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Abstract 18 

Smartphone pressure observations have been demonstrated significant potential as ato 19 

complement to traditional pressure monitoring. However, challenges remain in correcting 20 

biases and further leveraging these observations for practical applications. In this study, we 21 

used tropical cyclone (TC) Lekima in 2019, Hagupit in 2020 and IN-FA in 2021 as 22 

examples to conduct bias correction on labeled smartphone pressure data from Moji 23 

Weather app. We proposed a quality control procedure utilizing random forest machine 24 

learning models. By applying this quality control approach to the selected TCs, we 25 

discovered that the performance of the method for labeled data significantly surpassed that 26 

for unlabeled data developed in a previous study, reducing the mean absolute error from 27 

3.105 hPa to 0.904 hPa. The bias-corrected smartphone data was then supplemented with 28 

weather station data for sea-level pressure analyses and compared with the analyses that 29 

used only weather station data. The significantly higher spatial resolution and broader 30 

coverage of the smartphone data led to notable differences between the two analysis fields. 31 

Additionally, we compared the MSLPminimum sea level pressure of TCs derived from 32 

smartphone data, weather station obseravations, and the best track dataset from the 33 

Shanghai Typhoon Institute of China Meteorological Administration (STI). We found that 34 

the best track published by STI consistently underestimated the minimum sea level pressure, 35 

with a median difference of 0.51 hPa in the three TC cases.  36 

Keywords: Smartphone; Pressure; Bias Correction and Tropical Cyclone.  37 

 38 

  39 



1 Introduction 40 

Meteorological observation data isare crucial for the efficacy of early warning systems; 41 

however, its discontinuity and inconsistency in time and space often pose challenges. The 42 

problem is more severe in many underdeveloped and developing regions due to the lack of 43 

funding, technology, and infrastructure, as well as backward network construction (Dinku 44 

2019; Heaney et al. 2016; Thomson et al. 2017). Smartphones with built-in sensors may 45 

offer a solution to this problem, as the number of smartphone users has grown to more than 46 

50% of the population in developing countries such as China and Mexico (Newzoo May 4, 47 

2023), and as high as 46% in some underdeveloped parts such as sub-Saharan Africa 48 

(GSMA 2022). Sensors in smartphones can monitor pressure (Kim et al. 2015; Mass and 49 

Madaus 2014), temperature (Overeem et al. 2013), and radiation (Mei et al. 2015), among 50 

which pressure monitoring is more commonly available (Kim et al. 2015). On the one hand, 51 

the results of pressure measurements are not easily affected by local observing conditions 52 

(Mass and Madaus 2014). This implies the errors are generally stable and systematic (Price 53 

et al. 2018), leading to high-quality surface observations with high spatiotemporal 54 

resolution. On the other hand, surface pressure contains important meteorological 55 

information and reflects the deep structure of the atmosphere (Mass and Madaus 2014). 56 

Therefore, the smartphone pressure data are valuable and worth studying as a 57 

meteorological data source.  58 

While smartphones can provide pressure data with higher spatiotemporal resolution 59 

than traditional weather observation networks, they have unique data quality issues. 60 

Although pressure records from smartphones and weather stations are highly correlated 61 



statiastically, noticeable offsets exist between individual smartphones (Price et al. 2018; 62 

Hintz et al. 2019). Smartphones can produce pressure measurements that differ from those 63 

of the surface stations when users are at high levels in buildings (Li et al. 2021). Traditional 64 

quality control methods include the elimination of outliers and screening for statistical, 65 

spatial, and altitude consistency, which usually leads to a sharp reduction in data volume 66 

to about 10% to 40% of original dataset (Madaus and Mass 2017; Hintz et al. 2019). 67 

Recently, machine learning models have been applied to the correction and validation of 68 

pressure data. These models rely on the geographical similarity of error distribution (Li et 69 

al. 2021; McNicholas and Mass 2021), for data without user identification, and on the 70 

relatively stable performance of individual smartphones (McNicholas and Mass 2018a), 71 

for data with user identification. (In the rest of this paper we refer to them as “unlabeled 72 

data” and “labeled data”, respectively. Further explanation can be found in Section 2.1). 73 

These methods have their limitations because, even when the models are applied to the 74 

same descriptive variables, differences in results may occurr among different regions. This 75 

variation is attributed to the dependence on sensor performance across different regions 76 

and the accuracy of location information. 77 

Another important question is what additional information smartphones provide. Due 78 

to their high spatiotemporal resolution, quality-controlled or corrected smartphone pressure 79 

data are often used to characterize convective systems at small or meso scales. Hintz et al. 80 

