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Abstract.  7 

Earth system models simplify complex terrestrial respiration processes assuming a first-order chemical reaction or 8 

assuming a Michaelis-Menten kinetics. The effect of the respective mathematical representation on the terrestrial 9 

carbon-climate feedback is unclear. Using a simplified model of biogeochemical feedbacks to climate, I show that 10 

the terrestrial carbon-climate feedback roughly doubles. Hence, the remaining carbon budget to keep global 11 

warming below 2 °C is 66-113 Pg C higher, when assuming Michaelis-Menten kinetics instead of first-order 12 

kinetics of respiration, but these differences depend on the underlying emission scenario. These results highlight 13 

the importance of an increased understanding of the respiration processes on a global scale for more reliably project 14 

future carbon dynamics and climate, related feedback mechanisms, and thus to estimate a valid remaining 15 

anthropogenic carbon budget using Earth System Models. 16 

1 Introduction 17 

The anthropogenic emission of carbon dioxide into the atmosphere since the industrialization period led to a global 18 

warming of about 1 K due to the greenhouse effect (Canadell et al., 2023). However, less than half of the 19 

anthropogenically emitted carbon remains in the atmosphere because terrestrial ecosystems and the ocean take up 20 

34% and 25%, respectively (Friedlingstein et al., 2023). The main reasons for this strong carbon dioxide uptake in 21 

terrestrial ecosystems are biogeochemical feedbacks (Cox, Betts, Jones, Spall, & Totterdell, 2000). Increasing 22 

atmospheric carbon dioxide (CO2) concentration leads to an enhanced photosynthesis rate, and hence to a CO2 23 

uptake by vegetation on land (Cramer et al., 2001; O'Sullivan et al., 2022). This carbon is stored in vegetation 24 

pools and ultimately transferred to soils by exudation, litterfall, and mortality processes, thereby increasing the 25 

soil carbon content. This is the important carbon-concentration feedback mechanism (Arneth et al., 2010) (Fig. 1) 26 

which is a negative feedback, hence responsible for the current net CO2 sink on land that has been preventing us 27 

from an even stronger climate change. In contrast, autotrophic and heterotrophic respiration are also higher than 28 

under pre-industrial conditions (Canadell et al., 2023) due to i) higher substrate availability and ii) the positive 29 

temperature sensitivity of respiration (Lloyd & Taylor, 1994). This temperature sensitivity of respiration forms the 30 

positive carbon-climate feedback mechanism (Fig. 1): Higher CO2 concentration leads to higher temperature, 31 

which increases respiration and hence leads to an even higher atmospheric CO2 concentration (Arneth et al., 2010). 32 

 33 
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 34 

Figure 1: Feedback diagram for two main terrestrial biogeochemical feedback mechanisms. NPP: Net primary 35 
production, R: respiration, OC: land organic carbon stocks, T: global surface air temperature, CO2: atmospheric 36 
carbon dioxide content. 37 

 38 

These two biogeochemical feedback mechanisms have been identified as two major feedback mechanisms in the 39 

Earth system with great impact on climate (Arora et al., 2020; Friedlingstein et al., 2006). Currently, the positive 40 

carbon-climate feedback is lower than the negative carbon-concentration feedback and therefore land ecosystems 41 

act as a natural sink of CO2 of about 3 Pg C per year (Friedlingstein et al., 2023). However, due to internal dynamics 42 

of the system, climate change, and changes in anthropogenic CO2 emissions, the future strength of the feedback 43 

mechanisms and hence the net CO2 exchange between land and atmosphere remains unclear. Recent accumulation 44 

of soil carbon in concert with higher future temperature and a declining increase in productivity can lead to a 45 

decreasing land sink under increasing CO2 emissions in future (Cramer et al., 2001; C. D. Jones et al., 2023). To 46 

estimate such feedbacks, we need to run a modified version of an Earth System Model in which only one feedback 47 

mechanism is considered. The temporal difference in atmospheric CO2 concentration from such experiments to 48 

model runs without the feedback is used to quantify these feedbacks (Hansen et al., 1984). 49 

