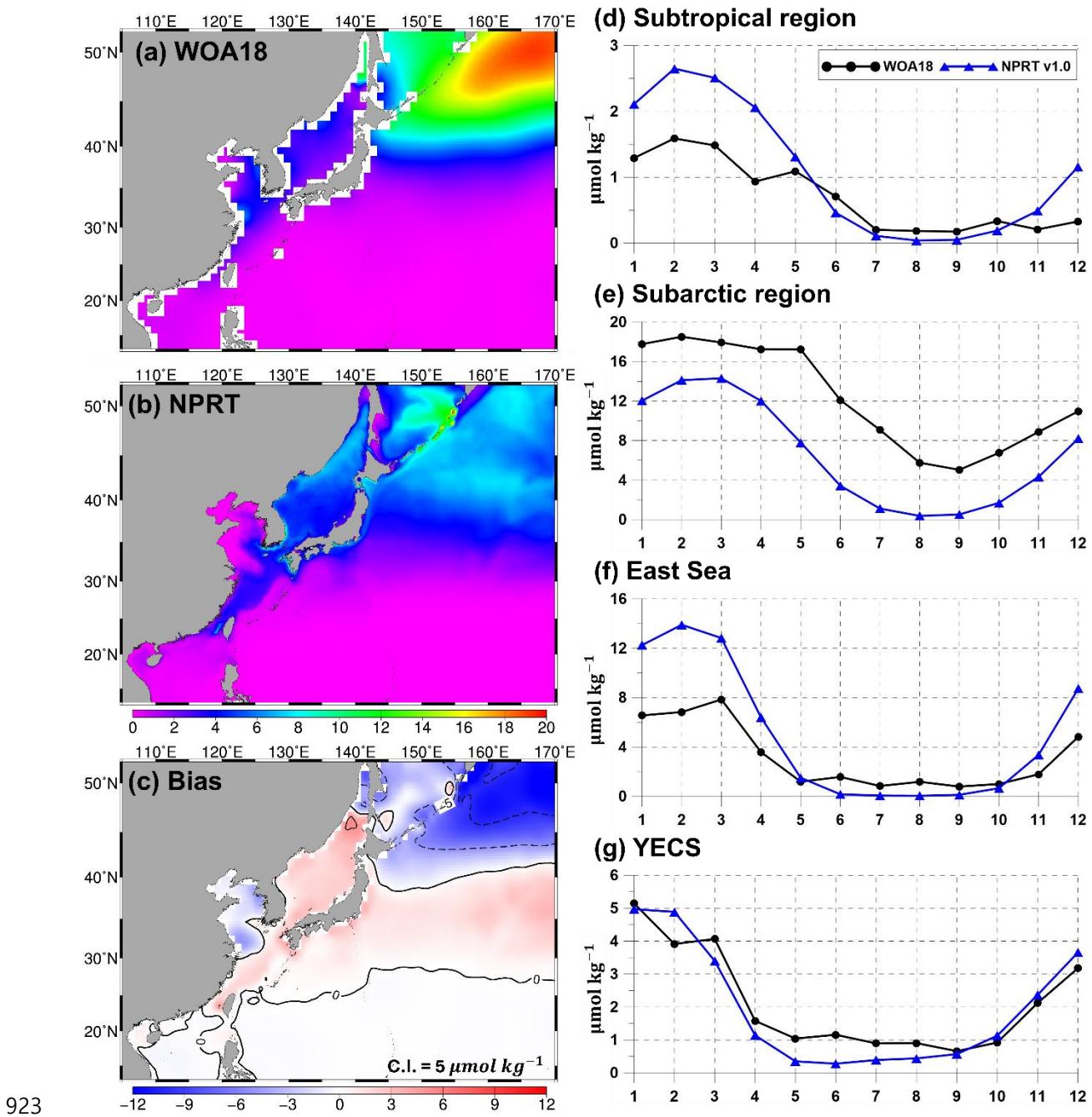

907 **Fig. 3.** Distributions of the annual mean sea surface height (SSH; cm) in (a) satellite altimeters
 908 (CMEMS), (b) NPRT, and (c) biases between NPRT and observations (WOA18) from 2005
 909 to 2014. To compare the two datasets, the spatial mean was subtracted from each one.