(2019), Li et al. (2021), and McNicholas and Mass (2018a) found pressure changes of 1 81 

hPa/hour at sea level, 0-0.5 hPa/min, and 1.5 hPa/15 min at the surface, respectively, within 82 

the convective systems they studied. During Tropical Cyclone (TC) Michael in 2018 in the 83 



US, smartphone pressure data measured the low pressure value at the TC center more 84 

accurately than the conventional Meteorological Assimilation Data Ingest System 85 

(McNicholas and Mass 2021). However, the value was still more than 10 hPa higher than 86 

the actual minimum pressure, partly due to the low density of smartphone pressure data 87 

along the track of TC Michael; the closest smartphone observation was 5 km away from 88 

the TC center. Given the dense population in China, it is interesting to determine if the 89 

smartphone pressure observations could provide a better estimate of TC minimum pressure, 90 

an important parameter of TC intensity.    91 

The unlabeled smartphone pressure data from China have recently been studied for 92 

quality control and application to mesoscale analysis (Li et al. 2021). The labeled data, 93 

which can provide higher-quality observations and enable personalized and more accurate 94 

analyses, have not been examined in China, especially in densely populated areas. In this 95 

study, we present a machine learning-based method for the bias correction (BC) of labeled 96 

smartphone pressure data collected by the Moji Weather app. We evaluate the performance 97 

of the approach by comparing the results with those from unlabeled data.  98 

As one of the major weather service applications in China, the Moji Weather has more 99 

than 700 million users and more than 600 million daily weather queries (Moji 2023a, b). 100 

The quality of the unlabeled pressure data provided by Moji Weather has been verified by 101 

Cao et al. (2022) and Li et al. (2021). We anticipate that the evaluation of the labeled data 102 

from Moji Weather in this study will provide a broader understanding of the smartphone 103 

pressure data. In addition, by using the three TC events - Lekima 2019, Hagupit 2020 and 104 



IN-FA 2021- as examples, we investigate how the higher spatio-temporal resolution of the 105 

smartphone pressure data benefits TC intensity analysis. 106 

This paper is organized as follows. In sSection 2, we present the data and methods 107 

used in this study. Taking TC Lekima in 2019 as an example, Section 3 compares the results 108 

of corrected labeled and unlabeled pressure data and tests their impact on mesoscale 109 

pressure analysis fields. In Section 4, we compare the corrected smartphone pressure data 110 

with the best track data released by Shanghai Typhoon Institute (STI) of China 111 

Meteorological Administration (CMA) for three TCs from 2019 to 2021. Conclusions and 112 

discussion are provided in Section 5. 113 

2 Data and methods 114 

2.1 Data and quality control 115 

The data used in this study include sea level pressure observations from weather 116 

stations, labeled smartphone pressure measurements, TC best-track data, and 117 

supplementary data for machine learning models. More details on these data are provided 118 

below. 119 

(1) Sea level pressure data with 1 hour interval from weather stations are obtained 120 

from CMA. There are 11,585, 13,200 and 16,208 atmospheric pressure observation stations 121 

in China for the years of 2019 (Fig.1), 2020 and 2021 respectively.  122 



   123 

 124 

Figure 1 Spatial distribution of 11, 585 weather stations providing pressure observations 125 

in this study in 2019. The smaller black box represents the study domain A, covering 30°N 126 

to 31°N and 120°E to 121°E in Section 3.1, and the larger black box represents the study 127 

domain B, spanning from 27.3°N to 33.3°N and 117.2°E to 123.2°E in Section 3.2-3.3.  128 

 129 

(2) Smartphone pressure data at 1-min intervals are provided by the Moji Weather 130 

company. The data includes time, latitude, and longitude, acquired by the weather app 131 

when running in the foreground or background, as well as cryptographic account 132 

identification and pressure, measured by built-in sensors. The data is provided by users 133 

who have signed a data sharing agreement, and each pressure record carries an encrypted 134 

user ID that helps to distinguish the source of the data. However, we clearly understand 135 

that user IDs are sometimes not available, so we also made a dataset with user IDs removed 136 

for comparative experiments. In the rest of this paper, we refer to data without user ID as 137 

“unlabeled data”, and correspondingly data with user ID as “labeled data”. We strictly 138 

adhere to the principle of privacy protection, which ensures all research is conducted at the 139 



population level, involving only the analysis of data volume and pressure values. In other 140 

words, no information regarding any individual's specific movements is exposed. All 141 

research data in this study have been legally verified to comply with all provisions of the 142 

