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Abstract. Focusing on
:::
the future global atmospheric simulations with grid spacing of O(10–100 m), we developed a global

nonhydrostatic atmospheric dynamical core with high-order accuracy by applying
:
a
:
discontinuous Galerkin method (DGM)

both horizontally and vertically. Further
::
for

:::::::::
horizontal

::::
and

:::::::
vertical

::::::::::::
discretization.

::::::::::
Furthermore, considering a global large-

eddy simulation (LES), a Smagorinsky–Lilly turbulence model was introduced to the proposed global dynamical core in the

DGM framework. By conducting several tests with various polynomial orders (𝑝), the impact of high-order DGM on
:::
the5

:::::::
accuracy

::
of

:::
the

:::::::::
numerical

::::::::::
simulations

::
of

:
atmospheric flows was investigated. To show high-order numerical convergence, a

few modifications were made in the experimental setup of existing test cases. In addition, we proposed an idealized test case

to validate verify global LES models, which is a global extension of idealized planetary boundary layer (PBL) turbulence

experiment performed in our previous studies. The error norms from the deterministic test cases, such as linear advection

and gravity wave test cases, show an optimal order of spatial accuracy with about
::::
tests,

::::::
showed

:::
an

:::::::
optimal

::::::::::
convergence

::::
rate10

:::::::
achieved

:::
by

::::::::::::
approximately 𝑝 + 1-order

:::::
spatial

:::::::
accuracy

:
when the temporal and round-off errors are

::::
were sufficiently small. In

the climatic test cases, such as the Held-Suarez test, the kinetic energy spectra indicate
:::::::
indicated

:
the advantage of effective

resolutions
::::::::
resolution when large polynomial orders are

::::
were

:
used. In the LES experiment, the global model provided a

reasonable vertical structure of PBL and energy spectra since
::::::
because

:
the results under shallow atmosphere approximation

well reproduce
:::::::::
reproduced

:
those obtained in the plane computational domain.15

1 Introduction

Recently developed supercomputers have enabled us to conduct high-resolution global atmospheric simulations using a sub-

kilometer horizontal grid spacing(e.g., Miyamoto et al., 2013). In .
::::
For

::::::::
example,

:::::::::::::::::::
Miyamoto et al. (2013)

::::::::
conducted

::
a
::::::
global

::::::::
simulation

:::
at

:
a
:::::::::
horizontal

::::
grid

:::::::
spacing

::
of

::::
870

::
m

::::
and

::::::::
discussed

:::
the

:::::::::
numerical

:::::::::::
convergence

::
of

::::::::
statistical

:::::::::
properties

::
of

:::::
deep

::::
moist

:::::::::::
convections.

::
In

:::
the near future, this continuous development of computer technology is expected to

::::::
enable

::
us

::
to perform20

global simulations using O(10–100 m) grid spacing (Satoh et al., 2019), which begin to explicitly represent turbulence in

the inertia inertial sub-range. Then, large-eddy simulation (LES) is a promising strategy. In , since
::
in LES, the turbulence

with
::
in

:
a
:

spatial scale larger than a spatial filter is explicitly calculated, whereas the effect of turbulence with
::
in

:
a
:
smaller

spatial scale is parameterized by
::::
using eddy viscosity and diffusion terms.

::
By

::::::::
explicitly

:::::::::::
representing

:::
the

:::::::::
large-scale

::::::
eddies

::
in
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::::::::
boundary

:::::
layers

:::
and

:::
the

::::::::
low-level

::::::
clouds

::::
such

::
as

:::::::
shallow

:::::::
cumuli,

::
we

::::::
expect

::
to

::::::
reduce

:
a
::::::
source

::
of

::::::::::
uncertainty

:::::::::
associated

::::
with25

::
the

:::::::::::::::
parameterizations

::::
and

:::::::
improve

:::::::::::
representation

:::
of

:::::
global

::::::::
radiation

::::::
budget

::
in

:
a
:::::::
realistic

::::::
Earth’s

::::::::::
atmosphere.

:

Considering future high-resolution atmospheric simulations such as global LES, we discussed the problem of low numerical

accuracy of conventional atmospheric dynamical cores in Kawai and Tomita (2021, 2023) (hereafter referred to as KT2021

and KT2023, respectively). To perform LES precisely, we should take care
::::
must

:::::
ensure

:
that the discretization errors do not

dominate over sub-grid scale (SGS) terms of turbulent models. Otherwise, the physical meaning of SGS terms is likely to30

be lost
::::
SGS

:::::
terms

:::::
might

::::
lose

:::::
thier

:::::::
physical

::::::::::
significance. KT2021 investigated the order of accuracy necessary for advection

schemes in the framework of conventional grid-point methods. The study indicated that the advection
:
In

:::::::::
particular,

:::
the

:::::
study

::::::
derived

:::
two

::::::
ratios

::::::::
associated

::::
with

:::::::::
numerical

::::::::
diffusion

:::
and

:::::::::
numerical

:::::::::
dispersion:

:::
the

:::::
ratio

::
of

:::::
decay

::::
time

::::
with

:::
the

:::::
SGS

:::::
terms

::
to

:::
that

::
of
::::

the
::::::::
numerical

::::::::
diffusion

::::
error

::::::
terms

:::
and

::::
that

::
of

:::::
phase

:::::
speed

::::
due

::
to

:::
the

:::::
error

::
in

::::::::
advection

:::::
terms

::
to
::::

that
::
of

:::
the

:::::
SGS

:::::
terms.

:::::::::
Moreover,

:::
we

::::::
pointed

:::
out

::::
that

:::
the

::::::::
advection

:
scheme requires at least seventh- or eighth-order accuracy to ensure that35

the values of e-folding time with numerical diffusion and dispersion errors are sufficiently larger than those with diffusion and

dispersion terms from the SGS terms
::::
both

:::::
ratios

::
are

::::
less

::::
than

::::
10−1

::
at

::::::::::
wavelengths

::::::
longer

::::
than

::::
eight

::::
grid

::::::
lengths

:::
for

:::
grid

:::::::
spacing

:::::::::
simulations

::
of

::::::
O(10)

::
m. However, in the conventional grid-point methods, the required stencil becomes large with increasing

:::::
grows

:::::
larger

::
as

:::
the order of accuracy

:::::::
increases. This can degrade computational performance of the schemes in recent massive

::::::::
high-order

::::::::
methods

::
in

:::::
recent

:::::::::
massively parallel computers. Thus, we recently focused on

::::::
focused

::
on

:::::::::::
applicability

::
of

:
the dis-40

continuous Galerkin method (DGM), which is recognized as a local spectral method. At element boundaries, the representation

of flow field is allowed to be discontinuous, and common
::
the

:
flux shared by two neighbor

::::::::::
neighboring elements is calculated

using
:::::::::::
approximated Riemann solvers. Such

::::
These

:
computational features provide a straightforward strategy to achieve high-

order discretization and computational compactness. In the context of DGM, KT2023 investigated the problem with the order

of accuracy necessary for
:::::::
extended

:::
the

:::::::::
discussion

::::::::
presented

::
in

:::::::
KT2021

::
to

:::
the

:::::
DGM

:::::::::
framework

::::
and

::::::::::
investigated

:
a
::::::::::
polynomial45

::::
order

::::::::
necessary

:::
for

::::::::
precisely

:::::::::
conducting

:
LES. It indicated that the polynomial order needs to be higher than or equal to four in

the case where upwind numerical flux and sufficiently high-order modal filter are used
::::
when

:::
the

:::::::
upwind

::::::::
numerical

:::::
fluxes

::::
and

:::::::::
sufficiently

::::::::::::
scale-selective

::::::
modal

:::::
filters

:::
are

::::
used

::
to

:::::
ensure

:::::::::
numerical

:::::::
stability.

In
:::
The

:::::
basis

::
of

:
the state-of-the-art global nonhydrostatic atmosphere dynamical cores whose basis was mainly developed

during 2000–2010
::::::::::::
2000’s–2010’s.

::
In

:::::
these

:::::::::
dynamical

:::::
cores, low-order grid-point methods are often adopted; .

:
For example,50

the Non-hydrostatic ICosahedral Atmospheric Model (NICAM; Tomita and Satoh, 2004; Satoh et al., 2014), the Model for

Prediction Across Scales (MPAS; Skamarock et al., 2012), and the ICOsahedral Non-hydrostatic model (ICON; Zängl et al.,

2015) are based on either a totally first- or
::::::
totally second-order scheme. The discretization accuracy has not always been

a primary factor in the performance of atmospheric models because physical processes have various uncertain parameters.

In situations where the grid spacing is coarser than the gray zone of turbulence, the totally second-order scheme may be55

appropriate in terms of both computational cost and numerical robustness. However, as described above, it is important
::::::
crucial

to increase numerical accuracy to precisely conduct the atmospheric LES. Furthermore, even in spatial resolutions lower

::::::
coarser than that required by LES, it is undesirable that the effective resolution is significantly apart

::::::
shortest

:::::::::
wavelength

:::::
fully

:::::::
resolved

::
by

::::::::::::
discretization

::::::::
methods,

::
so

:::::
called

:::
the

::::::::
effective

:::::::::
resolution,

::
is

::::::::::
significantly

::::::::
different from the grid spacing in terms
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of the physics-dynamics coupling. The low-order dynamical cores typically lead
:::::
spatial

::::::
scheme

::::::::
typically

:::::
leads to significant60

discretization errors at wavelengths shorter than eight grid spacing
::::::
lengths

:::::::::::::::
(Kent et al., 2014). To decrease the gap between the

effective resolution and grid scale, it is natural
:::::::
sensible to use high-order discretization methods in addition to designing better

numerical filters for controlling the effective resolution.

Constructing high-order grid-point methods tends to be more complex for spherical geometries than that in plane domains

with structured grids. To archive achieve the high-order discretization accuracy horizontally, a
::::::::::
conventional

:::::::::::::
straightforward65

:::::::
approach

::
is
::::

the spectral transformation method based on the spherical harmonics expansionis a straightforward traditional

approach. It provides sufficient .
::::
This

::::::::
approach

::::::::
provides

::::::::
desirable accuracy for numerical solutions in the wavelength range

up to
:::
the truncated wave number while avoiding the pole problem

::::::
problem

:::
of

::::::::
restrictive

::::::::
timestep

::::
near

::::
the

:::::
poles

:::
due

:::
to

::
the

:::::::::::
convergence

::
of

:::::::::
meridians. However, in significantly high-resolution global simulations , we can suffer from large costs

of data communication between all computational nodes in massive parallel supercomputer environments
::::::::
massively

:::::::
parallel70

:::::::::::::
supercomputers. On the other hand, some researchers have successfully developed global nonhydrostatic atmospheric dy-

namical cores based on high-order grid-point and element-based methods. Ullrich and Jablonowski (2012b) proposed
:::
The

::::::
essence

::
of

:::
the

:::::::::
numerical

:::::::
methods

:::
can

::
be

:::::
found

::
in
:::::::::
horizontal

:::::::::::
discretization

::
of

:::
the

::::::
global

::::::
shallow

:::::
water

:::::::::
equations;

:::
For

::::::::
example,

::::::::::::::::
Ullrich et al. (2010)

:::
for a high-order finite volume method (FVM),

:::::
while

::::::::::::::::
Nair et al. (2005a)

:::
and

::::::::::::
Ullrich (2014)

:::
for

:::::::::
high-order

::::::::::::
element-based

:::::::
methods.

::::::::::::::::::::::::::::
Ullrich and Jablonowski (2012b)

:::::::
proposed

:
a
::::::
global

::::::::::::
nonhydrostatic

:::::::::
dynamical

::::
core

:::::::
(MCore)

:::::
based

:::
on75

::
an

:::::
FVM with a fourth-order reconstruction strategy for horizontal discretization

::::::::
horizontal

::::::::::::
reconstruction

:::::::
strategy. The Tem-

pest model (Ullrich, 2014; Guerra and Ullrich, 2016)
::::::::::::::::::::::
(Guerra and Ullrich, 2016) uses a high-order spectral element method

horizontally. The Climate Machine used a
::::::
(SEM)

::::::::::
horizontally.

:::
In

:::
the

:::::::::::::
Nonhydrostatic

:::::::
Unified

::::::
Model

:::
of

:::
the

:::::::::::
Atmosphere

::::::::::::::::::::::::::::::::::::::::::::
(NUMA; Kelly and Giraldo, 2012; Giraldo et al., 2013)

:
,
:::::
which

::
is

:::::::::
applicable

::
for

::::
both

::::::::::
limited-area

:::
and

::::::
global

::::::::::
atmospheric

::::::::::
simulations,

::
the

::::::::::
continuous

:::
and

::::::::::::
discontinuous

:::::::
Galerkin

:::::::
methods

:::
are

:::::::
adopted

:::
for

:::
the

:::::
spatial

::::::::::::
discretization.

::::
The

::::::::
numerical

:::::::
method

::::::::
prototype80

::::
used

::
in

:::::::
NUMA

::
is

::::::
utilized

::::
and

::::::::
extended

::
to

:
a
::::::

global
::::::::::::::
spectral-element

:::::::::
dynamical

::::
core

::
in

:::
the

:::::
Navy

:::::::::::::
Environmental

:::::::::
Prediction

::::::
System

:::::::
Utilizing

::
a
::::::::::::
Nonhydrostatic

:::::::
Engine

::::::::::
(NEPTUNE)

:::
for

::::
both

:::::::::
horizontal

:::
and

::::::
vertical

:::::::::::
discretization

::::::::::::::::::::
(e.g., Zaron et al., 2022)

:
.

::::
SEM

::
is

:::
also

::::
used

:::
for

:::
the

::::::::::::
nonhydrostatic

:::::
High

:::::
Order

::::::
Method

::::::::
Modeling

:::::::::::
Environment

::::::::::::::::::::::::::::::::::::::::::::::::::
(HOMME-NH; Dennis et al., 2005, 2012; Taylor et al., 2020)

:::::::
included

::
in

:::
the

:::::::
Energy

::::::::
Exascale

:::::
Earth

:::::::
System

::::::
Model

:::::::
(E3SM),

::::
and

:::
for

::::
the

::::::::::::
nonhydrostatic

:::::::::
dynamical

:::::
core

::
in

:::
the

:::::::
Korean

::::::::
Integrated

::::::
Model

::::::
(KIM)

::::::
system

::::::::::::::::
(Hong et al., 2018).

