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Short summary 29 

Phytoplankton growth in the Southern Ocean (SO) is often limited by low iron (Fe) concentrations. Sea surface 30 

warming impacts Fe availability and can affect phytoplankton growth. We used Fe clean shipboard incubations 31 

to test how changes in Fe and temperature affect SO phytoplankton. Their abundances usually increased with Fe 32 

addition and temperature increase, with Fe being the major factor. These findings imply potential shifts in 33 

ecosystem structure, impacting food webs and elemental cycling.  34 

 35 

Abstract 36 

Iron (Fe) is a key limiting nutrient for Southern Ocean phytoplankton. Input of Fe into the Southern Ocean is 37 

projected to change due to global warming, yet the combined effects of a concurrent increase in temperature with 38 

dissolved Fe (dFe) addition on phytoplankton growth and community composition are understudied. To improve 39 

our understanding of how Antarctic phytoplankton communities respond to Fe and enhanced temperature, we 40 

performed four full factorial onboard bioassays under trace metal clean conditions with phytoplankton 41 

communities from different regions of the Weddell and the Amundsen Seas in the Southern Ocean. Treatments 42 

consisted of a combined 2 nM Fe addition with 2 °C warming treatment (TF), compared to the single factor 43 

treatments of Fe addition at in-situ temperature (F), and non-Fe addition at + 2 °C (T) and at in-situ temperature 44 

(C). Temperature had limited effect by itself but boosted the positive response of the phytoplankton to Fe addition. 45 

Photosynthetic efficiency, phytoplankton abundances, and chlorophyll a concentrations typically increased 46 

(significantly) with Fe addition (F and/or TF treatments) and the phytoplankton community generally shifted from 47 

haptophytes to diatoms upon Fe addition. The < 20 µm phytoplankton fraction displayed population-specific 48 

growth responses, resulting in a pronounced shift in community composition and size distribution (mainly towards 49 

larger-sized phytoplankton) for the F and TF treatment. Such distinct enhanced impact of dFe supply with 50 

warming on Antarctic phytoplankton size, growth and composition will likely affect trophic transfer efficiency 51 

and ecosystem structure, with potential significance for the biological carbon pump.  52 
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1. Introduction 55 

The Southern Ocean plays an important role in regulating the Earth´s climate as it is an important sink for CO2 56 

(Takahashi et al., 2012; Friedlingstein et al., 2022; Fisher et al., 2023). Phytoplankton take up CO2 and convert it 57 

to biomass, forming not only the base of the pelagic food web but also driving the biological carbon pump 58 

(Buesseler et al., 2020; Huang et al., 2023). During the short austral productive season, however, Antarctic 59 

phytoplankton growth often becomes limited by low iron (Fe) availability (e.g., Martin et al., 1990; Boyd, 2002; 60 

Ryan-Keogh et al., 2023). Fe is a vital micronutrient for a variety of cellular processes, including photosynthesis 61 

(Geider & La Roche, 1994; Schoffman et al., 2016; Kroh & Pilon, 2020) and nitrate assimilation (Schoffman et 62 

al., 2016, Milligan and Harrison, 2000). Shortage of Fe results in so called high nutrient, low chlorophyll (HNLC) 63 

conditions, where the ratio of macronutrients, especially nitrate, relative to total Chlorophyll a (Chl a) 64 

concentrations is comparably high (Minas & Minas, 1992; Sarmiento et al., 2004; Venables & Moore, 2010; 65 

Basterretxea et al., 2023).  66 

Trace metal supply in the Southern Ocean follows a strong seasonal cycle where in winter Fe is replenished via 67 

deep water-mixing (Tagliabue et al., 2014) or sediment resuspension in coastal areas (Boyd et al., 2012), but this 68 

supply isto be quickly depleted again by phytoplankton uptake in the next season. Predicted increases in 69 

stratification may weaken Fe supply to surface waters from below (Sallée et al. 2011), however, this is still 70 

uncertain as increased stratification might not have a strong effect or might even increase turbulent nutrient fluxes 71 

associated with breaking internal waves (van Haren et al., 2020). Additionally, increased stratification effects may 72 

be counteracted by a deepening of mixed layer depths (Sallée et al., 2021) and changes in gyre-scale circulations 73 

(Misumi et al., 2013). In general, However, Fe limitation for Antarctic phytoplankton is predicted to be at least 74 

partially relieved in the future (Bazzani et al., 2023) because of enhanced Fe supply by increased wind driven 75 

mixing (due to reduced ice-induced stratification) and sources associated with ice melt, i.e., glaciers (Annett et 76 

al., 2015; Sherrell et al., 2015; Van der Merwe et al., 2019; L. Seyitmuhammedov et al., 2022, Moreau et al. 2023) 77 

icebergs (Raiswell et al., 2008; Shaw et al., 2011; Raiswell et al., 2016; Hopwood et al., 2019) or sea-ice (Lannuzel 78 

et al., 2016; Gerringa et al., 2020). In the Amundsen Sea, increased Fe input is likely to occur due to enhanced 79 

glacial melt and runoff, particularly during the summer months when melting is most pronounced (e. g., Van 80 

Manen et al., 2022). Increases in seawater temperature may affect the availability of Fe for phytoplankton, since 81 

temperature affects the oxidation of the bioavailable Fe(II) to Fe(III) (e.g., Millero et al., 1987), however, Aflenzer 82 

et al. (2023) did not observe a lower bioavailability of added Fe with increased temperatures. In the Weddell Sea, 83 

Fe input may increase through upwelling of Fe-rich deep waters and meltwater from ice shelves, but this is less 84 
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certain (Klunder et al., 2011). Seasonal variations in sea ice cover and glacial melt will play a significant role in 85 

determining the timing and magnitude of Fe input in these regions. These changes in Fe supply are associated 86 

with ongoing climate change that is projected to lead to elevated temperatures and changes in wind patterns as 87 

well as associated currents and upwelling (Turner et al., 2005; Moore et al., 2018). Overall, future Southern Ocean 88 

conditions will most likely be warmer with potentially elevated Fe concentrations, which can be expected to also 89 

affect phytoplankton productivity and community composition (Boyd et al., 2015; Laufkötter et al., 2015, 90 

Pinkerton et al., 2021). Depending on the geographical region and the time in the productive season (Thomalla et 91 

al., 2023), global warming is predicted to increase wind-induced mixing or strengthen vertical stratification 92 

(Bronselaer et al., 2020; De Lavergne et al., 2014; Hillenbrand & Cortese, 2006; Shi et al., 2020). Phytoplankton 93 

will bloom earlier in the productive season as a result of decreasing sea ice and consequently higher light 94 

(Krumhardt et al., 2022), most likely rapidly drawing down available Fe, followed by stratification, and thus 95 

favourable conditions for smaller-sized phytoplankton (Deppeler & Davidson, 2017; Krumhardt et al., 2022). 96 

Besides Fe and temperature, there are also other factors, e.g., other bio-essential metals (Mn, Co, Ni, Cu and Zn), 97 

where notably Mn has been shown to be (co-)limiting in the Southern Ocean (Wu et al; 2019, Browning et al., 98 

2021, Balaguer et al.; 2022, Hawco et al.; 2022). Mn is essential for phytoplankton photosystems (Raven et al., 99 

1990) and a co-factor for enzymes dealing with oxidative stress (Wolfe-Simon et al., 2005). Moreover, light is 100 

another major limiting factor for phytoplankton growth in Southern Ocean (e.g., van Oijen et al.; 2004, Strzepek 101 

et al.; 2019, Vives et al.; 2022, Latour et al.; 2024). 102 

Considering the urgency of warming and the anticipated change in Fe supply, there is a need for studies 103 

investigating the combined effects of these two important drivers controlling phytoplankton growth in the 104 

Southern Ocean.  There are many reports on the effects of Fe addition to Fe-limited phytoplankton from the 105 

Southern Ocean (Reviewed by e.g., Yoon et al., 2018; Bazzani et al., 2023) and several on the influence of 106 

temperature (Reay et al., 2001; Morán et al., 2006; Boyd et al., 2013), but only few studies examined the combined 107 

effects of Fe and temperature on Antarctic phytoplankton (i.e. Rose et al., 2009; Zhu et al., 2016; Andrew et al., 108 

2019; Jabre & Bertrand, 2020;  Jabre et al., 2021; Aflenzer et al., 2023). In particular, studies using natural 109 

phytoplankton communities are scarce (Rose et al., 2009; Jabre et al., 2021) and concentrated on Ross Sea 110 

phytoplankton with relatively large temperature increases (3 to 6 °C). Hence, more insight into how phytoplankton 111 

from other regional Antarctic seas respond to the warming projected by the year ~2100 (Meredith et al., 2019) is 112 

needed.  113 
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The Weddell Sea is one of the key areas of dense Antarctic bottom water formation (Fahrbach et al., 2004) and 114 

plays an important role in the global thermohaline circulation. The subpolar cyclonic Weddell Gyre circulating in 115 

the Weddell Sea basin isolates the centre of the Weddell Sea from marginal Fe sources such as melt or sediments, 116 

whilst the currents on the edges of the gyre have the potential to pick up Fe from a variety of sources, such as the 117 

seafloor, bathymetry driven mixing with deeper water masses, and sources associated with ice melt (Klunder et 118 

al., 2014; Sieber et al., 2021, Tian et al., in prep.). Generally, the Weddell Sea has a relatively low primary 119 

productivity, associated with Fe limitation in the centre of gyre (Hoppema et al., 2007; Klunder et al., 2014). In 120 

contrast, the west Amundsen Sea and specifically the Amundsen Sea Polynya (ASP) is known as one of the most 121 

productive regions in the Southern Ocean in terms of net primary production per net area (Arrigo & van Dijken, 122 

2003). Additionally, this region (ASP) is characterised by a fast thinning of ice-sheets, shelf ice and glaciers, with 123 

associated input of Fe required to sustain the high levels of primary productivity (e.g., Gerringa et al., 2012; van 124 

Manen et al., 2022). Nevertheless, phytoplankton in the ASP could still be stimulated by additional Fe input 125 

(Alderkamp et al., 2015). 126 

The aim of the current study is to examine the concurrent effects of Fe supply and warming on Antarctic 127 

phytoplankton communities from the Weddell Sea and the Amundsen Sea under controlled trace metal clean 128 

conditions. Given the naturally low dissolved Fe (dFe) concentrations in the Southern Ocean, trace metal clean 129 

conditions are crucial to avoid confounding Fe effects when studying temperature alone (Middag et al., 2023). 130 

Our bioassay treatments comprised a full factorial combination of dFe and temperature increases. Our bioassay 131 

treatments comprised of Fe addition (F treatment), warming (T treatment), Fe addition and warming (TF 132 

treatment) and the control (no Fe addition, no warming; C treatment). The temperature was enhanced by 2 °C, 133 

based on forecasts from the IPCC report (Meredith et al., 2019). Whilst the Amundsen Sea has shown a warming 134 

trend over the past years already (Gómez‐Valdivia et al., 2023; Drijfhout et al., 2024), the surface waters of the 135 

Weddell Sea might not increase as much with climate  changehave not (yet) shown a clear increasing temperature 136 

trend, but show underlying waters are warming (Strass et al., 2020), andshort-term local temperature increases 137 

due to upwelling of warm deep water have been observed (Darelius et al., 2023; Morrison et al., 2023; Teske et 138 

al., 2024). The concentration of dFe in the Fe addition treatments (F and TF) was increased by 2 nM. Future Fe 139 

concentrations are highly uncertain (Hutchins & Boyd, 2016; Tagliabue et al., 2016; Ryan-Keogh et al., 2023), 140 

and not necessarily linked to bioavailability of Fe (Van Manen et al., 2022; Fourquez et al., 2023), but previous 141 

experiments in the Southern Ocean have shown that such an addition represents (temporarily) Fe replete 142 

conditions (De Baar et al., 2005). Moreover, increased Fe availability in the Southern Ocean could have a far-143 
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reaching impact, leading to increased nutrient consumption consequently reducing nutrient transfer to lower 144 

latitudes where primary production is fuelled by these nutrients (Primeau et al., 2013; Moore et al., 2018). By 145 

integrating biological and trace metal chemistry analyses within large volume (20 L cubitainers), trace metal clean 146 

experiments, we aim to provide a clearer understanding of future changes in phytoplankton growth patterns and 147 

the implications for the Southern Ocean's role in global climate regulation.  148 

 149 

2. Material and Methods 150 

2.1 Location and sampling 151 

Natural seawater for the bioassays was collected during research expeditions (Fig. 1) in the Amundsen Sea 152 

(bioassays A1 and A2, R/V Araon, ANA08B, 2017/18) and in the Weddell Sea (bioassays W1 and W2, R/V 153 

Polarstern,  (Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung (2017), PS117, 154 

2018/19) in austral summer (December – February).  155 

 156 

 157 

Figure 1: Location of the four bioassay experiments: Bioassays A1 and A2 were performed in the Amundsen Sea and W1 and 158 
W2 in the Weddell Sea (Image obtained from NASA Worldview). 159 