910

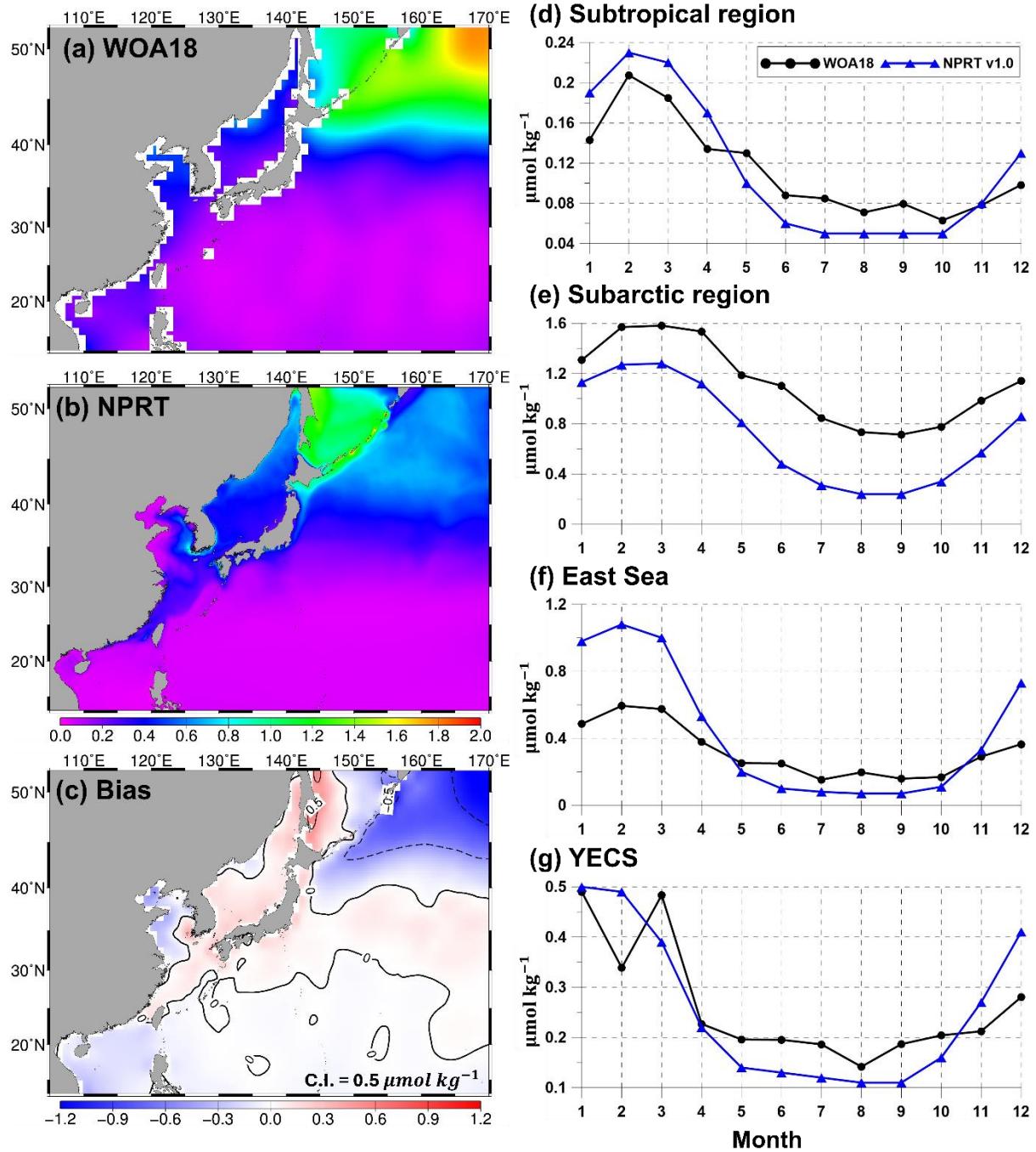
911 **Fig. 4.** Same as Fig. 3, except to in the annual mean sea surface temperature (SST) from (a)
 912 World Ocean Atlas 2018 (WOA18), (b) NPRT, and (c) bias (NPRT – WOA18).


913

914


915 **Fig. 5.** Vertical structures of the climatological zonally averaged annual mean salinity between
 916 145° E and 160° E in (a) the WOA18 data and (b) NPRT. The white dashed lines represent
 917 potential $26.6 \sigma_{\theta}$ and $27.2 \sigma_{\theta}$ isopycnals, corresponding to the NPIW density range.

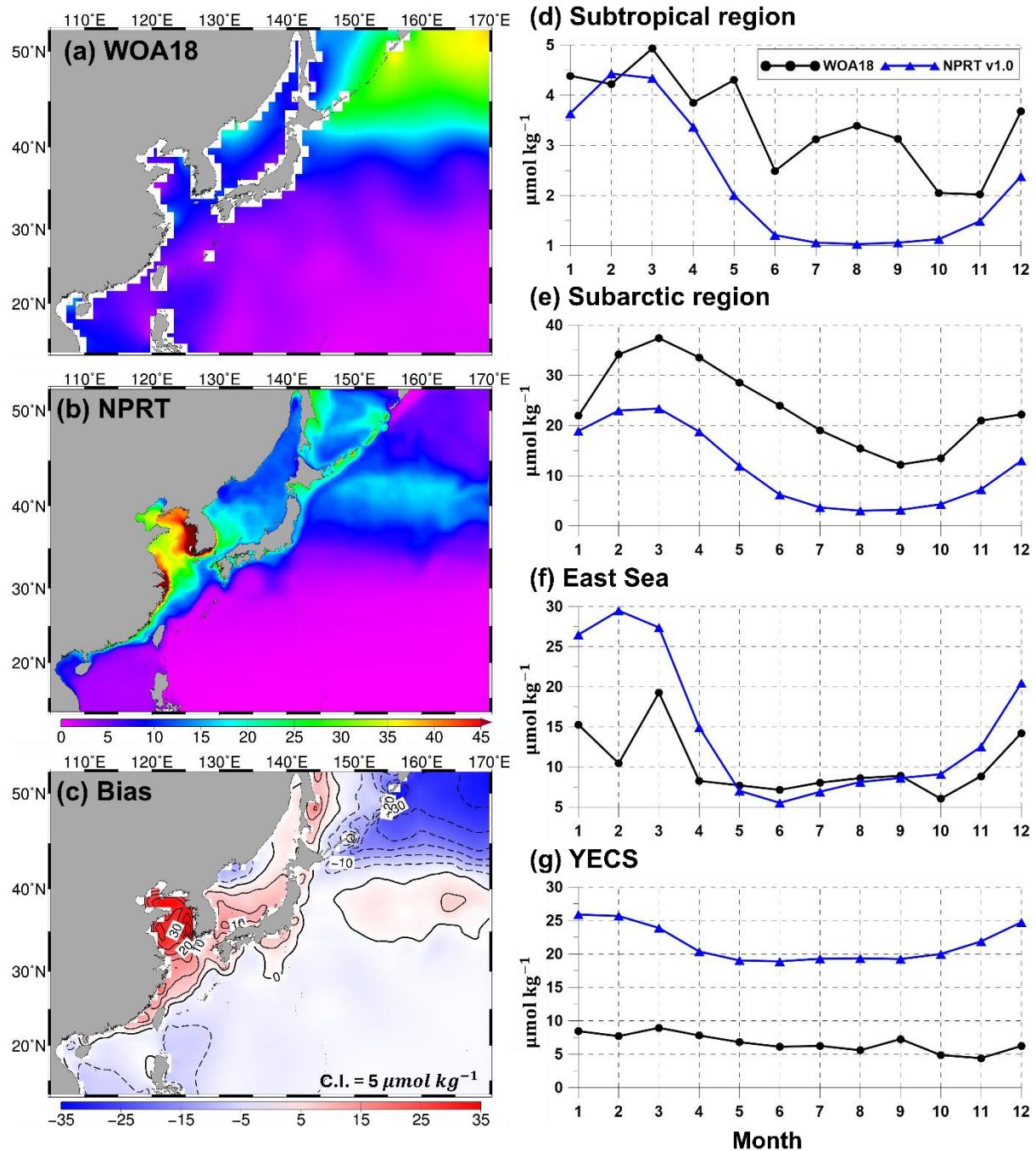
918



920 **Fig. 6.** Distributions of the surface salinity in (a, b, c) the WOA18 data, (d, e, f) NPRT, and (g,
921 h, i) biases for (a, d, g) the climatological mean, (b, e, h) winter and (c, f, i) summer.