::::
The

::::::::::::::
ClimateMachine

::::
uses

:
a
:

nodal discontinuous Galerkin method both85

horizontally and vertically
:::
for

::::
both

:::::::::
horizontal

:::
and

:::::::
vertical

::::::::::::
discretization. The corresponding regional dynamical core is de-

scribed in Sridhar et al. (2022). For the
::
In

:::
the

::::
case

:::
of

:
classical high-order element-based methods, to control numerical

instability produced by
:
it
::
is
:::::::::::
cumbersome

::
to

::::::
control

:::
the

:::::::::
numerical

:::::::::
instability

::::::
caused

::
by

:::
the

:
aliasing errors with the nonlinear

terms is a difficult problem
:::::::
nonlinear

:::::
terms

:
(Winters et al., 2018). To overcome this issue

:::::::
problem, a split form nodal DGM

(e.g., Gassner et al., 2016) is a theoretical and computationally efficient approach. Recently, Souza et al. (2023) successfully90

applied one such method called “a flux-difference DGM”,
::
A

::::::
similar

::::::
method

::::
was

::::::::::
successfully

::::::
applied

::
to
::
a
:::::
global

:::::::
shallow

:::::
water

:::::
model

::
in

::::::::::::::::::
Ricardo et al. (2024)

:::
and

:
to a global dynamical core of dry atmosphere as the

:::::::::::
nonhydrostatic

::::::::::
dynamical

::::
core

:::
for

horizontal and vertical discretization
:
in

::::::::::::::::
Souza et al. (2023). While conventional dynamical cores adopt a vertical discretization

based on
:
a low-order FDM finite difference method or FVM, some previous studies investigated the potential for the use of
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high-order vertical discretization (e.g., Guerra and Ullrich, 2016; Yi and Giraldo, 2020; Ishioka et al., 2022). For example,95

Guerra and Ullrich (2016) introduced an arbitrary-order vertical discretization using a staggered nodal FEM. They reported

that high-order vertical discretization improves the representation of vertical dynamics at a relatively low vertical resolution.

In the current study, considering
::
By

::::::::
building

::
on

::::::::::
progresses

::::
from

:::
the

::::::::
previous

::::::
studies

::::::::
showing

:::
the

:::::::::::
applicability

::
of
::::

the

::::::::::::
element-based

:::::::
methods

::
to

::::::::::
atmospheric

::::
flow

::::::::::
simulations,

:::
the

::::::
current

:::::
study

::::::::
attempted

::
to
:::::::
develop

::
a

::::::::
high-order

::::::
global

:::::::::
dynamical

:::
core

:::::
using

:
a
:::::
nodal

:::::
DGM

::::
both

::::::::::
horizontally

::::
and

:::::::
vertically

:::
for

:
future global atmospheric simulations with O(10–100 m) grid spac-100

ing, we constructed a global nonhydrostatic atmospheric dynamical core using DGM both horizontally and vertically. For a

quasi-uniform spherical grid, a cubed-sphere projection was adopted. To treat the topography
::::::::
Moreover, a terrain-following co-

ordinate was used . This study includes several progresses from previous studies that developed global atmospheric dynamical

cores using DGM. We focused on the following three points: 1) We attempt quantitative evaluations in a series of test cases

for the global dynamical cores to reveal the impact of high-order DGM on the atmospheric flows. Few such studies for global105

nonhydrostatic dynamical cores are available although the numerical convergence characteristics of DGM was investigated

for regional dynamical core (e.g., Giraldo and Restelli, 2008; Blaise et al., 2016). 2) The results of our study indicate that the

high-order dynamical cores can provide a chance to modify the experimental setup in idealized test cases. When using the

totally second-order dynamical cores , relatively large discretization errors may occur, which can overshadow the problems of

ill-posed experimental setup. Fast numerical convergence achieved using high-order schemes is expected to enable detection110

of such problems. Even when the aim of this study goes beyond dynamical core development
::
to

::::
treat

:::
the

::::::::::
topography.

::::::::
Although

::
the

:::::::::
numerical

::::::::
methods

::::
used

::
in

::::
our

:::::::::
dynamical

::::
core

:::
are

::::::
similar

::
to
:::::

those
:::::

used
::
in

::::::::
previous

::::::
studies

::::
that

::::::::
developed

::::::
global

::::
DG

::::::::
dynamical

:::::
cores

:::::
such

::
as

:::::::
NUMA

::::
and

::::::::::::::
ClimateMachine, we consider an evaluation framework using high-order dynamical

core to be useful; For example, when new physical models are included, the physical performance can be directly evaluated

by separating the effect of numerical discretization with dynamical processes. 3
:::
that

::::
the

::::::::
following

::::::
points

:::
are

:::
the

:::::::
unique115

:::::::::::
contributions

::
of

:::
the

:::::::
current

:::::
study:

::
1) Considering global LES, we formulate formulated

::::
SGS eddy viscous and diffusion

terms in
::::
with a Smagorinsky–Lilly type turbulent model in the DGM framework on the cubed-sphere coordinate

:::::::::
coordinates.

A discretization strategy for the scalar Laplacian operator on the cubed-sphere coordinate
:::::::::
coordinates

:
with DGM is reported

in previous studies (e.g., Nair, 2009). However, they did not consider
::::
treat the vector Laplacian operator for the vector quan-

tities (for example, momentum). This might be because the rigorous form of vector Laplacian is so complex that it may120

not be worth the computational cost required for numerical stabilization. However, it is unavoidable for our purpose of
:::
On

::
the

:::::
other

:::::
hand,

:::::::::::::
Ullrich (2014)

::::::::
presented

:
a
::::::::::::
discretization

:::::::
strategy

:::
for

:::
the

:::::
vector

:::::::::
Laplacian

:::::::
operator

:::::
with

:::
the

:::::::::
continuous

::::
and

:::::::::::
discontinuous

::::::::
Galerkin

::::::::
methods.

::::
This

::::::::
approach

:::
can

:::::::::
distinguish

:::
the

:::::::::
divergence

::::::::
damping

:::
and

::::::::
vorticity

:::::::
damping

::::
with

::::::::
constant

::::::
viscous

::::::::::
coefficients.

::::::::::::::::
Guba et al. (2014)

:::::::
proposed

:
a
:::::::
strategy

::
of

:::::::::::::
hyperviscosity

::::
with

:::::::
variable

::::::
viscous

::::::::::
coefficients

::
in

::::
SEM

::::::
where

::
the

::::::
vector

::::::::
Laplacian

::::::::
operator

::
is

::::::
applied

::
to

:::
the

::::::::
Cartesian

::::::::::
component

::
of

:::
the

::::::
vector

:::::
fields.

::::
For introducing the turbulent model125

::::
used

::
in

:::
the

::::::
current

:::::
study,

:::
we

::::::
derived

:::
the

:::::
vector

:::::::::
Laplacian

:::::::
operator

:::
that

::
is
:::::::
applied

::
to

::
the

::::::
vector

:::::::::
component

:::
on

:::
the

:::::::::::
cubed-sphere

:::::::::
coordinates

::::
and

::::::
treated

::::
eddy

:::::::
viscous

:::
and

::::::::
diffusion

::::::::::
coefficients

:::::::::
dependent

::
on

:::::
local

:::::
wind

::::
shear

::::
and

::::::::::
stratification. First, using

tensor analysis, we systematically derived the eddy viscosity and diffusion terms. Then, we represented the corresponding

semi-discretization equations with semi-discretized
:::::::
equations

:::::
using

:
DGM. Subsequently, a quantitative check was performed
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by conducting an idealized LES experiment of planetary boundary layer turbulence, which is an extension of the numerical130

experiments performed in .
:::

In
:::::::::
particular,

:::
we

::::::::
extended

:
a
:::::::::

numerical
::::::::::
experiment

::
of

::::::::
idealized

::::::::
planetary

:::::::::
boundary

:::::::::
turbulence

::::
used

::
in

:::::::
regional

:::::
plane

::::::
models

:
(KT2021 and KT2023)

::
to
::::::::

spherical
::::::::
geometry

:::
by

:::::::
slightly

:::::::
changing

:::
the

::::::
initial

::::::::
condition.

:::
2)

:::
We

:::::::
modified

:::::::::::
experimental

:::::::
settings

::
of

::::::::
idealized

::::
test

::::
cases

:::
to

::::::::::
demonstrate

:::
the

:::::::::
numerical

::::::::::
convergence

:::::
with

:::::::::
high-order

:::::::::
dynamical

:::::
cores.

:::::
When

:::::
using

:::::
totally

:::::::::::
second-order

:::::::::
dynamical

:::::
cores,

::::::::
relatively

::::
large

:::::::::::
discretization

:::::
errors

::::
may

:::::
occur,

::::::
which

:::
can

::::::::::
overshadow

::
the

::::::::
problems

:::
of

:::::::
ill-posed

:::::::::::
experimental

:::::::
settings.

::::
Fast

::::::::
numerical

:::::::::::
convergence

:::::::
achieved

:::::
using

:::::::::
high-order

:::::::
schemes

::
is

::::::::
expected

::
to135

:::::
enable

::::::::
detection

::
of

::::
such

::::::::
problems

::
in

::::::::
standard

::::
tests.

:::::
Even

::::
when

::::::::
research

:::::::
interests

::
do

:::
not

:::::::
include

:::
the

::::::::
dynamics,

:::
we

:::::::
consider

:::
an

::::::::
evaluation

:::::::::
framework

:::::
using

:::::::::
high-order

:::::::::
dynamical

::::
core

::
to

::
be

::::::
useful.

:::
For

::::::::
example,

:::::
when

::::
new

:::::::
physical

::::::
models

:::
are

::::::::
included,

:::
the

:::::::
physical

::::::::::
performance

::::
can

::
be

:::::::
directly

::::::::
evaluated

:::
by

:::::::
reducing

:::::::::
numerical

:::::
errors

::::
with

:::
the

:::::::::
dynamical

:::::::::
processes.

::
3)

:::
We

:::::::::
attempted

:::::::::
quantitative

::::::::::
evaluations

::
in

::
a

:::::
series

::
of

:::
test

:::::
cases

:::
for

:::
the

::::::
global

:::::::::
dynamical

:::::
cores

::
to

:::::::::
investigate

:::
the

::::::
impact

::
of

:::::::::
high-order

::::::
DGM

::
on

:::
the

::::::::
numerical

::::::::
accuracy

::
of

:::::::::::
atmospheric

::::
flow

::::::::::
simulations.

::::::::
Although

:::
the

::::::::
numerical

:::::::::::
convergence

::::::::::::
characteristics

::
of

:::::
DGM

::::
was140

::::::
closely

::::::::::
investigated

::
in

::
the

::::
case

::
of

:::::::
regional

:::::::::
dynamical

::::
cores

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Giraldo and Restelli, 2008; Brdar et al., 2013; Blaise et al., 2016)

:
,
:::
few

::::::
studies

::::
have

::::
been

:::::::::
conducted

::
to

:::::::::::
demonstrate

:
it
:::
for

:::::
global

:::::::::::::
nonhydrostatic

:::::::::
dynamical

::::
cores.

The rest of this paper is organized as follows: In Sect. 2, the governing equations using the general curvilinear coordinates

were
::
are

:
formulated. Then, we introduced

:::::::
introduce

:
a cubed-sphere coordinate

::::::::
projection

:
and a general vertical coordinate.

We represented
::::::::
represent eddy viscous and diffusion terms associated with the turbulent model in the general curvilinear145

coordinates. Next, we explained
::::::::::
Furthermore,

:::
we

:::::::
explain

:
the spatial and temporal discretization

::::::
adopted

:
for the governing

equations. In Sect. ??, we validated
::
3,

::
we

::::::
verify the proposed dynamical core through a series of

:::::
several

:
idealized numerical

experiments. Finally, the findings of this study and our future plans are summarized.

2 Model Description

2.1 Governing Equations150

As governing equations for dry atmospheric flows, we used the three-dimensional, fully compressible nonhydrostatic equations

based on the flux form (e.g., Ullrich and Jablonowski, 2012b). Following Li et al. (2020), a non-orthogonal curvilinear hori-

zontal coordinate (𝜉,𝜂) is
:::
was

:
introduced. Subsequently, a general vertical coordinate 𝜁 is

:::
was

:
introduced. For the horizontal

coordinate transformation, the Jacobian are denoted as
√
𝐺ℎ and the contravariant form of the metric tensor is represented by

𝐺
𝑖 𝑗

ℎ
for 𝑖, 𝑗 = 1,2. We define the

:
A
:
three-dimensional metric tensor with the horizontal coordinate transformation as155

𝐺𝑖 𝑗 =

©«
𝐺11

ℎ
𝐺12

ℎ
0

𝐺21
ℎ

𝐺22
ℎ

0

0 0 1

ª®®®¬ .
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:
is
:::::::
defined

::
as

𝐺𝑖 𝑗 =

©«
𝐺11

ℎ
𝐺12

ℎ
0

𝐺21
ℎ

𝐺22
ℎ

0

0 0 1

ª®®®¬ .
::::::::::::::::::

(1)

:::
The

:::::::::
horizontal

:::::::
Jacobian

:
is

:::::
defined

:::
as

:::::::::::::

√
𝐺ℎ = |𝐺𝑖 𝑗

ℎ
|− 1

2 . For the vertical coordinate transformation, the Jacobian
:::::
metric

::::::
tensor is

defined as
√
𝐺𝑣 = 𝜕𝑧/𝜕𝜁 and the metric tensor

::::::::::::::::::::::
𝐺13

𝑣 = 𝜕𝜁/𝜕𝜉,𝐺23
𝑣 = 𝜕𝜁/𝜕𝜂

:::
and

:::
the

::::::
vertical

::::::::
Jacobian is defined as𝐺13

𝑣 = 𝜕𝜁/𝜕𝜉,𝐺23
𝑣 = 𝜕𝜁/𝜕𝜂

:::::::::::

√
𝐺𝑣 = 𝜕𝑧/𝜕𝜁 .160

The vertical velocity in the transformed vertical coordinate can be written using contravariant components of wind vector

(𝑢 𝜉 , 𝑢𝜂 , 𝑢𝜁 ) as

𝑢𝜁 ≡ 𝑑𝜁

𝑑𝑡
=

1
√
𝐺𝑣

(
𝑢𝜁 +

√︁
𝐺𝑣𝐺

13
𝑣 𝑢

𝜉 +
√︁
𝐺𝑣𝐺

23
𝑣 𝑢

𝜂
)
.

𝑢𝜁 ≡ 𝑑𝜁

𝑑𝑡
=

1
√
𝐺𝑣

(
𝑢𝜁 +

√︁
𝐺𝑣𝐺

13
𝑣 𝑢

𝜉 +
√︁
𝐺𝑣𝐺

23
𝑣 𝑢

𝜂
)
.