'Personal Information Protection Law of the People's Republic of China' issued on August 143 

20, 2021 (https://www.gov.cn/xinwen/2021-08/20/content_5632486.htm), which was 144 

confirmed by the legal department of Moji Weather company. 145 

In 2019, a total of 83,386,957 users contributed to the pressure observations within 146 

the area of 15°N-55°N and 70°E-140°E. Eastern China — a TC-prone area — had a higher 147 

user density than western China and the discrepancy is larger in the urban areas (Fig. 2a). 148 

The density variation implies that the detected TC tracks usually pass through areas with 149 

dense observations. The number of individual user observations was relatively small, 150 

averaging fewer than 125 over an entire year (10.4 per month) in most urban areas (Fig. 151 

2b), compared to 774 over 16.5 months (46.9 per month) in McNicholas and Mass (2021). 152 

This may limit the complexity and performance of the correction models for each 153 

individual user. The relatively small number of observations from individual users may be 154 

attributed to differences in the information collection system and user usage habits. 155 

However, a relatively large number of users can somewhat compensate for this 156 

shortcoming. Users with more than 100 and 1,000 observations accounted for 157 

approximately 17.6% and 2.5% of the 83,386,957 samples, contributing 88.9% and 42.6% 158 

to the total data volume, respectively (Fig. 2c-d). To strike a balance between providing 159 

more data for each user’s correction model and maximizing the total amount of data 160 

https://www.gov.cn/xinwen/2021-08/20/content_5632486.htm


retained, we selected users with more than 100 observations for the correction. The total 161 

number of these users is 14,676,104.  162 

The quality control of smartphone pressure data is performed in three steps. 1) 163 

Following the practice of Kim et al. (2015) and Madaus and Mass (2017), pressure values 164 

outside the normal range (890-1080 hPa) are considered outliers and eliminated. 2) 165 

Reference sea level pressure at the location of the smartphone is estimated by spatial 166 

interpolation of weather station data, and smartphone pressure deviating by more than 15 167 

hPa from the reference are discarded, to eliminate data from low-quality sensors or at a 168 

high altitude. 3) Latitude, longitude, and pressure are retained to four decimal places, and 169 

only one record of duplicate data for the same hour is retained. By doing so, the adverse 170 

effect of excessive data duplication on the machine learning correction model could be 171 

largely avoided. 172 

 173 



 174 

Figure 2 Spatial distribution of (a) the number of users contributing to smartphone pressure 175 

observations, (b) the average number of observations by users, (c) the number of users with 176 

more than 100 observations, and (d) the number of users with more than 1000 observations 177 

in China during 2019. The data grid for the plots is 0.5°×0.5°. Users are assigned to 178 

locations where they have made their most frequent observations. The black boxes are the 179 

same as in Fig. 1. 180 

 181 

Due to the different temporal resolutions of smartphone and weather station datasets, 182 

we aligned the weather station pressure with the smartphone pressure at 20-minute intervals 183 

centered on the hour and discarded any other smartphone data during the quality control 184 

and BC procedure. For unlabeled data, considering that there are indistinguishable  185 

observations of the same latitude, longitude and time, especially in urban high-rise areas, 186 

we created “smartphone sites” by calculating the number, mean pressure and standard 187 



deviation of the overlapped smartphone observations. Furthermore, we performed BC on 188 

the smartphone pressure data using a machine learning scheme. This is crucial for more 189 

accurately estimating the extremely low pressures, such as those found at the center of TCs. 190 

The methods and the results will be discussed in detail in Section 3. 191 

 (3) The tropical cyclone best-track data used is provided by STI (Lu et al. 2021; Ying 192 

et al. 2014) (https://tcdata.TC.org.cn/zjljsjj.html). Since most smartphone pressure 193 

observations are located on land, this study focuses on the TC centers that have made 194 

landfall and their minimum sea-level pressures (MSLP), with a temporal resolution of 3 195 

hours. The best-track MSLP of TC is obtained through the wind-pressure relationship, 196 

using the mean surface wind generated by satellite image analysis as input. After landfall, 197 

the MSLP is typically derived from in-situ observations recorded by weather stations (Ying 198 

et al. 2014).  199 

 (4) To meet the requirements of machine learning modeling for unlabeled data, we 200 

also used the dataset of China's National Land Use and Cover Change (CNLUCC, 201 

https://www.resdc.cn/DOI/doi.aspx?DOIid=54) (Xu et al., 2018; Wang et al., 2022) with 202 

