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Abstract. Suburban areas have disproportionately experienced higher fatalities during major earthquakes. Place-based models 

attribute this spatial disparity to hazard, exposure, and social vulnerability factors. However, the impact of migration on seismic 15 

fatality remains underexplored, primarily due to the challenges in accessing mobility data. In this study, we apply a geospatial 

method, the radiation model, to estimate migration patterns as a critical component of exposure and vulnerability. Analyzing 

the 1999 Chi-Chi earthquake in Taiwan with Poisson regression across 4,052 neighborhoods, we factor in migration inflow 

(i.e., population traveling from other neighborhoods), migrants' origin income, and indigenous population percentage among 

migrants, along with other risk factors proven in previous studies. Our findings indicate that migration inflow significantly 20 

correlates with increased fatalities. Furthermore, a lower income at the migrants' origin neighborhood is significantly 

associated with higher fatalities at their destination. An elevated proportion of indigenous population in the migrants' origin 

neighborhood also significantly correlates with increased fatalities, although the impact of the Chi-Chi earthquake does not 

predominantly affect indigenous jurisdictions. This study underscores the seismic fatality risk in the outskirts of megacities, 

where migrants from lower income and historically marginalized groups are more likely to reside for precarious employment 25 

conditions, emphasizing the need for affordable and safe living infrastructures for the migrating population. Addressing 

migrants’ vulnerabilities in housing will not only reduce seismic fatality risk but also improve preparedness against other 

disasters and public health emergencies. 

1 Introduction 

Globally, from 1996 to 2015, earthquakes resulted in over 750,000 deaths, comprising 55.6% of all natural hazard fatalities in 30 

this period (UNISDR, 2016). Seismic fatalities, while intuitively linked to earthquake exposure, do not always align with 
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population density or hazard magnitude. For example, during Taiwan's 1999 Chi-Chi earthquake, most fatalities occurred not 

in densely populated urban centers or remote rural areas but in suburban or urban fringe areas around the Taichung metropolitan 

region (Fig. 1). Similar mortality patterns were observed in subsequent significant earthquakes in Wenchuan, China (2008), 

Central Chile (2010), and Gorkha, Nepal (2015), predominantly affecting suburbs or neighborhoods of small-to-medium-sized 35 

cities (Adhikari et al., 2021; Allan et al., 2013; Panday et al., 2021; Xu et al., 2009). This pattern, which we term as the 

'suburban syndrome,' suggests that the highest fatality rates may be more related to urban development and housing safety 

issues than to the earthquake's magnitude alone. Nevertheless, this socio-spatial fatality pattern in suburban belts has been 

underexplored in seismic risk research. 

By 2030, small and mid-sized cities and towns with populations of less than one million are expected to account for 54% of 40 

the world’s urban population, having experienced rapid growth and urban expansion in recent decades (UN, 2018). These 

cities, particularly those on the outskirts of metropolitan areas, often provide more affordable housing options for lower-income 

groups, including migrant workers attracted to cities for job opportunities (Taubenböck et al., 2018). During off-season periods 

in agriculture, rural populations wandering into urban areas frequently take on temporary jobs, such as construction work (Fan 

and Li, 2020; Kumar and Sati, 2023). Socioeconomically marginalized migrants from rural villages and indigenous tribes are 45 

more likely to reside in urban peripheries where lower-cost rental housing is available, though often at the expense of structure 

safety and maintenance (Andersen et al., 2018; Belanger et al., 2013; Shier et al., 2015). Social vulnerabilities in these areas 

are exacerbated by issues like unregulated development, informal settlements, overcrowded living conditions, poor 

construction standards, weak governance, and limited financial resources (Birkmann et al., 2016). These factors collectively 

heighten the social vulnerability of suburban belts to earthquakes.  50 
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Figure 1: A case of the suburban syndrome in seismic fatalities. Spatial distributions of fatalities and population density indicate 

that the neighborhoods in medium-sized hub cities, suburban areas, and urban fringes suffered the most fatalities during the Chi-

Chi earthquake. The population data is from Taiwan Census 2000 and fatality data from Tien et al. (2002). 

Seismic risk assessment has primarily focused on individuals’ places of residence to estimate exposure and other risk factors 55 

(Aldrich and Sawada, 2015; Derakhshan et al., 2020; Lin et al., 2015; Masi et al., 2021; Pavić et al., 2020; Rashed and Weeks, 

2003). These measures were able to identify areas with higher exposure and social vulnerability associated with earthquake-

related fatalities, thereby informing resource allocation and policy interventions. However, the residence-based approaches 

overlook the effect of migration patterns at daily, seasonal, and long-term scales that can have a strong impact to reshape risks. 

More critically, the migration data hardly is reflected in any official population registers. We argue that migration patterns are 60 

a vital yet overlooked component in understanding the suburban syndrome in disaster risk assessment. Ignoring population 

flow  between places can lead to an underestimation of exposure, root cause, and progression of vulnerability to environmental 

hazards (Kumar and Sati, 2023; Wang et al., 2022). For example, seasonal farm workers in North Carolina, USA, faced greater 

impacts from Hurricane Katrina due to inadequate housing in migrant worker camps (Montz et al., 2011). In Lisbon, Portugal, 

more than 50% of the population is found in different census locations during the day compared to their residential records, 65 

resulting in a 22% higher exposure to the 2012 Lisbon earthquake (Freire and Aubrecht, 2012). Between 1990 and 2010, the 

migration of the working-age population from rural to urban areas in China led to a 34% increase in the population exposed to 

seismically hazardous areas, higher than the average population growth at 18% (He et al., 2016). In the United States, exposure 

to toxic sites is 10% higher when based on people’s mobile signal locations than estimates based on their residence (Liu et al., 



4 

 

2023). These examples underscore the critical role of migration patterns in hazard exposure, necessitating a paradigm shift 70 

towards mobility-based risk assessments.  

In this study, we hypothesize that incorporating the migration effect into risk models could explain the suburban syndrome, 

characterized by higher fatalities in small and medium-sized cities and suburban areas. We also hypothesize that migrants from 

historically marginalized groups, especially indigenous people in colonial societies, may expose to higher seismic risks. 