::::::::::::::::::::::::::::::::::::::::

(2)165

The final Jacobian composed of horizontal and vertical coordinate transformations can be represented as
√
𝐺 =

√
𝐺ℎ

√
𝐺𝑣 . Here-

after, to briefly describe the formulations, the coordinate variables are sometimes expressed using (𝜉1, 𝜉2, 𝜉3) = (𝜉,𝜂, 𝜁)
:::::::::::::::::
(𝜉1, 𝜉2, 𝜉3) = (𝜉,𝜂, 𝜁).

In addition, the Einstein summation notation will be applied for repeated indices when representing the geometric relations.

The compact form of the governing equations can be written as

𝜕q

𝜕𝑡
+ 𝜕 [f (q) +fSGS (q,∇q)]

𝜕𝜉
+ 𝜕 [g(q) + gSGS (q,∇q)]

𝜕𝜂
+ 𝜕 [h(q) +hSGS (q,∇q)]

𝜕𝜁
170

= S (q) +SSGS (q,∇
::

q). (3)

Here, q is the solution vector defined as

q =

(√
𝐺𝜌′,

√
𝐺𝜌𝑢 𝜉 ,

√
𝐺𝜌𝑢𝜂 ,

√
𝐺𝜌𝑢𝜁 ,

√
𝐺 (𝜌𝜃)′

)𝑇
, (4)

where 𝜌, 𝜃 are
:::::
denote

:
the density and potential temperature, respectively. To

::::::::
accurately

:
treat nearly balanced flowsaccurately,

we decomposed
:
, the density 𝜌 and pressure 𝑝 (thus 𝜌𝜃) as 𝜙(𝜉,𝜂, 𝜁 , 𝑡) = 𝜙hyd (𝜉,𝜂, 𝜁) + 𝜙′ (𝜉,𝜂, 𝜁 , 𝑡) where 𝜙hyd ::

are
:::::::::::
decomposed175

::
as

::::::::::::::::::::::::::::::::
𝑞(𝜉,𝜂, 𝜁 , 𝑡) = 𝑞hyd (𝜉,𝜂, 𝜁) + 𝑞′ (𝜉,𝜂, 𝜁 , 𝑡),::::::

where
::::
𝑞hyd denotes a variable satisfying the hydrostatic balance

:::
and

::
𝑞′

:::::::
denotes

:::
the

:::::::
deviation. In Eq. (3), f (q), g(q), and h(q) are inviscid fluxes in the 𝜉, 𝜂, and 𝜁 directions, respectively. The horizontal inviscid

fluxes are represented as

f (q) =

©«

√
𝐺𝜌𝑢 𝜉

√
𝐺 (𝜌𝑢 𝜉𝑢 𝜉 +𝐺11

ℎ
𝑝′)

√
𝐺 (𝜌𝑢𝜂𝑢 𝜉 +𝐺21

ℎ
𝑝′)

√
𝐺𝜌𝑢𝜁 𝑢 𝜉

√
𝐺𝜌𝜃𝑢 𝜉

ª®®®®®®®®®¬
, g(q) =

©«

√
𝐺𝜌𝑢𝜂

√
𝐺 (𝜌𝑢 𝜉𝑢𝜂 +𝐺12

ℎ
𝑝′)

√
𝐺 (𝜌𝑢𝜂𝑢𝜂 +𝐺22

ℎ
𝑝′)

√
𝐺𝜌𝑢𝜁 𝑢𝜂

√
𝐺𝜌𝜃𝑢𝜂

ª®®®®®®®®®¬
, (5)
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and the vertical inviscid fluxes are represented as180

h(q) =

©«

√
𝐺𝜌𝑢𝜁

√
𝐺 [𝜌𝑢 𝜉𝑢𝜁 + (𝐺13

𝑣 𝐺
11
ℎ
+𝐺23

𝑣 𝐺
12
ℎ
)𝑝′]

√
𝐺 [𝜌𝑢𝜂𝑢𝜁 + (𝐺13

𝑣 𝐺
21
ℎ
+𝐺23

𝑣 𝐺
22
ℎ
)𝑝′]

√
𝐺𝜌𝑢𝜁 𝑢𝜁 +

√
𝐺ℎ𝑝

′
√
𝐺𝜌𝜃𝑢𝜁

ª®®®®®®®®®¬
. (6)

Furthermore, S (q) represents the source terms as

S (q) =

©«

0
√
𝐺 (𝐹1

𝐻
+ 𝐹1

𝑀
+ 𝐹1

𝐶
)

√
𝐺 (𝐹2

𝐻
+ 𝐹2

𝑀
+ 𝐹2

𝐶
)

√
𝐺 (𝐹buo + 𝐹3

𝐶
)

0

ª®®®®®®®®®¬
,

S (q) =

©«

0
√
𝐺 (𝐹1

𝐻
+ 𝐹1

𝑀
+ 𝐹1

𝐶
)

√
𝐺 (𝐹2

𝐻
+ 𝐹2

𝑀
+ 𝐹2

𝐶
)

√
𝐺 (𝐹buo + 𝐹3

𝐶
)

0

ª®®®®®®®®®¬
,

:::::::::::::::::::::::::

(7)185

where 𝐹𝑖
𝐻

for 𝑖 = 1,2 are the horizontal pressure gradient terms with hydrostatic balance and can be written
::::::::
expressed

:
as

𝐹𝑖
𝐻 = −

𝐺𝑖𝑚′

ℎ√
𝐺𝑣

[
𝜕 (
√
𝐺𝑣 𝑝hyd)
𝜕𝜉𝑚

′ +
𝜕 (𝐺𝑚′3

𝑣

√
𝐺𝑣 𝑝hyd)

𝜕𝜉3

]
,

𝐹𝑖
𝐻 = −

𝐺𝑖𝑚′

ℎ√
𝐺𝑣

[
𝜕 (
√
𝐺𝑣 𝑝hyd)
𝜕𝜉𝑚

′ +
𝜕 (𝐺𝑚′3

𝑣

√
𝐺𝑣 𝑝hyd)

𝜕𝜉3

]
.

::::::::::::::::::::::::::::::::::::::::

(8)

here
::::
Here, note that 𝑚′ = 1,2; .

:
𝐹𝑖
𝑀

= −Γ𝑖
𝑚𝑙
(𝜌𝑢𝑚𝑢𝑙 +𝐺𝑚𝑙 𝑝′) are the source terms due to the horizontal curvilinear coordinate,190

where 𝑚, 𝑙 are
::::
take

:::::
values

::
of
:

1,2,3 and Γ𝑖
𝑚𝑙

is the Christoffel symbol of the second kind, which means the spatial variation

of basis vector;
::
the

:::::
basis

::::::
vector.

:
𝐹𝑖
𝐶
= −𝐺𝑖𝑚𝜖 𝑗𝑚𝑙2Ω𝑚𝜌𝑢𝑙 are the Coriolis terms, where 𝜖 𝑗𝑘𝑙 is the three rank Levi–Civita

tensor and Ω𝑘
:::
Ω𝑚

:
are the components of angular velocity vector;

:
. 𝐹buo = −𝜌′ (𝑎/𝑟)2𝑔 is the buoyancy term, where 𝑟 is the

radial coordinate, 𝑎 is the planetary radius, and 𝑔 is the standard gravitational acceleration. To close the equation systems, the

pressure 𝑝 is calculated using the state equation for the ideal gas as195

𝑝 = 𝑃0

(
𝑅

𝑃0
𝜌𝜃

) 𝐶𝑝

𝐶𝑣

,
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𝑝 = 𝑃0

(
𝑅

𝑃0
𝜌𝜃

) 𝐶𝑝

𝐶𝑣

,

:::::::::::::::

(9)

where 𝑃0 is a constant pressure, 𝑅 is the gas constant, and 𝐶𝑣 and 𝐶𝑝 are the specific heat at constant volume and constant

pressure, respectively. The actual values for the constants mentioned above is
::::
these

:::::::::
constants

:::
are provided in Table 1. In200

Eq. (3), the terms with subscript SGS are associated with a turbulent model; fSGS (q,∇q), gSGS (q,∇q), and hSGS (q,∇q) are

the parameterized eddy fluxes while SSGS (q,∇q) are the source terms with the curvilinear coordinate
::::::::::
coordinates. The terms

associated with the turbulent model are detailed in Sect. 2.2.

As a horizontal curvilinear coordinate,
::
we

:::::::
adopted

:
an equiangular gnomonic cubed-sphere projection (Sadourny, 1972;

Ronchi et al., 1996) was adopted to map a cube onto a sphere. Compared to a conformal projection (Rančić et al., 1996), we205

preferred this projection to generate more uniform grids in high spatial resolutions, although
::
the

:
non-orthogonal basis need to

be treated. In each panel of the cube, a local coordinate using the central angles (𝛼, 𝛽) (∈ [−𝜋/4, 𝜋/4]) is
:::
was

:
introduced and

related to the horizontal coordinates (𝜉,𝜂) by 𝜉 = 𝛼,𝜂 = 𝛽. For the equiangular gnomonic cubed-sphere projection, we denote

the horizontal contravariant metric tensor and the Jacobian as 𝐺𝑐 and
√
𝐺𝑐, respectively. Based on the derivation with the

coordinate transformation in previous studies (e.g., Nair et al., 2005b; Ullrich et al., 2012; Li et al., 2020), 𝐺𝑐 and
√
𝐺𝑐 are210

analytically obtained as
:::
the

::::::::
horizontal

::::::::::::
contravariant

:::::
metric

::::::
tensor

:::
and

:::
the

:::::::::
horizontal

::::::::
Jacobian

:::
for

:::
the

::::::::::
equiangular

:::::::::
gnomonic

:::::::::::
cubed-sphere

::::::::
projection

::::
can

::
be

::::::
written

:::
as,

::::::::::
respectively,

:

𝐺
𝑖 𝑗
𝑐 =

𝛿2

𝑟2 (1+ 𝑋2) (1+𝑌2)
©«
1+𝑌2 𝑋𝑌

𝑋𝑌 1+ 𝑋2
ª®¬ ,

√︁
𝐺𝑐 =

𝑟2 (1+ 𝑋2) (1+𝑌2)
𝛿3 , (10)

where 𝑋 = tan𝛼, 𝑌 = tan 𝛽, 𝛿 =
√

1+ 𝑋2 +𝑌2, and 𝑟 is the radial coordinate. The Christoffel symbol of the second kind Γ𝑖
𝑚𝑙

is

written
:::::::::
represented

:
as215

Γ1
𝑚𝑙 =

©«

2𝑋𝑌2

𝛿2
−𝑌 (1+𝑌2)

𝛿2
𝛿𝑆

𝑟
−𝑌 (1+𝑌2)

𝛿2 0 0
𝛿𝑆

𝑟
0 0

ª®®®®®®¬
, Γ2

𝑚𝑙 =

©«
0

−𝑋 (1+ 𝑋2)
𝛿2 0

−𝑋 (1+ 𝑋2)
𝛿2

2𝑋2𝑌

𝛿2
𝛿𝑆

𝑟

0
𝛿𝑆

𝑟
0

ª®®®®®®¬
,

Γ3
𝑚𝑙 = 𝛿𝑆

𝑟 (1+ 𝑋2) (1+𝑌2)
𝛿4

©«
−(1+ 𝑋2) 𝑋𝑌 0

𝑋𝑌 −(1+𝑌2) 0

0 0 0

ª®®®¬ , (11)

where 𝛿𝑆 is an index
:
a
:
switch for shallow atmosphere approximation. The components of angular velocity vector included in

the Coriolis terms 𝐹𝑖
𝐶

are given as

Ω1 = 0, Ω2 = 𝛿𝑆
𝜔𝛿

𝑟 (1+𝑌2)
, Ω3 = 𝜔

𝑌

𝛿
, for the equatorial panels,220
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Ω1 = −𝛿𝑆
𝑠𝜔𝑋𝛿

𝑟 (1+ 𝑋2)
, Ω2 = −𝛿𝑆

𝑠𝜔𝑌𝛿

𝑟 (1+𝑌2)
, Ω3 =

𝑠𝜔

𝛿
, for the polar panels, (12)

where 𝜔 is the angular velocity of planet; We introduced the
:::::
planet

::::
and an index 𝑠 with

::
has

:
a value of 1 and -1 for the Northern

and Southern polar panels, respectively. In the numerical experiments in Sect. ??
:
3, the shallow atmosphere approximation was

applied. Then, 𝑟 and 𝛿𝑆 were
::
are

:
treated as follows: the radial coordinate 𝑟 in Eqs. (10)–(12) and the buoyancy term in Eq. (6)

is replaced by the planetary radius 𝑎. In Eqs. (11) and (12), the terms with 𝛿𝑆 are ignored. In addition, the pressure contribution225

in 𝐹𝑖
𝑀

disappears since a
:::::::
because

:::
the relation of Γ𝑖

𝑚𝑙
𝐺𝑚𝑙 = 0 is satisfied in the shallow atmosphere approximation.

To treat the topography, in this study, we adopted the traditional terrain-following coordinate (Phillips, 1957; Gal-Chen and

Somerville, 1975)
:::
was

:::::::
adopted as a general vertical coordinate. The vertical coordinate conversion is defined as

𝜁 = 𝑧𝑇
𝑧 − ℎ
𝑧𝑇 − ℎ ,

::::::::::::
transformation

:::
can

::
be

:::::::::
expressed

::
as230

𝜁 = 𝑧𝑇
𝑧 − ℎ
𝑧𝑇 − ℎ ,

:::::::::::

(13)

where 𝑧 is the height coordinate, 𝑧𝑇 is the top height of computational domain (we assume it is a constant value)
:
, and ℎ is the

surface height. The corresponding Jacobian and metric tensor can be written as√︁
𝐺𝑣 = 1− ℎ

𝑧𝑇
,

√︁
𝐺𝑣𝐺

13
𝑣 =

(
𝜁

𝑧𝑇
− 1

)
𝜕ℎ

𝜕𝜉
,

√︁
𝐺𝑣𝐺

23
𝑣 =

(
𝜁

𝑧𝑇
− 1

)
𝜕ℎ

𝜕𝜂
,

:::::::::
represented

::
as

:
235 √︁

𝐺𝑣 = 1− ℎ

𝑧𝑇
,

√︁
𝐺𝑣𝐺

13
𝑣 =

(
𝜁

𝑧𝑇
− 1

)
𝜕ℎ

𝜕𝜉
,

√︁
𝐺𝑣𝐺

23
𝑣 =

(
𝜁

𝑧𝑇
− 1

)
𝜕ℎ

𝜕𝜂
,

::::::::::::::::::::::::::::::::::::::::::::::::::::::

(14)

respectively.