1km resolution, provided by the Data Center for Resources and Environmental Sciences, 203 

Chinese Academy of Sciences (RESDC, http://www.resdc.cn). Since the data obtained 204 

from the same smartphone site in urban high-rise buildings can exhibit a significant degree 205 

of uncertainty, whereas the opposite holds true for rural areas, it’s helpful to introduce land-206 

use types into machine learning models for describing the acceptability of uncertainty for 207 

unlabeled data. 208 

 209 



2.2 Spatial coverage ratio 210 

In order to compare the spatial distribution of smartphone pressure observations under 211 

different conditions, this study defines the “spatial coverage ratio” of observations as 212 

follows. A region of any size is divided into a grid of 0.1°×0.1°. The proportion of the 213 

number of grid boxes containing smartphone observations to the total number of grid boxes 214 

in the region is defined as “smartphone coverage ratio”. The same methodology applies to 215 

the weather stations to define “station coverage ratio”.  216 

 217 

2.3 TC cases 218 

Three TC cases, namely Lekima in 2019, Hagupit in 2020, and IN-FA in 2021, were 219 

selected from all landfalling TCs in China during 2019-2021. All three TCs passed through 220 

Zhejiang Province and Jiangsu Province (Fig. 3), both of which are densely populated 221 

regions. We focus on the super TC Lekima in 2019 in Section 3 to show the performance 222 

of the BC method. The method was also applied to Hagupit in 2020 and IN-FA in 2021 for 223 

the TC MSLP analysis presented in Section 4. 224 

 225 



 226 

Figure 3 The tracks of TC Lekima 2019, Hagupit 2020 and IN-FA 2021 (marked every 227 

3h), with colors representing the MSLP at the TC center, according to STI best track data. 228 

The gray shading indicates the elevation of the land surface. The black boxes are the same 229 

as in Fig. 1. 230 

 231 

TC Lekima landed on the Chinese mainland from August 9 to 11, 2019. At the time 232 

of landfall, the MSLP from STI best track data reached to approximately 930 hPa. It then 233 

rose to 978 hPa when moving to the urban area of Hangzhou, Zhejiang Province. In this 234 

study, we take the area of 30°N-31°N, 120°E-121°E as study domain A, and take an 235 

expanded area of 27.3°N-33.3°N, 117.2°E-123.2°E as study domain B (Fig. 1-3). Both 236 

domains cover the center of Lekima with a large number of smartphone observations. In 237 

domain B, between 1000 LST on August 9, and 1100 LST on August 11, 2019, 4,800,405 238 

users in the research area contributed to the observations. The maximum number of 239 

observations is approximately 850,000 in a 0.1° x× 0.1° grid box. Compared to Lekima, 240 

Hagupit and IN-FA experienced higher MSLPs. Moreover, IN-FA traveled a longer 241 



distance over land than both Lekima and Hagupit did, contributing to greater temporal 242 

variations of the coverage ratios for both smartphones and weather stations. 243 

 244 

3 Evaluation of MSLP correction by smartphone 245 

3.1 Comparison with the BC method for unlabeled data 246 

The methods for using machine learning to conduct the BC of smartphone data can be 247 

broadly categorized into two approaches: one for labeled data and the other for unlabeled 248 

data. Both methods use the differences from the reference sea level pressures – in this study 249 

interpolated from weather station pressure data – as the variable to be corrected. The 250 

labeled data approach trains a model for all the pressure observations of each individual 251 

user (McNicholas and Mass, 2018a), while the unlabeled data approach aggregates 252 

smartphone observations with the same latitude and longitude into “smartphone sites” and 253 

trains a model for all the smartphone sites in each grid element (Li et al., 2021) on a 0.1° 254 

(longitude) × 0.1° (latitude) grid in this study (Fig. 4). The performances of the two 255 

methods in the extreme low pressure environment of Lekima were compared over the area 256 

of 30°N-31°N and 120°E-121°E (domain A in Fig. 1-3). All pressure data during the TC 257 

landfall (from 0000 LST August 9, 2019 to 0000 LST August 12, 2019) were utilized as 258 

the test dataset while the remaining data in 2019 were applied as the training dataset. Two 259 

random forest models for labeled and unlabeled data were built. Their descriptive variables 260 

and parameter settings are summarized in Table 1 and Table 2, respectively. 261 

 262 



  263 

Figure 4 Schematic diagrams of models for (a) unlabeled data (to train a model for each 264 

“area” divided by dotted lines) and for (b) labeled data (to train a model for each “user” 265 

identified by different colors). In order to protect user privacy, the information in (a) and 266 