 160 

Seawater was sampled at the autofluorescence maximum (36 m for A2 and 20 m for both W1 and W2), except 161 

for bioassay A1, which did not show an autofluorescence maximum and was sampled at the mid-mixed layer 162 

depth (15 m). Water for each bioassay was collected in a single deployment of NIOZ’s Titan ultraclean CTD 163 

sampling system for trace metals (De Baar et al., 2008), mounted with pristine large volume samplers (Rijkenberg 164 

et al., 2015). To prevent light shock for the phytoplankton, the original Polyvinylidene fluoride (PVDF) Pristine 165 
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samplers were replaced by a light-proof poly-propylene version. Salinity (conductivity), temperature, 166 

fluorescence, depth (pressure) and oxygen were measured with a CTD (Seabird SBE 911+) mounted on the trace 167 

metal clean sampling system (De Baar et al., 2008). To avoid contamination, further processing was performed 168 

under trace metal clean, dimmed light conditions and at 2 °C in a cleanroom environment inside a modified high-169 

cube shipping container which fits the Titan sampling system. During transport on deck, cubitainers were covered 170 

with black light-proof bags to avoid light stress. 171 

Water for Amundsen Sea bioassay A1 was sampled from the middle of the Amundsen Sea Polynya (ASP)ASP 172 

and for bioassays A2 in the marginal sea ice zone just outside of the ASP. Both W1 and W2 were performed with 173 

water from the eastern Weddell Sea. The Amundsen Sea bioassays A1 and A2 ran for 6 days (25 to 31 January 174 

and 31 January to 6 February 2018, respectively), whilst the Weddell Sea bioassays W1 and W2 ran for 8 days 175 

(28 December 2018 to 5 January and 9 to 17 January 2019, respectively, see Fig. S1 for regional Chlorophyll a 176 

concentrations at the start of bioassay incubations and Fig. S2 for station depth profiles). Amundsen Sea bioassays 177 

were thus initiated towards the end of the reported bloom period (Arrigo et al. 2012), whilst Weddell Sea bioassays 178 

were initiated during the start of the bloom period (von Berg et al., 2020). See Table 1 for in-situ environmental 179 

conditions at sampling depth (at the start of the bioassays). The in-situ temperature was below zero for all 180 

bioassays, with lowest values for A2 and W2 (-1.6 °C and -1.4 °C, respectively, compared to -0.6 °C and -0.3 °C 181 

for A1 and W1). The daily average irradiance at sampling depth on day of sampling was lowest for A1 and A2, 182 

i.e., < 6 µmol quanta m-2 s-1, compared to 18 and 98 µmol quanta m-2 s-1 for W1 and W2. 183 

Table 1: Characteristics of the seawater used for the bioassay experiments. Lat. = latitude, Long. = 184 

longitude, Temp = temperature, Si = silicate, PO4 = phosphate, NOx = nitrate + nitrite, Fe = iron, Chl a 185 

= chlorophyll a, Phyto = total flow cytometry based phytoplankton abundances, Fv/Fm = photosynthetic 186 

capacity of the total phytoplankton. The reported irradiance is the average irradiance at the sampling 187 

depth on the day of sampling.  188 

Bioassay Station Lat. Long. Temp. Salinity  Irradiance  Si  

     (°S) (°W) (°C) (psu) (µmol quanta m2 sec-1) (µM) 

A1 31 73.50 116.50 -0.6 33.99 5.0 84.7 

A2 52 72.00 118.42 -1.6 33.89 3.1 78.5 
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W1 17 65.00 000.00 -0.3 33.90 17.7 58.3 

W2 36 70.08 011.08 -1.4 33.82 97.6 27.7 

 

       

        

Bioassay PO4  NOx  Fe  

total Chl 

a 

< 20 µm 

Chl a 

Phyto Fv/Fm 

  (µM) (µM) (nM) (µg L-1)  (%) (x103 mL-1)  r.u. 

A1 1.8 27.7 0.28 3.0 42 8.4 0.6 

A2 2.1 30.9 0.10 0.4 98 7.1 0.6 

W1 1.6 24.0 0.05 1.5 24 5.6 0.3 

W2 1.9 27.9 0.03 0.6 65 4.4 0.3 

 189 

2.2 Bioassay incubation set-up 190 

Incubations were performed in custom built deck incubators (see Supplement Bioassay Setup for more 191 

information). Collapsible 20 L cubitainers (LDPE with PP caps and fitted with PE faucet; Cole-Palmer, Illinois, 192 

USA) were used for the bioassay incubations. These were soap and HCL (1 M) cleaned prior to the expeditions 193 

and stored with full surface contact in 0.024 M HCl (VWR Normatom Ultrapur, Avantor, Radnor, USA) for at 194 

least two months. Before use, cubitainers were rinsed five times with ambient seawater. The natural seawater for 195 

the actual incubations was distributed randomly to the total of 12 cubitainers which were then randomly assigned 196 

to the different treatments. Trace metal clean conditions were maintained during all sampling and sample 197 

handling. 198 

The bioassay treatments (performed in triplicate) were: in-situ conditions (control, C), + 2 nM dFe (as FeCl3) 199 

addition (F), + 2 °C temperature increase (T), and + 2 nM dFe addition and + 2 °C temperature increase (TF). For 200 

the Amundsen Sea bioassays, a natural isotopic composition (natural dFe) was used for the dFe addition, whilst 201 

d57Fe was used in the Weddell Sea bioassays. This practice was adopted to better differentiate the added Fe from 202 

the naturally present Fe, as we noticed that the dFe concentration in Fe amended Amundsen Sea bioassays quickly 203 

returned to background concentrations (see section 3.1). Measuring Fe with a natural isotopic composition at these 204 
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low concentrations is still a challenge and combined with inherent variability between replicates. After several 205 

days it became impossible to distinguish the Fe amended and non-amended treatments in Amundsen Sea bioassays 206 

based on their natural dFe concentration (see section 3.1). The variation in natural dFe expected between Fe 207 

amended and non-amended treatments despite precipitation and uptake, was hidden in the analytical and 208 

environmental variability. For Weddell Sea bioassays we thus decided to add 57Fe, a rare (2.12 % abundant vs 209 

91.75 % for 56Fe) natural isotope of Fe. Given its low natural abundance, 57Fe is not nearly as sensitive to analytical 210 

and replicate variation as such variation is insignificant relative to the addition, allowing better insight in Fe 211 

drawdown over the course of the experiments. 212 

Average starting concentrations of dFe in the Fe addition treatments ranged from 2.03 to 2.28 nM for both Weddell 213 

and Amundsen Sea bioassays. Temperatures in the T and TF treatments were 1.4, 0.4, 1.7 °C and 1 °C, for A1, 214 

A2, W1 and W2, respectively (see Table 1 for an overview of starting conditions in all treatments). One replicate 215 

of the control treatment in bioassay W1 started leaking during the incubation and was thus not sampled from day 216 

4 onwards. For bioassay W2, the in-situ temperature of -1.4 °C could not be maintained due to the very sunny 217 

weather, resulting in an increase of 0.4°C for all treatments., Final incubation temperatures were -1.0 °C in the 218 

control (C) and Fe-only (F) treatment and 1 °C (instead of 0.6 °C) in the T and TF treatments. This temperature 219 

adjustment was done slowly over the course of 24 h on the second day of the incubation. More details about the 220 

set-up can be found in the supplemental data (Fig. S13, supplement Bioassay Setup). Over the course of the 221 

incubation period, temperatures were kept constant, with a maximum temperature fluctuation of ± 0.3 °C.  222 

For Amundsen Sea bioassays, light levels were chosen to mimic in-situ conditions, but noting the low light 223 

conditions during these incubations (ca. 3 % of in-air photoactive radiation, PAR; i.e. average 3.4 and 1.5 µmol 224 

quanta m-2 s-1 for A1 and A2 over the course of incubation), we opted for non-limiting light conditions (Bertrand 225 

et al., 2011) for the (later performed) bioassays of the Weddell Sea (ca. 12 % of in-air PAR; i.e. average 69 and 226 

100 µmol quanta m-2 s-1 for W1 and W2 over the course of incubation). The percentages and values reported refer 227 

to approximate light conditions within cubitainers.  Light levels were adapted using neutral density screens.  228 

Samples for dissolved and particulate metals, Chl a, pigment-based taxonomic analyses, and particulate organic 229 

carbon (POC), nitrogen (PON) and phosphate (POP) were taken before filling of the cubitainers at the start of the 230 

bioassay incubations (t0), and at the end of the incubations after 6 (Amundsen Sea) or 8 (Weddell Sea) days 231 

(difference in duration due to logistical constraints). Samples for phytoplankton photosynthetic efficiency (Fv/Fm) 232 

and phytoplankton abundances were taken at least every other day. Macronutrients were measured on board at 233 

least every other day to screen for potential macronutrient limitation. 234 
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 235 

2.3 Setup verification 236 

To test for potential Fe contamination, three cubitainers were filled with ultrapure (UP) water and handled and 237 

subsampled using the same methods and frequency as the treatments. Subsamples for dFe analysis were taken at 238 

the start (0.08 ±0.04 nM) and after three (0.07 ± 0.04 nM) and six (0.06 ± 0.04 nM) days.  Concentrations of dFe 239 

stayed consistently low, suggesting minimal or no contamination. We also tested whether added dFe stayed in 240 

solution or adsorbed to the cubitainer walls and found a slow gradual decrease over the first few days in dFe 241 

concentrations after addition to UP water that we attribute to precipitation and wall adsorption (Table S1). During 242 

our experiments, the concentrations of added dFe decreased more rapidly, whereas the dFe concentrations in the 243 

non-Fe treatments, as well as the non-added form of dFe in Fe treatments (d57Fe for Amundsen and natural dFe 244 

for Weddell Sea bioassays), stayed low and relatively constant over time. Since phytoplankton grew in all 245 

treatments, the faster decrease of added dFe was likely due to uptake and sorption onto (biogenic) particles rather 246 

than precipitation to the cubitainer walls. Low traceable amounts of d57Fe during the second half of the incubations 247 

in W1 and W2 suggested that the initial decrease in dFe concentrations did not correspond to permanent removal 248 

from the bioavailable Fe pool (e.g., due to absorption; Jensen et al., 2020) but instead buffered the dissolved pool 249 

(as suggested for natural settings with exchange between the (labile) pFe and dFe pools; Van Manen et al., 2022), 250 

or that most of the added dFe was taken up by phytoplankton as rapid luxury uptake during the first days of an 251 

experiment (Lampe et al., 2018). 252 

 253 

2.4 Macronutrients 254 

During the Amundsen Sea bioassays, dissolved macronutrients were measured onboard following Jeon et al. 255 

(2021), according to the Joint Global Ocean Flux Study (JGOFS) protocols (Gordon et al., 1993) using a four-256 

channel Auto-Analyzer (QuAAtro, Seal Analytical, Norderstedt, Germany). Measurement precisions were ± 0.02, 257 

± 0.28 and ± 0.14 µM for phosphate, silicic acidsilicate, and nitrogen (nitrate + nitrite), respectively (Jeon et al., 258 

2021). For Weddell Sea bioassays, samples for nitrate, nitrite, phosphate, and silicate silicic acid were measured 259 

following the method described by Gerringa et al. (2019). Measurements precisions were ± 0.01, ± 0.31 and ± 260 

0.04 µM for phosphate, silicatesilicic acid, and nitrogen (nitrate + nitrite), respectively. 261 

 262 
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2.5 Dissolved and particulate metals  263 

Cubitainers were subsampled for dFe as well as other dissolved trace metals (dMn, dCo, dCu, dNi, dZn, dCd) 264 

using a 0.2 µm Sartobron-300 filter cartridge (Sartorius AG, Göttingen, DE) for bioassay A1 and A2 and pre-acid 265 

cleaned 0.2 µm Acropak filter cartridges (Cytiva, Marlborough, USA) for W1 and W2. Filters were fitted to an 266 

UP-cleaned vented PE faucet attached to the cubitainer with HCl acid (1.5 M) cleaned silicon tubing. Filtered 267 

samples were taken by applying pressure to the cubitainer. Different filters were used for Fe replete and deplete 268 

treatments, and filters were replaced between experiments. The dissolved trace metal samples were collected in 269 

acid cleaned 125 mL LDPE bottles following GEOTRACES protocols (Cutter et al., 2017) and directly acidified 270 

by adding ultra-pure HCl (Baseline®HCl; Seastar Chemicals Inc, Sidney, CA), resulting in a concentration of 271 

0.024 M with a final pH of ~1.8. Samples were stored until analysis at NIOZ. Trace metal samples were prepared 272 

and analysed following van Manen et al. (2022) and references within. In short, trace metal samples were 273 

preconcentrated using a SeaFAST pre-concentration system (ESI). Blank contributions from sample handling, 274 

pre-concentration, and analysis steps were determined by analysing acidified MQ water (~1.8 pH) prepared in the 275 

same way as real samples. 276 

For particulate trace metals (pFe, pMn, pCo, pCu, pZn, pCd, pAl) and POP, 25 mm poly-ether-sulfone (PES) disc 277 

filters (0.45 μm Pall Supor, Port Washington, USA) and polypropylene filter holders (Advantec, Cole-Parmer, 278 