2.2 Formulation of eddy viscous and diffusion terms in general curvilinear coordinates

Considering global LES in future high-resolution simulations, this subsection describes eddy viscous and diffusion terms in

the general curvilinear coordinates. We focus
::::::
utilized

:
on a Smagorinsky–Lilly type model (Smagorinsky, 1963; Lilly, 1962)240

:::
that

:
considered the stratification effect (Brown et al., 1994), which was used in our previous studies (.

::::
This

::::::::
turbulent

::::::
model

:::
was

::::
also

::::
used

::
in KT2021 and KT2023). The .

:::
As

:
a
::::::
spatial

:::::
filter,

::
the

:
Favre-filtering (Favre, 1983) was usedas a spatial filter. We

did
:
.
:::
We

::
do

:
not explicitly denote the symbol representing the spatial filter because the filtering approach is essentially the same

as that explained in Appendix A of KT2023. The difficulties in the derivation of viscous and diffusion terms are caused by

the gradient of vector quantities and the spatial divergence with the non-orthogonal basis because the manipulations become245

::::
grow

:
increasingly complex. However, previous studies that utilized tensor analysis help us provide a systematic derivation

9



(e.g., Rančić et al., 2017)
::::::::::::::::::::::::::::::::
(e.g., Ullrich, 2014; Rančić et al., 2017). In the absence of a vertical coordinate transformation, the

parameterized fluxes with the turbulent model can be represented in the general curvilinear coordinates as

fSGS (q,∇q) =

©«

0

−
√
𝐺𝜌𝜏11

−
√
𝐺𝜌𝜏12

−
√
𝐺𝜌𝜏13

−
√
𝐺𝜌𝜏1

∗

ª®®®®®®®®®¬
, gSGS (q,∇q) =

©«

0

−
√
𝐺𝜌𝜏21

−
√
𝐺𝜌𝜏22

−
√
𝐺𝜌𝜏23

−
√
𝐺𝜌𝜏2

∗

ª®®®®®®®®®¬
, hSGS (q,∇q) =

©«

0

−
√
𝐺𝜌𝜏31

−
√
𝐺𝜌𝜏32

−
√
𝐺𝜌𝜏33

−
√
𝐺𝜌𝜏3

∗

ª®®®®®®®®®¬
,

250

fSGS (q,∇q) =

©«

0

−
√
𝐺𝜌𝜏11

−
√
𝐺𝜌𝜏12

−
√
𝐺𝜌𝜏13

−
√
𝐺𝜌𝜏1

∗

ª®®®®®®®®®¬
, gSGS (q,∇q) =

©«

0

−
√
𝐺𝜌𝜏21

−
√
𝐺𝜌𝜏22

−
√
𝐺𝜌𝜏23

−
√
𝐺𝜌𝜏2

∗

ª®®®®®®®®®¬
, hSGS (q,∇q) =

©«

0

−
√
𝐺𝜌𝜏31

−
√
𝐺𝜌𝜏32

−
√
𝐺𝜌𝜏33

−
√
𝐺𝜌𝜏3

∗

ª®®®®®®®®®¬
,

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(15)

and the source term is
:::
can

::
be

:::::
given

:::
by

SSGS (q,∇q) =

©«

0

−
√
𝐺Γ1

𝑚𝑙
𝜌𝜏𝑚𝑙

−
√
𝐺Γ2

𝑚𝑙
𝜌𝜏𝑚𝑙

−
√
𝐺Γ3

𝑚𝑙
𝜌𝜏𝑚𝑙

0

ª®®®®®®®®®¬
.

SSGS (q,∇q) =

©«

0

−
√
𝐺Γ1

𝑚𝑙
𝜌𝜏𝑚𝑙

−
√
𝐺Γ2

𝑚𝑙
𝜌𝜏𝑚𝑙

−
√
𝐺Γ3

𝑚𝑙
𝜌𝜏𝑚𝑙

0

ª®®®®®®®®®¬
.

::::::::::::::::::::::::::

(16)255

In the equations, 𝜏𝑖 𝑗 is the contravariant components of parameterized eddy viscous flux tensor (𝑖 = 1,2,3 and 𝑗 = 1,2,3) and

can be written as

𝜏𝑖 𝑗 = −2𝜈SGS

(
𝑆𝑖 𝑗 − 𝐺

𝑖 𝑗

3
𝐷

)
− 2

3
𝐺𝑖 𝑗𝐾SGS,

𝜏𝑖 𝑗 = −2𝜈SGS

(
𝑆𝑖 𝑗 − 𝐺

𝑖 𝑗

3
𝐷

)
− 2

3
𝐺𝑖 𝑗𝐾SGS,

:::::::::::::::::::::::::::::::::

(17)260

10



where 𝑆𝑖 𝑗 is the strain velocity tensor, 𝜈SGS is the eddy viscosity, 𝐷 is the divergence of the three-dimensional velocity, and

𝐾SGS is the SGS kinetic energy. The strain velocity tensor is represented as

𝑆𝑖 𝑗 =
1
2

(
𝐺𝑖𝑚

𝜕𝑢
𝑗
,𝑚

𝜕𝜉𝑚
+𝐺 𝑗𝑚

𝜕𝑢𝑖,𝑚

𝜕𝜉𝑚

)
,

𝑆𝑖 𝑗 =
1
2

(
𝐺𝑖𝑚

𝜕𝑢
𝑗
,𝑚

𝜕𝜉𝑚
+𝐺 𝑗𝑚

𝜕𝑢𝑖,𝑚

𝜕𝜉𝑚

)
,

::::::::::::::::::::::::::

(18)265

using the covariant derivative of the contravariant
::::::
velocity

:
component

𝑢𝑖, 𝑗 =
𝜕𝑢𝑖

𝜕𝜉 𝑗
+ 𝑢𝑚Γ𝑖

𝑗𝑚.

𝑢𝑖, 𝑗 =
𝜕𝑢𝑖

𝜕𝜉 𝑗
+ 𝑢𝑚Γ𝑖

𝑗𝑚.

::::::::::::::::

(19)

The eddy viscosity is written as270

𝜈SGS = 𝐶𝑠ΔSGS |𝑆 |,

𝜈SGS = 𝐶𝑠ΔSGS |𝑆 |,
::::::::::::::

(20)

where 𝐶𝑠 , ΔSGS, and |𝑆 | represent the Smagorinsky constant, the filter length, and the norm of strain tensor defined as√︁
2𝐺𝑖𝑚𝐺 𝑗𝑛𝑆

𝑖 𝑗𝑆𝑚𝑛, respectively. The parameterized eddy diffusive flux can be written as275

𝜏𝑖∗ = −𝜈∗SGS𝐺
𝑖 𝑗 𝜕𝜃

𝜕𝜉 𝑗
,

𝜏𝑖∗ = −𝜈∗SGS𝐺
𝑖 𝑗 𝜕𝜃

𝜕𝜉 𝑗
,

:::::::::::::::

(21)

where 𝜈∗SGS is the eddy diffusion coefficient. For further details of the turbulent model, refer to Sect. 2.2 of Nishizawa et al.

(2015).280

2.3 Spatial discretization

The
::
We

:::::::::
performed

:::
the

:
spatial discretization for Eq. (3) is based on a nodal DGM (e.g., Hesthaven and Warburton, 2007). In

each cubed-sphere panel, the three-dimensional computational domain Ω is
:::
was divided using non-overlapping hexahedral

11



elements. To relate the coordinates (𝜉1, 𝜉2, 𝜉3) = (𝛼, 𝛽, 𝜁) with the local coordinates x̃ ≡ (𝑥1, 𝑥2, 𝑥3) in a reference element Ω𝑒,

we adopted a linear mapping defined as285

𝑥𝑖 = 2
𝜉𝑖 − 𝜉𝑖𝑒
ℎ𝑖𝑒

, (22)

where 𝜉𝑖𝑒 and ℎ𝑖𝑒 represent the center position and width of the element
:
,
:::::::::::
respectively, in the 𝜉𝑖-direction, respectively. By

equally dividing the (𝛼, 𝛽) plane, we generate
::::::::
generated a horizontal mesh including 𝑁𝑒,ℎ × 𝑁𝑒,ℎ finite elements. The center

horizontal position of (𝑖′, 𝑗 ′)-th element is given by
::
can

:::
be

::::::
written

::
as

:

𝛼𝑖′ = −𝜋
4
+ 𝜋

2𝑁𝑒,ℎ

(
𝑖′ − 1

2

)
, 𝛽 𝑗′ = −𝜋

4
+ 𝜋

2𝑁𝑒,ℎ

(
𝑗 ′ − 1

2

)
.290

𝛼𝑖′ = −𝜋
4
+ 𝜋

2𝑁𝑒,ℎ

(
𝑖′ − 1

2

)
, 𝛽 𝑗′ = −𝜋

4
+ 𝜋

2𝑁𝑒,ℎ

(
𝑗 ′ − 1

2

)
.

:::::::::::::::::::::::::::::::::::::::::::::

(23)

Using the tensor-product of one-dimensional Lagrange polynomials 𝑙m (x̃) = 𝑙𝑚1 (𝑥1)𝑙𝑚2 (𝑥2)𝑙𝑚3 (𝑥3), a local approximated

solution within each element Ω𝑒 is
:::
can

::
be

:
represented as

q𝑒 |Ω𝑒
(x̃, 𝑡) =

𝑝+1∑︁
𝑚1=1

𝑝+1∑︁
𝑚2=1

𝑝+1∑︁
𝑚3=1

Q𝑒
𝑚1 ,𝑚2 ,𝑚3 (𝑡) 𝑙𝑚1 (𝑥1)𝑙𝑚2 (𝑥2)𝑙𝑚3 (𝑥3), (24)295

In Eq. (24), the coefficients 𝑄𝑒
𝑚1 ,𝑚2 ,𝑚3 are the unknown degrees of freedom (DOF) and 𝑝 is the polynomial order. In this

study, the Legendre–Gauss–Lobatto (LGL) points were used for interpolation and integration nodes. We defined an effective

horizontal a
::::::::::::
representative

:
grid spacing at the equator

:::::
which

::::::::::::
approximately

::::::::::
corresponds

:::
to

:::
that

::
in

:::
the

:::::::::
grid-point

:::::::
methods as

Δℎ,eq =
𝜋𝑎

2𝑁𝑒,ℎ (𝑝 + 1) ,

300

Δℎ,eq =
𝜋𝑎

2𝑁𝑒,ℎ (𝑝 + 1) .
:::::::::::::::::

(25)

which approximately corresponds to the grid spacing in the grid-point methods.
::::::
Similar

::
to

:::
the

::::
case

::
of

:::
the

:::::::::
horizontal

::::::::
direction,

::
we

:::::::
defined

:
a
::::::::::::
representative

::::::
vertical

::::
grid

:::::::
spacing

:::
Δ𝑣 .

:::
For

:::
the

:::::::
uniform

:::::::
vertical

::::::
element

::::
size,

:::::::::::::::::::
Δ𝑣 = 𝑧𝑇/(𝑁𝑒,𝑣 (𝑝 + 1))

::::::
where

::::
𝑁𝑒,𝑣

:
is
:::
the

:::::::
number

::
of
:::::::

vertical
::::::::
elements.

::::::::::
Hereinafter,

:::
we

:::::::
simply

::::
refer

::
to

:::::
Δℎ,eq:::

and
:::
Δ𝑣:::

as
:::
the

::::::::
horizontal

::::
and

:::::::
vertical

:::
grid

::::::::
spacing,

::::::::::
respectively.305

By applying the Galerkin approximation to Eq. (3), we obtain a strong form of the semi-discretized equations
:::
can

::
be

::::::::
obtained

as

𝑑

𝑑𝑡

∫
Ω𝑒

q𝑒 (x̃, 𝑡) 𝑙m(x̃) 𝐽𝐸 𝑑x̃ =−
3∑︁
𝑗=1

∫
Ω𝑒

𝜕F 𝑗 (q𝑒,G)
𝜕𝜉 𝑗

𝑙m(x̃) 𝐽𝐸 𝑑x̃

12



−
∫

𝜕Ω𝑒

[
F̂ (q𝑒,G) −F (q𝑒,G)

]
·n 𝑙m(x̃) 𝐽𝜕𝐸 𝑑𝑆

+
∫
Ω𝑒

[S (q𝑒) +SSGS (q𝑒,G)] 𝑙m (x̃) 𝐽𝐸 𝑑x̃, (26)310

where (F1,F2,F3) = (f +fSGS,g + gSGS,h+hSGS) is the flux vector tensor, F̂ is the numerical flux at the element bound-

ary 𝜕Ω𝐸 , and n is the outward unit vector normal to 𝜕Ω𝐸 ; In the volume and surface integrals, 𝐽𝐸 and 𝐽𝜕𝐸 represent the

transformation Jacobian with the general curvilinear coordinates and local coordinates within each element. Note that, be-

cause of the linear mapping in Eq. (22), the associated geometric factors such as 𝐽𝐸 and 𝐽𝜕𝐸 have a constant value in
:::::::
constant

:::::
values

:
when the volume and surface integrals are calculated. For the turbulent model, we need to evaluate the eddy viscous315

flux tensor and diffusion flux, which include a few gradient terms with quantities such as χ = (𝑢 𝜉 , 𝑢𝜂 , 𝑢𝜁 , 𝜃), denoted by

G = (𝜕χ/𝜕𝜉1, 𝜕χ/𝜕𝜉2, 𝜕χ/𝜕𝜉3) in Eq. (26). The gradient discretization in the 𝜉 𝑗 -direction is given by∫
Ω𝑒

𝜌G 𝑗 𝑙m (x̃) 𝐽𝐸 𝑑x̃ =

∫
Ω𝑒

[
𝜕𝜌𝑒χ𝑒

𝜕𝜉 𝑗
−χ𝑒

(
𝜕𝜌

𝜕𝜉 𝑗

)𝑒]
𝑙m(x̃) 𝐽𝐸 𝑑x̃

+
∫

𝜕Ω𝑒

(𝜌χ− 𝜌𝑒χ𝑒)n�̃� 𝑗 ·n 𝑙m(x̃) 𝐽𝜕𝐸 𝑑𝑆, (27)

where nx̃ 𝑗 is the unit vector in the 𝑥 𝑗 -direction and the density gradient is calculated by320 ∫
Ω𝑒

(
𝜕𝜌

𝜕𝜉 𝑗

)𝑒
𝑙m (x̃) 𝐽𝐸 𝑑x̃ =

∫
Ω𝑒

𝜕𝜌𝑒

𝜕𝜉 𝑗
𝑙m (x̃) 𝐽𝐸 𝑑x̃+

∫
𝜕Ω𝑒

( �̂� − 𝜌𝑒)n�̃� 𝑗 ·n 𝑙m (x̃) 𝐽𝜕𝐸 𝑑𝑆.