Mobility data from recent technological advancements, such as social media records and mobile phone signals, were not widely 75 

available before the 2000s. Thus, we introduce the application of the radiation model (Simini et al., 2012) to estimate migration 

effects on seismic risks. The effect is examined through a case study of the Chi-Chi earthquake that struck Taiwan in 1999. 

The database for this earthquake encompasses the location of each death and high-resolution ground motion data from 650 

stations. By combining earthquake hazard, socioeconomic, indigenous population data, and migration estimates at the 

neighborhood level, we construct three nested multivariate models. Our analyses address three questions: (i) What are the 80 

determinant factors constituting seismic risk in terms of hazard, exposure, and vulnerability? (ii) What roles do migration 

patterns play in seismic fatalities with respect to the size of the migrant population and the economic status of their origin? 

(iii) Are historically marginalized populations, especially indigenous people, more vulnerable during migration in terms of 

seismic risk? 

1.1 Background for place-based and mobility-based effects in the “suburban syndrome” 85 

When performing seismic risk assessment, studies usually conceive risk factors of a given place by measuring three distinctive 

components that determine fatality—hazard, exposure, and vulnerability (Bilham and Gaur, 2013; Lin et al., 2015). Hazard 

refers to natural or human-induced physical events that may have adverse effects on exposed elements, such as populations or 

buildings. Exposure refers to an inventory of elements in an area in which hazard events may occur. In seismic risk assessments, 

while 'vulnerability' sometimes refers to the fragility of buildings, we specifically refer this term to social vulnerability, which 90 

reflects the sociodemographic context of a neighborhood that is prone to suffering seismic fatalities (IPCC, 2012; Turner et 

al., 2003). Following assumption that living in a poor neighborhood affects a wide range of individual outcomes (Wilson, 

2012), the place-based effect refers to internal physical and socioeconomic context of a neighborhood in which hazard, 

exposure, and vulnerability interact to shape its risk profile. In addition, the mobility-based effect, as we define here, refers to 

interactions of the outer linkages of a neighborhood with its migrants from other neighborhoods that affect the risk profile, but 95 

yet their mobility has been underestimated. These two mechanisms increase the seismic risk in developing and densely 

populated neighborhoods along the expanding suburban belt—suburban areas, the urban fringe, and local hub cities and towns. 

 

The place-based effect appears to be magnified when hazard, exposure, and vulnerability are considered to reinforce each 

other, and fatalities are higher in certain neighborhoods. However, the investigations for these phenomena remain insufficient. 100 

Seismic risk studies most frequently report the concentration of disadvantaged or vulnerable populations living in poorly 

constructed buildings (e.g., low-rent or low-price residential and commercial property or slums) in seismic-hazard-prone areas. 
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During the past four decades, construction booms especially have been witnessed in cities worldwide, resulting in an 

unprecedented increase of building stocks constructed using inferior materials and assembly methods (Bilham and Gaur, 2013). 

Most such buildings occur in developing countries or regions where building standards were poorly regulated or enforced. It 105 

is deemed that earthquake-resistant buildings are often exclusive to the economically developed neighborhoods. The expensive 

real estate with high-standard building codes are usually not affordable for the socially disadvantaged population (i.e., low-

income, unemployed, and minority people; transient-migrant or commuting workers; and people who are less educated) in the 

earthquake zones (Önder et al., 2004). Overall, corruption in the construction industry, absence of education on earthquakes, 

prevalence of poverty, and income inequality, which relates to segregation in earthquake zones, are responsible for fatalities 110 

associated with building collapses (Anbarci et al., 2005; Escaleras et al., 2007). There are still other factors that can heighten 

social and geographical segregation during earthquakes. Public or social housing is often built on newly derived lands that are 

prone to various types of hazard threats, such as those close to transportation, hillsides, riverbanks, or coasts, under city 

planning (Cutter et al., 2006). Proximity to industrial sites during an earthquake can increase the risk of explosions and fires, 

potentially leading to fatalities (Moghaddam et al., 2023). The spatial segregation of building quality and unequal exposure to 115 

hazards can be worsened under rapid and unregulated urban expansion (Brouwer et al., 2007; Lavell, 2003; McGranahan et 

al., 2007). Therefore, during building booms particularly, the rapidly developing yet relatively poor neighborhoods around the 

suburban belt could therefore face greater exposure to hazards with a higher proportion of buildings with low-quality codes to 

enhance seismic risks.  

 120 

Another mechanism, the mobility-based effect, which focus on human mobility across neighborhood boundaries, could 

profoundly influence earthquake fatalities through migration behavior. Human mobility shapes population dynamics at 

different timescales from a day to several seasons in a year. The simplest view of human mobility is the “push–pull” theory, 

which states that a pull-in force occurs in places with more favorable conditions and opportunities that attract migration, 

whereas a push-out force occurs in places with fewer opportunities and more constrains that force people to move out of those 125 

places (Ravenstein, 1889). These processes cause short-term population flow (e.g., commuting daily to work, weeks/months 

in temporary jobs, and semesters/years at school) and long-term migration; these population flows can take place in both formal 

and informal forms. Research indicates that city scale (population or accumulated goods) and job opportunities are critical 

factors of a pull process (Jamshed et al., 2020; Simini et al., 2012). The gravity model, for example, uses two elements—

population number and distance between places—to predict population flows (Simini et al., 2012; Viboud et al., 2006). Survey 130 

studies also find that low family income (Fell et al., 2004), unemployment (Böheim and Taylor, 2002), and the cost of 

commuting are key factors in a push process. All of these dynamisms form the prototype of the relationships in urban systems 

and urban–rural linkages (Dicken et al., 2001; Jessop et al., 2008). Ignoring such socio-spatial interactivities could lead to 

underestimation of the population exposure, especially for hub cities with high population mobility (Lall and Deichmann, 

2012). In this regard, the mobility-based effect boosts seismic risk in suburbs and medium-sized hub cities. Sharp and Clark 135 

(2008) studied commuting behaviors among urban, suburban, fringe, and rural areas and found that the fringe area is often 
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marked with a high proportion of new buildings and high mobility. Exposure and vulnerability are two mechanisms occurring 

simultaneously and linking the suburban and fringe commuting population to intensified risk. Thus, disaster risks are likely to 

be underestimated in such areas.  