(b) is randomly generated and does not contain any user's real location information.  267 

 268 

 269 

 270 

Table 1 Descriptive features of the two machine learning models 271 

Unlabeled data Labeled data 

Longitude Longitude 

Latitude Latitude 

Month Month 

Date Date 

Moment MomentTime 

Land-use type Day of the Week 

Gridded pressure* Smartphone pressure 

Observations number*  

Pressure standard deviation*  

* at each smartphone site. 272 

 273 

 274 

Table 2 Hyperparameter settings of the two machine learning models 275 



 Unlabeled data Labeled data 

max_depth 9999 9999 

max_samples 0.7 0.7 

min_samples_leaf 1 1 

max_features log(M+1)* M* 

n_estimators 100 30 

All parameters are from the function “RandomForestRegressor” of the Scikit-learn 276 

machine learning library in Python (Pedregosa et al. 2011).  277 

max_depth: The maximum depth of the tree (also known as “the base estimator”). 278 

max_samples: The proportion of samples to draw from the training set to train each 279 

tree when bootstraping. 280 

min_samples_leaf: The minimum number of samples required to be at a leaf node.  281 

max_features: The number of features to consider when looking for the best split. M 282 

represents the number of features used by the model. 283 

n_estimators: The number of trees in the forest. 284 

 285 

Smartphone pressures corrected by both models vary in trends similar to the surface 286 

pressure, with a general positive correlation between the pressures from smartphones and 287 

weather stations (Fig. 5). However, the corrected pressure with the unlabeled data approach 288 

clearly exhibits a significantly higher bias, with a value of 4.521 hPa, in contrast with 0.405 289 

hPa for the labeled data approach. Besides, the mean absolute error (MAE) and root mean 290 

square error (RMSE) from the BC on labeled data are also significantly lower, 291 

demonstrating that the labeled data approach for BC of smartphone pressure performs  292 

superiorly in the low-pressure environment of TC Lekima. 293 

 294 



  295 

Figure 5 Probability distribution of the test data showing the correlation between the bias-296 

corrected smartphone pressure and the reference sea level pressure for (a) unlabeled data 297 

and (b) labeled data in domain A. The coloring represents the probability distribution using 298 

a base of 10 in every 0.1hPa grid box. The black dashed line represents perfect correlation. 299 

 300 

 301 

Li et al. (2021) showed that the BC approach for unlabeled data successfully corrected 302 

the pressure data in a hailstorm case. We suspect that its poor performance for the TC 303 

Lekima could have been related to the lack of strong TC samples in the training set. During 304 

non-TC periods, the most abnormal pressure observations occur when users are at high 305 

levels in tall buildings, resulting in low pressure observations that require substantial 306 

corrections in the unlabeled data approach. These “fake” observations can reach the level 307 

of surface pressure at the center of a TC. When the training data lacks strong TC samples, 308 

the machine learning model may use the high-altitude observations to correct the 309 

smartphone pressure near the ground during a TC, which can eventually lead to incorrect 310 

adjustment, resulting in values significantly higher than the reference sea level pressure. In 311 

general, the unlabeled data approach can not discriminate between true and false low 312 



pressure. In contrast, however, the labeled data approach trains the machine learning model 313 

with the user's own historical observations (Fig. 4b), which are less uncertain in terms of 314 

altitude than observations from different users in a neighborhood. A single source of error 315 

makes machine learning models less prone to confusion between true low pressures and 316 

those falsely caused by high altitudes, thereby better adapting to unanticipated extreme 317 

conditions, such as super TCs. 318 

Since the bias-corrected labeled data resulted in better correlation with the surface 319 

station data, it will be used in the subsequent analysis of all TC cases, unless otherwise 320 

specified as unlabeled data. 321 

3.2 Other quality control steps 322 

In the previous section, we assumed that the pressure data from weather stations was 323 

accurate. However, the observations from weather stations are known to contain errors 324 

from unreliable stations. In this section, we use an expanded area covering 27.3°N-33.3°N 325 

and 117.2°E-123.2°E as the research domain (domain B in Fig. 1-3) because it includes a 326 

larger area of complex terrain. Considering that more stations in this larger region are 327 

located at high altitudes, which might introduce large errors in the interpolation of surface 328 

sea-level pressure, we selected only weather stations with altitudes of less than 100 meters. 329 