For the carbon-climate feedback mechanism (Fig. 1), the representation of respiration processes in Earth System 50 

Models is crucial. Several assumptions about the underlying processes and respective mathematical 51 

representations have been proposed. Land surface models usually represent respiration as a linear function (first-52 

order kinetics) to the amount of available substrate (organic carbon, C), 53 

𝑑𝐶

𝑑𝑡
= −k ∙ C (1) 54 

using several carbon pools (Brovkin et al., 2013; Sitch et al., 2003; Tang, Riley, & Zhu, 2022), with different 55 

decomposition rate constants k. However, the underlying biochemical reactions are mostly enzymatic, hence a 56 

Michaelis-Menten kinetics model should be more valid to represent the dynamics of respiration (Wieder, Bonan, 57 

& Allison, 2013; Yu, Ahrens, Wutzler, Schrumpf, & Zaehle, 2020) 58 

𝑑𝐶

𝑑𝑡
= 𝑣𝑚𝑎𝑥

𝐶

𝐾𝑀+𝐶
 (2) 59 

where 𝑣𝑚𝑎𝑥 is the maximum reaction rate under infinite carbon substrate 𝐶, and 𝐾𝑀 represents the amount of 60 

carbon at which the reaction rate is half of the maximum. The nonlinear shape of this relationship between reaction 61 

rate and substrate availability (in contrast to the linear dependency of first-order kinetics models) leads to a steep 62 

increase of the reaction rate under low substrate availability while only a moderate to negligible increase under 63 

high substrate availability. In doing so, this model implicitly represents the function of enzymes in the underlying 64 

biochemical reactions. Such model enables a more valid aggregation from the process level (e.g. rhizosphere, 65 

aggregatusphere) to the landscape scale (Reichstein & Beer, 2008). 66 
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The two approaches represented by equations 1 and 2 imply different responses of respiration to changing substrate 67 

availability. Therefore, future dynamics of respiration should differ depending on the mathematical formulation. 68 

Such structural model uncertainty is in particular of interest because there might be a point when the land sink 69 

starts to decrease even under continuing high anthropogenic emissions(Cramer et al., 2001), or for the question on 70 

how land sinks will react to decreasing or even negative anthropogenic carbon emissions.  71 

Therefore, I ask three main questions in this paper: What is the effect of the respiration model structure on  72 

 projections of the land carbon sink 73 

 the strength of the carbon-climate feedback  74 

 the remaining anthropogenic carbon budget  75 

under different carbon emission scenarios? To address these questions I performed a feedback analysis using a 76 

simplified but process-based model of global biogeochemical feedback mechanisms twice, using a first-order and 77 

a Michaelis-Menten kinetics model of respiration. 78 

2 Methods 79 

2.1 Simplified Carbon-Climate Feedback Model 80 

The model has been designed to study the two major biogeochemical feedbacks to climate displayed in Fig. 1. 81 

Exchanges of carbon among atmosphere, ocean and land are represented using a reduced number of carbon pools 82 

without spatial details but still in a process-based way, i.e. based on a set of differential equations. For example, 83 

the amount of carbon taken up by vegetation depends on the atmospheric carbon content while the amount of CO2 84 

released to the atmosphere due to respiration depends on the carbon content of the ecosystem. The model assumes 85 

a global surface air temperature response to changing atmospheric carbon dioxide content using a transient climate 86 

response parameter, which is lagged due to the ocean heat capacity. The model is driven by anthropogenic carbon 87 

dioxide emissions to the atmosphere following several scenarios developed for the IPCC 6th assessment report. 88 

