
Simulated Particle Evolution within a Winter Storm: Contributions of Riming to Radar 1 

Moments and Precipitation Fallout 2 

 3 

 4 

Andrew DeLaFrance1, Lynn A. McMurdie1, Angela K. Rowe2, Andrew J. Heymsfield3,4 5 

 6 

 7 
1Department of Atmospheric Sciences, University of Washington,  8 

Seattle, WA, USA 9 
2Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison,  10 

Madison, WI, USA 11 
3National Center for Atmospheric Research,  12 

Boulder, Co, USA 13 
4U.S. National Science Foundation,  14 

Alexandria, VA, USA 15 

 16 

 17 

Correspondence to: Andrew DeLaFrance (adelaf@uw.edu) 18 

 19 

 20 

Manuscript submitted 17 May 2024 21 

Revised manuscript submitted 17 July 2024 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 



 2 

 32 

Abstract 33 

Remote sensing radars from air- and spaceborne platforms provide critical observations of clouds 34 

to estimate precipitation rates across the globe. Capability of these radars to detect changes in 35 

precipitation properties is advanced by Doppler measurements of particle fall speed. Within 36 

mixed-phase clouds, precipitation mass and its fall characteristics are especially sensitive to the 37 

effects of riming. In this study, we quantified these effects and investigated the distinction of 38 

riming from aggregation in Doppler radar vertical profiles using quasi-idealized particle-based 39 

model simulations. Observational constraints of a control simulation were determined from 40 

airborne in situ and remote sensing measurements collected during the Investigation of 41 

Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) for a 42 

wintry-mixed precipitation event over the northeast United States on 04 February 2022. From the 43 

upper boundary of a one-dimensional column, particle evolution was simulated through vapor 44 

deposition, aggregation, and riming processes, producing realistic Doppler radar profiles. Despite 45 

a modest observed amount of supercooled liquid water (0.05 g m-3), riming accounted for 55% of 46 

the ice-phase precipitation mass, cumulatively increasing reflectivity by 44%6.1 dB and Doppler 47 

velocity by 68%0.9 m s-1. Independent evaluation of process-based sensitivities showed that 48 

while radar reflectivity is comparably sensitive to either riming- or aggregation-based particle 49 

morphology, the Doppler velocity profile is uniquely sensitive to particle density changes during 50 

riming. Thus, Doppler velocity profiles advance the diagnosis of riming as a dominant 51 

microphysical process in stratiform clouds from single-wavelength radars, which has 52 

implications for quantitative constraints of particle properties in remote sensing applications.  53 

 54 
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 63 

1. Introduction 64 

Ice crystals within precipitating winter storms evolve through an inherently stochastic 65 

sequence of microphysical processes which uniquely affect their physical properties and fall 66 

characteristics. This continuous and process-based evolution of ice-phase particles remains 67 

poorly represented by many numerical models and remote sensing retrieval algorithms. A 68 

fundamental limitation is that cloud and precipitation processes occur on physical scales that are 69 

several orders of magnitude smaller than typical cloud-scale model grids or the remote sensing 70 

instrument sampling volume. Nevertheless, realistic representation of varied particle populations 71 

within clouds is necessary to accurately estimate precipitation rates.  72 

Commonly, a populations of particles within some volume isare expressed by a particle 73 

size distribution (PSD), and weighted integrals (i.e., moments) of the PSD are sensitive to the 74 

microphysical evolution of ice-phase particles (Morrison et al. 2020). Ice-phase precipitation 75 

mass is proportional to the second moment of the PSD. Because radar reflectivity, Z, is 76 

proportional to the square of the mass (i.e., the fourth moment of the PSD), the precipitation 77 

mass directly affects power returned to a radar. However, because of the physical complexity 78 

arising from diversity in initial ice crystal habits and their unique process-based morphologies 79 

with time, assumptions about the particle properties and the PSD are often necessary to derive 80 

remote sensing precipitation rate estimates. For example, ice crystals are commonly assumed to 81 

be spherical (e.g., Iguchi et al. 2018) and the population may be constrained to a prescriptive 82 

PSD shape or snow density (e.g., Grecu et al. 2016). A consequence of such a priori assumptions 83 

is that process-based variations cannot be expressed and retrieved precipitation rate estimates are 84 

inherently constrained, leading to snowfall rate underestimation and increased error compared to 85 

liquid phase (e.g., Speirs et al. 2017). To advance the utility of radar remote sensing 86 

measurements of ice-phase precipitation, it is important to understand the quantitative effects of 87 

process-based evolution on the intrinsic physical properties of precipitation in natural clouds and 88 

their implications for the radar measurements.  89 

A remarkable property of precipitating clouds is that liquid water droplets are frequently 90 

present at sub-freezing temperatures alongside ice crystals. A region of cloud containing both ice 91 

and sub-freezing (i.e., supercooled) liquid water (SLW) is described as a mixed-phase layer. One 92 

implication of the mixed phase particle population is that depositional ice growth occurs at the 93 
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expense of liquid water due to differences in saturation vapor pressures over ice and liquid 94 

surfaces, a process commonly referred to as the Wegener-Bergeron-Findeisen process 95 

(Pruppacher and Klett 1997). Additionally, upon contact with falling ice crystals, the SLW 96 

droplets freeze and are accreted by the crystal (i.e., riming), initiating a physical morphology of 97 

the particle. Natural ice crystals demonstrate tremendous variability in shape and complexity 98 

depending on growth habits (e.g., Magono and Lee 1966; Pruppacher and Klett 1997; Bailey and 99 

Hallet 2009). Because of this diversity, it is often convenient to define the crystal size along 100 

major and minor axes while the major axis is assumed to be along the maximum dimension of 101 

the crystal and the minor axis is along an orthogonal orientation. The aspect ratio defines the 102 

ratio between the crystal dimensions along the minor and major axes (Jensen and Harrington 103 

2015). One commonly adopted conceptual description for the change in particle properties 104 

during riming is the “fill-in” model (Heymsfield 1982) whereby the liquid water will initially fill 105 

open voids, while largely maintaining the initial dimensions of the crystal axes. During later 106 

stages of the “fill-in” riming model, rime accumulates on the underside of the falling crystal, 107 

increasing the minor dimension of the crystal while the major dimension remains unchanged. 108 

With increasing riming, aspect ratio approaches unity, which is expected for heavily rimed 109 

graupel particles. Consequently, riming results in increasing particle density and, therefore, fall 110 

velocity. The adjustments in particle geometry and fall characteristics with rime accumulation 111 

are relative to, and dependent on, the initial ice crystal geometry and accreted rime but further 112 

dependent on prior and concurrent processes including vapor depositional growth and 113 

aggregation (e.g., Jensen and Harrington 2015).  114 

Ice-phase particle growth by deposition of vapor-phase water directly increases the ice water 115 

content (IWC) and therefore, yields direct increases in Z (Field et al. 2005, 2007). However, 116 

depositional mass accumulation occurs at a relatively slow rate, thus, gradual increases in Z are 117 

expected from depositional growth alone. Aggregation of two or more particles does not 118 

explicitly alter the IWC of the particles, but rather redistributes the mass to a larger size particle. 119 

Despite unchanging IWC, increased particle diameters, D, during aggregation enhances radar 120 

scattering at a rate proportional to D4 and consequently, Z may be significantly increased by 121 

effects of aggregation. Through accumulation of liquid-phase water which yields increases in 122 

IWC, similar, rapid adjustments in Z are also possible during riming. Evaluation of process-123 

based effects on the evolution of the PSD moments and their implications for precipitation 124 
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fallout from natural clouds is challenging because specific processes cannot be readily isolated, 125 

even if observations are collected in situ. In general, observationally-consistent numerical 126 

modeling simulations are necessary to determine such effects.  127 

The physical scales of processes that govern the formation and evolution of falling ice 128 

crystals are not resolved by most numerical models. In bulk- and bin-microphysics schemes, ice-129 

phase processes are commonly expressed implicitly through conversion processes whereby 130 

precipitation is exchanged among predefined categories (e.g., ice, snow, graupel, hail; Thompson 131 

et al. 2004; Morrison et al. 2005). However, prior studies (e.g., Colle et al. 2005; Morrison and 132 

Milbrandt 2011; van Weverberg et al. 2012) have demonstrated that the precipitation evolution 133 

and fallout is sensitive to a priori thresholds that define category conversions (e.g., snow to 134 

graupel during riming). For rimed growth, Lagrangian particle-based model simulations indicate 135 

that bulk particle density can undergo rapid evolution in response to small variations in the 136 

background SLW concentration, significantly modulating the particle fall velocity and surface 137 

precipitation rate (DeLaFrance et al. 2024). For remote sensing retrievals of mixed-phase 138 

precipitation, the effects of rime accumulation are constrained by the a priori assumptions about 139 

the particle’s mass, geometry, or fall characteristics. Recently, diverse methodologies leveraging 140 

multi-frequency, dual-polarization, and Doppler radar measurements have been proposed for 141 

retrieving some properties of ice-phase particles that would otherwise be prescribed (e.g., 142 

Leinonen and Szyrmer 2015; Kneifel et al. 2016; Moisseev et al. 2017; Oue et al. 2018; 143 

Leinonen et al. 2018; Mason et al. 2019, Chase et al. 2021). Among these methods, leveraging 144 

radar Doppler data has shown promise in inferring the onset of riming and, subsequently, the 145 

riming-based modulations of retrieved particle property estimates. Mason et al. (2018) 146 

demonstrated that the addition of Doppler radar measurements provides constraint on the bulk 147 

ice density parameter in retrievals of snowfall. Furthermore, as shown by Kalesse et al. (2016), 148 

rimed snow occupies a unique region of Doppler spectra distinct from unrimed snow. One-149 

dimensional (1D) spectral bin microphysics modeling simulations have shown promise in 150 

reproducing the Doppler spectra moments of riming but demonstrate sensitivity to particle 151 

property assumptions (Kalesse et al. 2016).  152 

The 1D columnar modeling approach offers a framework for simulating explicit 153 

microphysical processes and detailed particle properties that are computationally prohibitive in a 154 

three-dimensional (3D) dynamic model. The 1D construction is therefore well suited to advanced 155 
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bin and Lagrangian particle-based microphysics schemes. One challenge for such simulation 156 

designs, however, is constraining the model in a way that minimizes assumptions and, as a result, 157 

ambiguity in the attributing physical process for adjustments in the cloud’s radar and 158 

precipitation characteristics (e.g., Kalesse et al. 2016; Bringi et al. 2020). Some assumptions can 159 

be constrained by coincident in situ and remote sensing radar measurements. 160 

Data collected during winters of 2020, 2022, and 2023 from the Investigation of 161 