Vernon Hills, USA) were used, following the protocol adapted by Van Manen et al. (2022) with one additional 279 

step: samples were soaked for at least 30 minutes in oxalate-EDTA (respectively 0.75M and 5.5M) in a 10L carboy 280 

(VWR Collection; Avantor, Radnor, USA) to remove all trace metals outside or adsorbed to phytoplankton cell 281 

walls (modified after Hassler & Schoemann, 2009) and subsequently filtered. The EDTA oxalic acid wash used 282 

on particulate samples prior to filtration should effectively remove surface-bound metals, also minimizing the 283 

authigenic Fe fraction. Due to time limitations, samples for particulate metals were only taken during experiment 284 

A1, W1 and W2. After filtration, which happened at the end of the experiments, Ffilters were stored frozen at -20 285 

°C until analysis. In the NIOZ lab, filters were treated with two successive digestion steps to determine the total 286 

particulate fraction. All vials used in the digestion procedures were rigorously cleaned with HF and HCl 287 

beforehand and rinsed with UP water. Filters were subjected to a leach consisting of 1.8 mL of 4.35M (25 %) two 288 

times sub-boiled distilled acetic acid and 0.02M (2 %) hydroxylamine hydrochloride (99.999 % trace metal basis, 289 

Sigma-Aldrich, Saint-Louis, USA). Subsequently, filters were digested following the total digestion protocol 290 

developed by Cullen & Sherrell (1999) and modified by Planquette & Sherrell (2012). A volume of 2 mL of 3 × 291 

sub-boiled distilled 8.0 M (50 %) HNO3 (VWR Chemicals – AnalaR NORMAPUR, Avantor, Radnor, USA) and 292 
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2.9 M (10 %) HF (Merck – Supelco, Kenilworth, USA) was added. The vials were closed tightly and refluxed for 293 

4 h at 110 °C. The solution was then transferred to a secondary Teflon vial and were then heated to near dryness 294 

at 110 °C. A 1 mL volume  of 8.0 M (50 %) 3× sub-boiled distilled HNO3 (VWR Chemicals– AnalaR 295 

NORMAPUR, Avantor, Radnor, USA) and 15 % H2O2 (Merck – Suprapur, Kenilworth, USA) was added to the 296 

dried vial contents. The vials were refluxed for 1 h at 110 °C and subsequently cooled to room temperature. 297 

Addition of reagents and refluxing were repeated once. After this repetition, the vials were heated to near dryness 298 

at 110 °C. The samples were re-dissolved in 2 mL 1.5 % 3× sub-boiled distilled HNO3 with 10 ppb Rh as internal 299 

standard and transferred to 2 mL Cryovials® (VWR, Avantor, Radnor, USA) for storage and analysis. 300 

The lithogenic fraction and concentration of pFe and other particulate metals discussed was determined by 301 

assessing the ratio between the particulate metal of interest and particulate aluminium (pAl), assuming all pAl 302 

originates from crustal material using the approach described in more detail in van Manen et al (2022). For 303 

example, we are using the observed pFe/pAl ratio in the samples and the known crustal ratio of 0.21 mol mol⁻¹ 304 

(Taylor and McLennan, 1985) to calculate the lithogenic pFe fraction and concentration. 305 

 306 

2.6 ICP-MS trace metal measurements and particulate organic phosphorous 307 

Dissolved trace metal samples were preconcentrated using a SeaFAST pre-concentration system (ESI) using two 308 

loops of 10 mL and were eluted into 350 µL elution acid (1.5 M Teflon distilled HNO3 with rhodium as internal 309 

standard) which gives a pre-concentration factor of 57.14 (see van Manen et al., 2022). Dissolved trace metal 310 

samples, blanks (Supplementary TTable S2), and references (Table S3) were analysed by ICP-MS (Thermo 311 

Scientific Sector Field High-Resolution Element 2, Thermo Fisher-Scientific, Waltham, USA). Blank values were 312 

much lower than the analysed samples, and reference results were in good agreement with certified values.  313 

For the particulate samples, including POP, the procedure blanks without a filter were treated identically to the 314 

samples, except for the steps involving filter handling and the removing of the filter from the filter holders. 315 

Therefore, the vial blank is included in this reagent blank. Filter blanks consisted of unused acid cleaned PES disc 316 

filters (Table S4).  317 

Accuracy and precision of the digestions were assessed by Certified Reference Materials (CRMs). There is no 318 

CRM available for marine suspended particulate matter, therefore accuracy could only be approximated by 319 

analysis of other available CRMs. PACS-2 and MESS-3 (marine sediments, National Research Council of 320 

Canada) were analysed. For each CRM, 10-30 mg were digested, whilst recommended sample weights are 250 321 

mg for PACS-2 and MESS-3. The lower sample weights in this study were chosen to be representative of actual 322 
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marine particulate suspended matter concentrations (similar to Ohnemus et al., 2014).  PACS-2 and MESS-3 were 323 

only subjected to the total digestion (Table S5). The CRMs were in good agreement with the certified values. 324 

 325 

2.7 Particulate organic carbon and nitrogen 326 

For POC and PON sampling, 1 L of unfiltered seawater was collected from each cubitainer and stored in dark 327 

bottles (Nalgene, Rochester, USA) at 1 °C until further processing (within 4 h after sampling). Filtrations were 328 

then performed using combusted (4 h at 500 °C; Verardo et al., 1990) 0.3 µm 25 mm GF75 filters (Whatman, 329 

Cytiva, Maidstone UK) and under modest under pressure (max. 200 mbar). Filters were folded once, packed in 330 

aluminium foil, and stored frozen (-20 ⁰C) until analysis. The POC and PON concentrations were measured using 331 

a Thermo-Interscience Flash EA1112 Series Elemental Analyzer (Thermo Scientific, Waltham, USA) with excess 332 

oxygen, at 900 °C and a detection limit of 100 ppm and a precision of 0.3 % (Verardo et al., 1990). Before analysis, 333 

GF75 filters were folded and packed into a tin cup. The instrument blank is included by the analyser calibration. 334 

Carbon and nitrogen content of samples and blanks were computed according to the results of the standard 335 

measurements, and the blank was subtracted from the sample. Acetanilide (C8H9NO) with 71.09 % C and 10.36 336 

% N (ThermoQuest, Milan, Italy) was measured as standard material, and silty and sandy soil standards from 337 

Elemental Microanalysis were measured as an internal reference. 338 

 339 

2.8 Phytoplankton photosynthetic efficiency 340 

Fv/Fm was determined in a Water-K quartz cuvette (3.5 mL) using pulse amplitude modulated fluorometry (Heinz 341 

Walz WATER-PAM, with Red LEDWATER-ED cuvette version S/N EDEE0196, Walz GmbH, Effeltrich, 342 

Germany). Samples were kept in 50 mL Greiner tubes (Thermo Fisher-Scientific, Waltham, USA) in the cold 343 

(stored in a cool box on ice) and in the dark for dark-adaptation (15 min up to occasionally 4 h). Acclimation 344 

times of up to 4 h did not affect photosynthetic efficiency of different phytoplankton (L. Peperzak, personal 345 

communication; Eich et al., 2021). The measuring light frequency used was set to level 5 (25 Hz) with an intensity 346 

of 8, the SAT-pulse width was set to 0.8 seconds and the far-red pulse width was set to 10 seconds, with intensities 347 

of 10 and 6, each. The cuvette was rinsed with ultra-pure (UP) water between samples, which was removed by 348 

shaking the cuvette and placing it upside down on lint-free paper towels to remove any remaining droplets (testing 349 

technical replicates did not show a significant effect of UP rinsing, non-parametric Kruskal-Wallis ANOVA, p = 350 

0.95). and tThe relative fluorescence yield (Ft) values were kept between 100 and 1000 by adjusting the PM-gain. 351 

Blanking was done for each station and/or bioassay using 0.2 µm filtered seawater (Cullen & Davis 2003) from 352 
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the respective stations and repeated after PM-gain adjustment when needed. The following formula was used to 353 

obtain the photosynthetic efficiency: Fv/Fm = (Fm-F0)/Fm, with F0 being the minimum fluorescence, and Fm being 354 

the maximum fluorescence. 355 

 356 

2.9 Chlorophyll a concentration and pigment-based taxonomic analyses 357 

Samples (0.54 - 2.65 L) for Chl a concentrations and pigment-based community composition were filtered within 358 

30 min of subsampling (kept on ice and in the dark) on GF/F glass fibre filters (25 mm diameter, Whatman, 359 

Cytiva, Marlborough, USA) using a vacuum pump (max. 200 mbar), until filters showed clear colouring. Samples 360 

were taken for total as well as a < 20 µm fraction for better compatibility with phytoplankton community 361 

measurements by flow cytometry. For the < 20 µm fraction, natural seawater was reverse sieved through a 20 µm 362 

mesh before filtration onto a GF/F filter. Due to low sample volume availability at bioassay A2, the same amount 363 

of water from all replicates was combined for both total and < 20 µm Chl a samples, resulting in one averaged 364 

value for each treatment. Filters were folded once and double wrapped in aluminium foil, flash-frozen in liquid 365 

nitrogen and stored at -80 °C until further analysis in the home lab. Pigments were dissolved in 90 % acetone from 366 

the freeze-dried filters according to Van Leeuwe et al. (2006) and high-performance liquid chromatography 367 

(HPLC) pigment separation was performed (Zobrax-Eclipse XDB-C8 column, 3.5 μm particle size) according to 368 

Van Heukelem & Thomas (2001). Detection of pigments was based on both the retention time and diode array 369 

spectroscopy of standards (346 nm, Waters 996), quantification was based on calibration curves using those 370 

standards (DHI LAB standards). Phytoplankton community composition was determined using CHEMTAX 371 

version 1.95 (Mackey et al., 1996), following Selz et al. (2018). For the final pigment ratios, see Table S766.  372 

 373 

2.10 Phytoplankton and bacterial cell abundances (< 20 µm) 374 

Phytoplankton cell abundances (< 20 µm) were obtained using a 488 nm Argon laser benchtop Beckton-Dickinson 375 

FACSCalibur (BD Biosciences, Franklin Lakes, USA) flow cytometer with the trigger set on red Chl a 376 

autofluorescence (Marie et al., 1999). The phytoplankton samples from the Amundsen Sea bioassays were 377 

measured fresh within 30 min of sampling (stored on ice); the Weddell Sea bioassay phytoplankton samples were 378 

fixed for 15 – 30 min with 100 µL formaldehyde-hexamine (18 % v/v:10 % v/v) at 4 °C, flash-frozen in liquid 379 

nitrogen and stored at -80 °C until analysis in the home lab. Phytoplankton populations were differentiated based 380 

on their red autofluorescence and side scatter, using FCS express 5 (De Novo Software, Pasadena, CA, USA). 381 

Freshly counted samples resulted in comparable gating as the fixed samples (tested for Amundsen Sea samples). 382 
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A total of 25 populations were distinguished (Table S7), whereby not all populations occurred in both seas and 383 

all bioassays. Average cell diameters were determined by size-fractionation, i.e., serial gravity filtration through 384 

20, 10, 8, 5, 3, 2, 1, 0.8 and 0.6 µm PC filters (Whatman, Cytiva, USA, Marlborough, MA) using a reuseable filter 385 

holder (Whatman, Cytiva, Marlborough, USA) and a plastic syringe. The number of cells retained by each filter 386 

per discriminated population were plotted against the respective filter size. The average cell diameters were 387 

defined as the size where 50 % of the original number of cells were retained, based on the fit of a sigmoidal plot 388 

(Veldhuis & Kraay, 2004). Phyto 5, 6, 7, 11, 12 and 14 were cryptophytes that were identified by their orange 389 

phycoerythrin autofluorescence. Based on earlier work (Biggs et al., 2019), we consider phytoplankton 390 

populations Phyto 20 and 22 to 25 to be diatoms and Phyto 8 to be Phaeocystis antarctica by comparing the red 391 

autofluorescence and side scatter pattern of the respective phytoplankton groups. The latter was confirmed during 392 

the Amundsen Sea expedition when we selectively collected Phaeocystis colonies and analysed them fresh 393 

onboard after gentle shaking (to break up the colonies). Phytoplankton carbon was estimated based on cell volume 394 

of phytoplankton, assuming spherical cells, and using 237 fg C µm−3 for picophytoplankton populations Phyto 1 395 

to 6 and 196.5 fg C µm−3 for nanophytoplankton populations Phyto 7 to 25 (Garrison et al., 2000; Worden et al., 396 

2004). Phytoplankton net growth rates were calculated using exponential trendlines. For total abundances, the full 397 

incubation period was taken into account (i.e., day 1 - 6 for Amundsen Sea and day 2 - 8 for Weddell Sea 398 

bioassays). Starting abundances were taken prior to filling of the cubitainers and hence not taken into account. 399 