922

Fig. 7. Horizontal distributions of the annual mean surface nitrate concentrations ($\mu\text{mol kg}^{-1}$) in (a) WOA18, (b) NPRT, and (c) biases between NPRT and observations (WOA18), and seasonal variations in (d) the subtropical region (south of 40°N in the Northwest Pacific), (e) the subarctic region (north of 40°N in the Northwest Pacific), (f) the East Sea, and (g) the Yellow and East China Seas (YECS).

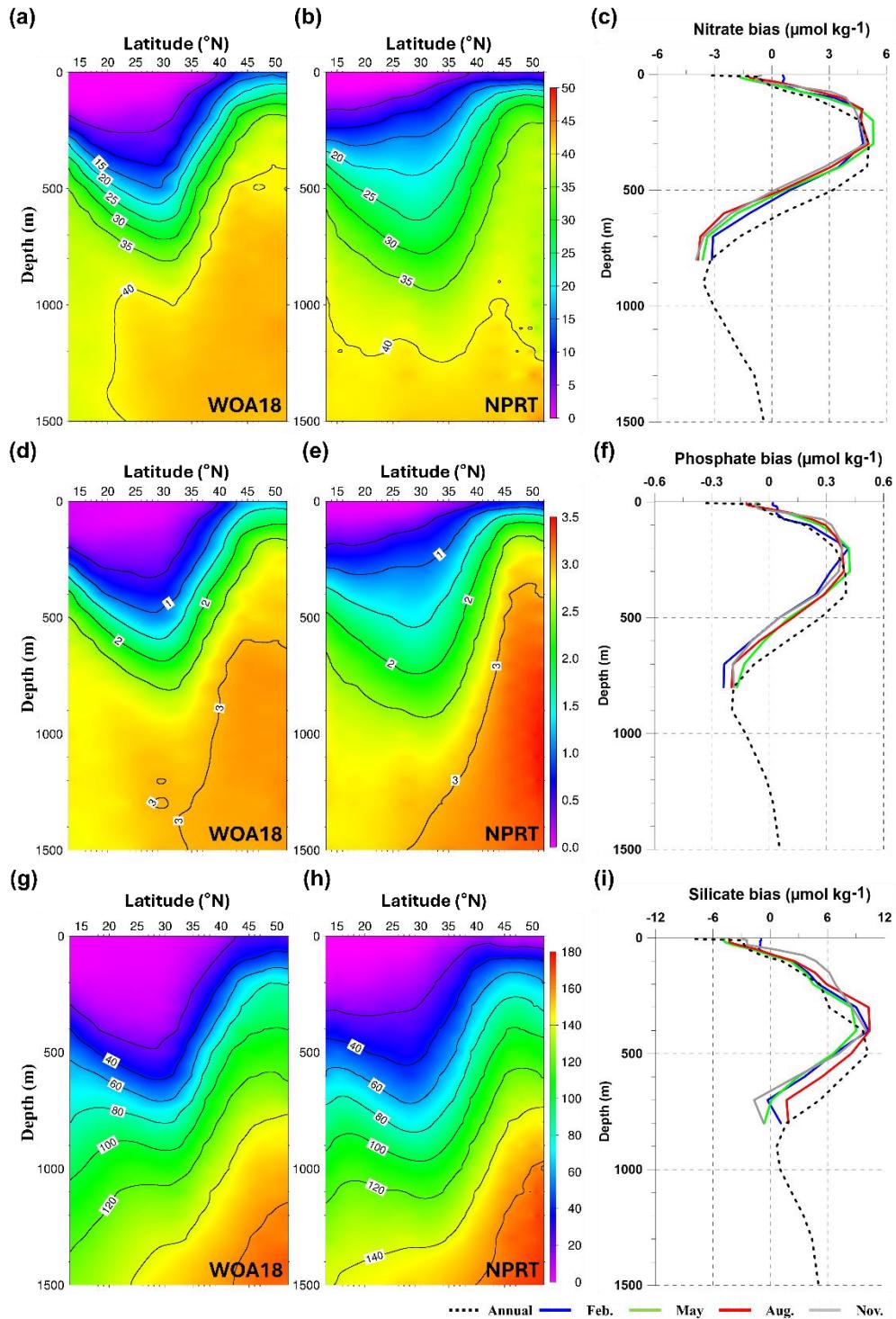

929

930 **Fig. 8.** Same as Fig. 7 except to the annual mean surface phosphate concentration ($\mu\text{mol kg}^{-1}$).