Microphysics and Precipitation for Atlantic Coast Threatening Snowstorms (IMPACTS) 162 

campaign (McMurdie et al. 2022) provide those constraints. Midlatitude cyclones over the 163 

United States East Coast and Midwest regions were comprehensively sampled by coordinated 164 

aircraft- and ground-based platforms to better understand the precipitation microphysics within 165 

regions of snowfall that organize into elongated regions commonly recognized as snowbands 166 

(e.g., Novak et al. 2004). Consistent with IMPACTS’s goal to support improved numerical 167 

modeling and remote sensing retrievals of winter precipitation, in the present study we 168 

investigate the process-based effects of riming in a sampled storm that produced moderate rates 169 

of wintry-mixed precipitation for a prolonged period over the Northeast. Our overarching 170 

approach is to combine these observations with numerical modeling simulations to describe the 171 

process-based particle evolution and contributions of riming to the observed radar properties and 172 

precipitation rates. Here, we use an observationally-constrained, sophisticated Lagrangian 173 

particle-based model within a 1D columnar framework to address the following questions: 174 

1. Can primary ice processes (i.e., deposition, aggregation, riming) within a simplified 175 

1D simulation reasonably reproduce the observed evolution of particles within the 176 

natural cloud? 177 

2. What were the quantitative contributions of riming to the observed Doppler radar 178 

vertical profiles and to the surface precipitation rate? 179 

3. Do simulated Doppler radar vertical profiles yield characteristic responses to the 180 

onset or degree of riming that is distinct from other ice-phase processes (e.g., 181 

aggregation)? 182 

 183 

2. Winter Storm Observations 184 

2.1. 04 February 2022 Case Study  185 
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For this analysis, we will use IMPACTS observations collected during the 04 February 2022 186 

event that delivered wintry-mixed precipitation across a broad region of the northeast US. 187 

IMPACTS deployed an in situ (P-3) and remote sensing (ER-2) aircraft. The P-3 aircraft was 188 

equipped with instrumentation to measure the in situ cloud microphysical properties and the 189 

high-altitude ER-2 aircraft was equipped with nadir-viewing remote sensing instrumentation 190 

analogous to those onboard satellite-based platforms (e.g., Skofronick-Jackson et al. 2017). The 191 

two aircraft targeted the storm over the coastal New England area where, as an example of the 192 

surface precipitation characteristics during this event, the Boston, MA (KBOS) Automated 193 

Surface Observing System (ASOS; Brodzik 2022a) reported nearly 32 mm of precipitation in 24 194 

hours. Precipitation initially accumulated in the form of light to heavy rain before transitioning to 195 

freezing rain at about 1300 UTC, ice pellets by 1600 UTC, and back to freezing rain at about 196 

1930 UTC. A transition to snow and continued accumulation occurred on 05 February at KBOS 197 

and over most of the New England area.  198 

Winter storms that impact the northeast US are commonly described according to the track of 199 

the low-pressure center, with implications for their precipitation characteristics. From these 200 

tracks, Zaremba et al. (2024) classified twenty-six IMPACTS events in one of six categories, 201 

which varied in, for example, rates and regions of cyclogenesis, frontal forcing, and precipitation 202 

intensity and distribution. Six of the events were classified as cold fronts and had relatively weak 203 

and expansive low-pressure areas which yielded widespread rain and snow along, and extending 204 

to the cold side of, the front. As one of these cold front events, theOn 04 February case had,  a 205 

broad frontal boundary that extended from the Gulf of Mexico to Maine. The prolonged period 206 

of wintry-mixed precipitation over the northeast US was sustained by isentropic lifting of 207 

moisture-rich low-level flow along this front and overrunning a surface layer which, for many 208 

areas, remained subfreezing. Over the eastern US, a mean southwesterly flow developed ahead 209 

of an initially positively tilted 250-hPa trough at 0000 UTC 04 February that developed to nearly 210 

neutral tilt by 0000 UTC 05 February (Fig. 1a-c). An associated jet streak exceeding 150 kts was 211 

situated over northern New England such that between about 1200 UTC 04 and 0000 UTC 05 212 

February, upper-level divergence in the right entrance region further supported lifting within the 213 

atmospheric column (Bjerknes 1951; Uccellini and Kocin 1987; Holton and Hakim 2012). 214 

During this time period, a modest elongated southwest-northeast oriented low-pressure minimum 215 
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of approximately 1010 hPa was maintained over a broad region of coastal New England (Fig. 1d-216 

f).  217 

 218 

 219 
Figure 1: Synoptic evolution of the winter storm that impacted the northeast US: (a-c) 250 hPa 220 
geopotential heights (dam) and wind speeds (knots) and (d-f) mean sea level pressure (MSLP, 221 

hPa) and cloud brightness temperature (K) for the times 0000 UTC 4 February (a, c); 1200 UTC 222 
4 February (b, e) and 0000 UTC 5 February 2022 (c, f) . The 250-hPa and MSLP data are from 223 
the European Center for Medium-Range Weather Forecast Reanalysis v5 (ERA5; Hersbach et 224 

al. 2020) and the brightness temperature data are from the Geostationary Operational 225 
Environmental Satellites (GOES) 10.3 μm channel (Brodzik 2022b).  226 

 227 

 228 

Between about 1300 and 1800 UTC, the P-3 and ER-2 aircrafts flew a “lawnmower-style” 229 

pattern orthogonal to the long axis of an enhanced region of reflectivity while translating 230 

subsequent flight legs to the northeast, such that the storm was sampled in an approximately 231 

Lagrangian manner (Fig. 2a). The P-3 flew its initial flight leg south to north beginning at about 232 

1340 UTC briefly at 6.5 km MSL before descending to a constant altitude of about 6.2 km MSL. 233 

At the southern end, this initial flight leg was near the NWS rawinsonde launch site at Islip, NY 234 
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(KOKX). The P-3 descended on each subsequent flight leg to sample different layers of the 235 

cloud reaching an altitude of 3.0 km MSL on the final north-to-south flight leg, which transected 236 

the 0°C melting level. The two enhanced regions of reflectivity, on either side of the surface 237 

frontal boundary, exhibited differing cloud and precipitation properties. At the surface, the 238 

northern region of enhanced reflectivity was dominated by snowfall whereas the southern region 239 

was dominated by rain during the period of aircraft sampling then transitioning to wintry-mixed 240 

precipitation. As we describe in Section 2.2, in situ measurements are used to indicate riming, 241 

which was commonly observed over the southern region of enhanced reflectivity but absent over 242 

the northern region. Therefore, to address our science questions, our present analysis is 243 

constrained to measurements of the southern portions of flight legs (Fig. 2a).  244 

 245 
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246 

 247 
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Figure 2: IMPACTS operations on 04 February 2022 over the northeast US targeting regions of 248 
enhanced reflectivity that persisted for several hours in the operational National Weather 249 

Service (NWS) Multi-Radar Multi-Sensor (MRMS; Zhang et al. 2011) product. Shown are (a) the 250 
coordinated P-3 and ER-2 flight tracks and MRMS composite reflectivity at approximately mid-251 
flight (1658 UTC) with subsets for each numbered flight leg at the southern enhanced region of 252 

reflectivity indicating data used for this study. Also indicated in (a) are the NWS rawinsonde 253 
launch site at Islip, NY (KOKX) and ground verification site at Boston, MA (KBOS). Ku-band 254 

reflectivity (b)  and Doppler velocity (c) vertical profiles as measured by the ER-2 aircraft from 255 
1628 (north) to 1634 UTC (south) depict the vertical cloud profile across the region of enhanced 256 
reflectivity (between transparent regions) for the fourth flight leg while the P-3 aircraft sampled 257 

in situ at ~4.3 km MSL altitude (magenta line in b, c), ending the flight leg at ~42.4°N.  258 
 259 

 260 

2.2. Observations: Surface Based, Remote Sensing, and In Situ  261 

The initial ER-2 and P-3 flight leg approximately overflew the NWS operational Islip, NY 262 

(KOKX) rawinsonde launch site (Fig. 2a). Because of the relatively steady-state nature of the 263 

storm during the aircraft sampling period, the KOKX 1200 UTC rawinsonde (Waldstreicher and 264 

Brodzik 2022) is used to estimate the atmospheric properties in the southern portion of the flight 265 

legs. Because these southern portions of the flight legs were mostly offshore, we use the nearest 266 

ASOS measurements at KBOS between 1300 and 1800 UTC to estimate the mean surface 267 

precipitation rate for model comparison. The ER-2 aircraft flew well above the storm at 268 

approximately 20 km MSL and operated two nadir-viewing radars on 04 February: the dual-band 269 

13.9 GHz (Ku-band) and 35.6 GHz (Ka-band) High-Altitude Wind and Rain Airborne Profiler 270 

(HIWRAP; Li et al. 2016; Mclinden et al. 2022a) and the 94 GHz (W-band) Cloud Radar System 271 

(CRS; McLinden et al. 2022b). For radar reflectivity and Doppler velocity measurements of the 272 

precipitation, we use HIWRAP measurements, which have a vertical resolution of 150 m and a 273 

surface footprint of 1 km. At Ku-band, HIWRAP has a minimum sensitivity of approximately -274 

10 dB at an altitude of 10 km MSL (Li et al. 2016).   275 

Of the numerous instruments onboard the P-3 aircraft, those of relevance to this study 276 

include cloud Optical Array Probes (OAPs) and those that measure Liquid Water Content 277 

(LWC) and vertical air motion. The OAPs provide measurements of the two-dimensional 278 

projected sizes, shapes, and concentrations of particles. Data from a Two-Dimensional Stereo 279 

(2D-S; Lawson et al. 2006), which is commonly used for measurements of particles smaller than 280 

about 1 mm in diameter, are unavailable for the 04 February flight. However, a vertically 281 

oriented High-Volume Precipitation Spectrometer (HVPS; Lawson et al. 1993) provided particle 282 
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measurements at sizes greater than 0.5 mm which were used to construct PSDs. Measurements of 283 

LWC were obtained from a Fast Cloud Droplet Probe (FCDP; Lawson et al. 2017) which 284 

operated as part of the Hawkeye combination probe. The FCDP uses Mie light scattering 285 

principles to size and count liquid water droplets from 2 to 50 μm in diameter, from which 286 

number and mass concentrations can be derived. Processing of the OAP and FCDP data was 287 

performed by the National Center for Atmospheric Research (NCAR; Bansemer et al. 2022) and 288 

is used at a 1 Hz frequency. Vertical air motion measurements were provided by the Turbulent 289 