∫
Ω𝑒

(
𝜕𝜌

𝜕𝜉 𝑗

)𝑒
𝑙m (x̃) 𝐽𝐸 𝑑x̃ =

∫
Ω𝑒

𝜕𝜌𝑒

𝜕𝜉 𝑗
𝑙m (x̃) 𝐽𝐸 𝑑x̃+

∫
𝜕Ω𝑒

( �̂� − 𝜌𝑒)n�̃� 𝑗 ·n 𝑙m (x̃) 𝐽𝜕𝐸 𝑑𝑆.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(28)

For the numerical flux of the inviscid terms, this study used the Rusanov flux (Rusanov, 1961)
:::
was

:::::
used as a simple choice

of the approximated Riemann solvers. Its numerical dissipation is provided based on the maximum absolute eigenvalue of the325

Jacobian matrix at the left and right sides of the element boundary. From previous studies (Li et al., 2020),
:::::::
Previous

::::::
studies

:::::::::::::::::
(e.g., Li et al., 2020)

:::::::::
formulated the Rusanov flux considered

::::
taken

::::
into

:::::::
account the horizontal and vertical coordinate trans-

formations is formulated as

F̂invis =
1
2

{[
Finvis (q+) +Finvis (q−)

]
·n−𝜆max

[
q+ − q−]} ,

330

F̂invis =
1
2

{[
Finvis (q+) +Finvis (q−)

]
·n−𝜆max

[
q+ − q−]} ,

:::::::::::::::::::::::::::::::::::::::::::::::

(29)
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where 𝜆max is the maximum of the absolute value of eigenvalues of the flux Jacobian in the direction n, and q− and q+ represent

the interior and exterior values at 𝜕Ω𝑒. At the element boundaries in the horizontal directions (𝜉 and 𝜂), 𝜆max can be represented

as

𝜆max, 𝜉 =
��𝑢 𝜉 ��+√︃

𝐺11
𝑐 𝑐𝑠 , 𝜆max,𝜂 = |𝑢𝜂 | +

√︃
𝐺22

𝑐 𝑐𝑠 ,335

𝜆max, 𝜉 =
��𝑢 𝜉 ��+√︃

𝐺11
𝑐 𝑐𝑠 , 𝜆max,𝜂 = |𝑢𝜂 | +

√︃
𝐺22

𝑐 𝑐𝑠 ,
::::::::::::::::::::::::::::::::::::::::

(30)

respectively, where 𝑐𝑠 = [(𝐶𝑝/𝐶𝑣)𝑅𝑇]1/2 is the speed of sound wave. For the vertical direction 𝜁 , 𝜆max can be represented as

𝜆max,𝜁 =

���𝑢𝜁 ���+ [
1/

√︁
𝐺𝑣 +𝐺13

𝑣 𝐺𝑋 +𝐺23
𝑣 𝐺𝑌

]1/2
𝑐𝑠 ,

340

𝜆max,𝜁 =

���𝑢𝜁 ���+ [
1/

√︁
𝐺𝑣 +𝐺13

𝑣 𝐺𝑋 +𝐺23
𝑣 𝐺𝑌

]1/2
𝑐𝑠 ,

::::::::::::::::::::::::::::::::::::::::

(31)

where 𝐺𝑋 = 𝐺13
𝑣 𝐺

11
𝑐 +𝐺23

𝑣 𝐺
12
𝑐 and 𝐺𝑌 = 𝐺13

𝑣 𝐺
21
𝑐 +𝐺23

𝑣 𝐺
22
𝑐 . As

:::
The

::::::
central

::::
flux

::::
was

:::::::
adopted

::
as

:
the numerical flux of the

gradient G and the SGS fluxes (fSGS,gSGS,hSGS) with the turbulent model, we adopted the central flux.

When the same nodes are used for interpolation and integration (i.e., collocation), we can obtain a matrix form of Eqs. (26)

and (27)
:::
can

::
be

::::::::
obtained as345

𝑑q𝑒

𝑑𝑡
=−

3∑︁
𝑗=1
𝑑 𝑗𝐷 �̃� 𝑗F 𝑗 (q𝑒,G) −

6∑︁
𝑓 =1
𝑠𝜕Ω𝑒, 𝑓

𝐿𝜕Ω𝑒, 𝑓

[
F̂ (q𝑒,G) −F (q𝑒,G)

]
·n

+S (q𝑒) +SSGS (q𝑒,G), (32)

𝜌G 𝑗 =𝑑 𝑗𝐷 �̃� 𝑗 (𝜌𝑒χ𝑒) −χ𝑒

(
𝜕𝜌

𝜕𝜉 𝑗

)𝑒
+

2∑︁
𝑓 ′=1

𝑠𝜕Ω𝑒, 𝑓 ′ 𝐿𝜕Ω𝑒, 𝑓 ′ (𝜌χ− 𝜌𝑒χ𝑒)n�̃� 𝑗 ·n, (33)

where 𝐷 �̃� 𝑗 represents the differential matrix for the 𝑥 𝑗 -direction; 𝐿𝜕Ω𝑒, 𝑓
represents the lifting matrix with the surface integral

for the 𝑓 -th element surface, and 𝐿𝜕Ω𝑒, 𝑓 ′ represent
::::::::
represents the same for the 𝑓 ′-th element surface in the gradient operator350

for the 𝑥 𝑗 -direction. The components of these matrices are given as

(𝐷 �̃� 𝑗 )m,m′ = 𝑀
−1

∫
Ω𝑒

𝑙m
𝜕𝑙m′

𝜕𝑥 𝑗
𝑑x̃,

(
𝐿𝜕Ω𝑒 , 𝑗

)
m,m′ = 𝑀

−1
∫

𝜕Ω𝑒, 𝑗

𝑙m𝑙
𝜕Ω𝑒, 𝑗

m′ 𝑑𝑆, (34)

where 𝑀 denotes the mass matrix
::
and

::
is
:
given by

𝑀m,m′ =

∫
Ω𝑒

𝑙m𝑙m′ 𝑑x̃. (35)
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The density gradient term is calculated by
::
as355 (

𝜕𝜌

𝜕𝜉 𝑗

)𝑒
= 𝑑 𝑗𝐷 �̃� 𝑗 𝜌𝑒 −

2∑︁
𝑓 ′=1

𝑠𝜕Ω𝑒, 𝑓 ′ 𝐿𝜕Ω𝑒, 𝑓 ′ ( �̂� − 𝜌
𝑒)n�̃� 𝑗 ·n. (36)

Note that, in Eqs. (32), (33), and (36), 𝑑 𝑗 = 𝜕𝑥
𝑗/𝜕𝜉 𝑗 and 𝑠𝜕Ω𝑒 , 𝑗 = 𝐽𝜕Ω𝑒, 𝑗

/𝐽𝐸
::::::::::::::::
𝑠𝜕Ω𝑒 , 𝑓

′ = 𝐽𝜕Ω𝑒, 𝑓 ′ /𝐽𝐸:are constant values in the

volume and surface integrals, respectively. We changed the calculation method of mass and lifting matrices depending on

temporal discretization; This is detailed in Sect. 2.4.

The balance between the pressure gradient and buoyancy terms should be carefully treated in the discrete momentum equa-360

tion (e.g., Blaise et al., 2016; Orgis et al., 2017). Because
:
In

:::
the

:::::
above

:::::::::::
formulation,

:::::::
because a different discretization space is

used between the termsin the above formulation, a numerical imbalance is possible and may cause spurious oscillations, which

can destabilize the simulations. To avoid this incompatibility, the vertical polynomial order for the density in the buoyancy

term was reduced by one following Blaise et al. (2016).

2.4 Temporal discretization365

The semi-discretized equations in Eq. (26) can be represented as an
:::
the

::::::::
following ordinary differential equation (ODE) system

as

𝑑q

𝑑𝑡
= S(q,∇q) + F (q,∇q), (37)

where S(q,∇q) and F (q,∇q) represent the tendencies with slow and fast contributions, respectively. This study adopted

Runge–Kutta (RK) schemes to solve the ODE system from 𝑡 = 𝑛Δ𝑡 to 𝑡 = (𝑛+1)Δ𝑡, where Δ𝑡 is the time step and 𝑛 is a natural370

number. In this subsection, we describe two approaches for temporal discretization, namely, horizontal explicit and vertical

implicit (HEVI) and horizontal explicit and vertical explicit (HEVE) approaches.

:::
We

::::::::
introduce

::::
two

:::::
types

::
of

:::::::
Courant

::::::::
number,

:::::
which

:::
are

:::::
used

::
to

:::::::
explain

:::::::
timestep

:::::::
settings

:::
for

:::
the

:::::::::
numerical

:::::::::::
experiments

::
in

::::::
Sect. 3.

:::
For

:::
the

:::::::::
horizontal

:::::::::
advection

:::
test,

:::
the

:::::::::
advective

:::::::
Courant

::::::
number

:::::::::
associated

:::::
with

:::
the

::::::::
horizontal

:::::
wind

::
is

::::::
defined

:::
as

:::::::::::::::::
𝐶𝑟 ,adv =𝑈0Δ𝑡/Δℎ,eq,

:::::
where

:::
𝑈0 :

is
:::
the

::::::::::::
representative

::::
wind

::::::
speed.

:::
For

::::
other

:::::::::
numerical

::::::::::
experiments,

:::
the

:::::::
acoustic

:::::::
Courant

:::::::
number375

::::::::
associated

::::
with

:::
the

::::::
sound

:::::
wave

::::::::::
propagation

::
is

::::::
defined

:::
as

:::::::::::::
𝐶𝑟 ,𝑐𝑠 = 𝑐𝑠Δ𝑡/Δ,

::::::
where

:
Δ
::

is
:::

the
::::

grid
::::::::
spacing;

::
In

:::::::::
particular,

:::
for

:::
the

:::::
HEVI

::::::::
approach,

:::::::::
Δ = Δℎ,eq.

2.4.1 HEVI approach

If the aspect ratio of horizontal grid spacing to its vertical counterpart is large, it is impractical to use fully explicit temporal

schemes because the vertically propagating sound waves severely restrict to the timestep. A strategy to avoid computational380

cost in such case is the HEVI approach. The terms corresponding to vertical dynamics with a fast time-scale are evaluated using

an implicit temporal scheme, while the remaining terms are evaluated using an explicit temporal scheme. Such procedure can

be
::::
This

:::::::::
procedure

:
is
:
regarded as a framework of implicit-explicit (IMEX) time integration scheme (Bao et al., 2015; Gardner
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et al., 2018). General formulation of IMEX RK scheme (e.g., Ascher et al., 1997) with 𝜈 stages can be written
::::::::::
represented as

q (𝑠) = q𝑛 +Δ𝑡
𝑠−1∑︁
𝑠′=1

𝑎𝑠𝑠′S(𝑡 + 𝑐𝑠′Δ𝑡,q (𝑠′ ) ) +Δ𝑡
𝑠∑︁

𝑠′=1
�̃�𝑠𝑠′F (𝑡 + 𝑐𝑠′Δ𝑡,q (𝑠′ ) ) for 𝑠 = 1, . . . , 𝜈385

q𝑛+1 = q𝑛 +Δ𝑡
𝜈∑︁

𝑠=1
𝑏𝑠S(𝑡 + 𝑐𝑠Δ𝑡,q (𝑠) ) +Δ𝑡

𝜈∑︁
𝑠=1

�̃�𝑠F (𝑡 + 𝑐𝑠Δ𝑡,q (𝑠) ),

q (𝑠)
:::

=
:

q𝑛 +Δ𝑡
𝑠−1∑︁
𝑠′=1

𝑎𝑠𝑠′S(𝑡 + 𝑐𝑠′Δ𝑡,q (𝑠′ ) ) +Δ𝑡
𝑠∑︁

𝑠′=1
�̃�𝑠𝑠′F (𝑡 + 𝑐𝑠′Δ𝑡,q (𝑠′ ) )

:::::::::::::::::::::::::::::::::::::::::::::::::::::

for
::

𝑠 = 1, . . . , 𝜈
::::::::::

390

q𝑛+1
:::

=
:

q𝑛 +Δ𝑡
𝜈∑︁

𝑠=1
𝑏𝑠S(𝑡 + 𝑐𝑠Δ𝑡,q (𝑠) ) +Δ𝑡

𝜈∑︁
𝑠=1

�̃�𝑠F (𝑡 + 𝑐𝑠Δ𝑡,q (𝑠) ),
:::::::::::::::::::::::::::::::::::::::::::::::

(38)

where 𝑎𝑠𝑠′ , 𝑏𝑠 , and 𝑐𝑠 define the explicit temporal integrator, while �̃�𝑠𝑠′ , �̃�𝑠 , and 𝑐𝑠′ define the implicit temporal integrator;

𝑐𝑠 =
∑𝑠−1

𝑠′=1 𝑎𝑠𝑠′ and 𝑐𝑠 =
∑𝑠−1

𝑠′=1 �̃�𝑠𝑠′ represents time when slow and fast terms are evaluated, respectively. These coefficients

are compactly represented using “double Butcher tableaux”, as shown in Table 2. Note that, in the table of the explicit part,

A = {𝑎𝑠𝑠′ } with 𝑎𝑠𝑠′ = 0 for 𝑠′ ≥ 𝑠. On the other hand, for the implicit part, ˜A = {�̃�𝑠𝑠′ } with �̃�𝑠𝑠′ = 0 for 𝑠′ > 𝑠 in the case of395

the diagonally implicit RK scheme.