2 Methods 140 

2.1 Taiwan’s Chi-Chi earthquake study area 

Taiwan is located on the western edge of the Pacific Ring of Fire, a seismically active zone at the convergence of the Philippine 

Sea Plate and the Eurasian Plate. Due to complex and active tectonic settings, Taiwan experiences frequent earthquakes. On 

average, 18,649 earthquakes have hit Taiwan annually from 1991 to 2004, among which 1,047 earthquakes could be sensed 

(CWB, 2019). The Chi-Chi earthquake was the most lethal earthquake since the 1935 Shinchiku-Taichū earthquake. It struck 145 

at 01:47 (GMT+8) on September 21, 1999, in Chi-Chi Township, Nantou County (23.77° N latitude, 120.98° E longitude, Fig. 

2), southeast of the Taichung metropolis, the second largest city of Taiwan. The sequence produced a 90 km surface rupture 

along the Chelungpu thrust fault stretching between foothills of the Central Mountain Ranges in the east to the alluvial plains 

and basins in the west (Fig. 2). The MW 7.6 main shock and aftershocks resulted in either the complete destruction or the 

serious damage of approximately 110,000 buildings and resulted in 2,444 deaths, 94% of which were due to building collapses 150 

(Kao and Chen, 2000; Tien et al., 2002). The top three damaged structural types were reinforced concrete structures (44%), 

unreinforced brick structures (22%), and unreinforced clay block buildings (12%) (Tsai et al., 2000). Fatalities were 

concentrated in Taichung County (1,138 deaths) and Nantou County (928 deaths). Most fatalities occurred in suburbs or urban 

fringes along the periphery of the Taichung metropolis and medium-sized cities outside of the metropolis (Fig. 1). Previous 

studies on the Chi-Chi earthquake found known risk factors from the hazard, exposure, and vulnerability components in risks 155 

(Lin et al., 2017; Lin et al., 2015). Yet, migration effects and factors of the disadvantaged population remain unknown.   

In this study, we adopted the neighborhood geographic unit to estimate the socio-spatial effect of the seismic fatalities in the 

Chi-Chi earthquake of Taiwan. The smallest (forth-level) administrative division in Taiwan is the village level in rural districts, 

which is equivalent to neighborhood in urban districts. As village and neighborhood refer to the same administrative level, we 

hereafter use neighborhood to harmonize the terminologies and use rural or urban neighborhood for specifying the context as 160 

necessary. In total, Taiwan encompassed 7,558 neighborhoods with an average population of 3,000 in 1999. Although the 

earthquake was sensible island wide, it did not yield tangible damage across the entire island. Thus, we excluded neighborhoods 

under the threshold of ground motion intensity, Sa03 of 0.14g, which suggests that no damage occurred below this intensity 

(Lin et al., 2015). This resulted in 4,502 neighborhoods as our study area. We used the urbanization levels of districts defined 

by Liu et al. (2006) to determine deaths located in suburbs and the urban-rural fringe.   165 
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Figure 2: Map of Taiwan’s mainland and the study area (Sa03 ≥ 0.14g) with gray lines showing neighborhood boundaries. The Chi-

Chi earthquake resulted in a 90 km surface rupture along the Chelungpu thrust fault stretching between the foothills of the Central 

Mountain Range to the plains in the western coast.  

 170 

2.2 Data 

We define risk according to the 5th assessment IPCC report as “the potential for consequences where something of human 

value (i.e., fatality in our case) is at stake and where the outcome is uncertain” (IPCC, 2012; UNDRO, 1980). Thus, we collect 

data of our variables based on the formula of fatality risk as Eq. 1: 

 175 
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𝑅𝑖𝑠𝑘 = 𝐻𝑎𝑧𝑎𝑟𝑑 × Exposure × Vulnerability  (Eq. 1) 

 

2.2.1 Dependent Variable: Earthquake Fatalities 

The dependent variable in this study is the death toll in each neighborhood. We obtained the data from Tien et al. (2002) who 

investigated the fatalities caused by the Chi-Chi earthquake. Notably, the research team from the National Central University 

tracked the location of each death using the global positioning system (Kao and Chen, 2000; Tien et al., 2002). The death toll 180 

thus reflected the location of the death rather than their registered residence. The fatalities per neighborhood ranges from 0 to 

87 (Table 1). 

 

Table 1: Descriptive statistics of the selected variables at the neighborhood level (n = 4052).  

Dependent variable  Mean SD Min. – Max. Source 

Fatalities 0.52 3.79 0–87 Tien et al. (2002) 

     

Independent variable 
 

 

Hazard 
   

 

Sa03 (g) 0.36 0.27 0.14–1.86 Central Weather Bureau 

Fault-impacted area 0.02 0.13 0–1 Chen et al. (2001) 

Exposure 
   

 

Population (unit: 10,000 people) 0.29 0.26 0–3.88 Taiwan Census 2000 

Percentage of low seismic capacity building 0.37 0.21 0–1 NCREE*(Yeh et al., 2006) 

Vulnerability 
  

 

Sex ratio 1.08 0.31 0.19–11.86 Taiwan Census 2000 

Percentage of population under the age of 15 0.2 0.04 0–0.41 Taiwan Census 2000 

Percentage of population over the age of 64 0.11 0.05 0–0.65  

Ln (Median household income) 6.24 0.17 5.41–7.26 Ministry of Finance  

Ln (Standard deviation of household income) 6.31 0.5 5.2–10.07  

Indigenous population proportion 0.03 0.14 0–0.98 Ministry of Interior 

Migration pattern 
 

 

Ln (Estimated migration inflow) 0.78 0.93 -3.69–3.86 Radiation model (this study) 

Ln (Average income of migrants’ origin) 6.25 0.15 5.76–6.98 Radiation model (this study) 

Indigenous population proportion in migrants 0.04 0.13 0–0.93 Radiation model (this study) 

* National Center for Research on Earthquake Engineering 185 

 



9 

 

2.2.2 Independent Variable: Hazard 

The seismic hazard dimension comprises two variables: seismic intensity and surface rupture. For seismic intensity, we 

measured Sa03, standing for spectral acceleration at 0.3 second. This measurement is found more representative than peak 

ground acceleration or peak ground velocity when considering damages of low-to-midrise buildings (one to six stories), which 190 

comprised 99.8% of the buildings damaged during the Chi-Chi earthquake (Lin et al., 2015; Wu et al., 2004; Wu et al., 2002). 