Air Motion Measurement System (TAMMS), which uses several sensors at different locations on 290 

the aircraft to estimate the 3D components of the ambient wind (Thornhill et al. 2003). For 291 

TAMMS configured to the P-3, the accuracy of vertical winds measurements is estimated to be 292 

0.2 m s-1 (Thornhill 2022). 293 

 294 

3. Simulation Design and Validation 295 

3.1. Model Description 296 

Several bulk microphysics schemes have been developed to more realistically represent the 297 

observed continuous evolution of ice-phase particle populations during riming (e.g., Morrison 298 

and Milbrandt 2015; Jensen et al. 2017; Cholette et al. 2023). Recently, this modeling approach 299 

has been extended to a Lagrangian particle-based scheme in the novel McSnow model (Brdar 300 

and Seifert 2018). The particle-based approach affords some advantages over the bulk approach, 301 

namely that evolution of a population of particles occurs independent of an Eulerian grid cell 302 

structure and is not constrained by assumptions about the PSD. The McSnow model was 303 

developed in a 1D columnar configuration and was expressly designed to simulate the evolution 304 

of an initial particle population during sedimentation through the column (Brdar and Seifert 305 

2018). The notion of a particle in McSnow follows the super-droplet principle (Shima et al. 306 

2009) whereby a multiplicity of real particles having commonality among physical properties 307 

and location are represented by a single super-particle. These super-particles are continuously 308 

introduced in the upper boundary of the model such that initially prescribed PSD characteristics 309 

are maintained and then evolve by vapor deposition and aggregation, with an option for riming to 310 

occur within a user-defined mixed-phase layer. From 2D simulations using McSnow, 311 

DeLaFrance et al. (2024) demonstrated that mixed-phase layer depth significantly modulates 312 

surface precipitation rates, varying up to 50% in response to a depth change of 750 m and that in 313 
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situ measurements of SLW content provide a constraint on the layer’s vertical extent. Following 314 

riming, melting of the particles occurs as its surface temperature exceeds 0°C, and collision-315 

coalescence processes may then occur, but no additional precipitation mass is generated by 316 

warm-rain processes. The thermodynamic profile is prescribed and there are no mechanisms of 317 

feedback on the ambient environment based on the microphysical processes.  318 

 At any point in the column, detailed information about individual particle properties are 319 

directly accessible. In general, however, there is greater utility in the description of a population 320 

of particles in the form of a binned PSD expressed as the number concentration, N, of particles 321 

with diameter, D. We use a construction of 200 bins linearly spaced from 2 μm to 10 cm. From 322 

the PSD, radar quantities associated with moments of the PSD are computed by using a forward 323 

operator to estimate the radar scattering properties. Several scattering models have previously 324 

been adopted to radar scattering from ice crystals, principally differing in the complexity of the 325 

scattering particle’s geometry. A population of ice crystals may be treated as spheres and 326 

scattering computed directly from Mie theory (Bohren and Huffman 1983); however, this 327 

approach vastly simplifies the irregular geometry of natural ice crystals. Scattering estimates 328 

based on the T-matrix method (Mishchenko et al. 1996) support nonsphericity of particles using 329 

a spheroidal shape. Furthermore, the orientation of the spheroids relative to the radar beam may 330 

be specified or randomized (Mishchenko and Travis 1998). A more sophisticated approach 331 

termed discrete-dipole approximation (DDA) accounts for the complex scattering interactions of 332 

irregular crystal geometry (Purcell and Pennypacker 1973) and is therefore a compelling method 333 

to estimate scattering of natural crystals. However, for our simulations, crystal habits or detailed 334 

properties of particle geometry are not predicted and thus, T-matrix is an apt method of 335 

estimating radar scattering. Specifically, we use the PyTMatrix software (Leinonen 2014) to 336 

estimate the radar backscattering cross section, σ, and compute Z, defined as: 337 

𝑍	 =
𝜆!

𝜋"|𝐾|# 10
$%* 𝜎(𝐷)𝑁(𝐷)𝑑𝐷,

&

'
(1) 338 

where λ is the radar wavelength and K is the dielectric factor. From the simulations, we also 339 

estimate Doppler velocity, VD, which is the reflectivity-weighted fall velocity, v, of the particles, 340 

defined as: 341 

𝑉( =
∫ 𝑣(𝐷)𝜎(𝐷)𝑁(𝐷)𝑑𝐷&
'

∫ 𝜎(𝐷)𝑁(𝐷)𝑑𝐷&
'

. (2) 342 
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For a mixed-phase cloud, Tridon et al. (2019) demonstrated a degradation of skill in T-matrix Z 343 

estimates at higher radar frequencies (i.e., Ka- and W-band). To minimize uncertainties 344 

associated with non-Rayleigh radar scattering effects (e.g., Matrosov 2007; Liu 2004, 2008), we 345 

specify λ = 25 mm for all calculations, which is comparable to the Ku channel on the HIWRAP 346 

radar. Additionally, for consistency with the HIWRAP measurements, a two-way correction for 347 

attenuation due to precipitation particles was applied following methodology described in 348 

Williams (2022).  349 

 350 

 351 

Figure 3: Schematic of the one-dimensional columnar configuration of the McSnow model with 352 
prescriptive process-based layers for evolution of new particles initiated at the column’s upper 353 
boundary. Static temperature and dew point vertical profiles are derived from the 04 February 354 

1200 UTC KOKX rawinsonde.   355 
 356 

 357 

3.2. Control Simulation Design  358 

We use the in situ measurements combined with rawinsonde data to construct a quasi-359 

idealized cloud profile that is representative of the mean state of the 04 February storm which we 360 

apply prescriptively in the 1D columnar McSnow model. The process-based model design is 361 
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illustrated by the schematic in Fig. 3. Introduction of new particles from a prescribed PSD occurs 362 

at 6.5 km MSL, which approximately corresponds to the uppermost height of in situ 363 

observations. Dominant particle types observed at this height were side planes and bullet 364 

rosettes. As newly introduced particles undergo sedimentation, growth occurs initially by vapor 365 

deposition only. Aggregation is introduced at 6 km MSL (-15°C) since aggregate particles, 366 

mostly side planes and other planar crystals, were present in observations below 6 km MSL. 367 

Riming is introduced at 5.5 km MSL, which we approximate as an upper extent of the mixed-368 

phase layer based on the presence of SLW droplets and rimed particles beginning at flight leg 3 369 

(4.9 km MSL) and, subsequently, on legs 4 and 5 (4.3 and 3.6 km MSL). The onset of melting is 370 

determined by the thermodynamic profile which is obtained from the 1200 UTC KOKX 371 

rawinsonde. Although model processes are largely independent of an Eulerian grid (see 372 

discussion in Brdar and Seifert 2018, Section 2), model output and analysis occurs on a gridded 373 

column with 500 vertical levels, which yields a vertical resolution of 13 m. Additionally, we 374 

specify a time step of 5 s and total run duration of ten hours; results are analyzed as averages 375 

over the final five hours, after the system has reached a steady state.   376 

As a constraint on the observational data used for simulation construction, we approximate 377 

the horizontal extent of the southern region of enhanced reflectivity by visually assessing its 378 

lateral edges during each flight leg using the Ku-band radar vertical profiles. An example of this 379 

approach is provided in Fig. 2b, c for the fourth flight leg in which data used is from the center 380 

portion of the figure. The boundaries (opaque regions) varied for each flight leg, adapting to the 381 

northeastward progression of the storm and translation of each flight leg. The initial PSD 382 

characteristics are derived from an average of the measurements on the uppermost height flight 383 

leg at ~6.5 km MSL between the southern end point of the leg and 40.7°N latitude (see Fig. 2a). 384 

Because measurements are unavailable for particles smaller than 0.5 mm, we fit a Gamma 385 

distribution to the mean PSD from HVPS measurements and then extend the fitted distribution to 386 

a lower size limit of 112.5 μm to estimate an IWC of 0.14 g m-3 and total number concentration, 387 

N, of 23 x 103 m-3. For all simulations, an initial super-particle multiplicity of 105 in the upper 388 

boundary is specified. We assume that newly initialized particles at 6.5 km MSL have a mass-389 

dimension relationship of m = 0.00294D1.94 (cgs units) following Brown and Francis (1995), for 390 

unrimed aggregate ice crystals in a stratiform cloud. From analysis of four IMPACTS events 391 

during the preceding 2020 deployment, Heymsfield et al. (2023) showed that Z calculated from a 392 
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PSD using the Brown and Francis (1995) mass-dimension relationship and a T-matrix approach 393 

yielded an agreement with observations at Ku band within 1.15 dB. 394 

 395 

396 

 397 

Figure 4: Vertical wind velocity measurements from the Turbulent Air Motion Measurement 398 
System (TAMMS) during P-3 flight legs indicating lower to upper quartiles in the boxed regions, 399 
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10th and 90th percentiles at the whiskers, and medians at the vertical lines. A mean profile is 400 
fitted to the flight-level mean values (white markers).  401 

 402 

 403 

Falling particles are subject to an updraft. We estimate a mean-state vertical wind profile by 404 

fitting a third-degree polynomial curve to the mean measurements from each flight leg and 405 

extending the upper- and lower-most measurements as a constant value to heights beyond the 406 

observation altitudes (violet curve in Fig. 4). Within the mixed-phase layer (h2 to h1 in Fig. 3), 407 

SLW properties are derived collectively using FCDP measurements on flight legs 3, 4, and 5. We 408 

uniformly prescribe the mean values for SLW concentration of 0.05 g m-3 (Fig. 5) and a 409 

characteristic droplet diameter of 22 μm within the mixed-phase layer.  410 

 411 

 412 
Figure 5: Histogram of liquid water content (LWC) measurements from the Fast Cloud Droplet 413 
Probe (FCDP) during P-3 flight legs through mixed phase cloud (4.9 to 3.6 km MSL). Vertical 414 

bars indicate mean (0.05 g m-3) and perturbed-state values used for sensitivity simulations scaled 415 
from the mean by factors of 0.5 and 2.0. 416 

 417 

 418 

Although we prioritize the use of observations for model constraint, several decisions are 419 

necessary regarding the parameterizations of modeled processes. With two exceptions, these 420 

parameterization decisions follow those discussed in DeLaFrance et al. (2024, see Section 2.3 421 

and Appendix A). The first difference regards the aggregation process. Upon collision of two or 422 
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more particles, a sticking efficiency parameter which scales from 0 to 1 is used to describe the 423 

probability of the particles merging, where an efficiency of 1 will always yield a union. The 424 

sticking efficiency parameterization follows Connolly et al. (2012), which is dependent on 425 

temperature and maximizes at -15°C. In testing, however, we found that the maximum likelihood 426 

estimate (MLE) values of Connolly et al. (2012; see Fig. 14b) yielded lower concentrations of 427 

large particles than were observed. Alternatively, use of a higher efficiency value inspired by the 428 

upper extent of their confidence interval yielded a more observationally-consistent PSD 429 

evolution and maximum particle sizes. Therefore, aggregation is introduced at 6 km MSL (Fig. 430 