A detailed description of the model can be found in (Lade et al., 2018). Here, I apply two alternative model 89 

versions, one assuming a first-order kinetics of respiration (FOK), and one assuming a Michaelis-Menten kinetics 90 

of respiration (MMK). The representation of terrestrial carbon uptake by gross primary productivity is identical in 91 

both model versions. It is assumed to increase logarithmically with atmospheric carbon dioxide 𝐶𝑎 (Equations 3 92 

and 4, first term right-hand side). In addition, emissions due to land use change 𝐸𝐿  are subtracted the same way in 93 

both versions, and the increase in respiration with temperature is represented by a typical Q10 model (Equations 3 94 

and 4, second term right-hand side). Only the dependence of respiration to land carbon stocks differs. The FOK 95 

model assumes a first-order kinetics with a respiration rate constant estimated by pre-industrial GPP and carbon 96 

stocks, 𝑘 =
𝐺𝑃𝑃0

𝐶𝐿,0
 following the same principle as in (Lade et al., 2018).  97 

𝑑𝐶𝐿

𝑑𝑡
= 𝐺𝑃𝑃0  (1 + 𝛼 log

𝐶𝑎

𝐶𝑎,0
) − 𝑄

∆𝑇

10 ∙ 𝑘 ∙ 𝐶𝐿 − 𝐸𝐿 (3) 98 

In contrast, the MMK model represents respiration as a classical Michaelis-Menten equation with parameters 𝑣𝑚𝑎𝑥  99 

and 𝐾𝑀: 100 

𝑑𝐶𝐿

𝑑𝑡
= 𝐺𝑃𝑃0  (1 + 𝛼 log

𝐶𝑎

𝐶𝑎,0
) −𝑄

∆𝑇

10 ∙ 𝑣𝑚𝑎𝑥
𝐶𝐿

𝐾𝑀+𝐶𝐿
− 𝐸𝐿  (4) 101 
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Parameters and pre-industrial pools and fluxes for model initialization were taken from (Lade et al., 2018) and 102 

partly adjusted (Table 1). The transient climate response to CO2 doubling 𝜆 is set at the higher end of the range 103 

reported for CMIP6 model results (Arora et al., 2020; Nijsse, Cox, & Williamson, 2020) in order to match the 104 

observed historical temperature anomaly. Parameters 𝑣𝑚𝑎𝑥  and 𝐾𝑀 of Equation 4 are optimized using a standard 105 

gradient decent approach (MATLAB R 2023b function lsqnonlin) such that the difference of the modelled and 106 

observation-based land carbon changes is minimized. 107 

Table 1. Value and description of parameters different from (Lade et al., 2018). 108 

Name Symbol Value Reference/comment 

Pre-industrial soil and 
vegetation 
Carbon 

𝐶𝐿,0 2305 Pg C Sum of vegetation and 

soils carbon stocks 

following (Canadell et al., 

2023), and C stocks of the 

active layer of gelisols 

following (Hugelius et al., 

2014) 

Transient climate 

response to CO2 doubling 

(TCR) 

𝜆 (Equation 10 of (Lade 

et al., 2018)) 

2.5 K Tuning parameter, higher 

end of range of CMIP6 

models (Arora et al., 2020; 

Nijsse et al., 2020) 

Respiration sensitivity 

parameter 

𝑄 2 (Vaughn & Torn, 2019) 

Pre-industrial GPP 𝐺𝑃𝑃0   113 Pg C a-1 (Friedlingstein et al., 2023) 

CO2 sensitivity of GPP 𝛼 0.35 Tuning parameter 

(Alexandrov, Oikawa, & 

Yamagata, 2003) 

Max respiration rate in 

MMK model 

𝑣𝑚𝑎𝑥  200 Pg C a-1 Tuning parameter 

Substrate concentration at 

half of max respiration 

rate in MMK model 

𝐾𝑀 1787 Pg C Tuning parameter 

 109 

2.2 Modeling protocol  110 

The two model versions have been run from 1850 until 2100 using a daily time step forced by anthropogenic 111 

carbon dioxide emissions from fossil fuel burning and from land-use change. For this, I combined reported 112 

historical emissions from the Global Carbon Project (Friedlingstein et al., 2023) with Shared Socioeconomic 113 

Pathways (SSP) emission scenarios from the public database of the Institute for Applied Systems Analysis (Riahi 114 

et al., 2017). I selected four widely used scenarios produced for the CMIP6 protocol (Gidden et al., 2019): SSP1-115 