The Sa03 ground motion data was obtained from the Central Weather Bureau (CWB), which had installed approximately 650 

free-field strong motion stations around Taiwan before the Chi-Chi earthquake under the Taiwan Strong Motion 

Instrumentation Program (Shin et al., 2003). In terms of surface rupture, the Chelungpu Fault surveyed by Chen et al. (2001) 

was applied to identify the distribution of the fault rupture. Chelungpu is a thrust fault; empirically major destruction occurred 195 

on the hanging wall side of depression. We thus identified a fault-impact zone with a 5-km buffer (4 km on the hanging wall 

and 1 km on the footwall) along the fault. The ratio of the area in the fault-impact zone (from 0 to 1) in each neighborhood 

was calculated based on the geographical information system to reflect its influence on fatalities. 

2.2.3 Independent Variable: Exposure 

The exposure variables included population size and proportion of buildings with low-seismic capacity (Lin et al., 2017; Lin 200 

et al., 2015). We obtained the population data from the Taiwan Population and Household Census 2000 (Chang and Shyue, 

2009). The average population per neighborhood was 2,901, with a minimum of 16 people in a rural village and a maximum 

of 38,822 in the densest neighborhood of the urban areas. Additionally, building fragility is a crucial intermediate factor that 

can fundamentally influence earthquake fatalities (Bilham and Gaur, 2013; Birkmann et al., 2016; Lin et al., 2015; Yeh et al., 

2006). People situated in fragile buildings with low seismic resistance would suffer from a higher degree of exposure from the 205 

doubling effect of the initial seismic hazard and the potential collapse of buildings. We obtained the building seismic capacity 

data from the National Center for Research on Earthquake Engineering (Yeh et al., 2006). The building capacity classification 

was based on the history of seismic design codes for the buildings in four levels (high, moderate, low and pre-code) (Scawthorn 

et al., 2006). We considered pre-code and low-code buildings as low seismic capacity and calculated the percentage of the 

floor area with low seismic capacity per neighborhood in the year 2000. The average percentage of low seismic capacity 210 

buildings was 37% among the studied neighborhoods (Table 1). 

2.2.4 Independent Variable: Vulnerability 

The vulnerability variables included neighborhood-level sex ratio (male/female population), percentage of population under 

the age of 15, percentage of population over the age of 64, household income, income inequality, and indigenous population 

proportion. Sex ratio, dependent population (age under 15 and over 64), median income, and income inequality are known risk 215 

factors for Chi-Chi earthquake death tolls (Li et al., 2017; Lin et al., 2015). The population dependency factor calculates the 

percentage of the population under the age of 15 and over the age of 64. A larger dependent population, either young or aged, 



10 

 

indicates a higher degree of vulnerability. We obtained demographic data at the neighborhood level from Taiwan Population 

and Household Census 2000. The overall sex ratio was 1.08 on average, meaning that males outnumber females in the studied 

neighborhoods. There were no statistics available regarding the non-binary gender population.  220 

Household income, measured by median and standard deviation, reflects the average economic development and income 

inequities of each neighborhood, respectively, which are key factors of vulnerability (Cutter et al., 2006; Cutter and Finch, 

2008; Kahn, 2005). We obtained the household income data before tax in 1999 from the Ministry of Finance (2023). Notably, 

the median annual household income of each neighborhood ranges from 224,000 TWD (~7,400 USD) to 1,425,000 TWD 

(~47,500 USD), and the standard deviation of annual household income ranges from 182,060 TWD (~6,068 USD) to 225 

23,734,840 TWD (~791,161 USD); these values indicated considerable social differences between neighborhoods. We used 

the logarithmic transformation of the median and standard deviation of household income to deal with the skewed distributions 

of these variables. 

We integrated the proportion of the indigenous population as a new variable to reflect the land dispossession and economic 

marginalization that occurred since the colonial era. The Ministry of Interior in Taiwan defines indigenous populations as 230 

groups of people with their own distinct languages, cultures, and traditions, and acknowledges the existence of 16 official 

indigenous groups. As of 2024, their population numbered 589,038, representing approximately 2.5% of Taiwan's total 

population of 23 million (Ministry of Interior, 2024). In contrast to the majority Han population, who migrated to Taiwan in 

different stages in the last centuries, the indigenous peoples belong to the Austronesian language family and have inhabited 

the island for millennia. The colonial history of Taiwan began in 1624 with the Dutch Republic (Dutch East India Company), 235 

followed by Spain, China (during the Ming and Qing dynasties), Japan (1895-1945), and lately the Chinese Nationalist Party 

(also known as Kuomintang, KMT), who settled in Taiwan after world war II and lifted martial law in 1987 (Nesterova and 

Jackson, 2018). Over the political transitions, the indigenous peoples have lost their lands, with most remaining indigenous 

territories concentrating in mountainous regions. Hence, agriculture has been the primary employment sector for indigenous 

peoples, comprising 20% of their labor force, compared to  6.6% of agricultural employment in the total workforce in 2002 in 240 

Taiwan (Council of Indigenous Peoples, 2005). Manufacturing (15%) and construction (13%) are the next largest sectors for 

indigenous employment. Nevertheless, indigenous occupations often fall into the precarious category known as "3K jobs." The 

term "3K jobs" derives from Japanese words meaning "hard (kitsui)," "dirty (kitanai)," and "dangerous (kiken)," respectively. 

Typical 3K jobs are found in manufacturing and construction, usually offered on a contract basis with daily wages two to three 

times higher than the minimum wage, making them an attractive option for farmers during the off-season. It is worth noting 245 

that 64% of indigenous farmers experience off-seasons ranging from one to six months, leading them to seek temporary work 

and housing in nearby towns (Council of Indigenous Peoples, 2005). 