3) with a sticking efficiency of 0.9 at -15°C and linearly decreases to 0.5 at -10°C, remaining 431 

constant at 0.5 between -10° and 0°C. The second parameterization decision which differs from 432 

DeLaFrance et al. (2024) regards riming where a continuous approach was used in favor of a 433 

stochastic approach, although they describe only minor differences between the two approaches. 434 

In the present analysis, we find a slightly reduced collection of rime mass using the continuous 435 

parameterization when compared to the stochastic parameterization. Applying the continuous 436 

parameterization approach, particles accumulate a mean rime fractional mass of 0.49 by the time 437 

they reach 3.6 km MSL (flight leg 5, immediately above the melting level), whereas applying the 438 

stochastic parameterization, a rime fractional mass of 0.55 is accumulated. Visual assessment of 439 

the in situ particle imagery indicated that the stochastic method produces a more observationally 440 

consistent riming evolution. Therefore, the stochastic riming parameterization is used in all 441 

simulations.   442 

 443 

3.3. Control Simulation Assessment  444 

The objective for a control simulation is to produce an evolution of a population of particles 445 

within a vertical column that is physically consistent with the observed cloud profile. In Fig. 6, 446 

we compare the control simulation PSD to the mean observed PSD (D ≥ 0.7 mm). Although PSD 447 

measurements at smaller particle sizes are unavailable for this flight, the approximately 448 

Lagrangian aircraft sampling yielded a temporally consistent evolution of the PSD at larger sizes. 449 

Measurements from flight leg 1 are used to assess the simulation during the particle initialization 450 

stages within the uppermost region of the model, whereas measurements collected downstream 451 

on flight legs 2 through 6 are used to assess simulation performance during the later stages of 452 

particle evolution. The model produces an initial particle population at 6.5 km MSL (Fig. 6a) that 453 
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is consistent with the mean observations at large particle sizes and follows the assumed Gamma 454 

distribution form at small sizes. Flight leg 5 (Fig. 2a), at approximately 3.6 km MSL, was the 455 

lowest altitude flown before reaching the melting level. At this altitude, evaluation of the 456 

simulation shows skill in evolving this initial particle population by deposition, aggregation, and 457 

riming processes throughout a nearly 3 km-deep cloud layer.  458 

Particle growth between 6.5 km (Fig. 6a) and 3.6 km MSL (Fig. 6b) through aggregation and 459 

to a lesser extent, depositional growth, is expressed in the shift of the observed PSD to larger 460 

particle sizes. This evolutionary characteristic is reproduced by the control simulation although 461 

slightly larger maximum particle sizes are generated, and the ice mass may be underrepresented 462 

among particles smaller than about 2 mm in diameter. We note, however, that sizing uncertainty 463 

in the observed measurements is greater at these small sizes owing to the relatively coarse pixel 464 

resolution of 150 μm for the HVPS probe (Bansemer et al. 2022). To further validate the control 465 

simulation and to assess the continuous particle evolution throughout the vertical profile, Z is 466 

estimated from the simulated PSD and compared to the HIWRAP Ku-band measurements.  467 

 468 
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 470 

Figure 6: Particle size distributions (PSDs) of ice mass for observed 1 Hz and mean values 471 
derived from (a) P-3 flight leg 1 at 6.5 km MSL and (b) flight leg 5 at 3.6 km MSL (see Fig. 2) 472 

and for the control simulation at equivalent altitudes.  473 
 474 

 475 

Figure 7 shows the median observed vertical profile of Z and VD computed from the 476 

downstream flight legs 2 through 6, as indicated in Fig. 2a. Data from the lowest 500 m were 477 

removed due to noise from ground clutter. From the observed vertical profiles, several inferences 478 

are made about the microphysical processes. Beginning at 6 km MSL, Z rapidly increases with 479 

descent, which is expected with an onset of aggregation. The rate of increase in Z with 480 

descending height reaches a relative maximum near 5.5 km MSL (Fig. 7a), coincident with an 481 

apparent acceleration of VD. Within the subsequent 1 km (5.5 km to 4.5 km MSL), VD becomes 482 

increasingly negativeincreases from (-0.72 m s-1 to -1.00 m s-1) as particle fall speeds increase 483 

(Fig. 7b). This effect is assumed to be associated with the onset of riming, and subsequently, 484 

changes in particle densities. Particle melting begins near 3.4 km MSL, at which point a bright 485 
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band signature is apparent and VD rapidly acceleratesincreases. Below the bright band, Z remains 486 

nearly constant at about 25 dBZ and VD is about -5 m s-1.  487 

 488 

489 

 490 

Figure 7: Vertical profiles of (a) radar reflectivity and (b) Doppler velocity at Ku band for the 491 
control simulation (blue lines) and observed (dashed black lines) median from ER-2 HIWRAP 492 
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radar during flight legs 2-6 (see Fig. 2a, magenta segments). Data for the observed profile below 493 
500 m MSL are omitted due to ground clutter. A dotted line at 5.5 km MSL indicates the onset of 494 
riming and a dash-dotted line indicates the 0°C height. Also shown at the right are the surface 495 

rain rate values from the control simulation (blue) and observed at KBOS (black) between 1300 496 
and 1800 UTC on 04 February 2022; horizontal bar lengths illustrate magnitude differences.  497 

 498 

 499 

The vertical profile of Z is well reproduced by the control simulation, particularly above the 500 

melting level (Fig. 7a), which suggests confidence in its prescriptive configuration. Upon 501 

melting, Z is overestimated by the control simulation and maintains a bias of about 2 to 5 dB 502 

throughout the warm layer. While an evaluation of warm-rain processes is beyond the scope of 503 

the present study, it is possible that this overestimate in Z results from an incomplete 504 

representation of warm-rain processes by the model, such as droplet breakup and shedding, or 505 

from uncertainties in the scattering estimates. Confirmation of an attributable mechanism would 506 

be challenging without in situ observations below the melting level. Rain rates at the surface are 507 

one common model validation metric. Because the aircraft sampling occurred primarily offshore 508 

(see Fig. 2a), an ideally situated ground site is unavailable. However, we find comparison with a 509 

nearby ground site useful towards determining whether the control simulation produces 510 

physically realistic estimates that are representative of the rainfall across the broader region. At 511 

the surface, during aircraft sampling (1300 to 1800 UTC), the nearest ground site, KBOS, 512 

reported a rain rate of 1.42 mm hr-1. The control simulation produces about 25% more surface 513 

rain with an average rain rate of 1.77 mm hr-1. 514 

Despite the confidence in Z aloft, we find that VD is underestimated by about 0.5 to 1 m s-1 in 515 

the control simulation but are within an uncertainty range of ± 1 m s-1 (Matthew McLinden, 516 

personal communication, 25 April 2024) for the HIWRAP Ku-band VD measurements. Some of 517 

the uncertainty in the VD measurements is due to corrections necessary for the aircraft motion, 518 

which, although unlikely to significantly affect the relative evolution of VD with height, may 519 

yield an absolute magnitude bias. This bias between the observed and simulated VD is consistent 520 

throughout the column, suggesting that this consistent bias may be explained, to a large extent, 521 

by those uncertaintiesy in the observations. More importantly for this analysis, the relative 522 

changes in VD with height, which have process-based implications, are similar between the 523 

observed and simulated profiles.  524 

 525 
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4. Process-Based Contributions and Sensitivities on Doppler Radar Vertical Profiles 526 

A principal advantage of the particle-based design of the McSnow model is that information 527 

about microphysical properties is retained by the model at the scale of the individual particles. 528 

For particles in the control simulation, the onset of riming at 5.5 km MSL (h2 in Fig. 3) initiates a 529 

change in the physical evolution of the particle with subsequent sedimentation. At 3.6 km MSL, 530 

the particles have accumulated a mean rime fractional mass of 0.55, increasing the total 531 

precipitation mass and accelerating its fallout rate. Radar scattering by the particle, expressed 532 

through Z, is also modified by rime accumulation, yet these effects are difficult to distinguish 533 

from concurrent processes, including deposition and aggregation. To investigate these scattering 534 

implications, we estimate the vertical profile of Z with and without contributions of rime mass.  535 

 536 
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537 

 538 

Figure 8: As in Fig. 7a but with an added vertical profile (in green) for estimated reflectivity (Z) 539 
with particle rime mass removed. Shown at the right are simulated and observed Z values 540 

computed at 3.6 km MSL; horizontal bar lengths illustrate magnitude differences.  541 
 542 
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 543 

Figure 8 compares Z from the control simulation (as in Fig. 7a) to an unrimed estimate of Z 544 

obtained by subtracting the rime mass from the particles and recomputing their scattering 545 

properties. Removal of rime mass appears to significantly impede further increases in Z with 546 

descending height below 5.5. km MSL. Near the melting level, Z is reduced from 20.07 to 13.03 547 

dBZ between the control and simulation and the unrimed estimate, suggesting that the 548 

accumulated rime mass contributes to about 35% of the total Z (in dB units). This calculation, 549 

however, only considers the implications of riming on radar scattering; the complex interactions 550 

of concurrent processes are neglected by solely removing the rime mass from evolved particles 551 

in the control simulation. Additionally, the effects on VD, which manifest cumulatively during 552 

riming, cannot be investigated in the same manner. To explicitly investigate the effects of riming 553 

on the radar profiles, and to distinguish these effects from concurrent processes, we introduce 554 

several sensitivity simulations which independently perturb the riming or aggregation processes.   555 

 556 

Simulation Description Perturbation Assignment 

control Observation-based mean-state 
simulation 

none 

high_SLW Increase SLW by 2.0 from control 0.100 g m-3 LWC 

low_SLW Reduce SLW by 0.5 from control  0.025 g m-3 LWC  

no_riming Remove riming to distinguish effects 
from aggregation  

Riming process turned off  

MLE_C12_agg Reduce aggregation from control to 
moderate efficiency  

MLE sticking efficiency; see Fig. 14, 
Connolly et al. (2012) 

low_C12_agg Reduce aggregation from control to 
low efficiency 

0.5 x MLE sticking efficiency; see Fig. 14, 
Connolly et al. (2012) 

 557 

Table 1: Descriptions and perturbations relative to the control simulation applied for each 558 
simulation.  559 