For the phytoplankton group specific rates only those time points (>3 but most often 4-5 time points) with a 400 

consecutive increase in abundances were selected. 401 

Samples for bacterial abundances were fixed with EM-grade glutaraldehyde (0.5% final concentration; Sigma- 402 

Aldrich, Zwijndrecht, The Netherlands), flash-frozen in liquid nitrogen and stored at -80°C until analysis using 403 

flow cytometry (Marie et al.; 1999). Bacterial carbon concentrations were calculated assuming 12.4 fg C cell–404 

1  (Fukuda et al.; 1998). 405 

 406 

2.11 Statistical analyses 407 

All statistical analyses were performed using R (R Core Team, 2021). To detect differences in phytoplankton 408 

community composition between treatments, an ANOSIM analysis was performed (vegan library, using Bray-409 

Curtis dissimilarity with 9999 permutations). When a significant difference (p < 0.05) was detected, an indicator 410 

species analysis (vegan library, function r.g. with 9999 permutations) was used as a follow-up analysis to see 411 

which phytoplankton groups differed between treatments. This was done for both flow cytometry-based 412 
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abundances and pigment-based taxonomic group composition, using relative values, thus normalized against total 413 

Chl a for pigment-based community composition, and total phytoplankton abundance for both pigment-based and 414 

flow cytometry-based phytoplankton groups. For the indicator species analysis, p-values are reported. A Scheirer-415 

Ray-Hare test (non-parametric ANOVA-like test) was performed to determine the significance of Fe-addition and 416 

temperature increase, as well as potential interaction effects, on the respective response variable measured. The 417 

test was performed for data of the last day of the incubation, since effects were usually strongest then, and some 418 

variables were only sampled at the beginning and the end of the experiment (day 6 for A1 and A2, day 8 for W1 419 

and W2). We manually calculated eta-squared (η2, amount of variance explained, the higher the value, the larger 420 

the effect) by dividing the sum of squares of the effect of interest (i.e. iron addition, temperature increase and the 421 

interaction between these two) by the total sum of squares. The η2 is provided when temperature increase, iron 422 

addition, and/or the interaction between both tested as significant. Since we wanted to look at the overall effect of 423 

Fe addition, temperature increase, and potential interaction effects on total phytoplankton abundances based on 424 

flow cytometry, we additionally performed a generalized linear model (GLM), assuming a quasi-poisson 425 

distribution in combination with a log-link, including the bioassay as well as the day number as factors without 426 

interaction, and including an interaction term for the Fe- and temperature-treatment. For the GLM, the data of all 427 

bioassays and all timepoints (excluding day 0) were combined. The formula for the GLM was:  total phytoplankton 428 

abundances ~ Fe treatment * temperature treatment + bioassay name + day number. Statistical results are only 429 

reported for variables where more than 1 replicate was available. We also performed an NMDS analysis based on 430 

phytoplankton abundances using the vegan library with Bray-Curtis dissimilarity (seed set to 123). A significance 431 

level of p < 0.05 was used. Where applicable, the mean ± standard deviation is reported, unless stated otherwise. 432 

All statistical results are reported in the Supplements (Tables S9 – S20). 433 

 434 

3. Results 435 

3.1 Sample site characteristics 436 

The in-situ temperature was below zero for all bioassays, with lowest values for Amundsen Sea bioassay A2 and 437 

Weddell Sea bioassay W2 (-1.6 °C and -1.4 °C, respectively, compared to -0.6 °C and -0.3 °C for A1 and W1). 438 

The daily average irradiance at sampling depth on day of sampling was lowest for A1 and A2, i.e., < 6 µmol 439 

quanta m-2 s-1, compared to 18 and 98 µmol quanta m-2 s-1 for W1 and W2. Dissolved inorganic macronutrient 440 

concentrations were relatively comparable between bioassays, except the silicate concentration in W1 being ~20 441 

µM lower than for the other bioassays (but still far from limiting).  Initial dFe concentrations in the Weddell Sea 442 
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were lower compared to the Amundsen Sea (Table 1), as were dMn concentrations (Fig. 2). Bioassay A1 had the 443 

highest Chl a concentrations (sampled within the ASP), followed by W1. Both bioassays also had the highest 444 

share of >20 µm Chl a. The Chl a concentration of A2 was almost exclusively made up of < 20 µm sized 445 

phytoplankton (98% of total Chl a, Table 1). Flow cytometry derived phytoplankton abundances were highest for 446 

the Amundsen bioassays. The photosynthetic efficiency Fv/Fm at the start of the incubations was 2-fold lower for 447 

the Weddell Sea bioassays compared to the Amundsen Sea bioassays (i.e., 0.3 vs 0.6 r.u., respectively). The station 448 

for bioassay W2 was closest to the coast, followed by A1, A2 and W1, however distance to land did not seem to 449 

have a major impact on either phytoplankton community composition, or nutrient concentrations.  450 

 451 

Table 1: Characteristics of the seawater used for the bioassay experiments. Lat. = latitude, Long. = longitude, Temp = 452 
temperature, Si = silicate, PO4 = phosphate, NOx = nitrate + nitrite, dFe = dissolved iron, Chl a = chlorophyll a, Phyto = total 453 
flow cytometry based phytoplankton abundances, Fv/Fm = photosynthetic capacity of the total phytoplankton. The reported 454 
irradiance is the average irradiance at the sampling depth on the day of sampling.  455 

Bioassay Station Lat. Long. Temp. Salinity  Irradiance  Si  

     (°S) (°W) (°C) (psu) (µmol quanta m2 sec-1) (µM) 

A1 31 73.50 116.50 -0.6 33.99 5.0 77.984.7 

A2 52 72.00 118.42 -1.6 33.89 3.1 77.578.5 

W1 17 65.00 000.00 -0.3 33.90 17.7 58.3 

W2 36 70.08 011.08 -1.4 33.82 97.6 71.827.7 

        

        

Bioassay PO4  NOx  dFe  
total Chl 

a 

< 20 µm 

Chl a 
Phyto Fv/Fm 

  (µM) (µM) (nM) (µg L-1)  (%) (x103 mL-1)  r.u. 

A1 1.8 24.327.7 0.28 3.0 42 8.4 0.6 

A2 2.0 2.1 28.230.9 0.10 0.4 98 7.1 0.6 

W1 1.6 24.0 0.05 1.5 24 5.6 0.3 

W2 1.9 27.9 0.03 0.6 65 4.4 0.3 

 456 

 457 

3.21 Nutrient dynamics 458 

Bioassay treatments without Fe addition (C and T) started at naturally low dFe concentrations (0.28 ± 0.16, 0.10 459 

± 0.02, 0.05 ± 0.03 and 0.03 ± 0.01 nM natural dFe for bioassay A1, A2, W1 and W2, respectively), and stayed 460 

within these ranges. The Fe addition treatments (F and TF) showed a rapid (and overall comparable) drawdown 461 
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of the added Fe (natural Fe for A1 and A2; Fig 2a, b and d57Fe for W1 and W2; Fig. 2e, f) in all bioassays, 462 

regardless of its isotopic composition. The dFe concentrations in F and TF treatments (0.29 ± 0.07 nM) at the end 463 

of the bioassays were comparable to concentrations in non-Fe addition treatments (0.28 ± 0.14 nM, Table S98) 464 

for the relatively high-Chl a bioassay A1. In contrast, bioassay A2 had most dFe left at the end of the incubation 465 

(0.80 ± 0.46 nM for F and TF, compared to 0.11 ± 0.04 nM for C and T) which concurs with the low starting Chl 466 

a concentration and irradiance intensity. However, since the average dFe concentration in Fe amended treatments 467 

was lower (0.65 ± 0.10 nM) in the middle of the incubation period (day 3, see Figure 2 b), we cannot rule out 468 

potential contamination during sampling as a reason for the higher dFe concentrations, notably in the F treatment. 469 

For the Weddell Sea bioassays, d57Fe in F and TF treatments declined rapidly with low final concentrations (0.14 470 

± 0.03 and 0.31 ± 0.17 nM for W1 and W2, respectively) compared to the non-Fe addition treatments (0.01 ± 0.01 471 

nM d57Fe and below detection limit for W1 and W2, respectively). Other trace metals were also measured, and 472 

dissolved manganese (dMn) drawdown did not differ between treatments (Fig. 2g-j). However, the starting 473 

concentrations of dMn were low for W1 and W2 (0.06 ± 0.03 and 0.19, SD < 0.01 nM, compared to 0.76, SD < 474 

0.01 1.16 ± 0.01 nM for A1 and A2, respectively). 475 

The dissolved inorganic macronutrients were not limiting phytoplankton growth during the bioassays. Final 476 

concentrations were at least 7.2, 0.3 and 37 µM in all bioassays for nitrogen, phosphate, and silicate, respectively 477 

(Supplement Fig. S42). Still, there was discernible drawdown of macronutrients by the microbial community 478 

during the incubations, except for Amundsen Sea bioassay A2 (Supplement tables S10, S21). Fe addition (both F 479 

and TF treatments) had a significant impact on phosphorous drawdown for bioassays A1, W1 and W2 (p < 0.05, 480 

η2: 0.53, 0.76 and 0.76 for A1, W1 and W2, respectively; and on average 0.45 µM lower for Fe addition treatments 481 

compared to C) and on nitrogen drawdown for bioassays W1 and W2 (p < 0.004, η2 > 0.75, average of 9.8 µM 482 

lower for Fe addition treatments compared to C). The TF treatment showed stronger drawdowns especially for 483 

Weddell Sea bioassays W1 and W2 (average 0.7-fold change between TF and F treatments for both phosphorus 484 

and nitrogen, respectively), however there was no significant interaction effect between temperature increase and 485 

Fe addition. In contrast, silicate acid concentrations at the end of the incubation period were impacted by the 486 

increase in temperature for bioassays A1, A2 and W2 (p < 0.02, η2: 0.76 for A1 and W2 and η2: 0.52 for A2 and 487 

p = 0.06 and η2: 0.32 for bioassay W1), with T treatments showing on average a 2.4 µM lower silicate 488 

concentration compared to the control. Only bioassay W1 showed an effect of Fe-addition on silicate drawdown 489 

(p = 0.02, η2: 0.52), resulting in the TF treatment showing lowest concentrations on the last day of the incubations 490 

(0.8-fold change compared to the control and 0.9-fold change compared to both T and F treatment). The ratios of 491 
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silicate drawdown to nitrogen and to phosphorus were higher in W1 than in W2 (i.e., 1.4 and 18.3 in W1 and 0.7 492 

and 10.5 in W2). Moreover, when dFe was added, the silicate to nitrogen ratio (Si:N), as well as silicate to 493 

phosphorous ratio (Si:P)  drawdown was lower in bioassays A1, W1 and W2 compared to non-Fe treatments (0.86 494 

and 1.02 Si:N for Fe and non-Fe treatments and 11.3 and 12.5 Si:P, respectively, Table S10).  495 

 496 

 497 

 498 

Figure 2: Average concentrations of natural dissolved Fe (a, b, c, d), d57Fe (e, f) and dMn(g, h, i, j) concentrations for 499 
Amundsen Sea (A1: a, g; A2: b, h) and Weddell Sea (W1: c, e, i; W2: d, f, gj) bioassays. Amundsen Sea bioassays did not 500 
receive 57Fe supplementation. The black line represents the control (C) treatment, the red line the temperature (T) treatment, 501 
the blue line the iron (F) treatment, and the purple line the combined temperature and iron treatment (TF). Error bars 502 
indicates the standard deviation (n = 2 or 3, except for dFe of bioassay A2 TF treatment day 3), when they are not visible it is 503 
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smaller than the symbol. Bioassay A2 showed a higher dFe concentration on day 6 compared to day 3, which we cannot 504 
exclude to be due to potential contamination and was thus treated as an outlier. 505 

 506 

Particulate Fe concentrations (natural pFe for A1, p57Fe for W1 and W2) increased over time for the Fe addition 507 

treatments (Table S821 (Metadata), Table S8) in all bioassays examined (excluding A2 as particulate metals were 508 

not measured there), and pFe concentrations at the last day of incubations were (positively) impacted by Fe-509 

addition (p ≤ 0.01, η2 ≥ 0.73 for A1, W1 and W2, final concentrations were 8.01 ± 0.83, 1.09 ± 0.10, 0.89 ± 0.33 510 

nM for Fe addition treatments and 4.40 ± 0.21, 0.08 ± 0.02, 0.09, SD < 0.01 nM for treatments without Fe addition 511 

for A1, W1 and W2, respectively).  512 

To examine potential differences in phytoplankton trace metal stoichiometry in response to Fe addition and/or 513 

warming, we calculated the ratio of pFe and other trace metals (pMn, pZn, pCd and pCu) to POP concentrations 514 

(Fig. 3, Table S821). The initial lithogenic fraction of particulate trace metals was on average 60% in Amundsen 515 

Sea compared to 52% in the Weddell Sea. Particulate Al, and hence the estimated lithogenic particle 516 

concentrations, remained in the same range between the start and end of the experiments (Table S20) and thus the 517 

lithogenic particles provided a consistent background that did not affect observed changes between treatments. 518 