We obtained the proportion of indigenous population data from the Ministry of Interior (2023). The available neighborhood-

level data closest to our study year was documented in 2008, and we considered the indigenous population distribution between 

1999 and 2008 to be similar. 250 
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2.2.5 Independent Variable: Migration Pattern 

In Taiwan, during the 1999 earthquake, no statistics were available on internal migration at the neighborhood level. Therefore, 

we utilized a radiation model to estimate population migration at this granularity (Simini et al., 2012). This model, which is 

widely used to determine migration flows between origin and destination areas, utilizes population data and pairwise distances 

between neighborhoods to represent the push-and-pull factors in migration (Gibb et al., 2023; Li et al., 2017; Simini et al., 255 

2012; Yang et al., 2014). The formula for the model uses the product of the populations of the origin and destination 

neighborhoods as the numerator. The denominator is an adjusted product of the populations within the vicinity of both the 

origin and destination areas, represents the effect of competing neighborhoods on the population flow. We applied the radiation 

model to quantify Tij, the proportion of the migrants from neighborhood i moving to neighborhood j, as follows in Eq. 2: 

𝑇𝑖𝑗 =
𝑃𝑜𝑝𝑖 𝑃𝑜𝑝𝑗

(𝑃𝑜𝑝𝑖+𝑆𝑖𝑗)(𝑃𝑜𝑝𝑖+ 𝑃𝑜𝑝𝑗+𝑆𝑖𝑗)
   (Eq. 2) 

 260 

where Popi and Popj are the populations of neighborhoods i and j, respectively; Sij is the total population within a buffer zone 

around the centroid of i, with the radius being the distance between the centroids of i and j, excluding the populations at both 

the source and destination points.. Based on this origin-destination matrix, we produced three variables: estimated migration 

inflow, average income of migrants' origin, and the proportion of indigenous population in migrants. 

 265 

Estimated migration inflow for neighborhood j can be represented as ∑ 𝑇𝑖𝑇𝑖𝑗𝑖 , where Ti is the total number of migrants 

originating from i. Although Ti is an unknown parameter, it is proportional to Popi based on Simini et al. (2012). Therefore, 

we calculated the estimated migration inflow for neighborhood j as ∑ 𝑃𝑜𝑝𝑖𝑇𝑖𝑗𝑖 , which is a relative size proportional to the total 

number of migrants in a neighborhood j. Specifically, the estimated value represents the size of migrant inflow assuming that 

every place has 100% of its population migrating. In reality, however, the inflow is smaller and proportional to this estimate 270 

(Simini et al. 2012). Since this variable does not represent the absolute number of migrants but rather their relative size, we 

used the logarithm of the relative size of migrant inflow to interpret the effect of a percent change in migrant size on the percent 

change in fatalities. 

 

We calculated the average income of migrants' origin by weighting the origin’s median income by the relative migrant inflow 275 

among all migrants in neighborhood j (Eq. 3). Similar to the neighborhood’s income variable, we used the logarithm 

transformation of the variable to deal with its skewed distribution. 

 𝑀𝑖𝑔𝑟𝑎𝑛𝑡𝐼𝑛𝑐𝑜𝑚𝑒𝑖 =
∑ 𝑃𝑜𝑝𝑖𝑇𝑖𝑗𝑖 ×𝐼𝑛𝑐𝑜𝑚𝑒𝑖

∑ 𝑃𝑜𝑝𝑖𝑇𝑖𝑗𝑖
   (Eq. 3) 

 

We calculated the proportion of indigenous population in migrants based on the proportion of indigenous people and the 

relative migrant inflow. Assuming the proportion of migrants being indigenous from neighborhood i equals to the proportion 280 
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of indigenous population in neighborhood i, the proportion of indigenous population in the migrants to neighborhood j was 

calculated as Eq. 4.  

%𝑀𝑖𝑔𝑟𝑎𝑛𝑡𝐼𝑛𝑑𝑖𝑖 =
∑ 𝑃𝑜𝑝𝑖𝑇𝑖𝑗𝑖 ×𝐼𝑛𝑑𝑖𝑔𝑒𝑛𝑜𝑢𝑠%𝑖

∑ 𝑃𝑜𝑝𝑖𝑇𝑖𝑗𝑖
. (Eq. 4) 

 

We used the library ’spdep’ in R to calculate distance between neighborhoods (see the Code Availability section). 

 285 

2.3 Models 

We used Poisson regression and maximum likelihood estimation to predict incidence rate ratio and significance levels for each 

covariate from the risk components of hazard, exposure, and vulnerability. The incidence rate ratio (IRR) of a given variable 

can be interpreted as the factor by which the fatality rate multiplies when that variable increases by one unit, assuming all other 

variables remain constant (Clayton and Hills, 2013). For example, if the IRR for the variable fault ratio is 2.65, it means that 290 

an increase in the fault ratio from 0% to 100% will lead to a 165% increase in fatalities (calculated as (2.65−1)×100%). In 

other words, for each 10% increase in the fault ratio, fatalities are expected to increase by 16.5%. When a variable is in 

logarithmic form, the IRR can be interpreted as the factor by which the fatality rate multiplies for a 1% increase in that variable. 

We modeled neighborhood-level fatalities against these variables, assuming a linear response association, across 4,052 

neighborhoods in Taiwan. We started with known risk factors in the basic model (Model 1; Eq. 4). Subsequently, we 295 

incorporated the proportion of the indigenous population in the model (Model 2; Eq. 5). Lastly, we included estimated 

characteristics of migration patterns (i.e., migrant inflow, average income of migrants’ origin, and indigenous population 

proportion in migrants) in the final model (Model 3; Eq. 6). The three nested regression models can be described as follows:  

log  𝐸(FAT𝑖/𝑥) = β0 + β1Sa03𝑖 + β2Fault𝑖 + β3Pop𝑖 + β4LowCapacityBuilding𝑖 + β5SexRatio𝑖 + β6AgeUnder15𝑖 +

                                  β7AgeOver64𝑖 + β8MedianIncome𝑖 + β9StdIncome𝑖 + ε𝑖                                             (Model 1, Eq. 4) 300 

 

log  𝐸(FAT𝑖/𝑥) = β0 + β1Sa03𝑖 + β2Fault𝑖 + β3Pop𝑖 + β4LowCapacityBuilding𝑖 + β5SexRatio𝑖 + β6AgeUnder15𝑖 +

                                  β7AgeOver64𝑖 + β8MedianIncome𝑖 + β9StdIncome𝑖 + β10Indigenous𝑖 + ε𝑖  (Model 2, Eq. 5) 

 

log  𝐸(FAT𝑖/𝑥) = β0 + β1Sa03𝑖 + β2Fault𝑖 + β3Pop𝑖 + β4LowCapacityBuilding𝑖 + β5SexRatio𝑖 + β6AgeUnder15𝑖 +305 