 560 

 561 

Although the southern regions of the 04 February 2024 event were predominantly stratiform, 562 

variations in the mixed-phase layer LWC were observed (Fig. 5). Within sufficiently deep 563 
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mixed-phase layers, prior model simulations have demonstrated that small (e.g., < 0.05 g m-3) 564 

perturbations in LWC alter particle fallout characteristics which can yield substantial increases or 565 

decreases in the surface precipitation rate (DeLaFrance et al. 2024). Here, we similarly introduce 566 

two sensitivity simulations perturbing LWC within the mixed-phase layer (h1 to h2 in Fig. 3), 567 

within the range of observed LWC (Fig. 5). In the control simulation, we prescribed the mean 568 

observed LWC value of 0.05 g m-3. A scaling factor of two relative to the control is used to 569 

prescribe a high concentration (0.1 g m-3) for the “high_SLW” simulation and low concentration 570 

(0.025 g m-3) for “low_SLW” concentration. As a limiting case which is analogous to the 571 

removal of rime mass (Fig. 8), we construct a “no_riming” simulation with the riming process 572 

inactive. A brief summary of these riming sensitivity simulations is provided in Table 1.  573 

 574 



 28 

575 

 576 

Figure 9: As in Fig. 7 but for the control and riming-based sensitivity simulations: high_SLW, 577 
low_SLW, and no_riming. At the right are surface simulated and observed surface rain rate 578 

values; horizontal bar lengths illustrate magnitude differences.  579 
 580 

 581 
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Vertical profiles of Z and VD for the high_SLW, low_SLW, and no_riming sensitivity 582 

simulations relative to the control are shown in Fig. 9. Complete removal of the riming process 583 

in the no riming simulation (Fig. 9a) produces a similar Z profile as found by computing Z for 584 

equivalent unrimed particles from the control simulation (Fig. 8). This result underscores the 585 

significant sensitivity of Z to changes in particle mass during riming, despite concurrent 586 

microphysical processes. Perturbing LWC by a factor of 2 in the high_SLW or 0.5 in the 587 

low_SLW simulations relative to the control produces opposing, but similar in magnitude, 588 

changes in Z (Fig. 9a), indicating a regularity in the response of Z to SLW variability. Similarly, 589 

the effects of SLW variability on VD demonstrate a regular response (Fig. 9b). We note that these 590 

simulation responses in Z and VD to SLW variability assume that the particles are well mixed 591 

such that probabilistic collision of ice crystals and SLW droplets is the same throughout the 592 

layer. 593 

As discussed in Section 3.3, remote sensing measurements of VD, including those from the 594 

HIWRAP radar used throughout this study, are subject to magnitude biases. Nonetheless, as with 595 

Z, the relative magnitude changes in VD with height demonstrate a sensitivity to the riming 596 

process. In the high_SLW simulation, the rate of further VD acceleration with descent below 5.5 597 

km MSL is nearly doubled relative to the control. Conversely, below about 5 km MSL, further 598 

increases in VD cease in the low_SLW simulation and decrease in VD occurs in the no_riming 599 

simulation. As a result of rime accumulation in the control simulation, VD immediately above the 600 

melting level (3.6 km MSL) increased by about 68% relative to the no_riming simulation. 601 

Similarly, Z increased by about 44%. The competing effects of riming and aggregation processes 602 

on VD manifest in the low_SLW and no_riming simulations; riming accelerates the VD with mass 603 

accumulation whereas in the absence of riming, further aggregation yields larger, lower density 604 

particles with reduced fall speeds. Consequently, vertical profiles of VD may provide an insight 605 

into dominant microphysical processes, which is consistent with the notion that rimed particles 606 

occupy a distinct region of the Doppler spectra (Kalesse et al. 2016). To advance the 607 

differentiation of particles evolved by riming, it is necessary to first consider relative effects of 608 

variability in the aggregation process.  609 

In our development of the control simulation for the 04 February 2022 event, the aggregation 610 

process was initially assumed to follow a temperature dependent sticking efficiency identified as 611 

the MLE by Connolly et al. (2012; see Fig. 14b). Comparison with in situ PSDs indicated that 612 
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the MLE sticking efficiency parameter was insufficient to generate observed concentrations of 613 

large particles, motivating the use of an increased sticking efficiency in the control simulation. 614 

However, to elucidate the effects of aggregation efficiency on radar profiles, we now consider a 615 

sensitivity simulation, “MLE_C12_agg”, which follows the MLE sticking efficiency of Connolly 616 

et al (2012). Additionally, analogous to the design of the riming sensitivity simulations, we 617 

introduce a “low_C12_agg” simulation for which the sticking efficiency is further reduced from 618 

the MLE estimate by a factor of 0.5. Relative to the control simulation, the reduction in sticking 619 

efficiently in the MLE_C12_agg and low_C12_agg sensitivity simulations lack observational 620 

consistency with the presently analyzed 04 February 2022 event. However, it is useful to 621 

consider the implications of a realistic range of variability in the aggregation process efficiency 622 

to inform general distinctions from the effects of riming within vertical profiles of Z and VD.   623 

 624 
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625 

 626 

Figure 10: As in Fig. 7 but for the control and aggregation-based sensitivity simulations: 627 
MLE_C12_agg, and low_C12_agg. At the right are surface simulated and observed surface rain 628 

rate values; horizontal bar lengths illustrate magnitude differences.  629 
 630 

 631 
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Figure 10 shows the vertical profiles of Z and VD for the aggregation efficiency sensitivity 632 

simulations, MLE_C12_agg and low_C12_agg. Reducing aggregation efficiency suppresses the 633 

generation of large particles and because of the strong dependency of radar backscatter on 634 

particle size, Z decreases relative to the control (Fig. 10a). Additionally, smaller aggregate 635 

particles become smaller targets for collision with SLW droplets to accumulate rime mass, which 636 

also reduces Z. The latter effect manifests in the reduced surface rain rates, decreasing by 38% in 637 

the MLE_C12_agg (1.10 mm hr-1) and 45% in the low_C12_agg (0.97 mm hr-1) simulations 638 

relative to the control (1.77 mm hr-1). Conversely, a reduction in aggregation efficiency has a 639 

minimal effect on VD for ice-phase particles (Fig. 10b). Above the melting level, at 3.6 km MSL, 640 

VD in the MLE_C12_agg simulation is reduced from the control simulation by about 4%0.08 m 641 

s-1 and in the low_C12_agg, reduced by about 13%0.24 m s-1. This relative insensitivity of VD to 642 

aggregation arises despite these sensitivity simulations assessing a broad range of possible 643 

sticking efficiencies. For example, at -15°C, the sticking efficiency is reduced from 0.9 in the 644 

control to 0.32 in the low_C12_agg simulation and at -10°C, from 0.5 in the control to 0.12 in 645 

the low_C12_agg simulation.  646 

Below the melting layer, however, the effects of aggregation on VD become significant, 647 

decreasing by approximately 2 m s-1 between the control and low_C12_agg simulations. 648 

Similarly, the surface rain rate decreases by about 45% between the control and low_C12_agg 649 

simulations. Thus, despite the significant implications of the aggregation process on precipitation 650 

production and its fallout, its variations are not readily perceived in vertical profiles of VD. This 651 

finding significantly differs from the robust sensitivity of VD to variations in the riming process. 652 

While variations in the aggregation and riming processes may manifest similarly in vertical 653 

profiles of Z, we find that VD is uniquely sensitive to riming. Thus, vertical profiles of VD show 654 

promise in identification of riming as a dominant ice-phase microphysical process, which is 655 

ambiguous in profiles of Z, only.  656 

 657 

5. Discussion  658 

Sensitivity in vertical profiles of both Z and VD owing to rime accumulation rates were 659 

previously shown by Kalesse et al. (2016) from bin model simulations by prescribing a fixed 660 

vertical profile of LWC then testing two different riming efficiency parameterizations. Their two 661 

simulations yielded similar vertical gradients in Z and VD profiles but with differences in 662 



 33 

magnitude. They attributed these differences to assumptions about the physical morphology of 663 

the ice crystals with accretion of rime mass that had implications for their scattering properties. 664 

In our study, we uniquely provided an observational constraint to establish a control state 665 

simulation and modeling framework for assessing impacts of riming and aggregation 666 

independently. By selecting a fixed riming parameterization for all simulations using this 667 

framework, we were able to assess Z and VD sensitivities attributable to LWC perturbations 668 

within the range of observed variability. We found that a small (≤ 0.05 g m-3) range of 669 

perturbations in the LWC produced substantial changes in the surface precipitation rate and a 670 

corresponding sensitivity in vertical profiles of Z and VD.  671 

The sensitivities expressed in Doppler radar profiles to LWC perturbations is tied to the 672 

impact on bulk microphysical properties, especially particle density, ⍴e. In the deposition- and 673 

aggregation-prescribed region above 5.5 km MSL (Fig. 11), ⍴e rapidly decreases with 674 

descending height due to the efficient aggregation of increasingly open particle geometry. At 5.5 675 

km MSL, riming is introduced and ⍴e approaches 0.02 g cm-3, remaining nearly constant until the 676 

melting level as a result of the competing effects of aggregation and riming. In the high_SLW 677 

simulation, the effects of riming dominate whereby the gradient in ⍴e abruptly increases with 678 

descending height. Conversely, in the low_SLW and no_riming simulations, the effects of 679 

aggregation continue to dominate and ⍴e further decreases. 680 

 681 
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682 

 683 

Figure 11: Vertical profiles of bulk effective density, ⍴e, for the evolved particle population for 684 
the control simulation and three riming-based sensitivity simulations described in Section 4: 685 

high_SLW, low_SLW, and no_riming. Calculations of ⍴e assume equivalent spherical volumes of 686 
the particles following Heymsfield et al. (2004).   687 

 688 

 689 
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Despite the opposing process-based effects on the evolution of ⍴e with height, our 690 

simulations suggest that the effects of aggregation and riming are not readily distinguished by Z 691 

from a Ku-band radar band alone. Riming may be detectable, however, from three-wavelength 692 