931

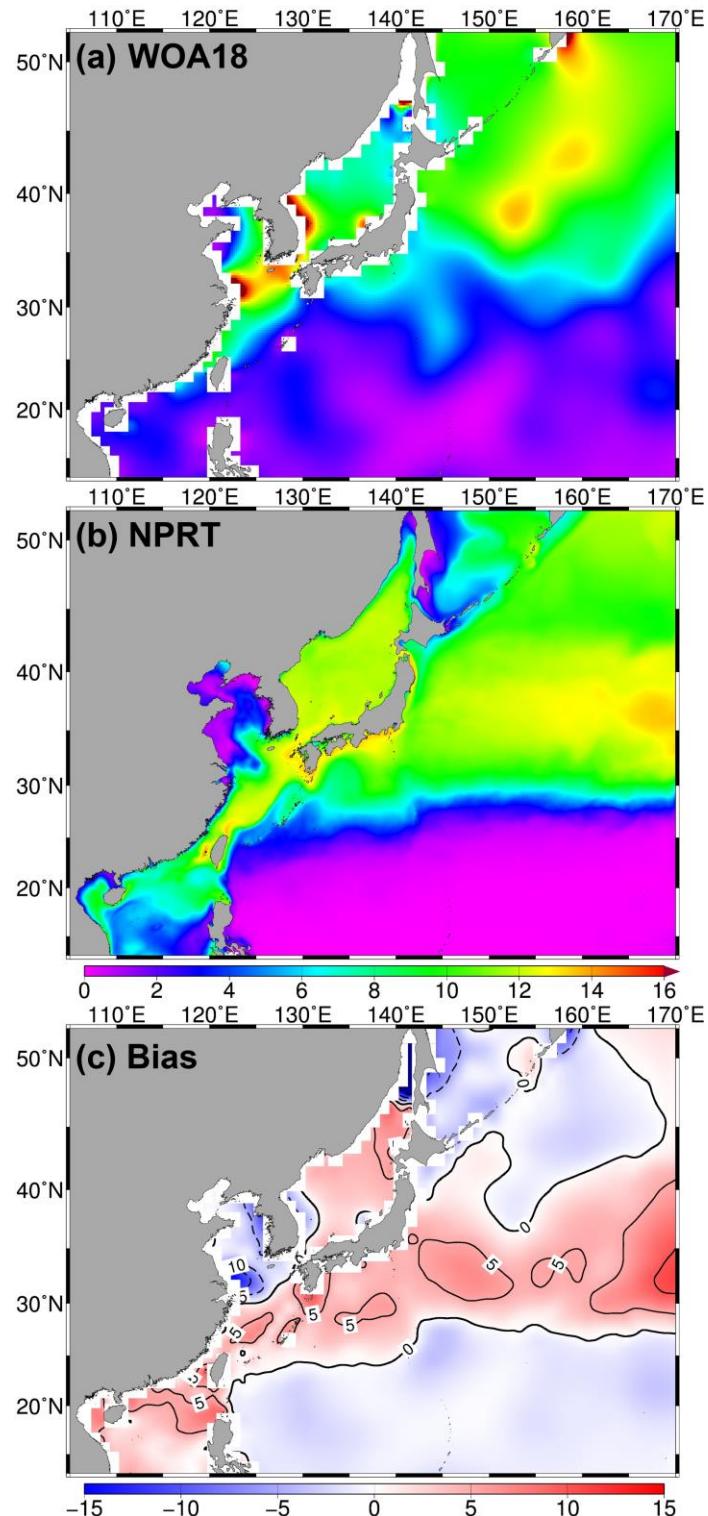
932

933



934

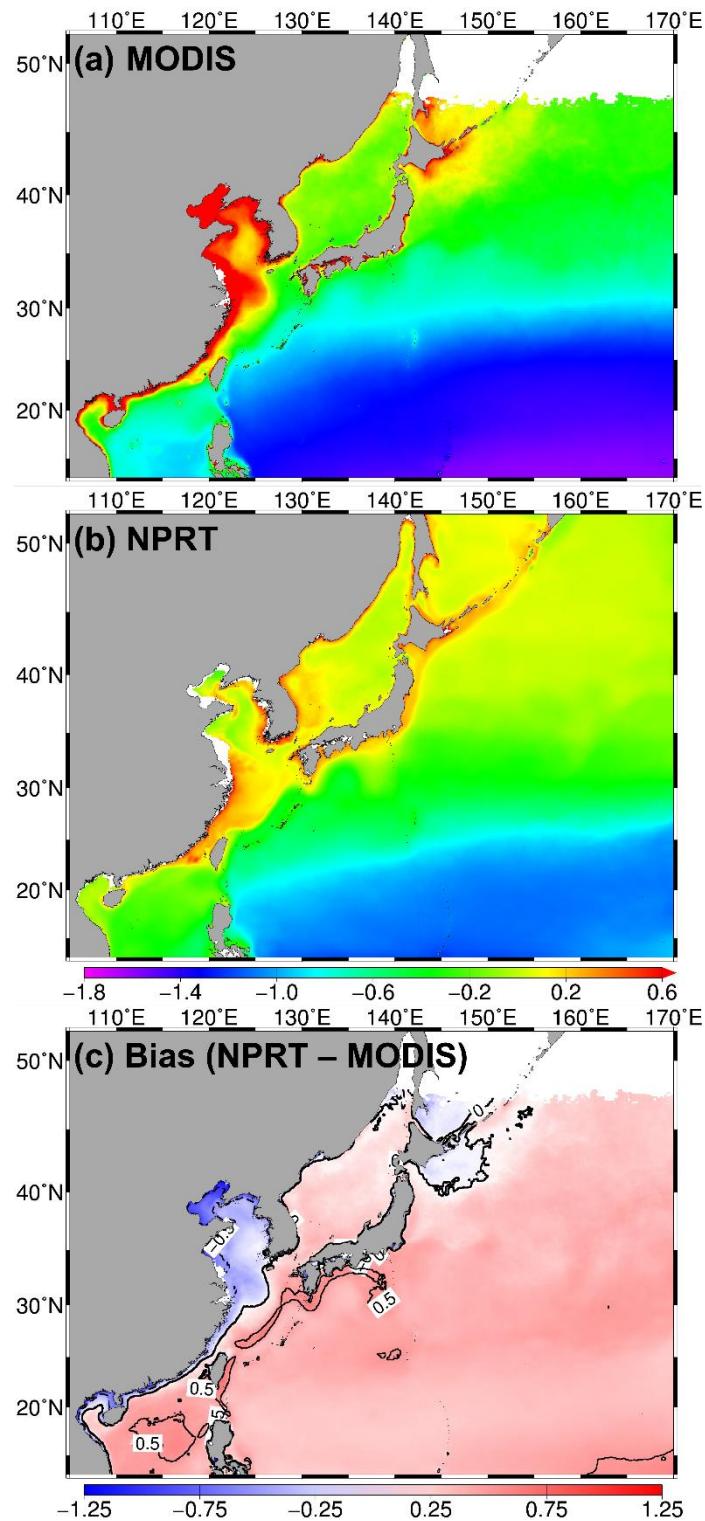
935 **Fig. 9.** Same as Fig. 7 except to the annual mean surface silicate concentration ($\mu\text{mol kg}^{-1}$).