The reference values at the smartphone locations were then generated from these selected 330 

stations. Applying the BC procedure for labeled data described in section 3.1 to the large 331 

domain, the bias of smartphone data was reduced from 2.943 hPa to -0.311 hPa. The low 332 

bias, primarily due to the observations at high altitudes (caused by users in tall buildings), 333 



has been greatly reduced (Fig. 6a-b). Meanwhile, MAE decreases from 3.105 hPa to 0.904 334 

hPa and RMSE from 4.207 hPa to 1.698 hPa.  335 

 336 

  337 
Figure 6 Same as Fig. 5, but only for labeled data (a) before BC, (b) after BC, (c) after 338 

outlier removal and (d) interquartile check for domain B.   339 

 340 

Eliminating outliers: The reference pressure generated by interpolating observations 341 

from the weather stations might be quite different from the true value given the large 342 

horiziontal pressure gradient in TCs. This problem becomes more prominent for the 343 

expanded study domain that includes larger areas of complex terrain. Therefore, further 344 

actions of quality control is necessary. Station observations at any given time were 345 



considered outliers if the deviation from the mean pressure over domain B, or over the 20 346 

nearest stations, is 3 times greater than the standard deviation in the same area. For this 347 

method to work, a sufficient number of observations from a single station is required. We 348 

thus selected 1,070 weather stations that provided more than 70% of the observations. The 349 

procedure was also applied to the bias-corrected smartphone data, which reduced the bias 350 

of smartphone observations to -0.269 hPa (Fig. 6b-c). To further reduce the bias, we 351 

applied the interquartile range method described below.  352 

Interquartile check: For smartphone pressure observations, in every 0.5°×0.5° grid 353 

box we calculated the difference between the upper quartile and the lower quartile as 354 

interquartile range (IQR). The smartphone observations that were 1 IQR higher than the 355 

upper quartile or lower than the lower quartile were considered as outliers and removed. 356 

The quartile range method eliminated 13.8% of the smartphone pressure data, reducing the 357 

bias from -0.269 hPa to -0.146 hPa (Fig. 6c-d). The quality control procedure enabled the 358 

retaiention of the high spatial resolution characteristics while significantly improving the 359 

quality of the smartphone pressure data. 360 

The workflow diagram shown in Fig. 7 summarizes the process of quality control and 361 

BC from the raw smartphone pressure data to the final data we used in the study. 362 

  363 

Figure 7 The work flow for smartphone pressure data quality control and bias correction. 364 

3.3 Spatial distribution of smartphone pressure data 365 



Using the smartphone pressure data after all quality control steps, we analyzed the 366 

horizontal distribution of sea-level pressure by combining both weather station pressure 367 

and smartphone pressure data in Domain B. The weather station observations are sparsely 368 

distributed throughout the region (Fig. 87a), whereas the substantially denser smartphone 369 

data cover the entire plain areas as well as some low elevation areas (Fig.87b). As a result, 370 

the smartphone pressure data reveal more details on the pressure distribution of TC Lekima. 371 

However, while the smartphone observations are densely distributed in the low-altitude 372 

areas, some weather station data from the high mountain areas of southern Zhejiang, 373 

southern Anhui, and northern Fujian are not represented in the smartphone data.  374 

 375 

 376 

 377 

Figure 87 Distribution of (a) meteorological stations that measure pressure, (b) smartphone 378 

pressure observations in Domain B at 1400 LST on August 10, 2019. The red "+" indicates 379 

the location of the TC center from the best track. 380 



 381 

To examine the benefit of the high resolution smartphone data in pressure analysis, 382 

we generated a sea-level pressure analysis field based on only weather station observations 383 

(Fig. 98a) as well as one combining the weather station and smartphone observations (Fig. 384 

98b).  385 

While the difference between the two analysis fields is widespread, the largest 386 

difference appears in the northwest of the Lekima center, where the analysis field with 387 

smartphone observations has lower sea level pressure (Fig. 98c). The reason lies in the fact 388 

that the terrain in this area is complex and weather stations are sparse. In comparison, more 389 

smartphone observations are available, particularly in the valleys. Interestingly, the region 390 

of lower pressure coincides well with the southward extension of the spiral rainband as 391 

indicated by the radar reflectivity. This seems to suggest the analysis incorporating the 392 

smartphone data can reveal the mesoscale structure missed by the weather station analysis.  393 



   394 

  395 

Figure 98 In Domain B at 1400 LST on August 10, 2019, sea-level pressure analysis field 396 

based on (a) meteorological station observations, and (b) meteorological station and 397 

smartphone observations; pressure difference (c) between (b) and (a) , and (d) between the 398 

corrected smartphone pressure and reference sea level pressure. The gray shadings 399 

represent areas where radar reflecticity are higher than 30 dBZ, and the red "+" indicates 400 

the location of the TC center from best track. The arrows represent the wind field at the 401 