Fe-addition significantly increased pFe:POP ratios (natural pFe for A1 and p57Fe for W1, W2, Table S11) for all 519 

bioassays (p ≤ 0.01, η2 ≥ 0.73; average 2.5-fold change for natural pFe:POP (A1) and 13.3-fold change for 520 

p57Fe:POP in Weddell Sea bioassays for Fe-addition treatments compared to the control). Furthermore, the 521 

pMn:POP ratios increased (by 0.33 compared to C) due to Fe-addition in bioassay A1 and decreased (by 0.13 522 

compared to C) in W2 (p < 0.01 and 0.004, η2: 0.74 and 0.76, respectively). For bioassay W1, neither Fe nor 523 

temperature alone had a significant impact on the pMn:POP ratio, however, the combination of both treatments 524 

tested significant (p = 0.01, η2: 0.63), with the TF treatment showing an average 1.4-fold changed ratio compared 525 

to all other treatments. Also, the pCd:POP ratio was significantly affected by Fe-addition in W1 and W2 (p < 0.05, 526 

η2: 0.76 and 0.39 for W1 and W2), showing decreased values (by on average 0.12) for Fe-addition treatments 527 

compared to the control (Fig. 3 o-q), however no effect was seen for bioassay A1. A similar outcome was observed 528 

for pZn:POP ratios (p ≤ 0.01, η2: 0.65 and 0.76 for W1 and W2, respectively, by on average 1.8 compared to C). 529 

For pCu:POP ratios, a decrease due to Fe-addition was mainly observed in bioassay A1 and W2 (p < 0.009, η2 ≥ 530 

0.73, by on average 0.16 compared to C), while for bioassay W1, Fe-addition caused a notable, but not statistically 531 

significant effect (p = 0.09, η2: 0.32, Fig. 3, by on average 0.23 compared to C).  532 
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 534 

Figure 3: Average ratios (x10-3, mM:M) of particulate trace metal to particulate organic phosphorus (POP) for Amundsen 535 
Sea A1 (a, f, iI, l, o) and Weddell Sea W1 (b, d, g, j, m, p) and W2 (c, e, h, k, n, q) bioassays. There is no data available for 536 
A2. pFe = natural particulate, p57Fe = particulate iron in the 57Fe form (not added to Bioassay A1), pMn = particulate 537 
Manganese, pZn = particulate Zinc, pCu = particulate copper, pCd = particulate cadmium. t0 are starting ratios, whilst ratios 538 
for C (control), T (temperature), F (iron) and TF (combination of temperature and iron) were measured on the last day of the 539 
incubations (day 6 and 8 for Amundsen and Weddell Sea bioassays, respectively).  Error bars indicates the standard deviation 540 
(n = 2 or 3), except for bioassay A1, T-treatment for all ratios and bioassay W1 C treatment for the pFe:POP ratio, there n = 541 
1. If the error bar is not visible, then it is smaller than the symbol. Please note the different y-axis ranges for manganese to 542 
POP ratios (f–h). 543 
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 3.32 Photosynthetic efficiency 544 

The photosynthetic efficiency Fv/Fm at the start of the incubations was 2-fold lower for the Weddell Sea bioassays 545 

compared to the Amundsen Sea bioassays (i.e., 0.3 vs 0.6 r.u., respectively). Fe addition led to an increase of 546 

Fv/Fm for all bioassays (Fig. 4, p ≤ 0.009; η2 > 0.68 for all bioassays, Table S12), with stronger increases in 547 

Weddell Sea compared to Amundsen Sea bioassays (average of 1.42- and 1.14-fold change for Fe addition (F and 548 

TF) versus control treatments for Weddell and Amundsen Sea bioassays, respectively). Towards the end of the 549 

incubations of W1 and W2, Fv/Fm decreased slightly again for the Fe addition treatments (most so for TF, with 550 

final Fv/Fm values being still higher than for C and T treatments), coinciding with Fe depletion (Fig. 2).  551 

 552 

 553 

 554 

Figure 4: Temporal dynamics of the photosynthetic efficiency (Fv/Fm, relative units) of the phytoplankton for the Amundsen 555 
Sea A1 (Aa), A2 (Bb) and the Weddell Sea W1 (Cc) and W2 (dD) bioassays. The black line represents the control (C) 556 
treatment, the red line the temperature (T) treatment, the blue line the iron (F) treatment, and the purple line the combined 557 
temperature and iron (TF) treatment.  Averages of triplicates with error bars representing the standard deviation; if not visible 558 
it is smaller than the symbol. The control treatment of bioassay A1 showed an outlier for Fv/Fm values on day 4, which was 559 
excluded. 560 

 561 

3.43 POC, Chl a, and phytoplankton taxonomic community composition 562 

Total Chl a concentration at the start of the incubations (Table 1) was highest for the ASP bioassay A1 (3 µg L-1) 563 

and lowest for bioassay A2 outside the ASP (0.4 µg L-1). Of the Weddell Sea bioassays, W1 had the highest Chl 564 

a starting concentration (1.5 compared to 0.6 ug L-1 for W1 and W2). Starting concentrations of total POC in A1  565 
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and W1 were higher than A2 and W2 (384 and 347 ug L-1 compared to 91 and 136 ug L-1, respectively). The POC 566 

to Chl a ratio was lower for A1 (130) than the other bioassays (212-239). Total POC concentrations did not display 567 

differences between treatments at the end of the incubations for A1 and A2 (Fig. 5a-d), yet total Chl a 568 

concentrations exhibited treatment-specific differences for all bioassays (Fig. 5e-h, Table S13). Only bioassays 569 

W1 and W2 showed a significant increase in bacterial abundances with Fe addition (final abundance 4.7 ± 0.9, 570 

4.5 ± 0.5 vs 3.1 ± 1.0 and 4.7 ± 0.6, 5.4 ± 0.2 vs 4.4 ± 0.1 for F, TF vs C treatments in W1 and W2, respectively, 571 

Table S12). However, bacteria did not have a major effect (less than 3%) on total POC concentrations. Fe-addition 572 

always positively impacted Chl a concentrations (p: 0.02, 0.005 and 0.006, η2: 0.52, 0.76 and 0.67 for bioassays 573 

A1, W1 and W2; not tested for A2 due to n = 1 for all Chl a samples and W1 C due to n = 1), however the effect 574 

was stronger in Weddell Sea Bioassays (average of 1.6- and 2.9-fold difference for Amundsen and Weddell Sea 575 

with Fe addition compared to C). Amundsen Sea bioassays also showed a slight increase in Chl a with increased 576 

temperatures. Strongest treatment-specific increases in Chl a concentrations were, however, obtained for the TF 577 

treatment in all bioassays, resulting in an average of 1.7 µg more Chl a L-1 compared to the F treatment. POC 578 

concentrations in W1 and W2 showed similar treatment responses as total Chl a in these bioassays.  579 

The TF treatment also caused the strongest increase for the < 20 µm Chl a fraction (Fig. 5 e–h) for all bioassays, 580 

and Fe-addition generally had a positive impact on < 20 µm Chl a concentrations, with effects being strongest in 581 

both Weddell Sea bioassay W1 and W2 (increases of 1.2, 0.2, 0.5 and 0.7 µg L-1 for A1, A2, W1 and W2 compared 582 

to the control, respectively and p = 0.04 and 0.006, η2: 0.37 and 0.67. A2 and W1 were not tested due to missing 583 

replicates). The < 20 µm fraction at the start of the bioassays made up respectively 42, 24 and 65 % of total Chl a 584 

in A1, W1 and W2, whereas for bioassay A2 95 % of the total Chl a concentration was < 20 µm. At the end of 585 

the bioassays, shares were 42, 25, 35 % and 70 % for A1, W1, W2 and A2, respectively.  586 

Diatoms dominated the phytoplankton community at the start of A1 and W1 (53 and 62 % of total Chl a), followed 587 

by haptophytes (34 and 27 %; Fig. 5i-l). Bioassay W2 had a comparable share of diatoms and haptophytes (42 588 

and 46 % of total Chl a), whilst the phytoplankton community of A2 was taxonomically most diverse.  589 

Diatoms showed in general a strong response to Fe addition (F and TF treatment) and could be defined as an 590 

indicator group for Fe addition treatments in A1 and W2 (p < 0.005). Absolute diatom abundances increased as 591 

well with Fe-addition, especially for the TF treatment, in bioassays A1 (F and TF treatment, p = 0.007) and W2 592 

(TF treatment, p = 0.02, Table S821). In bioassay W2, diatoms also showed a higher share for Fe addition 593 

treatments in the < 20 µm fraction (p < 0.05), with absolute abundances being higher in the TF treatment for 594 

bioassays A1, W1 and W2 (p < 0.04), and bioassay W1 also showing higher abundances at the F treatment (p = 595 
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0.04). The contribution of haptophytes declined (in response to the diatom increase, also in W1 where the diatom 596 

response was not significant, p < 0.007), however their absolute concentration (in µg Chl a L-1; Table S821) did 597 

not decline except for the F-treatment in bioassay W2 (p = 0.01). Both the share (p = 0.01) and absolute 598 

concentration (p = 0.04) of pelagophytes increased with Fe addition in the < 20 µm fraction of bioassay A1. 599 

Cryptophyte abundances increased in the total fraction of the TF treatment for A1 and W2 (p = 0.02 and 0.01, 600 

respectively), and the < 20 µm fraction in W1 (p = 0.02), however their share did not change with treatments.  601 

 602 
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 603 

Figure 5: Average concentrations of particulate organic carbon (POC, a-d), total and < 20 µm (dotted columns) Chl a (e-h), 604 
and the taxonomic composition of the phytoplankton community (i-l , % of total Chl  a) for the Amundsen Sea A1 (a, e, i) 605 
and A2 (b, f, j), and the Weddell Sea W1 (c, g, k) and W2 (d, h, l) bioassays. Error bars represent the standard deviation (n = 606 
3 except when no error bar is shown, then n = 1). t0 = starting conditions, C = control, T = temperature treatment, F = iron 607 
addition treatment, TF = temperature and iron addition treatment. For i-l, Crypto, Dino, Hapto, Pelago and Chloro stands for 608 
cryptophytes, dinophytes, haptophytes, pelagophytes and chlorophytes, respectively. Solid bars represent the total and 609 
shaded bars the < 20 µm fraction community composition. Note the difference in y-axis for the Chl a panels e-h. 610 

 611 

3.54 Phytoplankton abundances 612 

The total abundances of < 20 µm phytoplankton (Fig. 6, Fig. S35, Table S821) increased with time for all 613 

bioassays and the treatment-specific dynamics largely mimicked the responses observed for the < 20 µm Chl a 614 

fraction (Fig. 5e-h, Table S12). Bioassay A1 had overall the highest phytoplankton abundances (up to 40,000 ± 615 

4,000 cells mL-1 for the TF treatment; Fig. 6a) and was dominated by Phaeocystis antarctica Phyto 8 (highest 616 

abundances of 37,053 mL-1 were observed in the TF treatment; Table S821). Phyto 19 increased specifically in 617 

abundance and share (Fig. 6a, Table S14) specifically in the temperature treatments, with net growth rates of 0.40 618 

± 0.08 d-1 and 0.52 ± 0.005 d-1 for the T and TF treatments (compared to 0.35 ± 0.11 d-1 and 0.30 ± 0.09 d-1 for 619 

C and F treatments, p < 0.04, Table S15) and final abundances of 2,800 and 3.500 cells mL-1 for T and TF ( 620 

compared to 1,700 and 1.300 mL-1 for C and F, p < 0.01). Phyto 3 also showed higher abundance-derived net 621 

growth rates with warming (0.33 ± 0.13 and 0.32 ± 0.002 vs 0.26 ± 0.06 d-1 for the T, TF and C treatment, 622 
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respectively), but with abundances being only significantly higher for the TF treatment (776 ± 37 vs 542 ± 107 623 

cells mL-1 for TF and C treatments). Phyto 24 was positively impacted by Fe addition, particularly the TF treatment 624 

resulted in higher net growth rates and final abundances (i.e., 0.32 ± 0.09 vs 0.15 ± 0.06 d-1, and 595 ± 62 vs 361 625 

± 9 cells mL-1 for TF compared to the C treatment; p < 0.05). for C and TF treatment, respectively (p < 0.05). 626 

When converted to cellular carbon based on cell volume using 237 and 196.5 fg C µm−3  as conversion factors for 627 

Pico- and Nanophytoplankton, respectively (Fig. 6e), the strong positive response of the phytoplankton to the TF 628 

treatment was mostly due to this larger-sized Phyto 24 (average diameter of 19 µm, p = 0.01, stat: 0.92) and to 629 

smaller extent Phyto 19 (p < 0.01). 630 

 631 
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 632 

Figure 6: Flow cytometry-based phytoplankton community composition (a-d) and carbon (e-h) at the start (t0) and the end 633 
of the bioassay incubations for the different treatments (average of triplicates) for Amundsen Sea bioassays A1 (a, e), A2 (b, 634 
f), and Weddell Sea bioassays W1 (c, g) and W2 (d, h). t0 = starting conditions, C = control, T = temperature treatment, F = 635 
iron addition treatment, TF = temperature and iron addition treatment. Phytoplankton groups are sorted by size, with Phyto 1 636 
– 6 ≤ 3 µm, Phyto 7 – 20 ≤ 10 µm and Phyto 21 – 25 ≥ 10 µm. Phyto 5, 6, 7, 11, 12 and 14 are cryptophytes, Phyto 20, 22 – 637 
25 diatoms and Phyto 8 Phaeocystis antarctica. Note the different scales.  638 