(Ku-, Ka-, and W-band) radar by leveraging differential attenuation effects. In prior idealized 693 

modeling simulations for rimed particle growth scenarios, Leinonen and Szyrmer (2015) 694 

identified unique signatures of riming by comparing dual-wavelength ratios (DWR) between Ka 695 

and W bands with DWR at Ku and Ka bands. However, they found the magnitude of this 696 

signature to be modest and proposed that it would likely be difficult to accurately distinguish in 697 

observational data. Mason et al. (2019) later investigated the use of triple-frequency Doppler 698 

radar measurements from mixed-phase clouds during wintertime snow events to constrain the 699 

retrievals of bulk microphysical properties, including the PSD shape factor and ⍴e. They found 700 

that triple-wavelength Z measurements effectively constrained the PSD shape parameter, but did 701 

not constrain ⍴e. Rather, VD measurements were necessary to identify transitions to rimed growth 702 

cloud regions and provide constraint on ⍴e. Our findings demonstrate that this constraint on ⍴e is 703 

attributable to the unique density-dependent response in VD expressly owing to variations in the 704 

riming process within mixed-phase cloud layers with concurrent riming and aggregational 705 

growth. Further, our findings suggest that, when combined with Z, coincident vertical profiling 706 

measurements of VD have utility towards diagnosing riming as a dominant process within 707 

stratiform clouds from a single-wavelength radar. 708 

 709 

6. Conclusions  710 

The evolution of ice-phase precipitating particles within a mixed-phase stratiform cloud was 711 

simulated to evaluate the effects of riming on the PSD moments and assess the process-based 712 

implications on Doppler radar vertical profiles. In situ and remote sensing airborne observations 713 

collected during the IMPACTS field campaign for a prolonged wintry-mixed precipitation event 714 

over the northeast US on 04 February 2022 were used to design and constrain a quasi-idealized 715 

1D mean-state control simulation. Using the Lagrangian particle-based McSnow model, we 716 

defined an initial population of ice particles based on in situ measurements in the upper portion 717 

of the cloud. As those particles fell, initial evolution occurred by vapor deposition followed by 718 

subsequent additions of aggregation and then riming within prescriptive observation-based 719 

layered regions. Radar scattering properties were estimated using a T-matrix forward operator 720 
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and vertical profiles of Z and VD were computed from the evolved PSD, then evaluated through 721 

comparisons with the airborne radar data. The effects of riming on PSD moments expressed 722 

through Z and VD were assessed from simulations which introduce small perturbations in cloud 723 

LWC within a range of observed variability. To distinguish effects of riming and aggregation, 724 

two additional sensitivity simulations were introduced to determine the unique implications of 725 

aggregational growth efficiency on Z and VD. Through these approaches, we found: 726 

 727 

● Ice-phase precipitation particle evolution in a mixed-phase wintertime storm cloud is well 728 

constrained by the 1D quasi-idealized McSnow model.  729 

● Despite modest supercooled liquid water concentrations, rime accumulation is estimated 730 

to account for 55% of particle mass generated above the melting level, dominating ice-731 

phase contribution to precipitation rates. 732 

● Riming cumulatively increased radar reflectivity above the melting level by an estimated 733 

44%6.1 dB and Doppler velocity by 68%0.9 m s-1 and demonstrated significant 734 

sensitivity to small perturbations in supercooled liquid water concentrations.  735 

● Vertical profiles of radar reflectivity demonstrate similar sensitivities to riming and 736 

aggregation, but Doppler velocity is uniquely sensitive to riming-based perturbations 737 

through changes in particle density.  738 

 739 

Constraining parameterized treatments of rimed particle evolution in numerical models is a 740 

known source of uncertainty in simulations of precipitation from bulk-, bin- and Lagrangian 741 

particle-based models (e.g., Lin and Colle 2011; Jensen and Harrington 2015; Jensen et al. 2017; 742 

Brdar and Seifert 2018). One objective of our analysis was to address this constraining need 743 

through quantifying precipitation sensitivities to riming in model simulations based on an 744 

observed range of variability in LWC. We found a difference of about 6% in rime fractional 745 

mass accumulation in our control simulation whether using a continuous or a stochastic 746 

representation of riming with the McSnow model. This effect was expressed within a modeling 747 

framework using a quasi-idealized and steady-state 1D column with a homogeneous mixed-748 

phase layer. This approach was appropriate for our intentionally selected region of the observed 749 

storm because of its idealistic layered vertical structure apparent in radar observations (Fig. 2b, 750 

c), along with its known presence of SLW based on in situ observations. However, in reality, 751 
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processes are not neatly initiated at distinct levels (e.g., in convective areas). It is expected that 752 

increasing ambiguity exists in distinguishing concurrent microphysical processes in these 753 

scenarios and, thus, our analysis did not assess the full natural range of complexity in mixed-754 

phase precipitation processes.  755 

While model schemes have become increasingly sophisticated, it is not clear that uncertainty 756 

in ice-based precipitation estimates have necessarily reduced, highlighting the need for judicious 757 

use of observations to advance constraints on modeled processes (e.g., Morrison et al. 2020). 758 

Because of the capacity for explicit process representation at the scale of individual particles, 759 

Lagrangian models (e.g., McSnow) may be ideally suited to addressing these challenges, 760 

especially when combined with datasets which prioritize observations that are consistent with the 761 

evolution of particles. This observational consideration was favored during the 04 February 2022 762 

event, which was sampled by IMPACTS in an approximately Lagrangian manner. In this study, 763 

we focused on riming as a primary ice-phase process, but the northern region of the sampled 764 

storm observed significantly less SLW and rime accumulation, presenting a unique natural 765 

laboratory for evaluation of modeled aggregation. Sticking efficiencies during aggregation are 766 

highly uncertain and difficult to constrain from laboratory experiments (e.g., Connolly et al. 767 

2012) yet, as we demonstrated in our study, have significant implications for the accuracy of 768 

simulated Z and rain rates. Ongoing work involves curating the in situ measurements of particle 769 

evolution within this northern storm region to constrain Lagrangian particle-based simulations 770 

and assess the ambient environmental dependencies (i.e., temperature, water supersaturation) and 771 

ranges of sensitivities associated with modeled aggregation. 772 

 773 

 774 

7. Data Availability Statement  775 

All field observation data from IMPACTS used in this study are accessible through the 776 

NASA Distributed Active Archive Center (McMurdie et al. 2019). Readers can find a complete 777 

description of the McSnow model and its availability in Brdar and Seifert (2018).  778 

 779 

8. Author Contributions 780 

All authors contributed to the study design and methodology decisions. Andrew DeLaFrance 781 

conducted the data curation and performed the simulations and computations from model output. 782 



 38 

All authors contributed to the evaluation and interpretation of the results. Andrew DeLaFrance 783 

prepared the manuscript with contributions from all co-authors. 784 

 785 

9. Competing Interests 786 

The authors declare that they have no conflict of interest. 787 

 788 

 789 

10. Acknowledgments 790 

The authors acknowledge the entire IMPACTS team for their excellence in the collection and 791 

distribution of the robust IMPACTS dataset. The authors thank Axel Seifert and Christoph 792 

Siewert for their support and feedback regarding application of the McSnow model. The authors 793 

also expressly thank Aaron Bansemer for processing of the microphysics probe data and helpful 794 

discussions regarding its application and limitations. Funding was provided by NASA Future 795 

Investigators in NASA Earth and Space Science Technology Grant # 80NSSC21K1589 and 796 

NASA Grant # 80NSSC19K0338. NCAR provided resources for Andrew DeLaFrance to visit its 797 

Mesoscale and Microscale Meteorology Laboratory (host Andrew Heymsfield), which benefited 798 

the design and data curation for this analysis. Andrew Heymsfield is supported by the IMPACTS 799 

field program under NASA Grant # 80NSSC19K0397 and by the National Science Foundation. 800 

We are grateful for the feedback received from two anonymous reviewers, which greatly 801 

improved this manuscript. 802 

 803 

 804 

11. References  805 

Bailey, M. P. and Hallett, J.: A Comprehensive Habit Diagram for Atmospheric Ice Crystals: 806 
Confirmation from the Laboratory, AIRS II, and Other Field Studies, J. Atmos. Sci., 66, 807 
2888–2899, https://doi.org/10.1175/2009JAS2883.1, 2009. 808 

Bansemer, A., Delene D., Heymsfield A., O’Brien J., Poellot M., Sand K., Sova G., Moore J., 809 
and Nairy, C.: NCAR Particle Probes IMPACTS, Dataset available online from the 810 
NASA Global Hydrometeorology Resource Center DAAC, Huntsville, Alabama, U.S.A., 811 
https://doi.org/10.5067/IMPACTS/PROBES/DATA101, 2022. 812 

Bjerknes, J.: Extratropical Cyclones, in: Compendium of Meteorology, edited by: Malone, T. F., 813 
American Meteorological Society, Boston, MA, 577–598, https://doi.org/10.1007/978-1-814 
940033-70-9_48, 1951. 815 

Bohren, C. F. and Huffman, D. R.: Absorption and Scattering of Light by Small Particles, John 816 
Wiley and Sons, New York, 530 pp., ISBN 3527618163, 1983. 817 



 39 

Brdar, S. and Seifert, A.: McSnow: A Monte-Carlo Particle Model for Riming and Aggregation 818 
of Ice Particles in a Multidimensional Microphysical Phase Space, J. Adv. Model Earth 819 
Sy., 10, 187–206, https://doi.org/10.1002/2017MS001167, 2018. 820 

Bringi, V., Seifert, A., Wu, W., Thurai, M., Huang, G.-J., and Siewert, C.: Hurricane Dorian 821 
Outer Rain Band Observations and 1D Particle Model Simulations: A Case Study, 822 
Atmosphere, 11, 879, https://doi.org/10.3390/atmos11080879, 2020. 823 

Brodzik, S.: Automated Surface Observing System (ASOS) IMPACTS, Dataset available online 824 
from the NASA Global Hydrometeorology Resource Center DAAC, Huntsville, 825 
Alabama, U.S.A., https://doi.org/10.5067/IMPACTS/ASOS/DATA101, 2022a. 826 

Brodzik, S.: GOES IMPACTS, Dataset available online from the NASA Global 827 
Hydrometeorology Resource Center DAAC, Huntsville, Alabama, U.S.A., 828 
https://doi.org/10.5067/IMPACTS/GOES/DATA101, 2022b. 829 

Brown, P. R. A. and Francis, P. N.: Improved Measurements of the Ice Water Content in Cirrus 830 
Using a Total-Water Probe, J. Atmos. Oceanic Technol., 12, 410–414, 831 
https://doi.org/10.1175/1520-0426(1995)012<0410:IMOTIW>2.0.CO;2, 1995. 832 

Chase, R. J., Nesbitt, S. W., and McFarquhar, G. M.: A Dual-Frequency Radar Retrieval of Two 833 
Parameters of the Snowfall Particle Size Distribution Using a Neural Network, J. Appl. 834 
Meteorol. Clim., 60, 341–359, https://doi.org/10.1175/JAMC-D-20-0177.1, 2021. 835 