26 (optimistic scenario, reaching economic growth while retaining sustainability and reducing inequalities), SSP2-116 

45 (including mitigation strategies), SSP3-70 (represents a future of inequality and fossil fuel dependency), and 117 
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SSP5-85 (representing economic growth through strong reliance on fossil fuels). These scenarios reach a forcing 118 

of 2.6, 4.5, 7.0, and 8.5 W/m² at the end of the century and represent a huge spread of carbon emissions into the 119 

atmosphere (Fig. 2). I interpolated linearly the reported emissions at decadal scale to an annual resolution. In the 120 

combined time series (Fig. 2), historical emissions span the period 1850-2014 and scenarios continue from 2015 121 

until 2100.  122 

 123 

 124 

Figure 2: Total CO2 emissions from burning fossil fuels and land-use change from combining a historical dataset with 125 
results from Integrated Assessment Models for different scenarios. 126 

   127 

I performed model simulations for these emission scenarios and for both model versions, FOK and MMK. The 128 

results were used to evaluate the model during the historical period, and to estimate the remaining carbon budgets 129 

to keep warming below a certain threshold. For the feedback analysis, all these simulations were repeated three 130 

times. To estimate the feedback factor, I did model simulations in which only the terrestrial carbon-climate 131 

feedback is considered. The results were used to estimate the respective ∆𝐶𝐴
𝑜𝑛 (section 2.4). For calculating the 132 

feedback sensitivities β and γ (Section 2.4), I additionally performed biogeochemically and radiatively coupled 133 

simulations following (Friedlingstein et al., 2006; Lade et al., 2018) and derived ΔCL, ΔCA and ΔT from these 134 

simulations. In the biogeochemically coupled simulation, I set λ to 0, hence effects of CO2 change on temperature 135 

are excluded. In the radiatively coupled simulation, I neglected all effects of CO2 on terrestrial or marine carbon 136 

pools. In total, that are 32 model simulations. 137 

 138 

2.4 Feedback analysis  139 

Atmospheric carbon content increases in time due to annual anthropogenic emissions (ei) and internal feedback 140 

mechanisms. To estimate this carbon dioxide change when considering a terrestrial carbon-climate feedback 141 

(“on”), I averaged the atmospheric carbon content during a reference period in the future (2080-2100) and in the 142 

past (1850-1900) using the respective model simulation (section 2.3), and subtract both: 143 

∆𝐶𝐴
𝑜𝑛 = 𝐶𝐴

𝑓𝑢𝑡𝑢𝑟𝑒
− 𝐶𝐴

𝑝𝑎𝑠𝑡
 (5).   144 

The respective atmospheric carbon change without considering the feedback (“off”) equals the sum of emissions: 145 

∆𝐶𝐴
𝑜𝑓𝑓

= ∑ 𝑒𝑖
2100
𝑖=1850   (6). 146 
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The feedback is the difference ∆𝐶𝐴
𝑜𝑛 − ∆𝐶𝐴

𝑜𝑓𝑓
 and the feedback factor F is the ratio of both changes, which can be 147 

used to compare feedbacks and to identify positive (F>1) or negative feedbacks (F<1) (Cox et al., 2000; 148 

Friedlingstein, Dufresne, Cox, & Rayner, 2003; Hansen et al., 1984; Zickfeld, Eby, Matthews, Schmittner, & 149 

Weaver, 2011) 150 

𝐹 =
∆𝐶𝐴

𝑜𝑛

∆𝐶𝐴
𝑜𝑓𝑓  (7). 151 

Sensitivities of the land carbon change to atmospheric carbon concentration (β) and temperature changes (γ) are 152 

defined following  (Friedlingstein et al., 2006; Heinze et al., 2019) as 153 

∆𝐶𝐿 = 𝛽 ∙ ∆𝐶𝐴 + 𝛾 ∙ ∆𝑇  (8).  154 

I used the biogeochemically coupled simulation results to estimate β (ΔT=0), and the radiatively coupled results 155 

to estimate γ (ΔCA=0).  156 

3 Results 157 

Model results of carbon fluxes and the surface temperature anomaly for the historical period are in general 158 

agreement with results by the Global Carbon Project (Friedlingstein et al., 2023) and the NOAA Global Surface 159 