 639 

Bioassay A2 presented the highest share of picoeukaryotes, especially Phyto 3 (59 % compared to max. 18 % in 640 

the other bioassays, Fig. 6b). Only fewNo apparent treatment-specific responses were recorded. , apart from Phyto 641 

19 that increased somewhat with warming (p = 0.04), and Phyto groups 16 and 17 showed increased net growth 642 

rates with Fe addition (0.31 ± 0.22 and 0.23 ± 0.06 vs 0.09 ± 0.16 and 0.31 ± 0.06, 0.30 ± 0.06 and 0.23 ± 0.06 643 

for the F, TF and C treatments of Phyto 16 and 17, respectively, p < 0.02 for both, Table S14, Table S16). The 644 

phytoplankton populations in W1 were distributed more equally (Fig. 6c), with higher abundances of especially 645 

Phyto 16 and 17 for the Fe addition treatments (p < 0.05, most pronounced for TF with average abundances of 646 

3,103 ± 1,290 vs 948 ± 218 cells mL-1 and 2,041 ±572 vs 1,158 ± 216 cells mL-1 for Phyto 16 and 17 in the TF vs 647 

C treatments, respectively, Table S14). Their specific net growth rates were up to 2.2-fold higher for the Fe 648 

addition treatments than the control (0.29 ± 0.02, 0.38 ± 0.10 and 0.20 ± 0.02, and 0.16 ± 0.02, 0.21 ± 0.06 and 649 
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0.09 ± 0.02 d-1 for the F, TF and C treatment of Phyto 16 and 17, Table S17). When expressed in carbon, Phyto 650 

16 was still a recognisable indicator species (p = 0.03) but at the same time the larger-sized Phyto 21 (average cell 651 

diameter of 10 um) and diatoms Phyto 22-24 (13-19 µm) showed clear positive responses to Fe addition (Fig. 6g, 652 

p < 0.05 for all). Net growth rates were largely comparable for these phytoplankton groups:  0.23 ± 0.02, 0.19 ± 653 

0.01, 0.17 ± 0.04, 0.20 ± 0.05d-1 for Phyto 21-24 in the F treatment (and similar net growth rates in the TF 654 

treatment) compared to 0.09 ± 0.07, 0.14 ± 0.03, 0.04 ± 0.04, 0.12 ± 0.02 in the C treatment, respectively (p < 655 

0.03). Bioassay W2 also showed a distinct shift in favour of Phyto 16 and Phyto 17 (away from Phyto 13) with 656 

Fe addition, already early in time (Table S821), both for abundances and cellular carbon (Fig. 16d, h, p < 0.01 for 657 

all, Table S14). The F treatment net growth rates of Phyto 16, 17 and Phyto 13 were 0.42 ± 0.02, 0.34 ± 0.03 and 658 

0.21 ± 0.09 d-1 (again with similar growth in the TF treatments) compared to 0.20 ± 0.03, 0.17 ± 0.04 and 0.37 ± 659 

0.02 d-1 in the C treatment (p < 0.03, Table S18). Diatoms 23 and 24 also responded positively to Fe addition with 660 

~2-fold higher net growth rates than the control (Fig. 6h, p < 0.01). Phyto 23 net growth rates were 0.37 ± 0.06 661 

and 0.39 ± 0.04 d-1 for F and TF compared to 0.19 ± 0.06 d-1 for the C treatment  (p = 0.004), and Phyto 24 net 662 

growth rates were 0.38 ± 0.08 and 0.32 ± 0.05 for F and TF treatments vs 0.22 ± 0.09 for the C treatment. .Diatom 663 

24 responded positively to Fe addition (F and TF, Fig. 16h, p < 0.01), similar as for bioassay W1, and diatom 664 

Phyto 23 showed higher abundances for the TF treatment (p = 0.04) Phyto 19 was the only phytoplankton 665 

population that showed a consistent selective positive response (in share) to warming (and not to Fe addition) in 666 

the Amundsen Sea bioassays. Diatom Phyto 22 increased with temperature in bioassay W2 (p ≤ 0.01). We refer 667 

to Table S821 for less pronounced responses of the other phytoplankton populations. Overall, the response by the 668 

larger phytoplankton populations is also illustrated by the higher average cellular biovolumes in the F and TF 669 

treatments of W1 and W2 (Fig. S64). The Amundsen Sea bioassays did not show a treatment-specific increase in 670 

phytoplankton biovolume. Fe-addition had a significant effect on total phytoplankton abundances for Weddell 671 

Sea bioassays (p < 0.02, η2: 0.596 and 0.74 for W1 and W2, with Fe addition leading to an average 1.6-fold change 672 

compared to C). The GLM we performed (explained deviance: 86 %), indicates an interaction effect of Fe-addition 673 

and warming (p = 0.03 for the interaction, exponentiated coefficient (ec): 1.13), i.e. Fe-addition of 2 nM in 674 

combination with a 2 °C temperature increase led to an overall increase in algal abundances of about 28 %. Fe-675 

addition (ec: 1.03), temperature increase (ec: 1.11), bioassay and day number (p < 0.001 for all, for other statistical 676 

parameters, see Table S920) were also significant explanatory factors. The NMDS analysis of the Weddell Sea 677 

bioassays (Fig. S57c, d) demonstrated clear distinction between the Fe addition treatments and the non-addition 678 

treatments after the second day of the incubations. For bioassay W1, the TF and T treatments clustered on the last 679 
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day of incubation separately from the F and C treatments, respectively. For bioassay W2, the T treatment also 680 

separated on the last day while the TF and F treatments remained closer together. Bioassays A1 and A2 did not 681 

display obvious clustering by treatment, other than time (i.e., separation after day 2).  682 

 683 

4. Discussion 684 

4.1 Trace metal and macronutrient dynamics 685 

The pFe concentrations showed the expected significant increase in the Fe addition treatments for both Amundsen 686 

(natural dFe added) and the Weddell Sea bioassays (d57Fe added) at both temperatures, indicating that the added 687 

dFe was indeed taken up and incorporated in the phytoplankton cells. Additionally, in bioassay W2 the final p57Fe 688 

in the TF treatment was higher than in the F treatment (1.12 ± 0.11 nM compared to 0.66 ± 0.20 nM), 689 

demonstrating enhanced Fe uptake with higher temperatures.  690 

The higher starting concentrations of dFe in the Amundsen Sea, compared to the Weddell Sea, can be attributed 691 

to the Fe input from basal melt (Rignot et al., 2013). Conversely, the naturally low dFe concentrations in the 692 

Weddell Sea underscore the area's limited Fe input (e.g., de Baar et al., 1990; Klunder et al., 2011).  693 

Fe is needed in nitrate assimilation and as such uptake of nitrate is coupled to the Fe nutritional status (Schoffman 694 

et al., 2016, Milligan and Harrison, 2000). Similarly, diatom cellular silicate to nitrogen ratios are known to 695 

increase in response to Fe stress (Meyerink et al., 2017). Highest drawdown of the macronutrients typically 696 

occurred in the TF treatment, which also showed the largest phytoplankton accumulation (Table S20, Table S21). 697 

However, whilst dissolved inorganic phosphate and nitrogen drawdown was mostly affected by Fe addition, 698 

silicate drawdown in bioassays A1 and W2 was more impacted by temperature. Despite a lower Chl a 699 

concentration (both total and < 20 µm) and phytoplankton abundance for the T than the TF treatment in these 700 

bioassays, the silicate drawdown was comparable. Although Fe stress is reported to cause reduced cellular Chl a 701 

concentrations compared to Fe replete conditions (Greene et al., 1992), it is an unlikely cause as the total 702 

phytoplankton abundances displayed similar differences between the T and TF treatment compared to < 20 µm 703 

Chl a concentrations. Instead, higher temperature may have stimulated Si uptake, as reported for the diatom 704 

Pseudonitszchia seriata at temperatures above 0 °C (Stapleford & Smith, 1996). It might also be that the T 705 

treatment experienced higher Fe stress than the control, which is also known to increase Si uptake (Meyerink et 706 

al., 2017). However, since phytoplankton abundances, Fv/Fm and Chl a concentrations were not higher in T 707 

treatments compared to the control, and since phytoplankton requires less Fe at higher temperatures (Jabre & 708 

Bertrand, 2020), this is less likely. Bioassay W1 showed the strongest decline in silicate concentrations, with both 709 
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temperature and Fe affecting silicate drawdown. The relatively high fraction of diatoms (and specifically the large-710 

sized Phyto 20 and 22-24) in bioassay W1 could theoretically have caused the strong silicate drawdown and high 711 

ratio of silicate relative to nitrogen (or phosphorus) uptake for all treatments. However, A1 also had high diatom 712 

abundances and over the course of the incubations the concentration of diatoms in W2 became comparable to W1. 713 

An alternative explanation may be that Mn stress in W1 (0.06 ± 0.04 vs 0.19 ± 0 nM in W1 and W2, respectively) 714 

enhanced Si uptake, similar to Fe stress (Hutchins & Bruland, 1998). Increased Si uptake by diatoms under a 715 

combined Fe and Mn limitation may possibly enhance protection against grazers (Assmy et al., 2013; Ryderheim 716 

et al., 2022) and/or enhance sinking to more nutrient-rich depths (Waite & Nodder, 2001). Considering an 717 

increasing awareness of trace metal co-limitation of phytoplankton growth (Wu et al., 2019; Browning et al., 718 

2021; Balaguer et al., 2022; Burns et al., 2023), we recommend further investigation into these potential 719 

interactions and their ecological relevance in future studies.  720 

Dissolved Mn is known to (co-)limit Southern Ocean phytoplankton growth and community composition together 721 

with Fe (Browning et al. 2021, Balaguer et al. 2022). Under such conditions, Fe addition alone positively impacts 722 

Chl a concentrations, phytoplankton abundances and POC concentrations, but a combination of dFe and dMn 723 

addition can lead to higher increases in these variables (Pausch et al. 2019, Browning et al., 2021). Nevertheless, 724 

dMn addition effects can often be masked by the effects of Fe addition (Latour et al. 2023), and Fe addition alone 725 

can already lead to increases in Chl a even in primarily Mn-limited areas (Browning et al., 2021).  This fits our 726 

results showing increases in Chl a concentrations with Fe addition. Also net growth rates based on total 727 

phytoplankton abundances showed increases (i.e. 1. 5 (0.20 ± 0.05 vs 0.12 ± 0.02 d-1) and 1.4-fold (0.24 ± 0.01 728 

vs 0.18 ± 0.01 d-1) higher for Fe-addition treatments (F and TF) compared to the control for bioassays W1 and 729 

W2. The lower starting concentrations of dMn in W1 compared to W2 may have contributed to the 2-fold lower 730 

phytoplankton net growth rates in W1 compared to W2, independent of the treatment. Our data indicate potential 731 

dMn/dFe colimitation in the Weddell Sea already in early summer. Since the requirements for dMn and dFe differ 732 

between different phytoplankton groups (Arrigo, 2005; Twining & Baines, 2013; Balaguer et al., 2023), we 733 

suggest that the (co-)limitation of dMn and dFe may be affected by phytoplankton community composition. 734 

Considering that Mn limitation can be seasonal (Latour et al., 2023), we also urge to study different stages of the 735 

phytoplankton bloom period. 736 

Although Fe addition (F and TF treatments) led to 1.8 (0.11 ± 0.03 vs 0.06 ± 0.02 d-1) and 1.5-fold (0.23 ± 0.02 737 

vs 0.15 ± 0.01 d-1) higher net growth rates (based on total phytoplankton abundances) in W1 and W2 compared 738 

to the control. The lower starting concentrations of dMn in W1 compared to W2 may have contributed to the 2-739 
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fold lower phytoplankton net growth rates in W1 compared to W2, independent of the treatment. Since Fe addition 740 

still led to an increased growth rate even with low dMn concentrations, Fe must have been the main limiting 741 

factor. 742 

 743 

4.2 Micronutrient stoichiometry 744 

The observed pFe:POP ratios increased upon the addition of iron (natural pFe for bioassay A1 and p57Fe for 745 

bioassays W1 and W2), validating the experimental design and confirming the uptake of added dFe by 746 

phytoplankton. For other bio-essential (Mn, Zn, Cu) or bio-active (Cd) metals, the metal:POP ratio is expected to 747 

be elevated under Fe stress due to upregulation of non-specific divalent metal transporters under Fe stress (e.g., 748 