                                  β7AgeOver64𝑖 + β8MedianIncome𝑖 + β9StdIncome𝑖 + β10Indigenous𝑖 + β11MigrationInflow𝑖 +

                                  β12MigrantIncome𝑖 + β13MigrantIndigenous𝑖 + ε𝑖                                                            (Model 3, Eq. 6) 

 

The response 𝐹𝐴𝑇𝑖 refers to the fatality count in neighborhood 𝑖. For each neighborhood i, hazard variables included 𝐹𝑎𝑢𝑙𝑡𝑖 

(proportion of the area in the fault zone) and 𝑆𝐴03𝑖 (the ground motion intensity measured as Sa03 (g)). Exposure variables 310 

included 𝑃𝑂𝑃𝑖 (population) and LowCapacityBuilding𝑖 (proportion of buildings with low capacity). Vulnerability variables 
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included SexRatio𝑖  (ratio of males to females), AgeUnder15𝑖  (percentage of the population under age 15), AgeOver64𝑖 

(percentage of the population aged 65 or older),  𝑀𝑒𝑑𝑖𝑎𝑛𝐼𝑛𝑐𝑜𝑚𝑒𝑖  (the logarithm of the median household income in 

neighborhood 𝑖 ), 𝑆𝑡𝑑𝐼𝑛𝑐𝑜𝑚𝑒𝑖  (the logarithm of the standard deviation of household income in neighborhood 𝑖 ), and 

Indigenous𝑖 (proportion of indigenous people in neighborhood 𝑖’s population). Migration pattern variables, estimated by the 315 

radiation model, included MigrationInflow𝑖  (the logarithm of relative size of migrant inflow to neighborhood 𝑖 ), 

MigrantIncome𝑖  (the logarithm of average income of the migrants’ origin in neighborhood 𝑖), and MigrantIndigenous𝑖 

(percentage of indigenous people among migrants in neighborhood 𝑖). While we hypothesized that most variables would have 

a positive effect on fatality risk, some may have negative effects. For instance, median household income is associated with 

greater resources to cope with earthquakes. Similarly, although older groups may be more vulnerable due to physical 320 

limitations, they may also possess more experience in dealing with earthquake situations. The parameter 𝜀𝑖 represents the error 

term. We assessed model performance by using R2 and log-likelihood values. We performed all statistical computations in R 

(version 4.3.1); statistical significance was evaluated at P < 0.05. 

3 Results 

3.1 Estimated migration patterns 325 

Using the radiation model, we characterize the relative size of migration inflow, average income of migrants' origin, and the 

percentage of indigenous people among migrants (Fig. 3). Two example neighborhoods show they attracted migrants from 

different areas and distances based on their geography. A neighborhood in Wufeng (Fig. 1), a regional hub in the outskirts of 

Taichung metropolitan area, was estimated to have migrants from other neighborhoods in around 10 km, as well as some 

migrants from Nantou, a mountain city about 40 km away. In contrast, the neighborhood in Puli (Fig. 1), a mountainous town, 330 

was estimated to have migrants from other mountainous villages that are up to 80 km away. This shows that the radiation 

model captures long-distance migration patterns between remote villages and their closest large town.  

Comparing the patterns of migrants and residents, higher migration inflow, income of origin and percent indigenous population 

among migrants were aligned with the spatial pattern of population, population size, and percent indigenous population among 

residents. Yet, there is some differences between the patterns of migrants and residents. A higher migration inflow was 335 

estimated in the suburbs and a lower migration inflow in rural areas and city centers, as city centers have more competing 

destinations along the way from the rural area to the city. The radiation model also highlights a distinct zone of indigenous 

migrants at the foothills along the indigenous neighborhoods in mountainous areas (Fig. 3). This observation supports various 

case studies that highlight indigenous migrants' preferences for blue-collar jobs in towns and cities, while still staying close to 

their homeland. 340 
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Figure 3: Maps of seismic fatality risk factors, including hazard, exposure, vulnerability, and migration pattern variables. Migrant 

inflow, as well as income and the proportion of the indigenous population within the migrant inflow, are estimated using the radiation 

model. Examples from migrant origins in Wufeng and Puli demonstrate that towns in remote areas (e.g., Puli) act as job opportunity 

hubs for villages from a long distance. 345 

 

3.2 Risk factors of seismic fatalities  

The 1999 Chi-Chi earthquake resulted in 2,444 deaths, including 1,049 in suburbs and the urban-rural fringe. Model 1 confirms 

the findings of Lin et al. (2015), indicating that seismic intensity, fault impact zone, population, buildings with low seismic 

capacity, female ratio, lower household income, and higher income inequality are associated with increased fatalities (Table 350 

2). Seismic hazard remains determining factors influencing the distribution of fatalities in the Chi-Chi earthquake. A 0.1g 

increase in Sa03 could lead to a 173% rise in neighborhood fatalities (mean Sa03 = 0.36), assuming other variables remain 

constant. The presence of a fault zone covering 10% of a neighborhood’s area resulted in a 90% increase in fatalities. Due to 

the correlation between seismic intensity and proximity to the fault, the interplay between these two variables is a primary 

determinant of fatalities. Exposure variables also show significant associations with fatalities. We find that an increase of 1,000 355 
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residents in a neighborhood could result in a 38% rise in fatalities, while a 10% increase in the percentage of buildings with 

low seismic capacity could result in a 10% rise in fatalities. We also find that several vulnerability variables are significant. 