Temperature record (Fig. 3), i.e. the overall historical trends are captured. The model does not represent spatial 160 

details, oversimplifies functional diversity and does not represent certain processes, such as disturbances. 161 

Therefore, the model is not able to capture the inter-annual variability of land carbon fluxes (Fig. 3). The general 162 

long-term agreement shows that major biogeochemical feedback mechanisms are correctly represented, and that 163 

initial conditions (Table 1) and model parameters (Table 1) are reasonable. Therefore, we assume that we can 164 

apply this model to study the effects of structural respiration model uncertainty on the carbon-climate feedback 165 

strength. 166 

 167 



7 

 

 168 

Figure 3: Simulated carbon fluxes and temperature anomaly for the different scenarios. FOK and MMK model results 169 
are displayed by solid and dashed lines, respectively. Simulation results are compared to estimates by the Global Carbon 170 
Project or to the NOAA Global Surface Temperature record, which has been bias corrected to the model results to 171 
match reference periods.     172 

 173 

Figure 3 also shows the projections of carbon fluxes to land, ocean and atmosphere, as well as the temperature 174 

change for the two different model structures until 2100 following the different emission scenarios. Overall, these 175 

projections of the main carbon cycle fluxes and temperature change are similar to concentration-driven CMIP6 176 

results (Canadell et al., 2023; Chris D. Jones et al., 2023). The projected ocean carbon sink in this study is 177 

substantially higher for most of the scenarios, and the land carbon sink of the model using a first-order kinetics 178 

respiration approach (FOK) is lower, but comparable with Lade et al. (2018). Otherwise, the projections of the 179 

change in atmospheric carbon stocks and the global surface temperature change are similar to studies using Earth 180 

System Models (Canadell et al., 2023). However, spread of carbon cycle projections using other models is usually 181 

also very high (Canadell et al., 2023; Chris D. Jones et al., 2023), and the uncertainty due to parameter values or 182 

initial conditions hardly quantified in these studies.  183 

The projected land sink evolution differs depending on both, the emission scenario and the model structure applied. 184 

Under high emission scenarios, the land sink continues to rise and peaks in the middle of the century followed by 185 

a decreasing sink until 2100. This peak has been reported by DGVMs and ESMs before (Cramer et al., 2001; C. 186 

D. Jones et al., 2023) and is due to the reverse shape of the two main response functions, logarithmic productivity 187 

response to elevated CO2 and quasi-exponential respiration response to temperature. A second reason is internal 188 

carbon dynamics: Respiration depends on the amount of land carbon stocks, which continued to increase until 189 

some maximum and therefore is the basis for a high respiration flux during the following time. For the scenario 190 
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SSP1-26, the land sink starts to decrease immediately after the historical period, i.e. when emissions are reduced, 191 

and depending on the model structure is getting even negative at the second half of the century. 192 

The projected land carbon sink in 2100 is much higher when assuming a Michaelis-Menten kinetics model for 193 

respiration (MMK) even under an equal temperature sensitivity of respiration as by the first-order kinetics model 194 

(FOK), and even when parameters are chosen to fit both model results during the historical period. In addition, the 195 

peak in the middle of the century is more pronounced when using the MMK model (Fig. 3). Hence, this difference 196 

is only due to internal carbon dynamics differences, in particular a non-linear (decreasing) change of the respiration 197 

rate with increasing substrate availability under when assuming Michaelis-Menten kinetics. This clearly 198 

demonstrates the uncertainty of land carbon sink dynamics just due to alternative assumptions and mathematical 199 

formulations of respiration processes. As a result of higher land sinks using the MMK model, ocean and 200 

atmosphere sinks are smaller and the temperature change is lower (Fig. 3). Due to the higher land C sink assuming 201 