In this study, the terms associated with vertical mass flux, vertical pressure gradient, vertical flux of potential temperature,

and buoyancy in Eqs. (3) are
::::
were

:
treated as fast terms, whereas the other terms are

::::
were

:
treated as slow terms. To mini-

mize contaminating the spatial accuracy of high-order DGM by temporal errors with
:::::
present

:::
in low-order HEVI scheme, this

study adopted a third-order scheme proposed by Kennedy and Carpenter (2003)
:::
was

:::::::
adopted; it includes four explicit and400

three implicit evaluations. The corresponding double Butcher tableaux are given in Table 2. In the implicit part of each stage,

the corresponding nonlinear equation system was
::
is solved using Newton’s method. In each iteration, the linearized equation

system is solved. To obtain the solutions of
::::::::
Obtaining

::::::::
accurate

:::::::
solutions

:::
of the nonlinear equation system precisely, we need

a lot of
:::::::
generally

:::::::
requires

:::::::::
numerous

:
iterations. However, this study performed a single iteration in Newton’s method (i.e.,

Rosenbrock approach), thus
::::::::::
significantly reducing the computational costsignificantly. Such

:
.
::::::
Similar

:
approach has been used405

in previous studies (e.g., Ullrich and Jablonowski, 2012a)
:::::::::::::::::::::::::::
(Ullrich and Jablonowski, 2012a). In the case of the collocation ap-

proach, because the horizontal dependency between all nodes within the
::
an element vanishes, the vertical implicit evaluation

can be parallelly performed at each horizontal node.

For the case of HEVI, we evaluated the volume and surface integrations in Eqs. (34) and (35)
:::
were

:::::::::
evaluated using inexact

integration with the LGL nodes. Consequently, M and L𝜕Ω𝑒,3 become
::::::
became

:
diagonal matrices, which further simplify410

::::::::
simplified

:
the matrix structure associated with the vertical spatial operator.
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2.4.2 HEVE approach

When we consider a horizontal grid spacing with O(10 m) such as in LES, the ratio of horizontal to vertical grid spac-

ing approaches unity. The advantages of HEVI approach decrease. Thus, it is suitable to adopt a fully explicit temporal

approach, referred to as HEVE approach. In such cases, RK schemes with
:
a
:
strong stability preserving (SSP) property415

(e.g., Gottlieb et al., 2001)
:::::::::::::::::
(Gottlieb et al., 2001) are often used together

::
in

:::::::::::
combination with DGM. Same as in

:::::
Similar

:::
to

KT2023, this study adopted a ten-stage RK scheme with the fourth-order accuracy proposed by Ketcheson (2008). The corre-

sponding Butcher table is given in Table 3. When using the HEVE approach, entries of the matrices in Eqs. (34) and (35) were

directly calculated following Sect. 3.2 in Hesthaven and Warburton (2007).

2.5 Modal filtering420

For high-order methods
::::
DGM, numerical instability is likely to occur because inherent numerical dissipations are small.

Further
:
in
::::::::::::::::::
advection-dominated

::::
flows

:::::::
because

:::
the

::::::::
numerical

::::::::::
dissipations

::::
with

:::
the

::::::
upwind

:::::::::
numerical

:::::
fluxes

:::::::
weaken.

::::::::::
Furthermore,

we adopted a collocation approach due to its computational efficiency
:
, as described in Sect. 2.3. One drawback is that the alias-

ing errors with evaluations of the nonlinear terms can drive numerical instability. To suppress the
:::
this

:
numerical instability,

a modal filter was used as an additional stabilization mechanism. The filter matrix for the three-dimensional problem can be425

obtained as

F =𝑉3D𝐶3D𝑉3D,

F =𝑉3D𝐶3D𝑉3D,
::::::::::::::

(39)

where 𝑉3D represents the Vandermode matrix associated with the LGL interpolation nodes (in Eq. (24)) and 𝐶3D represents is430

the diagonal cutoff matrix. The entries of 𝐶3D are defined as

𝐶3D
(𝑚1 ,𝑚2 ,𝑚3 ) , (𝑚′

1 ,𝑚
′
2 ,𝑚

′
3 )
= 𝛿𝑚1 ,𝑚

′
1
𝜎ℎ
𝑚1 𝛿𝑚2 ,𝑚

′
2
𝜎ℎ
𝑚2 𝛿𝑚3 ,𝑚

′
3
𝜎𝑣
𝑚3 ,

𝐶3D
(𝑚1 ,𝑚2 ,𝑚3 ) , (𝑚′

1 ,𝑚
′
2 ,𝑚

′
3 )
= 𝛿𝑚1 ,𝑚

′
1
𝜎ℎ
𝑚1 𝛿𝑚2 ,𝑚

′
2
𝜎ℎ
𝑚2 𝛿𝑚3 ,𝑚

′
3
𝜎𝑣
𝑚3 ,

::::::::::::::::::::::::::::::::::::::::::::::

(40)

where 𝜎ℎ
𝑖

represents
:::
and

:::
𝜎𝑣
𝑖::::::::

represent
:

the decay coefficient for the one-dimensional horizontal mode
::
and

:::::::
vertical

::::::
modes

:
𝑖,435

while 𝜎𝑣
𝑖

represents that for the vertical mode 𝑖
:
,
::::::::::
respectively. Based on Hesthaven and Warburton (2007), a typical choice of

the coefficient for mode 𝑖 is provided with an exponential function as

𝜎𝑖 =


1 if 0 ≤ 𝑖 ≤ 𝑝𝑐

exp
[
−𝛼𝑚

(
𝑖 − 𝑝𝑐
𝑝 − 𝑝𝑐

) 𝑝𝑚 ]
if 𝑝𝑐 ≤ 𝑖 ≤ 𝑝,

(41)
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where 𝑝𝑐, 𝑝𝑚, and 𝛼𝑖 :::
𝛼𝑚 represent the cutoff parameter(𝑝𝑐 = 0 in this study), the order of the filter, and the non-dimensional

decay strength, respectively.
::
In

::::
this

:::::
study,

:::
𝑝𝑐 :::

was
::::::::::
considered

::
0. We applied the filter F to the solution vector q (in Eq. (4))440

at the final stage of the RK scheme with a timestep Δ𝑡. Then, the decay time scale for the highest mode is
:::
can

::
be

:
regarded as

approximately equal to Δ𝑡/𝛼𝑚.
:::
We

::
set

:::
the

:::::
order

::::
𝑝𝑚,

::::
and

:::::
decay

:::::::::
coefficient

:::
𝛼𝑚::::

such
::::

that
:::
the

:::::::
strength

::
of
:::::

filter
::::::
should

::::::
ensure

::::::::
numerical

:::::::
stability

:::::
while

:::::
being

:::
as

:::::
weak

::
as

::::::::
possible.

:::
We

:::::::
checked

:::
the

:::::::
impact

::
of

:::
the

::::::
modal

::::
filter

:::
on

:::
the

:::::::::::
convergence

:::
rate

:::
in

:::::::
Sect. 3.1.

:::
In

:::::::
addition,

:::
the

:::::::::::
investigation

:::
on

::::
how

:::::
much

:::
the

:::::
modal

::::::
filters

:::
can

::::::::::
contaminate

:::
the

:::::
eddy

::::::::
viscosity

::::
with

:::
the

::::::::
turbulent

:::::
model

::::
and

:::
the

::::::
energy

::::::
spectra

::::
was

:::::::::
performed

::
in

::::::::
KT2023.445

3 Validation Verification of dynamical core

To validate
::
We

:::::::::
conducted

:::::::
several

::::
tests

::
to

:
verify our dynamical core, we conducted several tests , which

:
.
:::::
These

:::::
tests are

summarized in Table . 1.
::
4.

:::
For

:::::::::::
investigating

:::
the

:::::::
behavior

:::
of

::::::::
numerical

:::::::::::
convergence,

:::
the

:::::::
number

::
of

::::::::
elements

:::
and

::::::::::
polynomial

::::
order

:::::
were

:::::::
changed

::
as

:::::::
detailed

::
in

:::::
Table

::
5.

::::
The

:::::::::
dissipation

::::::::::
mechanisms

::::
used

:::
in

:::
the

::::::::
numerical

::::::::::
experiments

:::
are

:::::::::::
summarized

::
in

::::
Table

::
6.
:
When evaluating numerical errors for the deterministic experiments such as linear advection, gravity wave, mountain450

wave, and baroclinic wave tests, we use
::::
used the following error norms as

𝐿1,error=

∑
𝐸

∫
Ω𝐸

|𝜓(𝜉,𝜂, 𝜁 , 𝑡) −𝜓ref (𝜉,𝜂, 𝜁 , 𝑡) | dx∑
𝐸

∫
Ω𝐸

dx
,

𝐿2,error=

[∑
𝐸

∫
Ω𝐸

[𝜓(𝜉,𝜂, 𝜁 , 𝑡) −𝜓ref (𝜉,𝜂, 𝜁 , 𝑡)]2 dx∑
𝐸

∫
Ω𝐸

dx

]1/2

,

𝐿inf,error=max[𝜓(𝜉,𝜂, 𝜁 , 𝑡) −𝜓ref (𝜉,𝜂, 𝜁 , 𝑡)] ,
455

𝐿1,error
:::::

=

∑
𝐸

∫
Ω𝐸

|𝜓(𝜉,𝜂, 𝜁 , 𝑡) −𝜓ref (𝜉,𝜂, 𝜁 , 𝑡) | dx∑
𝐸

∫
Ω𝐸

dx
,

::::::::::::::::::::::::::::::::::

𝐿2,error
:::::

=

[∑
𝐸

∫
Ω𝐸

[𝜓(𝜉,𝜂, 𝜁 , 𝑡) −𝜓ref (𝜉,𝜂, 𝜁 , 𝑡)]2 dx∑
𝐸

∫
Ω𝐸

dx

]1/2

,

::::::::::::::::::::::::::::::::::::::::

(42)

𝐿inf,error
::::::

=
:

max
:::

[𝜓(𝜉,𝜂, 𝜁 , 𝑡) −𝜓ref (𝜉,𝜂, 𝜁 , 𝑡)] ,
::::::::::::::::::::::::

where 𝜓(𝜉,𝜂, 𝜁 , 𝑡) and 𝜓ref (𝜉,𝜂, 𝜁 , 𝑡) denote the numerical and reference solutions, respectively, and
∑

𝐸 represents the sum-

mation over all elements. Except for the linear advection test case, the results obtained from a sufficiently high-resolution460

experiment were used as the reference solution since
::::::
because

:
the exact solution is unknown. In such case, the numerical

solution was interpolated into the computational grid with the highest resolution experiment when evaluating the error norms.

For idealized climatological or turbulent flow simulations,
:

such as the Held Suarez and global LES tests, it is difficult to

directly evaluate the numerical convergence . Thus,
::::
using

:::
the

::::
error

::::::
norms

::::::
defined

::
in

:::::::
Eq. (42).

::
In

:::
the

::::::::::
long-termed

::::::::::
integration,

:::
the
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::::::
chaotic

:::::::
behavior

::
of

:::
the

::::::::
nonlinear

:::::::
systems

:::
can

::::::
diverge

:::
the

:::::::::
numerical

::::::::
solutions.

::
In

:::
the

:::::::
turbulent

::::
flow

::::::::::
simulations,

::
a
:::::::::::
smaller-scale465

:::::::
structure

:::::::
becomes

:::::
more

:::::::
apparent

::
as

:::
the

::::
grid

::::::
spacing

::::::::
decreases

::::
until

:::
the

::::::
spatial

::::::::
resolution

:::::::
reaches

:::
the

:::::::
physical

:::::::::
dissipation

:::::
scale.

:::::
Thus,

::
for

:::
the

::::
test

:::::
cases,

:
we mainly investigated on the impact of the polynomial order on effective resolution while focusing

on the energy spectrathe shortest wavelength at which the energy spectra began to separate from that in the reference solution.

3.1 Linear advection

To validate verify the spatial discretization with the cubed-sphere geometry, we conducted a test for two-dimensional linear470

advection of
:::
test

:::
for a scalar quantity 𝑞. The experimental setup is similar to test case 1 of Williamson et al. (1992). The

longitudinal and latitudinal components of horizontal wind are
:::
were

:
prescribed by a solid body rotation as

𝑢 = 𝑢0 (cos𝜃 cos𝛼 + sin𝜃 cos𝜆 sin𝛼), 𝑣 = −𝑢0 sin𝜆 sin𝛼,

𝑢 = 𝑢0 (cos𝜙cos𝜙0 + sin𝜙cos𝜆 sin𝜙0), 𝑣 = −𝑢0 sin𝜆 sin𝜙0,
:::::::::::::::::::::::::::::::::::::::::::::::

(43)475

where 𝜆 and 𝜃
::
𝜙 are the longitude and latitude coordinates, respectively, 𝑢0 = 2𝜋𝑎/(12[days]), and 𝛼

:::::::::::::::::
𝑢0 = 2𝜋𝑎/(12 [days]),

::::
and

𝜙0 denotes the angle between the axis of solid body rotation and the North pole. We considered three values of 𝛼 = 0, 𝜋/4, 𝜋/2

:::::::::::::
𝜙0 = 0, 𝜋/4, 𝜋/2 radians to investigate the impact of singularity with four corners of each panel in the cubed sphere. Although

a cosine-bell profile is often given as an initial profile of the advected field,
::
we

::::
used

:
a Gaussian profile was used in this test

case to ensure
:
to

:::::::
confirm the order of accuracy is higher than two. The profile is defined as480

𝑞(𝜆, 𝜃) = exp
(
−𝑑 (𝜆, 𝜃)

𝐷

)
,

𝑞(𝜆, 𝜙) = exp
(
−𝑑 (𝜆, 𝜙)

𝐷

)
,

::::::::::::::::::::

(44)

where 𝐷 is the characteristic horizontal scale; 𝑑 is the great circle distance between a position on the sphere (𝜆, 𝜃)
::::
(𝜆, 𝜙)

:
and

the center position of Gaussian profile (𝜆𝑐, 𝜃𝑐):::::::
(𝜆𝑐, 𝜙𝑐), which is calculated by485

𝑑 (𝜆, 𝜃𝜙
:
) = 𝑎 arccos

[
sin𝜃𝑐 sin𝜃sin𝜙𝑐 sin𝜙

::::::::
+ cos𝜃𝑐 cos𝜃cos𝜙𝑐 cos𝜙

:::::::::
cos (𝜆−𝜆𝑐)

]
. (45)

In this experiment, we set to 𝐷 = 𝑎/5 and (𝜆𝑐, 𝜃𝑐) = (3𝜋/2,0)
::::::::::::::::
(𝜆𝑐, 𝜙𝑐) = (3𝜋/2,0).