Cholette, M., Milbrandt, J. A., Morrison, H., Paquin‐Ricard, D., and Jacques, D.: Combining 836 
Triple‐Moment Ice with Prognostic Liquid Fraction in the P3 Microphysics Scheme: 837 
Impacts on a Simulated Squall Line, J. Adv. Model Earth Sy., 15, e2022MS003328, 838 
https://doi.org/10.1029/2022MS003328, 2023. 839 

Colle, B. A., Garvert, M. F., Wolfe, J. B., Mass, C. F., and Woods, C. P.: The 13–14 December 840 
2001 IMPROVE-2 Event. Part III: Simulated Microphysical Budgets and Sensitivity 841 
Studies, J. Atmos. Sci., 62, 3535–3558, https://doi.org/10.1175/JAS3552.1, 2005. 842 

Connolly, P. J., Emersic, C., and Field, P. R.: A Laboratory Investigation into the Aggregation 843 
Efficiency of Small Ice Crystals, Atmos. Chem. Phys., 12, 2055–2076, 844 
https://doi.org/10.5194/acp-12-2055-2012, 2012. 845 

DeLaFrance, A., McMurdie, L. A., Rowe, A. K., and Conrick, R.: Effects of Riming on Ice‐846 
Phase Precipitation Growth and Transport Over an Orographic Barrier, J. Adv. Model 847 
Earth Sy., 16, e2023MS003778, https://doi.org/10.1029/2023MS003778, 2024. 848 

Field, P. R., Hogan, R. J., Brown, P. R. A., Illingworth, A. J., Choularton, T. W., and Cotton, R. 849 
J.: Parametrization of Ice‐Particle Size Distributions for Mid‐Latitude Stratiform Cloud, 850 
Q. J. Roy. Meteor. Soc., 131, 1997–2017, https://doi.org/10.1256/qj.04.134, 2005. 851 

Field, P. R., Heymsfield, A. J., and Bansemer, A.: Snow Size Distribution Parameterization for 852 
Midlatitude and Tropical Ice Clouds, J. Atmos. Sci., 64, 4346–4365, 853 
https://doi.org/10.1175/2007JAS2344.1, 2007. 854 

Grecu, M., Olson, W. S., Munchak, S. J., Ringerud, S., Liao, L., Haddad, Z., Kelley, B. L., and 855 
McLaughlin, S. F.: The GPM Combined Algorithm, J. Atmos. Ocean Tech., 33, 2225–856 
2245, https://doi.org/10.1175/JTECH-D-16-0019.1, 2016. 857 

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., 858 
Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., 859 
Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, 860 
P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, 861 
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., 862 
Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., De Rosnay, P., Rozum, I., Vamborg, F., 863 



 40 

Villaume, S., and Thépaut, J.: The ERA5 Global Reanalysis, Q. J. Roy. Meteor. Soc., 864 
146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. 865 

Heymsfield, A. J.: A Comparative Study of the Rates of Development of Potential Graupel and 866 
Hail Embryos in High Plains Storms, J. Atmos. Sci., 39, 2867–2897, 867 
https://doi.org/10.1175/1520-0469(1982)039<2867:ACSOTR>2.0.CO;2, 1982. 868 

Heymsfield, A. J., Bansemer, A., Schmitt, C., Twohy, C., and Poellot, M. R.: Effective Ice 869 
Particle Densities Derived from Aircraft Data, J. Atmos. Sci., 61, 982–1003, 870 
https://doi.org/10.1175/1520-0469(2004)061<0982:EIPDDF>2.0.CO;2, 2004. 871 

Heymsfield, A. Bansemer, A., Heymsfield, G., Noone, D., Grecu, M., and Toohey, D.: 872 
Relationship of Multiwavelength Radar Measurements to Ice Microphysics from the 873 
IMPACTS Field Program, J. Appl. Meteorol. Clim., 62, 289–315, 874 
https://doi.org/10.1175/JAMC-D-22-0057.1, 2023. 875 

Holton, J. R. and Hakim, G. J.: An Introduction to Dynamic Meteorology, 5th edition., Elsevier : 876 
Academic Press, Amsterdam, 532 pp., ISBN 0123848679, 2012. 877 

Iguchi, T., Seto, S., Meneghini, R., Yoshida, N., Awaka, J., Le, M., Chandrasekhar, V., Brodzik, 878 
S., and Kubota, T.: GPM/DPR Level-2 Algorithm Theoretical Basis Document, 879 
https://www.eorc.jaxa.jp/GPM/doc/algorithm/ATBD_DPR_201811_with_Appendix3b.p880 
df, last access: May 2024, 2018. 881 

Jensen, A. A. and Harrington, J. Y.: Modeling Ice Crystal Aspect Ratio Evolution during 882 
Riming: A Single-Particle Growth Model, J. Atmos. Sci., 72, 2569–2590, 883 
https://doi.org/10.1175/JAS-D-14-0297.1, 2015. 884 

Jensen, A. A., Harrington, J. Y., Morrison, H., and Milbrandt, J. A.: Predicting Ice Shape 885 
Evolution in a Bulk Microphysics Model, J. Atmos. Sci., 74, 2081–2104, 886 
https://doi.org/10.1175/JAS-D-16-0350.1, 2017. 887 

Kalesse, H., Szyrmer, W., Kneifel, S., Kollias, P., and Luke, E.: Fingerprints of a Riming Event 888 
on Cloud Radar Doppler Spectra: Observations and Modeling, Atmos. Chem. Phys., 16, 889 
2997–3012, https://doi.org/10.5194/acp-16-2997-2016, 2016. 890 

Kneifel, S., Kollias, P., Battaglia, A., Leinonen, J., Maahn, M., Kalesse, H., and Tridon, F.: First 891 
Observations of Triple‐Frequency Radar Doppler Spectra in Snowfall: Interpretation and 892 
Applications, Geophys. Res. Lett., 43, 2225–2233, 893 
https://doi.org/10.1002/2015GL067618, 2016. 894 

Lawson, R. P., Stewart, R. E., Strapp, J. W., and Isaac, G. A.: Aircraft Observations of the Origin 895 
and Growth of Very Large Snowflakes, Geophys. Res. Lett., 20, 53–56, 896 
https://doi.org/10.1029/92GL02917, 1993. 897 

Lawson, R. P., O’Connor, D., Zmarzly, P., Weaver, K., Baker, B., Mo, Q., and Jonsson, H.: The 898 
2D-S (Stereo) Probe: Design and Preliminary Tests of a New Airborne, High-Speed, 899 
High-Resolution Particle Imaging Probe, J. Atmos. and Oceanic Tech., 23, 1462–1477, 900 
https://doi.org/10.1175/JTECH1927.1, 2006. 901 

Lawson, R. P., Gurganus, C., Woods, S., and Bruintjes, R.: Aircraft Observations of Cumulus 902 
Microphysics Ranging from the Tropics to Midlatitudes: Implications for a “New” 903 
Secondary Ice Process, J. Atmos. Sci., 74, 2899–2920, https://doi.org/10.1175/JAS-D-17-904 
0033.1, 2017. 905 

Leinonen, J.: High-level Interface to T-matrix Scattering Calculations: Architecture, Capabilities 906 
and Limitations, Opt. Express, 22, 1655, https://doi.org/10.1364/OE.22.001655, 2014. 907 

Leinonen, J. and Szyrmer, W.: Radar Signatures of Snowflake Riming: A Modeling Study, Earth 908 
Space Sci., 2, 346–358, https://doi.org/10.1002/2015EA000102, 2015. 909 



 41 

Leinonen, J., Lebsock, M. D., Tanelli, S., Sy, O. O., Dolan, B., Chase, R. J., Finlon, J. A., Von 910 
Lerber, A., and Moisseev, D.: Retrieval of Snowflake Microphysical Properties from 911 
Multifrequency Radar Observations, Atmos. Meas. Tech., 11, 5471–5488, 912 
https://doi.org/10.5194/amt-11-5471-2018, 2018. 913 

Li, L., Heymsfield, G., Carswell, J., Schaubert, D. H., McLinden, M. L., Creticos, J., Perrine, M., 914 
Coon, M., Cervantes, J. I., Vega, M., Guimond, S., Tian, L., and Emory, A.: The NASA 915 
High-Altitude Imaging Wind and Rain Airborne Profiler, IEEE T. Geosci. Remote, 54, 916 
298–310, https://doi.org/10.1109/TGRS.2015.2456501, 2016. 917 

Lin, Y. and Colle, B. A.: A New Bulk Microphysical Scheme That Includes Riming Intensity 918 
and Temperature-Dependent Ice Characteristics, Mon. Weather Rev., 139, 1013–1035, 919 
https://doi.org/10.1175/2010MWR3293.1, 2011. 920 

Liu, G.: Approximation of Single Scattering Properties of Ice and Snow Particles for High 921 
Microwave Frequencies, J. Atmos. Sci., 61, 2441–2456, https://doi.org/10.1175/1520-922 
0469(2004)061<2441:AOSSPO>2.0.CO;2, 2004. 923 

Liu, G.: A Database of Microwave Single-Scattering Properties for Nonspherical Ice Particles, 924 
Bull. Amer. Meteor. Soc., 89, 1563–1570, https://doi.org/10.1175/2008BAMS2486.1, 925 
2008. 926 

Magono, C. and Lee, C. W.: Meteorological Classification of Natural Snow Crystals, J. Fac. Sci., 927 
Hokkaido University. Series 7, Geophysics, 2, 321–335, http://hdl.handle.net/2115/8672, 928 
1966. 929 

Mason, S. L., Chiu, C. J., Hogan, R. J., Moisseev, D., and Kneifel, S.: Retrievals of Riming and 930 
Snow Density from Vertically Pointing Doppler Radars, J. Geophys. Res.-Atmos., 123, 931 
https://doi.org/10.1029/2018JD028603, 2018. 932 

Mason, S. L., Hogan, R. J., Westbrook, C. D., Kneifel, S., Moisseev, D., and Von Terzi, L.: The 933 
Importance of Particle Size Distribution and Internal Structure for Triple-Frequency 934 
Radar Retrievals of the Morphology of Snow, Atmos. Meas. Tech., 12, 4993–5018, 935 
https://doi.org/10.5194/amt-12-4993-2019, 2019. 936 

Matrosov, S. Y.: Modeling Backscatter Properties of Snowfall at Millimeter Wavelengths, J. 937 
Atmos. Sci., 64, 1727–1736, https://doi.org/10.1175/JAS3904.1, 2007. 938 

McLinden, M., Li, L., and Heymsfield, G. M.: High Altitude Imaging Wind and Rain Airborne 939 
Profiler (HIWRAP) IMPACTS, Dataset available online from the NASA Global 940 
Hydrometeorology Resource Center DAAC, Huntsville, Alabama, U.S.A., 941 
https://doi.org/10.5067/IMPACTS/HIWRAP/DATA101, 2022a. 942 