936

937

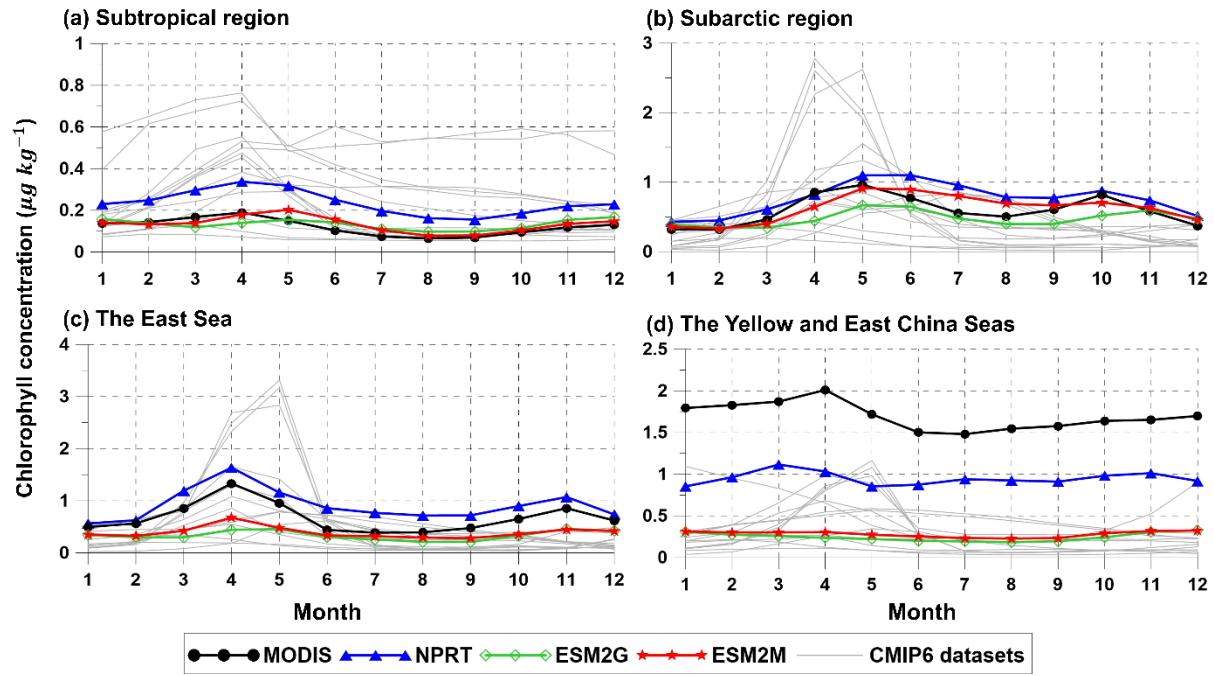
938

939 **Fig. 10.** Vertical structures of the zonal averaged annual mean (a, b) nitrate, (d, e) phosphate,
940 and (g, h) silicate concentrations ($\mu\text{mol kg}^{-1}$) in the Northwest Pacific. The vertical profile of
941 annual and monthly biases between observation and NPRT results for (c) nitrate, (f)
942 phosphate, and (i) silicate.

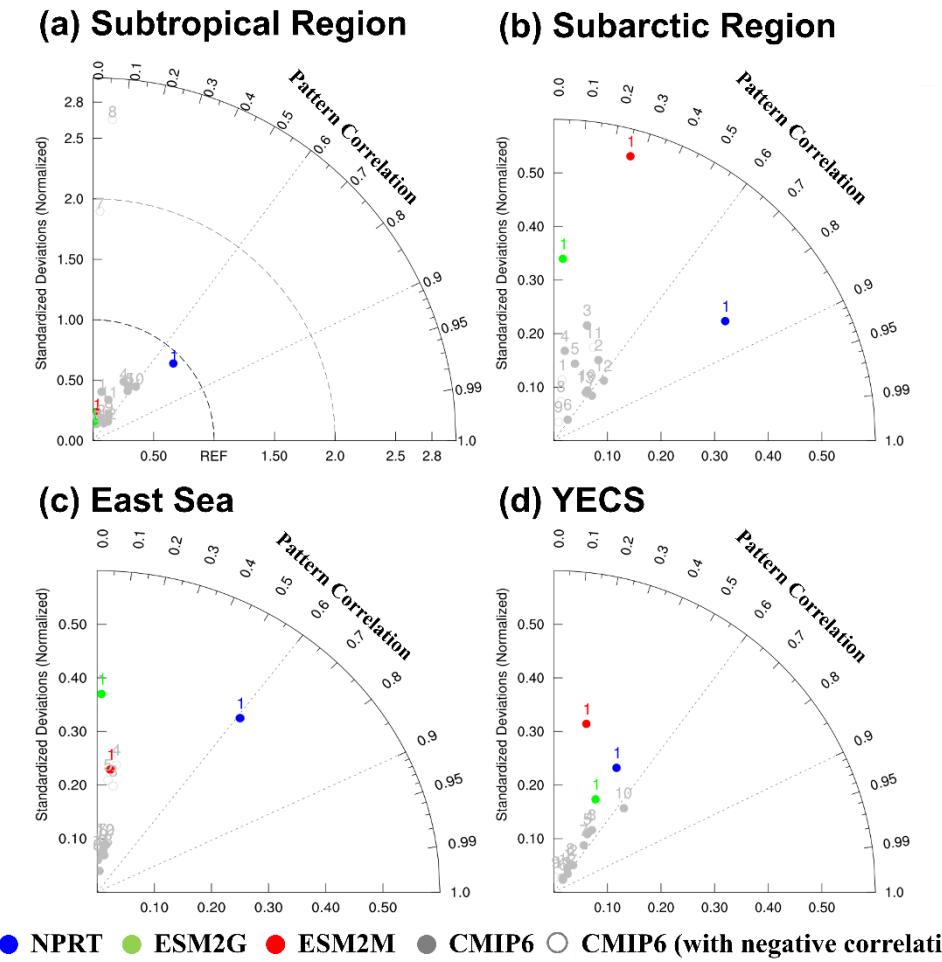

943

944 **Fig. 11.** Same as Fig. 3, except to in the annual mean surface N:P molar ratio.