Each 10% increase in a neighborhood’s male-to-female ratio is associated with a 3.5% decrease in fatalities. Each 10% increase 

in median household income, for example from 403,000 TWD (~12,587 USD) to 443,300 TWD (~13,846 USD), could reduce 

fatalities by 6%. Each 10% increase in standard deviation of household income could lead to an 8% increase in fatalities. The 360 

only variable presenting a different direction of association compared to Lin et al. (2015) is the percentage of population aged 

over 64. Our findings suggest that a 10% increase in a neighborhood’s population over age 64 is associated with 10 % lower 

fatalities. This discrepancy is likely due to our use of higher resolution data at the neighborhood level, as opposed to the 

previous study's district-level analysis, and the observation that higher death tolls occurred in neighborhoods predominantly 

aged 15-64. 365 

Model 2, which includes the proportion of the indigenous population in addition to Model 1’s variables, indicates a negative 

association of the indigenous population with fatalities (Table 2). It suggests that every 10% increase in a neighborhood’s 

indigenous population is associated with a 7.5% reduction in fatalities, demonstrating that the impact of the Chi-Chi earthquake 

is not primarily concentrated in indigenous jurisdictions. However, Model 3, which incorporates migration variables, reveals 

that a higher proportion of indigenous people among the migrants is linked to increased fatalities. Specifically, a 10% increase 370 

in the indigenous proportion among migrants correlates with a 19% increase in fatalities. Model 3 also shows that higher 

migration inflow and a lower average income in migrants' places of origin are both associated with increased fatalities (P < 

0.05). 
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Table 2: Incidence rate ratios and standard errors estimated by Poisson models for neighborhood-level risk factors, estimated by 375 
three nested models. Model 1 includes hazard, exposure, and vulnerability variables previously found in Lin et al. (2015), Model 2 

adds the indigenous population proportion, and Model 3 includes migration pattern variables.  

 
Incidence Rate Ratio (Standard Error) 

Neighborhood-level covariates Model 1 Model 2 Model 3 

Hazard 
   

Sa03 (g) 27.26 (1.07)*** 26.72 (1.07)*** 21.44 (1.07)*** 

Fault-impacted area 10.06 (1.06)*** 9.82 (1.06)*** 10.17 (1.06)*** 

    
Exposure 

   
Population (unit: 10,000 people) 4.78 (1.06)*** 4.74 (1.06)*** 4.46 (1.06)*** 

Percentage of low seismic capacity building 2.01 (1.13)*** 1.9 (1.13)*** 1.37 (1.13)* 

    
Vulnerability 

   
Sex ratio 0.65 (1.1)*** 0.65 (1.1)*** 0.7 (1.11)*** 

Percentage of population under the age of 15 0.28 (2.26) 0.65 (2.34) 0.28 (2.38) 

Percentage of population over the age of 64 0 (2.1)*** 0 (2.13)*** 0 (2.29)*** 

Ln (Median household income) 0.1 (1.2)*** 0.08 (1.22)*** 0.4 (1.29)*** 

Ln (Standard deviation of household income) 1.79 (1.05)*** 1.79 (1.05)*** 1.81 (1.05)*** 

Indigenous population proportion 
 

0.25 (1.4)*** 0.08 (1.82)*** 

    
Migration pattern 

   
Ln (Estimated migration inflow) 

  
1.24 (1.04)*** 

Ln (Average income of migrants' origin) 
  

0.02 (1.37)*** 

Indigenous population proportion in migrants 
 

2.93 (1.57)* 

    
N 4502 

  
Log likelihood -4371 -4359.6 -4252.4 

Pseudo R-square 0.49 0.492 0.504 

Note: ***P-value < 0.001, **P-value < 0.01, and *P-value < 0.05 
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4 Discussion 380 

This study presents novel models to understand migration as a risk factor of seismic fatalities which has been long 

underestimated due to lack of mobility data. We find that not only place-based risk factors contribute to fatality risk in the Chi-

Chi earthquake. Rather, after adjusting for seismic intensity, population exposure, and residence-based socioeconomic factors, 

higher fatality risk was among neighborhoods attracting migrants of lower origin income or/and indigenous migrants. This 

finding, along with the migration patterns concentrating in the suburban areas outside large cities as well as medium-sized 385 

cities serving as regional hubs, help explain the suburban syndrome of seismic fatalities. 

 

Our basic model aligns with previous studies, confirming that hazard variables (fault impact and ground motion intensity), 

exposure factors (population and percentage of buildings with low seismic capacity), and socioeconomic vulnerability 

indicators (median and standard deviation of household income) are all determinants of seismic fatality at the neighborhood 390 

level. Consistent to previous studies (Lin et al. 2015), hazard and exposure factors together constitute the most important part 

(an R² =0.4) contributing to seismic fatality. Social vulnerability variables, although play a marginal effect (an increase of R² 

< 0.1), are significantly associated with fatality disparities. That is to say, when seismic intensity and exposure are at similar 

levels, it is the composition of social vulnerability that could either exacerbate or mitigate the scale of seismic fatality. The 

basic model results explain the fatality distribution shown in Fig. 1. The highest fatalities appeared in the medium-sized cities 395 

in suburbs (e.g., Dali, Taiping, and Fengyuan) and urban fringes (e.g., Wufeng, Dongshi, and Daliao) of the Taichung 

metropolis. Those are considered as satellite cities and regional hubs in the urban–rural corridor. Remarkably, percent buildings 

with low seismic capacity are significantly correlated with fatalities and presented a predominant effect explaining high 

fatalities in suburbs with lower costs of living. The analysis reflects the view of buildings becoming weapons of mass 

destruction. Additionally, small and medium-sized cities often suffer from socio-political difficulties of poor governance and 400 

insufficient capacity to cope with hazards when experiencing rapid sprawl (Bilham, 2013; Bilham and Gaur, 2013). This calls 

for urgent seismic risk reduction efforts in suburban neighborhoods and hub cities or towns that could undergo intensified 

hazard exposure and vulnerability during an earthquake. 

 

Our final model demonstrates that the correlation between migration patterns and fatalities is significant. Although with a R² 405 

only increase 0.014 compared to the base model, the effect is statistically significant. And most importantly, by adding the 

various migration variables, the roles of migration patterns become even clearer. Not only the estimated migrant inflow is 

associated with higher fatalities, but the model also shows that lower income at the origin and a higher proportion of indigenous 

people among migrants correlate with increased fatalities. Thus, social vulnerability within migrant groups significantly 

contributes to heightened risks, beyond mere underestimated exposure. Migrant workers often face a myriad of social 410 

vulnerabilities (Ahonen et al., 2007; Flynn, 2018), which can exacerbate their risks of death during an earthquake. The 

vulnerability of migrant workers often leads to a high likelihood of taking risky, non-contractual, temporary employment such 
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as that in construction or agriculture, often without sufficient benefits or safeguards (Ahonen et al., 2018; Al‐Tarawneh et al., 

2020; Foley, 2017; Foley et al., 2014; Howard, 2017). Precariousness in their jobs often provides economic precarity and 

results in many immigrant/migrant workers living in overcrowded, substandard housing arrangements, including makeshift 415 

dwellings, trailers, or employer-provided accommodations (Caxaj et al., 2024). These living conditions often lack basic safety 

features, such as fire exits or structural stability, increasing their vulnerability to injury and death during an earthquake.  