To investigate a convergence rateof numerical solutions, we changed the horizontal resolution as 𝑁𝑒,ℎ (𝑝 + 1) = 32,64,128,

and 256 for 𝑝 = 1,3, and 7; The corresponding effective horizontal grid spacing at the equator is Δℎ,eq = 313,156,78 and
:::
grid

::::::
spacing

:::::
Δℎ,eq::::

from
::::

313
:::
km

::
to
:

39 km . For 𝑝 = 11, we changed it as 𝑁𝑒,ℎ (𝑝 + 1) = 24,48,96, and 192, which correspond to490

Δℎ,eq = 417,208,104, and
:::
for

:::::::::
𝑝 = 1,3,7,

:::
and

:::::
from

::::
417

:::
km

::
to

:
52 km

::
for

::::::
𝑝 = 11. As a temporal scheme, we adopted a fully

explicit fourth-order RK scheme described in Sect. 2.4.2. The Courant number for advection 𝑢0Δ𝑡/Δℎ,eq was set to be about
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Figure 1. Dependence of (a) 𝐿1, (b) 𝐿2, and (c) 𝐿inf errors at 𝑡 = 12 days on horizontal resolution in a two-dimensional linear advection

problem
::
test

:
using 𝑝 = 1, 3, 7, and 11. The colored solid, dashed, and dotted lines represent the results for 𝛼 = 0

::::
𝜙0 = 0, 𝜋/4, and 𝜋/2,

respectively. A black dashed line labeled “O𝑛” indicates the slope with 𝑛-th order accuracy.

0.6To focus on the spatial errors, we set sufficiently small timesteps such that 𝐶𝑟 ,adv = 7.41× 10−2. In this experiment,
:::
the

modal filter was not used
::::::
required

:
because the upwind numerical flux provided a sufficient numerical stabilization.

Figure 1 shows the numerical errors after one period (𝑡 = 12 days). the dependence of the 𝐿1, 𝐿2, and 𝐿inf errors at 12 days495

on the horizontal resolution. As theoretically expected, we obtain about
:::::::
obtained

:
𝑝 + 1-order spatial accuracy for 𝐿1, 𝐿2, and

𝐿inf errorsfor 𝑝 = 1,3, and 7. For 𝑝 = 11 in the high spatial resolutions, the discretization error with the fourth-order temporal

scheme, or the round-off error, degrades the convergence rate of 12th-order spatial accuracy. In the figure, the dashed lines

represent the error norms in the case of 𝛼 = 𝜋/4 radian
::::::::
𝜙0 = 𝜋/4

::::::
radians

:
when the Gaussian profile passes over the singular

points on cubed-sphere mesh. Their magnitudes are similar to that obtained for 𝛼 = 0, 𝜋/2
::::
were

::::::
similar

:::
to

::::
those

::::::::
obtained

:::
for500

:::::::::
𝜙0 = 0, 𝜋/2 radians, which are represented by solid and dashed lines. Even for ,

:::::::::::
respectively.

:::
For

:
𝑝 = 1, there is less difference

between the angles of rotation axis. Thus, the numerical errors were almost independent of the angle of the rotation axis.
::::
The

:::::
errors

:::
for

:::::::
𝜙0 = 𝜋/4

:::::::
radians

:::
can

:::
be

::::::
smaller

::::
than

:::::
those

::::::::
observed

:::
for

:::::::::
𝜙0 = 0, 𝜋/2

:::::::
radians

::::
(e.g.,

::::::
𝑝 = 3).

::::
The

::::::
reason

:::
has

:::
not

:::::
been

:::::::::
confirmed,

:::
but

::
we

:::::
have

:::::
found

::::::
similar

:::::
results

::
in
::::::::
previous

::::::
studies

:::::::::::::::::
(Ullrich et al., 2010).

::
In

::::::::
summary,

:
when applying DGM to the

advection problem, we consider the influence of singularity with the cubed-sphere coordinate to be quite small.505

:::::::
Because

::
the

::::::
modal

:::::
filters

:::
are

::::
used

::
in

::::
other

:::
test

:::::
cases,

:::
we

:::::::
checked

:::
the

::::::
impact

::
of

::
the

::::::
modal

:::::
filters

::
on

:::
the

::::::::
numerical

:::::::::::
convergence.

:::
We

:::::::::
conducted

:::
the

:::::
linear

:::::::::
advection

:::
test

:::
in

:::
the

::::
case

:::
of

::::::
𝜙0 = 0

:::::
where

::::
the

:::::
order

:::
and

::::::
decay

:::::::::
coefficient

::
of

::::
the

::::
filter

::::::::
changed

::
as

::::::::::::::
𝑝𝑚 = 64,32,16,8

::::
and

::::::::::::::::::
𝛼𝑚 = 10−3,10−1,101.

::::::
Figure

::
2

:::::
shows

:::
the

:::::::
impact

::
of

:::
the

::::::
modal

:::::
filters

:::
on

:::
the

:::::::::
horizontal

:::::::::
resolution

:::::::::
dependence

:::
of

:::
the

:::::
error

::::::
norms.

::::
The

::::::
results

:::::::
indicate

:::
that

::::
the

:::::
filters

:::
can

:::::::
degrade

:::
the

:::::::
original

:::::::::::
convergence

::::
rate

:::
and

::::::::
increase

::
the

:::::::::
numerical

::::::
errors

:::::::
because

:::
the

:::::
modal

:::::
filter

:::::::::
diminishes

:::
the

:::::
high

::::::
modes

::
in

:::
the

::::::::::
polynomial

:::::::::
expansion.

::
If

:::
the

::::
case

:::
of

:::::
using510
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Figure 2.
:::
The

::::::
impact

::
of

:::
the

::::::
modal

:::::
filters

::
on

:::
the

::::::::
horizontal

:::::::::
resolution

:::::::::
dependence

::
of

::::
𝐿1,

:::
𝐿2,

:::
and

::::
𝐿inf:::::

errors
::

at
::::::
𝑡 = 12

::::
days

::
in

::
a

::::::::::::
two-dimensional

:::::
linear

:::::::
advection

:::
test

:::
for

::
the

::::
case

::::::
𝜙𝑚 = 0

::::
using

:::::
𝑝 = 1,

::
3,

:
7,
::::

and
::
11:

:::
(a)

:::::::
𝑝𝑚 = 64,

::
(b)

:::::::
𝑝𝑚 = 32,

:::
(c)

:::::::
𝑝𝑚 = 16,

:::
and

:::
(d)

::::::
𝑝𝑚 = 8.

:
In
::::

each
::::
𝑝𝑚,

::
we

:::::::
changed

::
𝛼𝑚::

as
::
0
::::::
(without

:::
the

:::::
filter),

::::
10−3,

:::::
10−1,

:::
and

::::
101.
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::::::::
high-order

::::::
modal

:::::
filters

:::::
such

::
as

::::::::
𝑝𝑚 ≥ 32,

:::
the

::::::::::
degradation

::
of

:::::::::::
convergence

::::
rate

:::
was

::
in
::::

the
:::::
range

::
of

::::
1∼3

:::
for

::::::::
𝑝 = 7,11

::::
even

::
if

::
we

:::
set

::::::::::
sufficiently

::::
large

::::::
values

::
of

:::
𝛼𝑚::::

such
::::
that

:::
the

::::::
highest

:::::
mode

::::
was

::::::::::
immediately

::::::::
decayed

::::
after

:::
one

::::::::
timestep.

:::
For

::::::
𝑝 = 3,

:::
the

:::::::::
degradation

::
of
:::::::::::
convergence

:::
rate

::::::::
appeared

:::
less

::::::::
obvious.

::::::::
However,

:
it
::::::
should

::
be

:::::
noted

:::
that

:::
the

:::::
errors

:::::::
without

:::
the

:::::
modal

::::
filter

:::::
were

::::
much

::::::
larger

::::::::
compared

::
to

::::::::
𝑝 = 7,11.

:::::
Thus,

:::
for

:::::
𝑝 = 3,

:::
the

:::::
effect

::
of

:::
the

::::::::
increased

:::::
error

:::
due

::
to

:::
the

:::::
filters

::::
may

::
be

:::::
more

::::::::::
pronounced

::
in

:::
the

::::::::::::
representation

::
of
:::
the

::::
flow

::::::
fields.515

3.2 Internal gravity wave

To check wave propagation with pressure gradient and buoyancy terms, test cases of gravity wave are often utilized; .
:
For

example, Tomita and Satoh (2004) also performed an internal gravity wave test. However, the basic state and initial perturbation

produce vertically high modes and nonlinear terms can develop small
::::
flow

:
structures. This is inconvenient for investigating

numerical convergence. On the other hand, the experimental setting based on Baldauf and Brdar (2013), which originally520

assumed a two-dimensional computational domain, can focus on a single mode. This study considered presents a global domain

version of gravity wave test in Baldauf and Brdar (2013). The initial condition is
:::
was a rest isothermal atmosphere of 𝑇0 = 300

K, which corresponds to a constant Brunt Väisälä frequency of
√︁
𝑔2/(𝐶𝑝𝑇0) ∼ 1.8× 10−2 s−1. Further

::::::::::
Furthermore, we added

a small temperature perturbation with a Gaussian profile as

𝑇 ′ = Δ𝑇 exp
(
− 𝑑
𝐷

)
sin

(
𝑛𝑣𝜋

𝑧

𝑧𝑇

)
exp

(
− 𝑔

2𝑅𝑇0
𝑧

)
,525

𝑇 ′ = Δ𝑇 exp
(
− 𝑑
𝐷

)
sin

(
𝑛𝑣𝜋

𝑧

𝑧𝑇

)
exp

(
− 𝑔

2𝑅𝑇0
𝑧

)
,

:::::::::::::::::::::::::::::::::::::

(46)

where Δ𝑇 is the amplitude, 𝐷 is the characteristic horizontal scale, 𝑛𝑣 is the index with vertical mode, and 𝑑 is calculated from

:::
was

:::::::::
calculated

:::::
using Eq. (45). In this experiment, we set to 𝑧𝑇 = 10 km, Δ𝑇 = 0.01 K, 𝐷 = 𝑎/5, 𝑛𝑣 = 1, and (𝜆𝑐, 𝜃𝑐) = (0, 𝜋),

::::::::::::::
(𝜆𝑐, 𝜙𝑐) = (0, 𝜋). The Coriolis force and topography were not considered.530

The horizontal and vertical effective grid spacing were changed as
::::
from (313 km, 417 m) , (156 km, 208 m), (78 km, 104 m),

and (
::
to

:
(39 km, 52 m) using 𝑝 = 1,3, and 7

::::::::
𝑝 = 1,3,7. Whereas, for 𝑝 = 11, they were changed as

::::
from (208 km, 417 m) , (104

km, 208 m), and (
::
to

:
(102 km, 104 m). As the temporal scheme, we adopted an IMEX Runge–Kutta scheme with the third-order

accuracy, as described in Sect. 2.4.1. For the HEVI scheme, we set the Courant number against the horizontally propagating

sound wave as 𝐶𝑟ℎ,𝑐𝑠 ∼ 0.134 For the HEVI scheme, we set the timestep such that
:::::::::::::::
𝐶𝑟 ,𝑐𝑠 = 1.34× 10−1

:
for 𝑝 = 1,3,7 and535

𝐶𝑟ℎ,𝑐𝑠 ∼ 0.126
::::::::::::::::
𝐶𝑟 ,𝑐𝑠 = 1.26× 10−1 for 𝑝 = 11. To investigate the impact of temporal errorerrors, we also conducted additional

experiments with smaller timesteps for 𝑝 = 7 and 𝑝 = 11 where the above Courant number value was reduced by factors of

1/2 and 1/4. In the absence of a modal filter, the self-convergence of numerical solutions were was investigated. The reference

solution was obtained from a high-resolution experiment where horizontal and vertical grid spacing were (20 km, 26 m) with

𝑝 = 7 and 𝐶𝑟ℎ,𝑐𝑠 ∼ 0.067
::::::::::::::::
𝐶𝑟 ,𝑐𝑠 = 6.30× 10−2.540

To present the temporal evolution of gravity wave, Figure 3 shows the spatial distribution of potential temperature, and zonal

and vertical winds
:::::
zonal

:::::
wind,

:::
and

:::::::
vertical

:::::
wind after 𝑡 = 0.5 days and 𝑡 = 2 days. Based on this result, the horizontal phase
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Figure 3. The spatial distribution of potential temperature, and zonal
::::
wind,

:
and vertical wind at the equator after 𝑡 = 0.5 days (upper panel)

and 𝑡 = 2 days (lower panel) obtained from a gravity wave test case with (Δℎ,eq,Δ𝑣) =(78 km, 104 m) using 𝑝 = 7.

speed is
:::
was

:
estimated to be about

::::::::::::
approximately 58 m s−1. This result corresponds well to the linear theoretical value under

the hydrostatic approximation, 𝑁𝑧𝑇/(𝜋𝑛𝑣) ∼ 57 m s−1.

Figure 4 shows the dependence of error norms on spatial resolutions for the density perturbation (𝜌′), horizontal wind (𝑢 𝜉 ),545

vertical wind (𝑤), and perturbation of potential temperature weighted density ((𝜌𝜃)′). For relatively low-order 𝑝
:
, such as 𝑝 = 1

and 𝑝 = 3, almost 𝑝 + 1-order accuracy is
:::
was

:
observed for the four variables in sufficiently high spatial resolutions. However,

due to the fast wave modes, temporal errors for the third-order HEVI scheme can dominate over the spatial errors in the cases of

large
:::::
larger 𝑝 and high-resolution

:::::
higher

:::::::::
resolutions. This behavior is

:::
was

:
evident for the error norms of all variables except for

the horizontal wind. For the case of 𝑝 = 7 with 𝐶𝑟ℎ,𝑐𝑠 ∼ 0.134, the numerical convergence rate has about
::::::::::::::::
𝐶𝑟 ,𝑐𝑠 = 1.34× 10−1,550

::
the

:::::::::::
convergence

::::
rate

:::
had

::::::::::::
approximately

:
third-order slope

:::::
slopes for 𝜌′ and (𝜌𝜃)′, and it has

:::
had

:
between second- and third-

order slope for 𝑤. As the time step decreases, the numerical
:::::::
timestep

:::::::::
decreased,

:::
the

:
convergence rate for 𝑝 = 7 approaches

almost
:::::::::
approached

:
𝑝 + 1-order. Even for the case

:::::
cases of small Courant number, due to

::
an

:
increase in round-off errors, the

reduction in the error norms for 𝜌′ and 𝑢 𝜉 stops as the spatial resolution increased
::::::
stopped

::
as

:::
the

::::
grid

::::::
spacing

:::::::::
decreased. For

𝑝 = 11, this problem of round-off errors is worse; Stagnating error reduction appears
:::
was

::::::
worse.