925hPa level from ERA5. 402 

 403 

4 Improvement of TC MSLP estimate 404 

Since the limited spatial resolution of weather stations makes it difficult to capture the 405 

true MSLP of landfalling TC, the MSLP in the best track data usually differs somewhat 406 



from the lowest sea-level pressure observed by weather station (Bai et al. 2022). The MSLP 407 

in the best track released by STI is mainly based on wind intensity (Fig. 109). Compared 408 

with weather stations, the spatial coverage ratio and resolution of smartphone observations 409 

are both higher in areas with relatively dense population, which may provide more accurate 410 

TC MSLP information. In this section, we explore whether smartphone pressure data can 411 

improve the estimate of MSLP in TCs, using the three TC cases.  412 



413 

 414 



Figure 109 Variation of the MSLP, and smartphone coverage ratio and maximum TC wind 415 

speed from STI, during (a) TC Lekima from 14:00 LST on August 10 to 05:00 LST on 416 

August 11, 2019, (b) TC Hagupit from 20:00 LST on August 4 to 02:00 on August 5, 2020, 417 

and (c) TC IN-FA from 05:00 LST on July 27 to 23:00 LST on July 29, 2021. Green and,  418 

blue and orange dots represent the MSLP from weather stations and , STI best track and 419 

unlabeled smartphones, with a temporal resolution of 3, 3 and 6 hours respectively. Orange 420 

crosses represent maximum wind speed from STI best track. Red shaded areas represent 421 

the lowest 10% labeled smartphone pressure in the area of 1.2º x 1.2º surrounding the TC 422 

center. Gray bars represent smartphone coverage ratio in the area of 0.6°x 0.6°surrounding 423 

the TC center. All the statistics were done in the area of 1.2º × 1.2º surrounding the TC 424 

center. 425 

We selected the periods of relatively intensive observations, which spanned 6, 3, and 426 

31 hours , respectively, for Lekima, Hagupit, and IN-FA, to compare the MSLP estimate 427 

with those from the station and best track. The lowest station pressure and unlabeled 428 

smartphone pressure within a 1.2° x× 1.2° area of the TC center was taken as station 429 

MSLP and unlabeled MSLP. T, and the smartphone pressure, with the error margin of 430 

lowest 10% within the same area, was used as labeled smartphone MSLP (Fig. 109). The 431 

unlabeled MSLP clearly exhibits a significantly positive bias compared with both labeled 432 

and station MSLP, which is consistent with the previous conclusions. Most of the time, the 433 

station MSLP falls within the range of the labeledsmartphone MSLP, and both are higher 434 

than that in the best track. The difference between the station MSLP and the best track is 435 

up to a substantial value of 2.76 hPa in Hagupit. Considering the small errors and deviations, 436 

as well as the generally high spatial resolution and coverage ratio of smartphone 437 

observations, it can be concluded that the best track generally tends to underestimate the 438 

TC MSLP.  439 



440 

 441 

Figure 110 Distributions of weather station and smartphone observations from two 442 

examples during (a) TC IN-FA and (b) TC Lekima, in the area of 1.2º×1.2º surrounding 443 

the TC center. The coloring represents the difference between the pressure observations 444 

and the STI best track MSLP. (c) Changes in the number of weather stations providing 445 

pressure observations from 2019 to 2021, in 119°14’E-120°29’E, 30°22’N-31°11’N (the 446 

geographical scope of Huzhou, Zhejiang Province). 447 

 448 



The improvement of MSLP estimate by smartphone observations depends on the 449 

location of TC center. For instance, at 05:00 LST, July 27, 2021, during TC IN-FA (Fig. 450 

11b0a), when the TC center was positioned in an area with fewer stations but notably more 451 

smartphone observations, the smartphones estimated lower pressure than that reported by 452 

the best track. In another instance (Fig. 11a0b), TC Lekima's center was located on a small 453 

island (denoted with “X”) in Taihu Lake, where there are no weather stations and 454 

measurement can only be made by smartphone. This highlights the advantages of 455 

crowdsourcing, which leverages the mobility and flexibility of individuals. Moreover, this 456 

instance happened to fall in a period when some stations with lower maintenance levels 457 

failed to measure and upload data steadily(Fig. 11c), which shows that smartphone pressure 458 

observations are valuable for filling some of the gaps created by unstable weather stations. 459 