Kustka et al., 2007; Lane et al., 2008) or the increased uptake of phosphorous relative to metals under Fe replete 749 

conditions (growth-dilution; Cullen et al., 2003). Specifically for Mn, this might also be due to a higher cellular 750 

Mn requirement under Fe stress (Peers & Price, 2004). The pMn:POP ratios were indeed higher in the C and T 751 

treatments compared to the F and TF treatments of W2, but for W1, no consistent effect of Fe was observed (Fig. 752 

3). In contrast, slightly elevated pMn:POP ratios were observed after Fe addition in A1 (F and TF treatments), 753 

matching findings by McCain et al. (2021) and Hawco et al. (2022), showing increased Mn demand in 754 

environments with high Fe concentrations. This duality in the pMn:POP ratios is not surprising as Mn demand 755 

may not only increase under Fe stress, but it should also increase with Fe addition, as both Mn and Fe are required 756 

for photosynthesis (Raven 1990, McCain 2021, Hawco et al. 2022). Hence, in an environment with low dMn 757 

concentrations, Fe addition can consequently lead to Mn limitation (e.g., Hawco et al., 2022). Dissolved Mn 758 

concentrations at the start of bioassay A1 were relatively high, and indeed pMn:POP ratios increased with Fe 759 

addition, while concentrations of dMn decreased during the experiment. However, the low (potentially 760 

phytoplankton growth limiting) dMn concentrations in Weddell Sea bioassays from the start might have prevented 761 

a noticeable positive effect of Fe addition on Mn uptake. The higher biomass and cell abundance after Fe addition 762 

in these experiments implies the community had to make due with less Mn per cell than in the treatments without 763 

Fe addition (likely resulting in relatively low Mn quota despite elevated demand), potentially explaining why 764 

there was an increase in the pMn:POP ratios in the C and T treatments of W2, whereas this was not observed in 765 

W1 with even lower dMn starting concentrations. Such variation in apparent Mn demand and quotas likely reflects 766 

adaptive changes in nutrient uptake and storage mechanisms under nutrient stress but could also be due to different 767 

phytoplankton community compositions and/or environmental conditions. For example, Twining et al. (2004) 768 

observed elevated pMn:POP ratios in individual diatom cells under iron deplete conditions, relative to iron replete 769 
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conditions, whereas the trend was opposite for autotrophic flagellated cells. However, diatoms were dominant in 770 

the F and TF treatments in all experiments, suggesting that other factors besides differences in community 771 

composition play a role. The starting dMn concentrations differed between the bioassays, whereby the high 772 

starting concentrations of dMn in A1 could potentially explain the increased pMn:POP ratios in the F and TF 773 

treatments of this experiment., We speculate that a high availability of both Fe and Mn under the low light 774 

conditions in A1 could have led to increased Mn uptake for use in photosynthesis. Since dMn levels are thought 775 

to increase with Fe input (e.g., due to ice shelf melting; Van Manen et al., 2022), we recommend including dMn 776 

in future studies examining the effects of global climate change on phytoplankton growth.  777 

Besides Mn, other trace metals are known to have variable ratios with respect to POP under different 778 

environmental conditions. For example, cellular Cu requirements increase under Fe limitation (Schoffman et al., 779 

2016), which could explain the higher pCu:POP ratios in the C and T treatments compared to the Fe addition 780 

treatments in all bioassays analysed (Fig. 3). Similarly, the pZn:POP ratios were also elevated in the non-Fe 781 

treatments in W1 and W2, akin to the pCd:POP ratios especially in W1, suggesting higher uptake of metals under 782 

Fe limitation as previously suggested (Cunningham & John, 2017). Future studies linking these stoichiometric 783 

ratios with molecular measurements (e.g. protein expression patterns) could provide further insight into the 784 

processes which underpin trace metal uptake and use within phytoplankton communities under change. 785 

Nevertheless, this study highlights a potential trend of increased uptake of essential and non-essential metals 786 

(specifically zinc, copper and cadmium) by phytoplankton under Fe-deplete conditions. This trend of increased 787 

uptake of essential (manganese, zinc, copper) and non-essential metals (cadmium) under dFe limitation 788 

underscores the adaptive strategies employed by phytoplankton in navigating nutrient scarcities, emphasizing the 789 

complexity of nutrient interactions and their collective impact on phytoplankton ecology under varying 790 

environmental conditions (e.g., Cunningham and John, 2017). Due to the importance of nutrient uptake in the 791 

Southern Ocean for the stoichiometry of global nutrient distributions, notably at lower latitudes (Sarmiento et al., 792 

2004; Middag et al., 2020), changes in (micro-)nutrient consumption in the Southern Ocean can have global 793 

ramifications for both productivity and ecosystem structure (Moore et al., 2018) which should be further explored 794 

in future (modelling) studies. Future studies underpinning these stoichiometric ratios with molecular 795 

measurements (e.g., protein expression patterns) could provide further insight into the processes underlying trace 796 

metal uptake and use within phytoplankton. 797 

 798 
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4.3 Impact of Iron and Temperature F and T treatments on Phytoplankton Dynamics 799 

The Weddell Sea bioassays exhibited stronger Chl a accumulation, a stronger increase in Fv/Fm and increased 800 

phytoplankton abundances in response to Fe addition than the Amundsen Sea bioassays, which is likely due to 801 

the lower dFe concentrations (and hence higher degree of Fe limitation for the phytoplankton typical for the 802 

Weddell Sea) at the start of the incubations. Indeed, given that the Weddell Sea bioassays were performed early 803 

in the productive season, these results imply more severe Fe limitation in the Weddell Sea whereas any Fe 804 

limitation in the Amundsen Sea likely only develops later in the season. Consistent with the lower dFe 805 

concentrations was the reduced in-situ Fv/Fm of the phytoplankton in W1 and W2, which stayed low for non-Fe 806 

addition treatments throughout the experiments, as it is a, compared to Amundsen Sea bioassays, which stayed 807 

low for non-Fe addition treatments throughout the experiments. Although we cannot exclude that the lower light 808 

availability in A1 and A2 may have caused enhanced Fv/Fm (compared to W1 and W2; From et al., 2014),  low 809 

Fv/Fm is a  common indicator of Fe stress in the Southern Ocean (Greene et al., 1992; Mills et al., 2012; Olson et 810 

al., 2000; Jabre and Bertrand, 2020). In addition, the low dMn concentration may have contributed to the low 811 

Fv/Fm (Wu et al., 2019). The decrease in Fv/Fm in the F and TF treatments towards the end of the Weddell Sea 812 

bioassays seem to indicate that the added Fe had depleted again to limiting conditions or that Mn became (co-813 

)limitating.  814 

The location the seawater for bioassay W1 was taken has similar coordinates as bioassay S54-65 in a study by 815 

Viljoen et al. (2018). These authors sampled 3 weeks later (different year) and at a comparable depth (30 m vs 20 816 

m in our study) and found largely similar responses by the phytoplankton to Fe addition, i.e., total Chl a increased 817 

by ~2 µg Chl a L-1 and diatoms dominated the phytoplankton community. In contrast to W1 but comparable to 818 

our other bioassays, total Chl a concentration in bioassay S54-65 (Viljoen et al. 2018) increased in the control 819 

over the duration of the bioassay. The lack of increase in Chl a in the control (and T) treatment of W1 might be 820 

explained by a lower in-situ dFe for W1, indicating a stronger limitation of dFe. At the same time, POC (and < 20 821 

µm Chl a) concentrations did show an increase over time in the control treatment of bioassay W1. Moreover, 822 

bioassay W2, with even lover starting concentrations of dFe, showed an increase in Chl a over time for the control. 823 

Given the lowest dMn concentrations in W1, it might be that dMn and not (only) dFe was limiting the production 824 

of reaction centres (Raven et al.; 1990), resulting in Chl a concentrations to not increase. Given the increased 825 

requirement for Mn under low Fe (Peers & Price; 2004), Fe addition may have relieved Mn limitation in the Fe 826 

addition treatments slightly, resulting in the observed increase of Chl a in those treatments 827 
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While for the Weddell Sea bioassays the POC concentrations followed comparable responses to total Chl a upon 828 

Fe addition (Fig. 5), the POC concentrations in the Amundsen Sea bioassays did not. The relatively low Chl:POC 829 

ratios in the Weddell Sea bioassays (average over all treatments 0.003  0.003 vs 0.008  0.002 for the Amundsen 830 

Sea bioassays) may indicate stronger Fe limitation, since Fe limited cells are known to have a lower Chl:POC 831 

ratio compared to non-limited cells (Moore et al. 2007). Alternatively, acclimation to tThe lower irradiance during 832 

the incubations of A1 and A2 most likely led to the higher Chl a:POC ratios at the end of incubations (i.e., average 833 

over all treatments 0.008  0.002 and 0.003  0.003 for the Amundsen and Weddell Sea bioassays). Enhanced 834 

Chl a:POC ratios are a known acclimation to low light (Laws & Bannister, 1980; Geider, 1987; Geider et al., 835 

1998; Wang et al., 2009). Despite the low light intensities in Amundsen Sea bioassays, Chl a concentrations and 836 

phytoplankton abundances in the control treatment increased over time in the Amundsen Sea bioassays (especially 837 

in A1, net growth rate based on total abundances of 0.253  ± 0.032 d-1), which indicates that the phytoplankton 838 

communities were low light adapted. Low light conditions are common for Amundsen Sea phytoplankton 839 

(Schofield et al., 2015; Park et al., 2017) but still, the very low irradiance in A2 seemed to have limited growth 840 

(0.09  0.01 d-1) as also illustrated by incomplete depletion of the dFe added (after 6 days of incubation). The high 841 

initial Fv/Fm values suggest that the phytoplankton may not have been limited by dFe (under these low light 842 

conditions) and would only require more dFe once light intensities increased again (Strzepek et al.; 2019, Vives 843 

et al.; 2022, Latour et al.; 2024). The small increase in Fv/Fm in the Fe addition treatments may suggest growth 844 

became dFe limited during the incubation (Fe-addition did show a significant effect on Fv/Fm at the last day of the 845 

incubations), despite the light conditions remaining low. Considering diatoms being the taxonomic group 846 

responding strongest to Fe additions (Noiri et al., 2005; Feng et al., 2010; Hinz et al., 2012; Mills et al., 2012; Zhu 847 

et al., 2016), the low proportion of diatoms at the start of A2 may also have delayed a measurable effect of Fe 848 

addition.  849 

Although earlier studies reported positive responses of phytoplankton to Fe addition also under low light 850 

conditions (Viljoen et al., 2018; Alderkamp et al., 2019), the light intensities used for the low light treatment in 851 

those studies were still relatively high (i.e., 15 and 30 µmol quanta m-2 s-1) and well above those in A1 and A2 852 

(average of 3.4 and 1.5 µmol quanta m-2 s-1). In addition to higher light levels, the lower initial dFe concentrations 853 

in the Ross Sea study (Alderkamp et al. 2019) compared to our study indicate a stronger Fe limitation and 854 

subsequently a stronger response to Fe addition. A recent study on Southern Ocean deep chlorophyll maximum 855 

phytoplankton responses to Fe addition (Latour et al., 2024) reported a Chl a increase at low light intensities 856 

(similar to our Amundsen Sea bioassays) and no change of POC (similar to bioassay A2) until light levels 857 
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increased. This supports our suggestion that the low light condition in A2 was a determining factor for the lack of 858 

a response to Fe addition.  859 

Since both Weddell Sea and Amundsen Sea bioassays were initiated at times corresponding to the peak 860 

phytoplankton growth periods in each region, it is unlikely that the sampling time had a major effect on our results.  861 

Future light conditions in the Southern Ocean will vary for the different regions, e.g., lower sea ice coverage may 862 

enhance light availability (Leung et al., 2015; Petrou et al., 2016; Krumhardt et al., 2022), whereas increased cloud 863 

coverage in the Antarctic Circumpolar Current region would reduce it (Grise et al., 2013; Kelleher and Grise, 864 

2022; Krumhardt et al., 2022). Moreover, there are conflicting reports about whether mixed layer depths will 865 

increase (Leung et al., 2015) or decrease (Krumhardt et al., 2022), which directly impacts light conditions for the 866 

phytoplankton. Our results from the low light bioassay A2, showing only a small effect of Fe on phytoplankton, 867 

suggest that in regions or periods with low light, Fe increase will not drastically stimulate phytoplankton growth. 868 

This highlights the importance of including light availability in Southern Ocean ecosystem (modelling) 869 

predictions. 870 

Nevertheless, Fe addition also had a positive effect on Fv/Fm in Amundsen Sea bioassays, matching earlier reports 871 

that Fv/Fm of ASP phytoplankton is partly controlled by Fe (Alderkamp et al., 2015).  872 

Temperature alone showed a limited effect on phytoplankton, with only 3 phytoplankton groups (Phyto 3, Phyto 873 

19 and diatom Phyto 22) increasing in abundances, and only Phyto 19 showing a consistent effect. Still, these 874 

groups represent pico-sized as well as larger phytoplankton (2, 8.1 and 13.3 µm diameter).  Earlier studies also 875 

showed temperature to have only a limited effect on (natural) phytoplankton communities (Rose et al., 2009). 876 