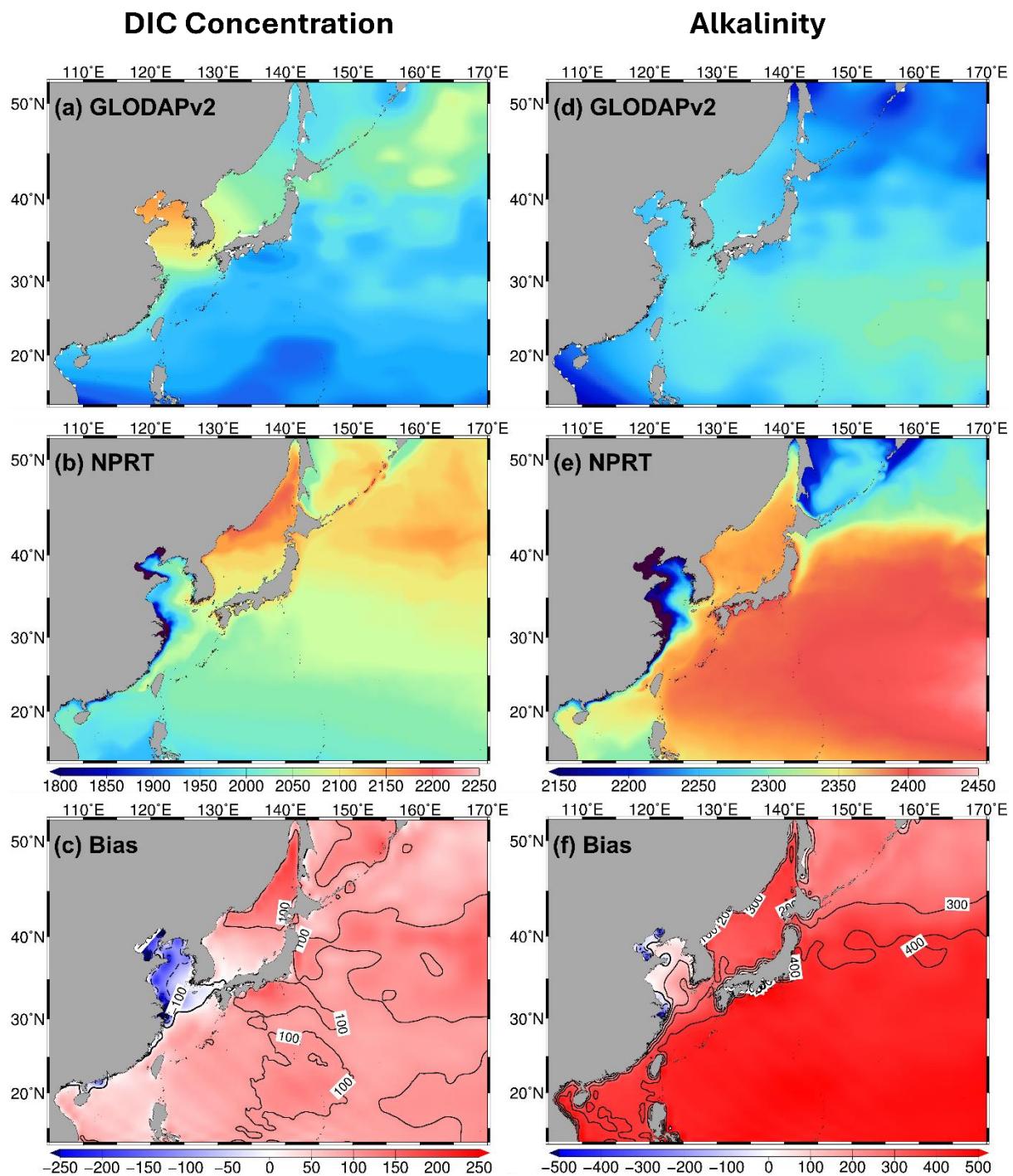
945


946

947

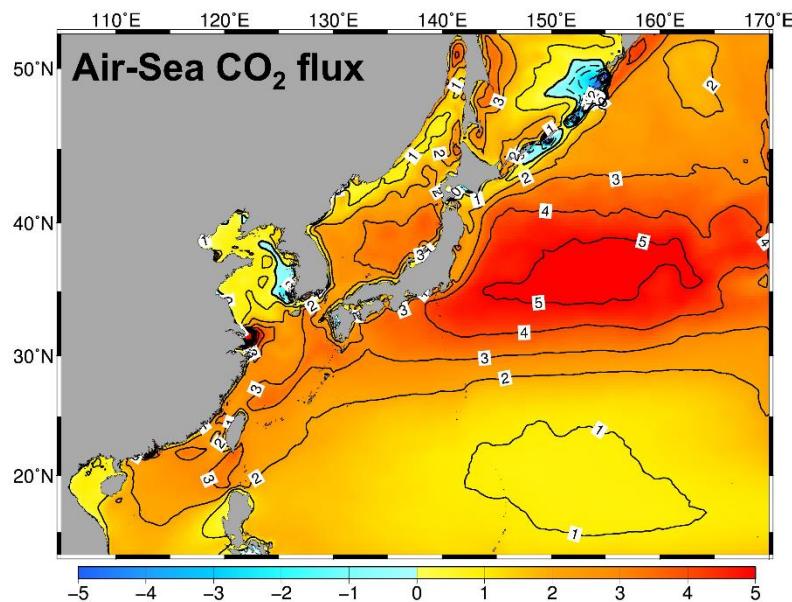

948

949 **Fig. 12.** Logarithm of the climatological annual-mean surface chlorophyll concentrations (μmol
 950 kg^{-1}) from (a) MODIS, (b) NPRT, (c) bias of between NPRT and observation (MODIS).