 460 

        461 

Figure 121  Comparison of smartphone MSLP with STI best-track MSLP under different 462 

spatial coverage ratios (defined in section 2.2) for smartphones and weather stations (a), 463 

and PDF distribution (b). The squares, triangles and circles represent TC Lekima 2019, TC 464 

Hagupit 2020 and TC IN-FA 2021 respectively. The colors represent the difference 465 

between smartphone MSLP and -STI MALP pressure pairs indicated in the upper-left 466 

corner of (a). 467 



 468 

Naturally, the smartphone's improvement in estimating MSLP heavily depends on 469 

smartphone and station coverage ratios. In the total of 40 time levels in our study, 39 470 

exhibited relatively higher smartphone coverage ratio compared to the station coverage 471 

ratio, indicating the advantages of smartphone in observing the pressure distribution around 472 

TC center (Fig. 121). The larger number of smartphone observations around the TC center 473 

enabled a more accurate representation of the true pressure distribution. Overall, our 474 

analysis indicated that the STI MSLP underestimated the MSLP in 29 out of 40 instances, 475 

with a median difference of 0.51 hPa and an average of 0.81 hPa. This result highlights the 476 

limitation imposed by the low station coverage ratio, which may have caused the 477 

discrepancy between the STI MSLP and the smartphone MSLP.  478 

 479 

5 Conclusion and discussion 480 

In this study, we conducted bias correction of labeled smartphone pressure data in 481 

China using a machine learning scheme. Further, we analyzed the spatial distribution of 482 

sea level pressure in three landfall TCs. The MSLP derived from smartphone observations 483 

was compared with that from the best track data from STI.  484 

We described two bias correction procedures, one for labeled and one for unlabeled 485 

data, which primarily differ in their methods of aggregating data samples under each 486 

situation. Upon applying these approaches to data from TC Lekima 2019, we found that 487 

the labeled data approach resulted in smaller errors and deviations compared to the 488 

unlabeled data approach. Due to the high spatial resolution and extensive coverage,  489 



smartphone pressure data can supplement weather station pressure observations and 490 

improve pressure analysis in TCs.  491 

Using data from TC Lekima in 2019, Hagupit in 2020 and IN-FA in 2021, we 492 

compared the MSLP of TCs derived from smartphone data, weather station obseravtions, 493 

and the best track dataset from STI. The smartphone and station MSLPs are generally in 494 

agreement, but the STI tends to underestimate the TC MSLP. Considering the higher 495 

resolution of smartphone observations, particularly in areas with sparse weather station 496 

coverage, and their minor errors after bias correction, it can be concluded that the 497 

smartphone pressure data can help estimate the intensity of TCs on land more accuratly.  498 

The conclusions of the three TCs provide valuable insights into the potential of 499 

smartphone pressure data for weather observation and forecasting. While the selection 500 

range of eligible TCs is relatively narrow due to the limited data amount of smartphone 501 

pressure observations, there is great potential for further research and application in this 502 

area. It is important to note that the research and application of smartphone pressure data 503 

is still in its early stages. However, by focusing on other types of weather systems and 504 

expanding the range of smartphone data collection, we can develop the utilization value of 505 

the limited smartphone data in more dimensions. Additionally, although waiting for data 506 

accumulation is an essential aspect of future research, the increasing use of smartphones 507 

offers promising potential for data collection. 508 

Although the average number of user observations is currently low, there is 509 

potential for improvement. Kim et al. (2015) found that the amount of smartphone 510 

pressure data generated by weather apps decreased significantly after the publicity 511 



period ended, indicating that enthusiasm of the public to participate in mobile weather 512 

observation needs to be fundamentally improved. By helping the public understand 513 

the role of smartphone data in weather observation, forecasting and warning, we can 514 

increase enthusiasm for mobile weather observation. Citizen science projects such as 515 

PressureNet (https://pressurenet.io/typhoon-neoguri/) and Zooniverse 516 

(https://www.zooniverse.org/about/publications) provide good examples of how to 517 

engage the public in weather data collection, and these practices should be 518 

implemented more widely in other countries and regions. 519 

In conclusion, while there are challenges in the utilization of smartphone 520 

pressure data, there is great potential for further research and application. By 521 

addressing these challenges and engaging the public in mobile weather observation, 522 

we can improve the spatial and temporal resolution of the data and enhance its value 523 

for weather forecasting and warning systems. The future of smartphone pressure data 524 

in meteorology is promising, and with continued research and public engagement, we 525 

can unlock its full potential. 526 
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