Indirect effects of warming (e.g., locally high ice-melt induced freshening, dFe increase) will likely have larger 877 

impact on phytoplankton community compositions. Ice-melt induced freshening already led to a shift from diatom 878 

to cryptophyte and flagellate dominated communities in the Western Antarctic Peninsula region (reviewed by 879 

Deppeler and Davidson 2017), and increased dFe concentrations will affect phytoplankton community 880 

composition even more so when combined with temperature increases (this study; Rose et al. 2009). Furthermore, 881 

the availability of dFe is likely changing due changes in sources (see introduction) but is also influenced by 882 

siderophore production (reviewed by Gledhill and Buck, 2012) but warming of the Southern Ocean does not seem 883 

to have a direct effect (Sinha et al., 2019). Warming likely increases the growth rates of siderophore producing 884 

bacteria (Sinha et. al. 2019), but this may be countered by reduced siderophore production due to ocean 885 

acidification (Sinha et al. 2019). Overall, predictions about future conditions and their consequences are complex 886 

and have large uncertainty, but it seems likely conditions will be temporally and spatially heterogenous with 887 
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varying changes in temperature and availability of Fe (and light). For example, while the warming of surface 888 

water in the Amundsen Sea has already been observed, Weddell Sea surface temperatures for the deep basin seem 889 

relatively stable at the moment with significant warming only below 700 m (Strass et al., 2020). However, 890 

upwelling of this warm water leads to local temperature increases in notably coastal regions (Darelius et al., 2023), 891 

potentially increasing future temperatures by over 2 °C warmer in troughs that connect the open ocean to ice shelfs 892 

(Teske et al., 2024), increasing not only temperatures but likely also glacial melt derived Fe supply. This makes 893 

it prudent to assess not only individual, but also combined effects of increasing Fe and temperature as discussed 894 

in the next section.   895 

 896 

4. 4 Enhanced responses to Fe with warming 897 

Fe addition led to an overall positive response of Chl a concentrations, phytoplankton photophysiology and 898 

growth, but more so when combined with the ecologically relevant increase in temperature. The increase in 899 

phytoplankton abundances was especially distinct for Weddell Sea bioassays. GLM analysis revealed that 900 

temperature alone was a significant factor for total phytoplankton abundances, however more specifically, only 901 

Phyto 3, Phyto 19 and Phyto 22 abundances displayed significant positive responses to temperature alone (T 902 

treatment). The 2 °C warming alone was thus not a major driver of phytoplankton net growth in our bioassays, 903 

but accelerated and enhanced Fe-addition responses (significant interaction effect for iron addition and 904 

temperature increase on total phytoplankton abundances). The enhanced response to Fe with temperature was 905 

especially distinct for bioassay W2 (average 1.61-fold change in total phytoplankton abundances in the TF 906 

treatment compared to both F and T treatments; W1 showed a 1.48-fold average change). Despite low light levels, 907 

this was also seen in Amundsen Sea bioassay A1, albeit to a lower extent (average 1.29-fold change in the TF 908 

treatment compared to both F and T treatments). Larger-sized (> 20 µm) diatoms were mainly responsible for the 909 

Chl a accumulation, which is consistent with previous studies (Noiri et al., 2005; Feng et al., 2010; Hinz et al., 910 

2012; Mills et al., 2012; Zhu et al., 2016) and supports the general consensus that especially large phytoplankton 911 

show enhanced growth upon Fe addition due to their lower surface to volume ratio (Scharek et al., 1997). But also 912 

(slightly) smaller diatoms Phyto 23 and 24 (average cell diameter of 15 and 19 µm, respectively) responded 913 

positively to the combination of Fe and temperature. Diatoms Phyto 24 was even the main phytoplankton 914 

population responsible for the increase in the < 20 µm Chl a fraction of the TF treatment in A1. The NMDS 915 

analysis based on < 20 µm phytoplankton abundances showed clustering for W1 and W2 driven by Fe addition 916 

and temperature, indicating that also smaller-sized phytoplankton display positive responses. This is supported by 917 
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increased < 20 µm Chl a concentrations and the 2.2 fold change in cellular carbon of < 20 µm phytoplankton in 918 

F and TF treatments in the Weddell Sea bioassays (compared to the C and T treatments). Specifically, we recorded 919 

distinct abundance increases of the small 7 µm Phyto 16 and Phyto 17, in the F and TF treatments of W2. 920 

Phaeocystis antarctica (Phyto 8; 3.7 µm) showed higher net growth rates for Fe-addition treatments in both 921 

bioassay W1 andalso displayed higher abundances under the TF treatment for W2 but the effect was not very 922 

apparent and overall, P. antarctica seems to handle the other treatments consistently well. Rose et al. (2009) and 923 

Zhu et al. (2016) also found diatoms preferentially stimulated by Fe addition and/or temperature over P. 924 

antarctica, which was also found in a broader context where P. antarctica dominated under Fe-low conditions, 925 

whilst diatoms dominated in regions with higher Fe concentrations (Arrigo et al., 2017). In contrast, Andrew et 926 

al. (2019) found comparable growth rates for P. antarctica and several diatom cultures (tested under Fe addition 927 

and warming treatments). Similar to our study, they found highest growth for the combined Fe addition and 928 

warming treatment for most species. Since diatoms tended to increase strongest with Fe addition, it can be 929 

speculated that phytoplankton community compositions shift towards more diatoms with increases in Fe 930 

concentrations, however other biogeochemical factors are also important to consider. The positive phytoplankton 931 

growth responses were population specific and Phyto 13 (5.5. µm) in W2 even showed reduced abundances for 932 

the F and TF treatments, underscoring the multifaceted factors controlling phytoplankton dynamics and 933 

emphasizing the importance of understanding how trace metal concentrations and climate change together 934 

influence the marine ecosystems in the Southern Ocean.  935 

Alterations in phytoplankton community composition and cell size, as observed in our experiments, will directly 936 

affect top-down control by (microzooplankton) grazers and viral infection and consequently trophic transfer 937 

efficiency (Eich et al. 2022, Biggs et al. 2021). Not only will the flow of organic carbon through the food web be 938 

affected by the different phytoplankton mortality, also the flux of organic carbon to deeper layers of the ocean 939 

(biological carbon pump) depends on the phytoplankton community composition, cell size and type of loss factor. 940 

Since the seawater was not filtered before distribution to the cubitainers to reduce contamination risk, there is a 941 

chance (although small, Voronina et al., 1994) that large grazers were introduced to the incubations. We did not 942 

specifically sample for large grazers but did not notice any on the filters for Chl a and POC. Large grazers can be 943 

expected to graze on larger phytoplankton (Hansen et al. 1994), thereby reducing phytoplankton net growth. This 944 

would be most noticeable for the F and TF treatments, given the positive response of larger phytoplankton to Fe 945 

addition. Our results would then be underestimating the effect of Fe enrichment. Moreover, grazing would likely 946 

enhance with temperature (e.g., Lewandowska and Sommer, 2010; Karakuş et al., 2022), further reducing (and 947 
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underestimating) net growth rates of larger phytoplankton specifically in the TF treatment. Also, 948 

microzooplankton grazing rates are known to increase with temperature (Chen et al., 2012; Caron & Hutchins, 949 

2013), and even viral lysis may occur faster at higher temperature (Maat et al., 2017). This may partially explain 950 

the small effect of warming in the bioassays. Besides temperature, Fe availability has been reported to affect algal 951 

virus production and infectivity (Slagter et al., 2016; Kranzler et al., 2021). Changes observed in our experiments 952 

might thus also have been affected by temperature and/or dFe related changes in loss factors affecting specific 953 

phytoplankton groups.  954 

 955 

5. Conclusions 956 

Our study stands out in that it combined trace metal chemistry and biology, Chl a, and population abundance to 957 

examine co-effects using natural Antarctic phytoplankton communities at environmentally realistic Fe 958 

concentrations (+ 2 nM) and a predicted (2 °C) temperature increase (Boyd et al., 2015; Jabre et al., 2021; Andrew 959 

et al., 2022). So far, studies investigating combined effects using natural Antarctic phytoplankton communities 960 

focussed on the Ross Sea and tested 3 – 6 °C warming (Rose et al., 2009; Jabre et al., 2021). Our bBioassays 961 

incubations were performed under trace metal clean conditions (the entire duration) and with temperature 962 

remaining stable over the course of incubations (maximum fluctuation of temperature ± 0.3 °C). We stress the 963 

importance of trace metal clean working conditions to avoid inadvertently assigning Fe addition effects on 964 

phytoplankton to temperature when working in low Fe regions (i.e. Southern Ocean, but also open oceans in 965 

general). The differences we found between the F and TF treatment may have been assigned to temperature alone 966 

under non-trace metal clean working conditions (as Fe would inadvertently have been introduced), whilst our 967 

results show that temperature alone did not have a (major) effect.  Our data also shows the importance of 968 

considering other regional and/or seasonal factors potentially limiting phytoplankton growth, such as e.g., light 969 

availability (limiting light conditions in bioassay A2) and dMn availability (potentially limiting in W1), when 970 

studying the effect of future climate on Southern Ocean phytoplankton. Additionally, our data indicates a trend of 971 

increased uptake of trace metals under dFe limitation, suggesting there are many adaptive strategies employed by 972 

phytoplankton in navigating nutrient scarcities under varying environmental conditions, with potential impact on 973 

the stoichiometry of global (micro-) nutrient distributions due to the central role of the Southern Ocean.  974 

In general, the addition of Fe was the primary factor for observed stimulatory effects, with temperature enhancing 975 

the effects of dFe. In Especiallyparticular, large diatoms benefitted from Fe addition, although several smaller-976 

sized phytoplankton populations showed enhanced abundances upon Fe addition. Climate change is predicted to 977 
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lead to a shift towards smaller phytoplankton (Deppeler & Davidson, 2017; Krumhardt et al., 2022). Our study 978 

shows, however, that enhanced Fe input counteracts this warming-induced shift, assuming macronutrients will 979 

not become limiting. Given that the intensity of the observed effects varied between the experiments with 980 

distinctly different phytoplankton communities, this study emphasizes the need for studying diverse regions of 981 

the Southern Ocean and performing multiple bioassays over the productive season to better understand and predict 982 

potential future changes, especially as future changes in Fe availability are region-specific (Tagliabue et al., 2016; 983 

Van Manen et al., 2022). Alterations in phytoplankton community composition and cell size, as observed in our 984 

experiments, will directly affect top-down control by grazers and viral infection and consequently trophic transfer 985 

efficiency. Moreover, not only the flow of organic carbon through the food web will be affected, but also the flux 986 

of organic carbon to deeper layers of the ocean (biological carbon pump) depends on the phytoplankton 987 

community composition, cell size and type of loss factor.Factors such as the dFe concentrations, other trace metal 988 

concentrations which may potentially co-limit phytoplankton growth, and light availability, should also be 989 

considered when studying the effects of future climate on Antarctic phytoplankton. Moreover, the time of the year 990 

affects the starting composition of the phytoplankton community, and the sequence of the treatments in case of 991 

dual treatments (Fe addition and temperature increase) may affect the responses (Brooks and Crowe 2019), hence 992 

these factors should be considered. 993 

Depending on the geographical region and the time in the productive season (Thomalla et al., 2023), global 994 

warming is predicted to increase wind-induced mixing or strengthen vertical stratification (Bronselaer et al., 2020; 995 

De Lavergne et al., 2014; Hillenbrand & Cortese, 2006; Shi et al., 2020). Phytoplankton will bloom earlier in the 996 

productive season as a result of decreasing sea ice and consequently higher light (Krumhardt et al., 2022), rapidly 997 

drawing down available Fe, followed by stratification, and thus favourable conditions for smaller-sized 998 

phytoplankton (Deppeler & Davidson, 2017; Krumhardt et al., 2022). Our study shows, however, that enhanced 999 

Fe input in such regions may partly overturn this warming-induced shift, assuming macronutrients will not become 1000 

limiting. 1001 

We recommend that future bioassay studies consider phytoplankton gross growth, grazing, and viral lysis as well. 1002 

After all, the typically reported net changes in the bioassay phytoplankton community are the resultant of 1003 

production and losses. Both Fe as well as temperature can impact the extent of the loss factors. For example, 1004 

grazing rates are known to increase with temperature (Chen et al., 2012; Caron & Hutchins, 2013), viral lysis may 1005 

occur faster at higher temperature (Maat et al., 2017), and Fe availability can affect algal virus production and 1006 

infectivity (Slagter et al., 2016). Finally, potential region-specific differences in the share of grazing and lysis 1007 
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(Mojica et al., 2016; Mojica et al., 2021; Eich et al., 2022) may influence net changes in phytoplankton biomass 1008 

or abundances in bioassays. The Southern Ocean biogeochemical cycling and ecosystems dynamics are complex 1009 

and need to be better studied in field and modelling studies. The current study underlines the need for assessing 1010 

consequences of near future temperature changes at environmentally relevant dFe concentrations. 1011 
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