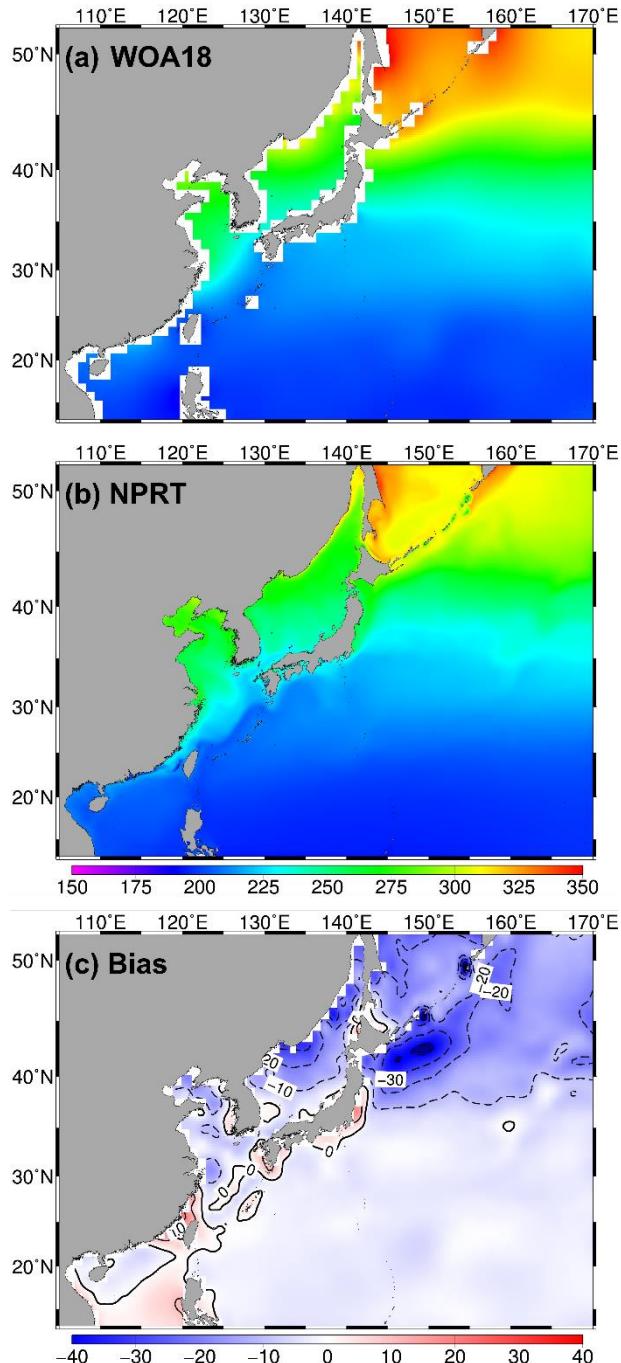
951

952 **Fig. 13.** Seasonal variations of the spatial averaged chlorophyll concentrations ($\mu\text{mol kg}^{-1}$) in
953 (a) the subtropical and (b) subarctic regions, (c) the East Sea, and (d) the YECS. Black,
954 blue, green, red and light grey lines indicate MODIS, NPRT, GFDL-ESM2G, GFDL-
955 ESM2M, and each ensemble model in CMIP6, respectively.


Fig. 14. Taylor diagrams (Taylor, 2001) of spatial four models (NPRT (blue dots), GFDL-ESM2G (green dots), GFDL-ESM2M (red dots) and each ensemble model in CMIP6 (grey dots)) for surface chlorophyll concentrations compared to observation (MODIS) at each region. The grey open dots (\circ) in CMIP6 indicate a negative pattern correlation. Taylor diagrams for time were calculated by comparing observational data with annual mean simulated fields of four models (NPRT, GFDL-ESM2G, GFDL-ESM2M and each ensemble in CMIP6) in the (a) subtropical and (b) subarctic regions, (c) East Sea, and (d) YECS, and the numbers represent each ensemble model in Table 1.

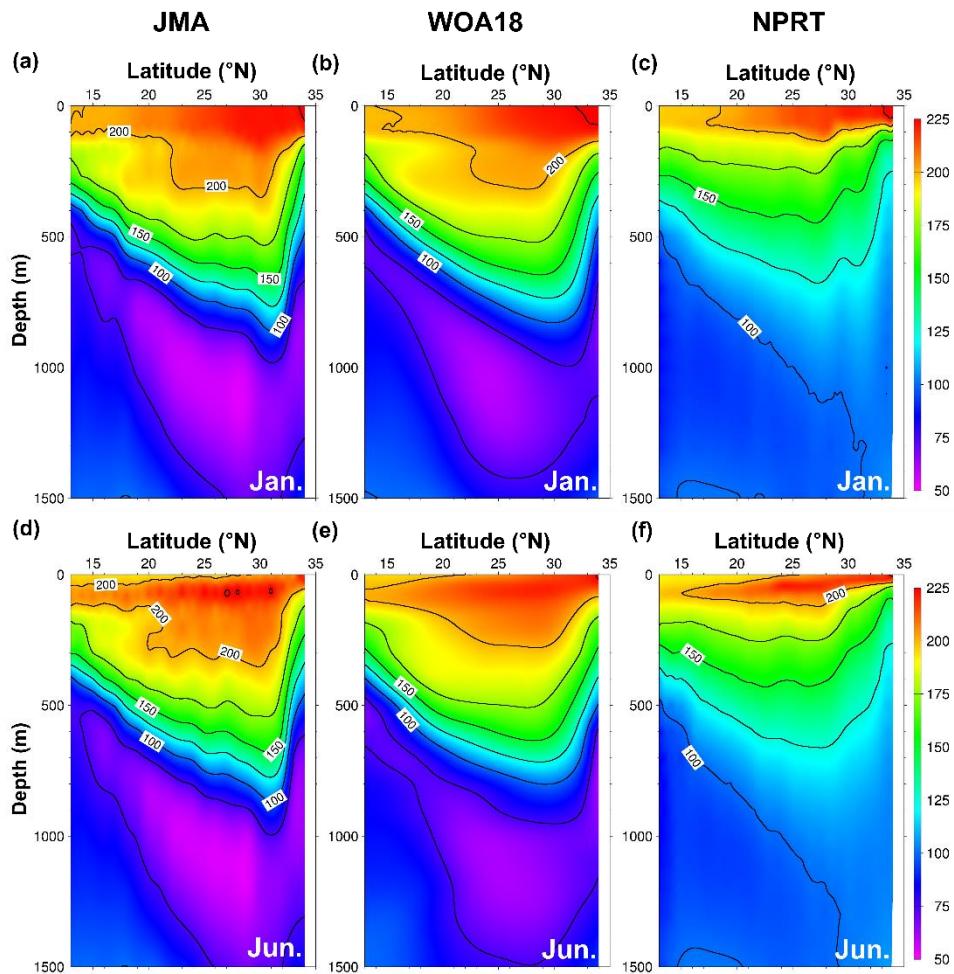
968 **Fig. 15.** Horizontal distributions of annual mean surface dissolved inorganic carbon (DIC; left
969 panels) concentrations ($\mu\text{mol kg}^{-1}$) and alkalinity ($\mu\text{mol kg}^{-1}$; right panels) in the (a, d)
970 GLODAPv2 and (b, e) NPRT in the Northwest Pacific. Biases (c, f) represent NPRT minus
971 observation (GLODAPv2).