 

Migrant workers often experience what has been termed as ‘overlapping vulnerabilities’ (Ceballos et al., 2020; Flynn et al., 

2015) or ‘cumulative precarity’ (Gravel and Dubé, 2016), which create disparities in health beyond seismic risks (Benach et 420 

al., 2011; Facey and Eakin, 2010; Krieger, 2010). For example, migrant workers experienced higher rates of illness and death 

during the COVID-19 pandemic, which is also associated with their commuting behavior and housing conditions (Fielding-

Miller et al., 2020; Istiko et al., 2022; Reid et al., 2021). In various cultures, migratory populations are sometimes described 

as "wanderers," as seen in the Taiwanese indigenous pop song Wandering and the classical piece Zigeunerweisen in German 

music, which highlight the instability experienced by migrants. In the context of the Chi-Chi earthquake, migration variables 425 

further amplify seismic risk. Indigenous hometowns in Taiwan’s mountainous regions were less affected by the earthquake, 

while migrants who moved to small and medium-sized cities for precarious jobs faced significantly higher exposure to 

earthquake disasters and social vulnerability. Indigenous populations in Taiwan face an elevated risk of fatality compared to 

the general population (Juan et al., 2016) due to various social vulnerabilities, including low income, limited education, and 

inadequate access to healthcare (Liao et al., 2024). They are found especially vulnerable when migrating into cities for job 430 

opportunities but only affordable for inferior rental housing conditions that create residential segregation (Hu and Chen, 2011; 

Wu et al., 2018). Therefore, our findings suggest that safety regulations on rental housing, particularly affordable options, as 

well as rent subsidies for low-income, migrants, and historically marginalized groups, are imperative strategies to reduce their 

risk.  

 435 

As far as we are aware, this is the first study that incorporates migration dimensions into the hazard-exposure-vulnerability 

model of seismic fatality risk. Nevertheless, this study is not without its limitations. First, given the early timeline of the case 

study (1999), we were unable to validate the migration patterns using newer technology. Previous studies that validated the 

model with empirical data have shown that radiation models predict commuting patterns well at the national level (Masucci et 

al., 2013; Simini et al., 2012), though they may underestimate long-distance and international migration (Kluge and Schewe, 440 

2021). Future studies on recent earthquakes could employ mobile data to further distinguish between different migration 

behaviors (e.g., daily commuting versus seasonal migration), which would allow for disaggregating the sources of seismic 

risks associated with mobility. Second, we did not account for the saturation effect of Sa03 — that is, the possibility that higher 

Sa03 values might not cause additional damage beyond a certain threshold. Third, incorporating additional sociodemographic 

variables of migrant workers, such as languages spoken, occupation at the time of the earthquake, and social networks including 445 



19 

 

tribal affiliations, can further elucidate the sources of vulnerability and resilience to disasters. This study reveals general 

relevance and opens scientific questions for future research on migrants' exposure to environmental hazards. 

5 Conclusions 

 In this study, we integrate migration pattern variables into the traditional seismic fatality risk model to explain the 

concentration of earthquake fatalities in suburban areas. While ground motion intensity and population exposure account for 450 

higher seismic fatalities in suburban neighborhoods and urban–rural corridors during the Chi-Chi earthquake, the presence of 

migrants from low-income origins and a higher proportion of indigenous population further amplified the fatalities in these 

areas. It is important to note that our findings may not extend universally to all earthquakes, given the diverse geological and 

tectonic structures, social contexts, institutional settings, and other uncertainties they involve. Nonetheless, low-cost housing 

options with a lack of safe infrastructure will disproportionally deteriorate fatality during earthquakes. This illustrates a 455 

pressing necessity to enforce building code regulations especially providing a safe housing and living standard for migrant 

workers without compromising affordability. 

 

While the investigation of a single earthquake cannot be generally applied, it sheds lights on pathways for improving methods, 

assumptions, and implications critical for advancing seismic risk assessment studies and potentially impacting how extreme 460 

weather events and other catastrophes’ fatalities are studied. Our empirical findings underscore the need to reexamine city-, 

region-, and nation-wide earthquake preparedness and response policies to better allocate resources to areas at greatest risk. 

These findings suggest that focusing seismic risk mitigation efforts in newly developed, economically disadvantaged suburban 

neighborhoods and hub cities that cater rural-urban migrations, characterized by high concentrations of migrants living in 

informal housing or low-cost condominiums is important. Recognizing the suburban syndrome and implementing safety and 465 

affordability regulations in suburban housing could play a pivotal role in safeguarding human lives against future catastrophic 

earthquakes.  
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Appendix A 

Table S1: Incidence rate ratios (IRRs) and standard errors estimated by Poisson models with all variables are in log form. In 470 

the log-form model, the IRR can be interpreted as the effect of a one percent increase in the variable. 

 
Incidence Rate Ratio (Standard Error) 

Neighborhood-level covariates Model 4 

Hazard  

Ln (Sa03 (g)) 9.36 (1.06)*** 

Ln (Fault-impacted area) 1.22 (1.01)*** 

 
 

Exposure  

Ln (Population (unit: 10,000 people)) 2.81 (1.05)*** 

Ln (Percentage of low seismic capacity building) 0.92 (1.04)* 

 
 

Vulnerability  

Ln (Sex ratio) 0.51 (1.16)*** 

Ln (Percentage of population under the age of 15) 0.71 (1.14)* 

Ln (Percentage of population over the age of 64) 1.51 (1.10)*** 

Ln (Median household income) 0.39 (1.28)*** 

Ln (Standard deviation of household income) 1.87 (1.05)*** 

Ln (Indigenous population proportion) 1.06 (1.02)*** 

 
 

Migration pattern  

Ln (Estimated migration inflow) 1.03 (1.04) 

Ln (Average income of migrants' origin) 0.05 (1.36)*** 

Ln (Indigenous population proportion in migrants) 1.13 (1.02)*** 

 

 
 

N 4502 

Log likelihood -3882.26 

Pseudo R-square 0.548 

Note: ***P-value < 0.001, **P-value < 0.01, and *P-value < 0.05 
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