Michaelis-Menten kinetics, also total changes in land carbon stocks are much higher, i.e. land takes up several 202 

hundred of Pg C more depending on the emission scenario.  203 

 204 

Figure 4. Relationship between global air surface temperature difference to pre-industrial temperature and the cumulative 205 
emission of CO2 from 2024 until 2099 for different emission scenarios and the two model simulations FOK (solid lines) and 206 
MMK (dashed lines). Horizontal lines indicate a temperature change threshold of 2K, and vertical lines and numbers indicate 207 
the respective cumulative emissions since 2024 to reach that temperature change target. 208 

 209 

These differences in the projected land sinks do have clear consequences for the Transient Climate Response to 210 

Cumulative Emissions of Carbon Dioxide (TCRE) and hence the remaining anthropogenic carbon budgets under 211 

different emission scenarios. Usually, there is a quasi-linear relationship between the cumulative emission and the 212 

temperature change (Fig. 4). Under reduced emissions of SSP1-26 scenario, ocean and land C uptake may remain 213 

high (blue curves in Fig. 3), leading to a hysteresis in the TCRE (Charles D. Koven, Sanderson, & Swann, 2023). 214 

Such hysteresis is not visible in the other scenarios (Fig. 4) because emission reductions are not strong enough 215 
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(Fig. 2). Interestingly, the relationship is less steep and more non-linear for the MMK model for all scenarios. 216 

From the TCRE the remaining carbon budget for a certain temperature threshold can be estimated (Canadell et al., 217 

2023). In Fig. 4, the vertical lines indicate the amount of emissions since 2024 that - according to this model - can 218 

be still emitted in order to keep warming below the threshold of 2 °C warming compared to the pre-industrial 219 

situation, which is indicated by the horizontal line. We skip this analysis for scenario SSP1-26 results because the 220 

MMK model fails to reach a 2 °C increase at all (Fig. 4). For the other emission scenarios, the FOK model suggests 221 

381 to 423 Pg C that can be emitted to the atmosphere in order to keep warming below 2 °C compared to pre-222 

industrial temperature (Fig. 4). These estimates are slightly higher than the median remaining C budget estimated 223 

by CMIP6 experiments using ESMs of 370 Pg C (table 5.8, (Canadell et al., 2023)). Importantly, when assuming 224 

a Michaelis-Menten kinetics of respiration (MMK), the remaining C budget is higher and range between 457-536 225 

Pg C. This is due to flatter slopes of these model results (Fig. 4). 226 

 227 

Table 2. Terrestrial carbon-climate feedback (Pg C) for different representations of respiration in the model. 228 

Shown is the difference of model results accounting for the feedback and excluding it based on the temporal change 229 

in atmospheric carbon content between 2080-2100 and 1850-1900. 230 

 First-order 

kinetics (FOK) 

Michaelis-Menten 

kinetics (MMK) 

SSP1-26 379 920 

SSP2-45 423 955 

SSP3-70 431 959 

SSP5-85 498 1019 

 231 

Using the first-order kinetics approach of respiration (FOK), I estimate a carbon-climate feedback of 379 to 498 232 

Pg C when comparing the average CO2 concentration of the period 2080-2100 with pre-industrial conditions, 233 

depending on the emission scenario (Table 2). This translates into feedback factors of 1.2 to 1.4 (Table 3), which 234 

are similar to previous estimates (Lade et al., 2018). Interestingly, the strength of the feedback mechanism as 235 

expressed by the feedback factor decreases with increasing carbon emissions (Table 3), i.e. the internal Earth 236 

system interactions are more important under reduced anthropogenic emissions. However, when assuming 237 

Michaelis-Menten kinetics of respiration, this carbon-climate feedback strength is higher (Table 3) depending on 238 

the underlying scenario.  239 

 240 

 241 

Table 3. Feedback factor of the terrestrial carbon-climate feedback for different representations of respiration in 242 

the model. Shown is the difference of model results accounting for the feedback and excluding it based on the 243 

temporal change in atmospheric carbon content between 2080-2100 and 1850-1900. 244 