McLinden, M., Li, L., and Heymsfield, G. M.: Cloud Radar System (CRS) IMPACTS, Dataset 943 
available online from the NASA Global Hydrometeorology Resource Center DAAC, 944 
Huntsville, Alabama, U.S.A., https://doi.org/10.5067/IMPACTS/CRS/DATA101, 2022b. 945 

McMurdie, L. A., Heymsfield, G., Yorks, J. E., and Braun, S. A.: Investigation of Microphysics 946 
and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) Collection. 947 
Dataset available online from the NASA Global Hydrometeorology Resource Center 948 
DAAC, Huntsville, Alabama, U.S.A.,  https://doi.org/10.5067/IMPACTS/DATA101, 949 
2019. 950 

McMurdie, L. A., Heymsfield, G. M., Yorks, J. E., Braun, S. A., Skofronick-Jackson, G., 951 
Rauber, R. M., Yuter, S., Colle, B., McFarquhar, G. M., Poellot, M., Novak, D. R., Lang, 952 
T. J., Kroodsma, R., McLinden, M., Oue, M., Kollias, P., Kumjian, M. R., Greybush, S. 953 
J., Heymsfield, A. J., Finlon, J. A., McDonald, V. L., and Nicholls, S.: Chasing 954 
Snowstorms: The Investigation of Microphysics and Precipitation for Atlantic Coast-955 



 42 

Threatening Snowstorms (IMPACTS) Campaign, B. Am. Meteorol. Soc., 103, E1243–956 
E1269, https://doi.org/10.1175/BAMS-D-20-0246.1, 2022. 957 

Mishchenko, M. I., Travis, L. D., and Mackowski, D. W.: T-matrix Computations of Light 958 
Scattering by Nonspherical Particles: A Review, J. Quant. Spectrosc. Ra., 55, 535–575, 959 
https://doi.org/10.1016/0022-4073(96)00002-7, 1996. 960 

Mishchenko, M. I. and Travis, L. D.: Capabilities and Limitations of a Current FORTRAN 961 
Implementation of the T-matrix Method for Randomly Oriented, Rotationally Symmetric 962 
Scatterers, J. Quant. Spectrosc. Ra., 60, 309–324, https://doi.org/10.1016/S0022-963 
4073(98)00008-9, 1998. 964 

Moisseev, D., Von Lerber, A., and Tiira, J.: Quantifying the Effect of Riming on Snowfall Using 965 
Ground‐Based Observations, J. Geophys. Res.-Atmos., 122, 4019–4037, 966 
https://doi.org/10.1002/2016JD026272, 2017. 967 

Morrison, H. and Milbrandt, J.: Comparison of Two-Moment Bulk Microphysics Schemes in 968 
Idealized Supercell Thunderstorm Simulations, Mon. Wea. Rev., 139, 1103–1130, 969 
https://doi.org/10.1175/2010MWR3433.1, 2011. 970 

Morrison, H. and Milbrandt, J. A.: Parameterization of Cloud Microphysics Based on the 971 
Prediction of Bulk Ice Particle Properties. Part I: Scheme Description and Idealized Tests, 972 
J. Atmos. Sci., 72, 287–311, https://doi.org/10.1175/JAS-D-14-0065.1, 2015. 973 

Morrison, H., Curry, J. A., and Khvorostyanov, V. I.: A New Double-Moment Microphysics 974 
Parameterization for Application in Cloud and Climate Models. Part I: Description, J. 975 
Atmos. Sci., 62, 1665–1677, https://doi.org/10.1175/JAS3446.1, 2005. 976 

Morrison, H., Van Lier‐Walqui, M., Fridlind, A. M., Grabowski, W. W., Harrington, J. Y., 977 
Hoose, C., Korolev, A., Kumjian, M. R., Milbrandt, J. A., Pawlowska, H., Posselt, D. J., 978 
Prat, O. P., Reimel, K. J., Shima, S., Van Diedenhoven, B., and Xue, L.: Confronting the 979 
Challenge of Modeling Cloud and Precipitation Microphysics, J. Adv. Model Earth Sy., 980 
12, e2019MS001689, https://doi.org/10.1029/2019MS001689, 2020. 981 

Novak, D. R., Bosart, L. F., Keyser, D., and Waldstreicher, J. S.: An Observational Study of 982 
Cold Season–Banded Precipitation in Northeast U.S. Cyclones, Weather Forecast., 19, 983 
993–1010, https://doi.org/10.1175/815.1, 2004. 984 

Oue, M., Kollias, P., Ryzhkov, A., and Luke, E. P.: Toward Exploring the Synergy Between 985 
Cloud Radar Polarimetry and Doppler Spectral Analysis in Deep Cold Precipitating 986 
Systems in the Arctic, J. Geophys. Res.-Atmos., 123, 2797–2815, 987 
https://doi.org/10.1002/2017JD027717, 2018. 988 

Pruppacher, H. R. and Klett, J. D.: Microphysics of Clouds and Precipitation, 2nd rev. and enl. 989 
ed., Kluwer Academic Publishers, Dordrecht ; Boston, 954 pp., 990 
https://doi.org/10.1007/978-0-306-48100-0, 1997. 991 

Purcell, E. M. and Pennypacker, C. R.: Scattering and Absorption of Light by Nonspherical 992 
Dielectric Grains, Astrophys. J., 186, 705, https://doi.org/10.1086/152538, 1973. 993 

Shima, S., Kusano, K., Kawano, A., Sugiyama, T., and Kawahara, S.: The Super‐Droplet 994 
Method for the Numerical Simulation of Clouds and Precipitation: A Particle‐Based and 995 
Probabilistic Microphysics Model Coupled with a Non‐Hydrostatic Model, Q. J. Roy. 996 
Meteor. Soc., 135, 1307–1320, https://doi.org/10.1002/qj.441, 2009. 997 

Skofronick-Jackson, G., Petersen, W. A., Berg, W., Kidd, C., Stocker, E. F., Kirschbaum, D. B., 998 
Kakar, R., Braun, S. A., Huffman, G. J., Iguchi, T., Kirstetter, P. E., Kummerow, C., 999 
Meneghini, R., Oki, R., Olson, W. S., Takayabu, Y. N., Furukawa, K., and Wilheit, T.: 1000 



 43 

The Global Precipitation Measurement (GPM) Mission for Science and Society, B. Am. 1001 
Meteorol. Soc., 98, 1679–1695, https://doi.org/10.1175/BAMS-D-15-00306.1, 2017. 1002 

Speirs, P., Gabella, M., and Berne, A.: A Comparison Between the GPM Dual-Frequency 1003 
Precipitation Radar and Ground-Based Radar Precipitation Rate Estimates in the Swiss 1004 
Alps and Plateau, J. Hydrometeorol., 18, 1247–1269, https://doi.org/10.1175/JHM-D-16-1005 
0085.1, 2017. 1006 

Thornhill, K. L.: Turbulent Air Motion Measurement System (TAMMS) IMPACTS, Dataset 1007 
available online from the NASA Global Hydrometeorology Resource Center DAAC, 1008 
Huntsville, Alabama, U.S.A., https://doi.org/10.5067/IMPACTS/TAMMS/DATA101, 1009 
2022. 1010 

Thornhill, K. L., Anderson, B. E., Barrick, J. D. W., Bagwell, D. R., Friesen, R., and Lenschow, 1011 
D. H.: Air Motion Intercomparison Flights During Transport and Chemical Evolution in 1012 
the Pacific (TRACE‐P)/ACE‐ASIA, J. Geophys. Res.-Atmos., 108, 2002JD003108, 1013 
https://doi.org/10.1029/2002JD003108, 2003. 1014 

Tridon, F., Battaglia, A., Chase, R. J., Turk, F. J., Leinonen, J., Kneifel, S., Mroz, K., Finlon, J., 1015 
Bansemer, A., Tanelli, S., Heymsfield, A. J., and Nesbitt, S. W.: The Microphysics of 1016 
Stratiform Precipitation During OLYMPEX: Compatibility Between Triple‐Frequency 1017 
Radar and Airborne In Situ Observations, J. Geophys. Res.-Atmos., 124, 8764–8792, 1018 
https://doi.org/10.1029/2018JD029858, 2019. 1019 

Uccellini, L. W. and Kocin, P. J.: The Interaction of Jet Streak Circulations during Heavy Snow 1020 
Events along the East Coast of the United States, Weather Forecast., 2, 289–308, 1021 
https://doi.org/10.1175/1520-0434(1987)002<0289:TIOJSC>2.0.CO;2, 1987. 1022 

Van Weverberg, K., Vogelmann, A. M., Morrison, H., and Milbrandt, J. A.: Sensitivity of 1023 
Idealized Squall-Line Simulations to the Level of Complexity Used in Two-Moment 1024 
Bulk Microphysics Schemes, Mon. Wea. Rev., 140, 1883–1907, 1025 
https://doi.org/10.1175/MWR-D-11-00120.1, 2012. 1026 

Waldstreicher, J. and Brodzik, S.: NOAA Sounding IMPACTS, Dataset available online from 1027 
the NASA Global Hydrometeorology Resource Center DAAC, Huntsville, Alabama, 1028 
U.S.A., https://doi.org/10.5067/IMPACTS/SOUNDING/DATA201, 2022. 1029 

Williams, C. R.: How Much Attenuation Extinguishes mm-Wave Vertically Pointing Radar 1030 
Return Signals?, Remote Sens., 14, 1305, https://doi.org/10.3390/rs14061305, 2022. 1031 

Zaremba, T. J., Rauber, R. M., Heimes, K., Yorks, J. E., Finlon, J. A., Nicholls, S. D., Selmer, P., 1032 
McMurdie, L. A., and McFarquhar, G. M.: Cloud-Top Phase Characterization of 1033 
Extratropical Cyclones over the Northeast and Midwest United States: Results from 1034 
IMPACTS. Journal Atmos. Sci., 81, 341-361. https://doi.org/10.1175/JAS-D-23-0123.1, 1035 
2024. 1036 

Zhang, J., Howard, K., Langston, C., Vasiloff, S., Kaney, B., Arthur, A., Van Cooten, S., 1037 
Kelleher, K., Kitzmiller, D., Ding, F., Seo, D-J., Wells, E., and Dempsey C.: National 1038 
Mosaic and Multi-Sensor QPE (NMQ) System: Description, Results, and Future Plans, 1039 
Bull. Amer. Meteor. Soc., 92, 1321- 1338, https://doi.org/10.1175/2011BAMS-D-11-1040 
00047.1, 2011. 1041 

https://doi.org/10.1175/JAS-D-23-0123.1