972


973

974

975 **Fig. 16.** Distribution of the annual mean air-sea CO₂ flux (mol m⁻² day⁻¹) in NPRT in the
976 Northwest Pacific. Positive value indicates the absorption from the atmosphere to the ocean.


977

978

979 **Fig. 17.** Horizontal distributions of the annual mean surface dissolved oxygen (DO)
 980 concentration ($\mu\text{mol kg}^{-1}$) in (a) WOA18 and (b) NPRT, and (c) bias between NPRT and
 981 WOA18.

982

983

984 **Fig. 18.** Vertical structures of the annual mean dissolved oxygen (DO) concentration ($\mu\text{mol kg}^{-1}$)
985 ¹⁾ along 137° E line from (a, d) JMA and (b, e) WOA18, and (c, f) NPRT in January (top)
986 and June (bottom).

987

988

989

Table1. CMIP6 Earth system models were used in this study for comparison with chlorophyll concentration.

Month	Subtropical Region				Subarctic Region				East Sea				YECS		
	N ₀₃	P ₀₄	Silicate	N ₀₃	P ₀₄	Silicate	N ₀₃	P ₀₄	Silicate	N ₀₃	P ₀₄	Silicate	N ₀₃	P ₀₄	Silicate
1	0.93	1.04	1.77	3.02	2.38	3.44	3.54	3.53	3.32	2.18	1.93	9.54			
2	1.36	0.67	2.08	2.77	2.70	3.28	3.70	2.76	5.91	2.93	4.13	13.58			
3	1.27	1.22	1.87	2.73	2.82	3.62	2.40	2.29	3.09	2.33	2.53	9.99			
4	1.93	1.53	1.74	2.73	2.66	3.86	2.04	1.32	2.59	2.76	1.67	12.77			
5	0.79	0.70	1.22	3.44	3.19	3.76	1.83	1.12	2.99	2.93	1.46	5.40			
6	1.30	1.68	1.37	3.02	3.58	4.26	2.70	2.63	3.23	3.02	1.80	10.36			
7	1.95	2.55	2.10	3.12	3.57	4.23	3.04	2.88	3.44	2.93	2.23	8.58			
8	2.49	2.95	2.31	3.27	3.41	4.19	2.97	2.38	4.18	2.78	2.73	10.23			
9	2.46	2.60	2.53	2.91	3.41	3.88	2.94	3.29	4.71	2.29	2.26	14.29			
10	1.33	1.66	2.15	2.81	3.02	3.57	2.46	2.07	3.99	2.73	2.16	14.36			
11	3.97	1.10	1.70	2.61	2.67	4.00	2.03	1.80	3.34	2.09	2.95	13.29			
12	4.64	1.86	0.94	2.21	2.47	3.38	3.28	4.42	3.32	2.79	3.76	11.21			
13	1.30	0.79	1.40	3.07	3.17	4.19	2.67	2.56	3.68	2.12	2.16	12.61			

Table2. CMIP6 Earth system models were used in this study for comparison with chlorophyll concentration.

Model#	Model name	Model center	Physical/Biochemistry model	Data description
1	ACCESS-ESM1-5	CSIRO	MOM5 / WOMBAT	
2	CanESM5	CCCma	NEMO3.4.1 / CMOC	
3	CESM2	NCAR	POP2 / MARBL	
4	CESM2-WACCM	NCAR	POP2 / MARBL	depth-averaged
5	CESM2-WACCM-FV2	NCAR	POP2 / MARBL	data
6	CMCC-ESM2	CMCC	NEMO3.6 / BFM5.2	
7	MPI-ESM1-2-HR	MPI-M	MPIOM1.63 / HAMOCC6	
8	MPI-ESM1-2-LR	MPI-M	MPIOM1.63 / HAMOCC6	
9	CanESM5-1	CCCMa	NEMO3.4.1 / CMOC	
10	EC-Earth3-CC	EC-Earth-Consortium	NEMO3.6 / PISCES v2	
11	MPI-ESM-1-2-HAM	HAMMOZ-Consortium	MPIOM1.63 / HAMOCC6	Surface
12	NorESM2-LM	NCC	MICOM / HAMOCC	data
13	NorESM2-MM	NCC	MICOM / HAMOCC	

994 **Table 3.** Summary of the Taylor diagram scores for annual mean surface chlorophyll concentrations in
 995 the subtropical and subarctic regions, East Sea, and the Yellow and East China Sea (YECS) in
 996 NPRT, each ensemble model in CMIP6, [GFDL-ESM2M](#) and [GFDL-ESM2G](#). The subarctic
 997 (subtropical) region is north (south) of 40° N in the NWP.

Model	Subtropical Region	Subarctic Region	East Sea	YECS
NPRT	1.21	1.64	1.88	2.32
ACCESS-ESM1-5	2.44	3.36	3.07	2.78
CanESM5	2.48	2.71	3.33	2.72
CESM2	1.77	2.47	2.98	2.62
CESM2-WACCM	1.90	2.70	2.96	2.65
CESM2-WACCM-FV2	1.74	2.56	2.92	2.66
CMCC-ESM2	2.72	2.84	3.29	2.79
MPI-ESM1-2-HR	4.32	2.20	3.01	2.58
MPI-ESM1-2-LR	5.77	3.19	2.98	2.73
CanESM5-1	2.13	3.42	3.09	3.50
EC-Earth3-CC	1.60	2.27	2.76	2.27
MPI-ESM-1-2-HAM	2.33	3.29	3.02	3.78
NorESM2-LM	2.22	2.21	2.82	2.60
NorESM2-MM	2.39	2.39	2.81	2.68
GFDL-ESM2M	2.96	4.80	3.06	3.06
GFDL-ESM2G	3.02	3.53	2.73	3.43

998

999

1000

1001