 First-order 

kinetics (FOK) 

Michaelis-Menten 

kinetics (MMK) 

SSP1-26 1.41 2.0 

SSP2-45 1.31 1.71 

SSP3-70 1.23 1.52 
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SSP5-85 1.21 1.43 

 245 

The FOK model estimates the sensitivity of the land carbon change to increasing atmospheric CO2 concentration 246 

(β, Table 4) to be 1.4 Pg C ppm-1 assuming the high-emission scenario SSP5-8.5. This is similar to CMIP4 model 247 

runs using the high-emission scenario SREAS A2 (Friedlingstein et al., 2006) and at the higher end of the range 248 

of CMIP6 model results without considering the N cycle in 4xCO2 experiments (Arora et al., 2020). Interestingly, 249 

the sensitivity increases towards scenarios assuming less emissions (Table 4), and the sensitivity is higher when 250 

assuming a Michaelis-Menten kinetics of respiration (Table 4). The land carbon change sensitivity to climate 251 

change (γ, Table 4) is estimated at -117 Pg C K-1 in this case. This is at the higher end of the range for the previously 252 

mentioned ESM results (Arora et al., 2020; Friedlingstein et al., 2006). This parameter is also more negative when 253 

assuming Michaelis-Menten kinetics or when considering a lower emission scenario (Table 4). 254 

 255 

Table 4. Sensitivities of the land carbon change to changing atmospheric carbon dioxide (β , Pg C ppm-1) and 256 

temperature (γ , Pg C K-1) for different representations of respiration in the model (FOK and MMK).  257 

 β, Pg C ppm-1, 

first-order 

kinetics (FOK) 

β, Pg C ppm-1, 

Michaelis-Menten 

kinetics (MMK) 

γ, Pg C K-1, first-

order kinetics 

(FOK) 

γ, Pg C K-1, 

Michaelis-Menten 

kinetics (MMK) 

SSP1-26 3.4 9.8 -133 -218 

SSP2-45 2.3 5.4 -125 -204 

SSP3-70 1.6 3.4 -124 -198 

SSP5-85 1.4 2.7 -117 -187 

 258 

 259 

4 Discussion 260 

Besides gross primary productivity, ecosystem respiration is one of the main land-atmosphere carbon exchange 261 

processes (Friedlingstein et al., 2023). The underlying biochemical processes are complex and mathematical 262 

models of simplified net reactions are usually applied in Earth System Models: Either assuming a first-order 263 

chemical reaction of carbon and oxygen to carbon dioxide and applying Equation 1, or considering the underlying 264 

enzymatic reactions and hence applying Equation 2. The epistemic uncertainty in projecting future land-265 

atmosphere exchange of CO2, climate and the related biogeochemical feedbacks underlying these assumptions 266 

have been addressed in this paper. Model parameters have been chosen based on literature values, and to fit 267 

published historical carbon and temperature changes (section 2.3) for the first-order kinetics approach (FOK).  268 

For the Michaelis Menten kinetics model (MMK), we selected parameter values such that results are also similar 269 

to Global Carbon Budget estimates and the FOK model during the pre-industrial period. Interestingly, effects of 270 

anthropogenic carbon emissions on future land sink dynamics differ between both model versions, with several 271 

Pg C per year higher uptake by land when assuming Michaelis-Menten kinetics for respiration (Fig. 3). Such higher 272 

land carbon uptake leads to a lower ocean carbon sink hence increasing differences between land and ocean sinks. 273 

In addition, the projected global surface temperature change until 2100 is lower in the MMK model (Fig. 3), i.e. a 274 

lower temperature change response to cumulative carbon emissions (Fig. 4). Since increasing surface temperature 275 
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will lead to an additional CO2 release from land to the atmosphere, there is the positive carbon-climate feedback 276 

mechanism (Arneth et al., 2010), and here I asked the question, is there also an effect of the respiration model 277 

structure on this feedback strength?  278 

Indeed, this feedback roughly doubles when assuming Michaelis-Menten kinetics, and it is higher for strong carbon 279 

emission scenarios (Table 2). As a consequence, the model results imply a 66 Pg C (SSP5-85) to 113 Pg C (SSP2-280 

45) higher remaining anthropogenic carbon budget to keep warming below 2 °C above pre-industrial levels only 281 

because we assume an alternative model structure for respiration. These estimates are similar to estimates of 282 

additional warming-induced C loss from permafrost-affected soils until 2100 of 10-100 Pg C (C. D. Koven et al., 283 

2015). Other additional Earth system feedbacks currently not represented in Earth system models (section 5.5.2.2.5 284 

in (Canadell et al., 2023)), and additional Geophysical Uncertainties like non- CO2 forcing or emission uncertainty 285 

(Table 5.8 in (Canadell et al., 2023)) are also of the same order of magnitude. Shall we assume a linear or non-286 

linear dependence of respiration on the amount of substrate? This assumption influences the internal land carbon 287 

dynamics, because in the latter case respiration does not respond to higher substrate availability in the same way 288 

as in the linear model. This is also visible when looking at the sensitivities of the land carbon change to CO2 change 289 

(β, Table 4) which roughly double when assuming Michaelis-Menten kinetics because the response of respiration 290 

to higher substrate availability is lower.    291 

I applied a simplified model of global biogeochemical feedback mechanisms, considering only one terrestrial 292 

carbon pool and no explicit pool of microbial biomass and microbial functions. Therefore, many specific 293 

underlying processes and interactions of ecosystem components are neglected. For example, an increase in 294 

heterotrophic respiration due to increasing plant productivity and carbon input to soils (priming effect, (Fontaine 295 

et al., 2007; Keuper et al., 2020)), or changing microbial community structure as a response to climate change 296 

(Glassman et al., 2018) is not considered. Nutrient limitation of vegetation productivity (Hungate, Dukes, Shaw, 297 

Luo, & Field, 2003) is only implicitly parametrized in Equations 3 and 4 through a logarithmic response function 298 

of GPP to CO2. Hence, I do not quantify the effects of nutrient availability on the carbon-climate feedback in 299 

addition to the effects of either respiration model used. When assuming a MMK model, increasing CO2 leads to 300 

higher increase in land C stocks (β, Table 4) due to lower respiration. However, this mechanism can, for instance, 301 

also lock more nutrients in soil organic matter hence change the response function of GPP to CO2. When 302 

considering nutrient processes, land C change sensitivities to CO2 and temperature have been shown to be much 303 

smaller (Arora et al., 2020).  In addition, climate change is expressed as a temperature change in this model and 304 

precipitation effects on carbon cycle functions (Jung et al., 2017) are not taken into account. Therefore, the 305 

presented results are first conservative estimates which should be verified using a state-of-the-art ESM including 306 

nutrient cycles and Michaelis-Menten kinetics (Yu et al., 2020). Still, the presented results point to the importance 307 

to communicate and address existing structural uncertainties in Earth System Models. Just by assuming an 308 

underlying Michaelis-Menten kinetics of respiration processes leads to distinct projections of future respiration 309 

and the carbon-climate feedback mechanism. These results also demonstrate the need for novel research clarifying 310 

a valid process-based model structure of ecosystem respiration.    311 

5 Conclusions 312 

Two major gross carbon fluxes govern the recent land carbon sink, photosynthesis and respiration. While detailed 313 

process-based photosynthesis models have been developed and applied in Earth System Models, how to model 314 
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respiration processes remains unclear. The model structure of respiration alone can lead to a doubling of the 315 

carbon-climate feedback estimate over the 21st century. Depending on the underlying emission scenario, that 316 

translates into a difference of the remaining carbon budget to keep global warming below 2 °C of 66 Pg C (SSP5-317 

85) to 113 Pg C (SSP2-45). These results show the importance of an increased understanding of the mathematical 318 

model structure of respiration processes in Earth System Models for more reliably projecting future carbon 319 

dynamics and climate, related feedback mechanisms, and hence to estimate a valid remaining anthropogenic 320 

carbon budget. 321 
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