:::::::::
Stagnating

::
of

:::::
error

::::::::
reduction555

:::::::
appeared

:
in the spatial resolutions lower

::::::
coarser

:
than that in 𝑝 = 7 and the errors increased with the spatial resolution. Note that

the influence of round-off error
:::::
errors might be overestimated because the amplitude of initial perturbation was significantly

small and no modal filter was used in this experiment. Thus, the problem is considered to be not critical in practical simulations

including
:::
that

::::::
include

:
the modal filtering or turbulent schemes.
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(a) Density (ρ’)

(b) Horizontal wind (uξ)
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Figure 4. Dependence of 𝐿1, 𝐿2, and 𝐿inf errors on spatial resolution for (a) density perturbation (𝜌′), (b) horizontal wind (𝑢 𝜉 ), (c) vertical

wind (𝑤), and (d) perturbation of potential temperature weighted density ((𝜌𝜃)′) after 𝑡 = 2 days in a gravity wave test case.
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3.3 Mountain wave560

Adopting the basic terrain-following coordinate introduced in Sect. 2.1 together with low-order schemes is well known to

produce large numerical errors with pressure gradient terms and to develop spurious flows
:::::::::::::::
(e.g., Zängl, 2012). However, such

issues can be avoided using high-order DGM. To check the numerical behavior of the basic terrain-following coordinate in

high-order DGM, we performed a mountain wave test on a reduced planet radius based on Klemp et al. (2015) (referred to

as KSP2015) and the test case 2-1 in
:
a
:
Dynamical core model intercomparison project (DCMIP) test case document (Ullrich565

et al., 2012). Here, the planetary radius was set to 𝑎/𝑋𝑟 , where 𝑋𝑟 = 166.7 is the scaling factor. In this experiment, the rotation

was not considered. KSP2015 considered a topography profile in the form of

ℎKSP2015 (𝜆, 𝜃) = ℎ0 exp

(
−𝑑

2

𝑑2
0

)
cos2

(
𝜋
𝑑

𝑑1

)
cos𝜃,

ℎKSP2015 (𝜆, 𝜙) = ℎ0 exp

(
−𝑑

2

𝑑2
0

)
cos2

(
𝜋
𝑑

𝑑1

)
cos𝜙,

::::::::::::::::::::::::::::::::::::::

(47)570

where 𝑑 = 𝑎/𝑋𝑟 (𝜆−𝜆𝑐) (here, 𝜆𝑐 = 𝜋), 𝑑0 = 5000 m, and 𝑑1 = 4000 m. The maximum height of mountain ℎ0 was set to 25 m.

In the
:::
this topography profile, the mountain wave structure along the equator is comparable to the results with two-dimensional

Schär type mountain (Schär et al., 2002). On the other hand, from the perspective of investigating the numerical convergence,

it is undesirable for the zonal scale of topography to decrease with the latitudes and eventually become zero at the poles. To

ensure that the minimum horizontal scale is sufficiently resolved in high resolution simulations,
:::
we

:::::::::
eliminated the undulation575

of the mountain is eliminated at the high latitudes using a tapering function as

ℎ(𝜆, 𝜃𝜙
:
) = ℎKSP2015 (𝜆, 𝜃𝜙

:
) 1

2

1+ tanh
(
|𝜃 | − 𝜋/3
8𝜋/180

)
tanh

(
|𝜙 | − 𝜋/3
8𝜋/180

)
:::::::::::::

 . (48)

As initial condition, we assumed a rest isothermal atmosphere of 300 K. KSP2015 considered an impulsive start where a zonal

wind in solid body rotation (𝑢 =𝑈0 cos𝜃
:::::::::
𝑢 =𝑈0 cos𝜙

:
where 𝑢0 = 20 m s−1) and the corresponding balanced state were initially

given. However, such impulsive start produces initial shocks with small spatial scales, which complicates the discussion on the580

numerical convergence. To mitigate the influence of impulsive start, we gradually accelerated the wind using relaxation terms

with the time scale of 60 s. For further details , refer to
::::::
Further

::::::
details

:::
are

:::::::
provided

::
in
:
Appendix B1.

The horizontal and vertical effective grid spacing (at about 𝑧 < 15 km) changed as
:::
grid

:::::::
spacing

:::::::
changed

::::
from

:
(625 m, 500

m) , (313 m, 250 m), and (
:
to
::

(156 m, 125 m) using 𝑝 = 3,7, and 11
:::::::::
𝑝 = 3,7,11. The model top was set to 30 km. As the

temporal scheme,
::
we

:::::
used a fully explicit fourth-order RK scheme was used. The Courant number against the propagating585

sound wave was fixed to 𝐶rh,cs ∼ 0.263. The described in Sect. 2.4.2. For the HEVE scheme, we set the timesteps such that

𝐶𝑟 ,𝑐𝑠 = 2.63× 10−1.
:::
The

:
reflection of waves at the model top was suppressed by introducing a sponge layer and gradually

increasing the vertical grid spacing at about 𝑧 > 15 km. by introducing a sponge layer at 𝑧 > 15 km, where the vertical element

size linearly increased with the altitude. Moreover, a lateral sponge layer was placed on the 1/4 sector of the sphere to reduce
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(a) Numerical solution obtained from a global dynamical 
core (SCALE-DG)

(b)  2D linear analytic solution on a flat plane

Vertical wind [m/s]

0

0

0

0

0

-0.02

0.02
0

0

0

0

0

-0.02

0.02

Vertical wind [m/s]

Figure 5. The spatial distribution of vertical wind at the equator obtained from a mountain wave test case with a Schär-like mountain: (a)

Numerical solution at 𝑡 = 2 hours obtained from (Δℎ,eq,Δ𝑣) = (625 m, 500 m) using 𝑝 = 7, (b) Two-dimensional linear analytic solution on

a flat plane (shown for comparison).

the disruption of targeting mountain wave structure by initial shocks globally propagating. For the details of on the sponge590

layer, refer to Appendix B2. The reference solution was obtained from a high-resolution experiment where the horizontal and

vertical grid spacing were (78 m, 62.5 m) with 𝑝 = 7. In this test case, to ensure the numerical stability, we used a weak modal

filter, which are is summarized in Table. 7.

Figure 5(a) shows the spatial distribution of vertical wind after 2 hours. For a comparison, a linear analytic solution on

a flat plane in the two-dimensional Cartesian coordinates is shown in Fig. 5(b) (The derivation can be found in Appendix595

A of KSP2015, for example). Since
::
).

:::::::
Because

:
the characteristic wavelength of mountain scaled by the Scorer parameter

is 𝑑0𝑁/𝑈0 ∼ O(1), this setting corresponds to a nonhydrostatic regime of mountain wave. In such regime, the waves with

small-scale wavelengths are trapped near the surface, while large-scale waves propagate upward. The obtained wind pattern

well reproduces that
:::::::::
reproduced

:::
the

::::::
results

:
shown in Fig. 2(a) of KSP2015. On the other hand, the numerical solution and

the linear analytic solution on a flat plane is
:::
was

:
slightly different. We consider that the difference

::
For

::::::::
example,

:::
the

:::::::
vertical600

:::::::::
wavelength

::
of

:::
the

:::::::::
large-scale

::::::
waves

::
in

:::::::
Fig. 5(a)

:::
was

::::::
shorter

:::::::::
compared

::
to

:::
that

::
in

::::::::
Fig. 5(b).

:::::
Based

:::
on

:::
the

:::::::::::
consideration

:::::
using

:::
our

:::::::
regional

::::::::
dynamical

:::::
core,

:::
the

:::::::::
difference

:::::
might

::
be

::::::
caused

:::
by

:::
the

::::::::
spherical

:::::::::::
experimental

:::::
setup.

:::::
Thus,

:::
we

::::::
expect

:::
this

:::::::::
difference

::
to decreases as the planetary radius increases in addition to optimizing the sponge layer

::::
while

:::
the

::::::
spatial

:::::
scale

::
of

:::
the

::::::::
mountain

::::::
remains

:::::::::
unchanged.

Figure 6 shows the dependence of error norms on spatial resolutions
::::::::
resolution

:
for the density perturbation (𝜌′), horizontal605

wind (𝑢 𝜉 ), vertical wind (𝑤), and perturbation of potential temperature weighted density ((𝜌𝜃)′). A comparison performed at

the fixed DOF shows that the numerical errors decrease
::::::::
decreased with the increase in polynomial order, although the numerical

convergence rate is
::::::::::
convergence

::::
rate

:::
was

:
smaller than 𝑝+1-order accuracy. For example, the slope of 𝐿2 error norm is about

:::
was

::::::::::::
approximately 3/4 of that with 𝑝 +1-order accuracy. Based on additional experiments with the corresponding two-dimensional

setup, the sub-optimal convergence can be related to several factors such as the modal filter and the spatial discretization for610
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(a) Density (ρ’)

(b) Horizontal wind (uξ)
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Figure 6. Dependence of 𝐿1, 𝐿2, and 𝐿inf errors on spatial resolution for (a) perturbation of density (𝜌′), (b) horizontal wind (𝑢 𝜉 ), (c)

vertical wind (𝑤), and (d) perturbation of potential temperature weighted density ((𝜌𝜃)′) after 2 hours in a mountain wave test case.
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Jacobian cofactors (
√
𝐺𝑣𝐺

13
𝑣 and

√
𝐺𝑣𝐺

23
𝑣 ). For further details, refer to Appendix B3.

::::::
Because

:::
the

::::::
modal

:::::
filters

:::::
shave

:::
off

:::
the

::::
high

:::::
modes

:::
in

:::
the

::::::::::
polynomial

:::::::::
expansion,

:::
the

:::::::::::
convergence

:::
rate

::::
can

::
be

:::::::::
degraded.

:::::
When

::::::::
requiring

::
a

::::::::::
convergence

::::
rate

::::
with

::
a

:::::
certain

:::::
order

::
of

:::
the

::::::::
accuracy,

:::
we

::::
need

::
to
:::::::
increase

:::
the

::::::::::
polynomial

:::::
order

::::::::
according

::
to

:::
the

::::
filter

::::::::
intensity.

:

3.4 Baroclinic instability

Baroclinic instability is a typical phenomenon in mid-latitudethe mid-latitudes. It includes small-scale structures such as front615

and filament formationsare included. We conducted an idealized numerical experiment based on Jablonowski and Williamson

(2006) (referred to as JW2006). In the aspect of numerical method, dynamical cores must accurately represent the wave growth

process. In addition, it is necessary to treat the developing small-scale flow structures while ensuring numerical stability. As

for
:::
For the experimental setup, the initial zonally symmetric fields can be

::::
were expressed using the analytic expressions of a

steady-state solution of the adiabatic inviscid primitive equationequations. To trigger baroclinic instability, a perturbation of620

zonal wind with a Gaussian profile is added
:::
was

::::::
added

::
to

:::
the

:::::
zonal

:::::
wind in the Northern hemisphere. For further details on

parameter values, refer to Sect. 2(a) of JW2006.

We investigated on the dependence of numerical solutions on the horizontal resolution as performed in JW2006. The hor-

izontal effective grid spacing Δℎ,eq changed as
::::
from

:
250 km , 125 km, 63 km, and

:
to
:
32 km with a fixed total vertical DOF

of 24 for 𝑝 = 3 and 7, whereas it changed as
::::
from 208 km , 104 km, and

::
to 52 km with a fixed total vertical DOF of 36 for625

𝑝 = 11. We used a stretch vertical grid spacing such that the effective vertical grid spacing Δ𝑣 near the surface became about

350 mWe used a stretched vertical grid based on Eq. (102) in Ullrich et al. (2012). The stretching parameter was set such

that the vertical grid spacing Δ𝑣 near the surface took the values of 305 m, 523 m, and 426 m for 𝑝 = 3,7, and 11, respec-

tively.
:::
The

:::::::::
stretching

::
is

::::::
further

:::::::
detailed

::
in

::::::::
Appendix

::
C. For the third-order HEVI scheme, we set the Courant number against

the horizontally propagating sound wave as 𝐶𝑟ℎ,𝑐𝑠 ∼ 0.14we set the timesteps such that 𝐶𝑟 ,𝑐𝑠 = 1.68× 10−1 for 𝑝 = 3,7 and630

𝐶𝑟 ,𝑐𝑠 = 1.26×10−1 for 𝑝 = 11. Furthermore, the modal filter was utilized to maintain the numerical stability. Its parameters are

summarized in Table 8. When calculating the 𝐿2 error of surface pressure, we used the results obtained from the corresponding

highest resolution experiment for each 𝑝 as the reference solution . If the vertical spatial errors have similar values among

different horizontal resolution cases, the vertical errors virtually cancel out. Thus, we can
::
to directly discuss the behavior of

numerical convergence associated with the horizontal spatial or temporal accuracy.635

Figure 7 shows the temporal evolution of baroclinic wave for the case of Δℎ,eq = 63 km using 𝑝 = 7. The obtained horizontal

distributions of surface pressure and temperature at 850 hPa are
::::
were

:
similar to those reported in the previous studies. For

example, see Fig. 5 in JW06, which is
:::
was obtained from the FV dynamical core (Lin and Rood, 1996, 1997). The wave grows

very slow
::::
grew

::::
very

::::::
slowly

:
for 4 days. After that, the highs and lows deepen

::::::::
deepened significantly and the wave begins

:::::
began to break at the 8-th day. Figure 8 shows dependence of the surface pressure and temperature at 850 hPa (after 9 days)640

on the horizontal spatial resolution for 𝑝 = 7. The same figure obtained from the FV dynamical core can be seen in Fig. 6

of JW06. Our dynamical core provides
:::::::
provided

:
reasonably accurate numerical solutions

::
for

:::::::::::
experiments

:::::::::
performed at high

spatial resolutionexperiments. These solutions are
::::
were

:
comparable to the reference solutions reported in the previous studies.
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Figure 7. Spatial distribution of the surface pressure and temperature at 850 hPa after 𝑡 = 4,6,8, and 10 days in a baroclinic instability test.

We present the results obtained from the experiment using 𝑝 = 7 with Δℎ,eq = 63 km and vertical DOF of 24.

In addition, the effective resolution is
:::
was

:
apparently higher than that of the low-order global dynamical core. For example, in

the marginally resolved simulation setting, Δℎ,eq ∼ 250 km, the amplitude and phase errors are
::::
were small.645

For a quantitative evaluation for of the horizontal resolution dependence, Figure 9 shows the temporal evolution of 𝐿2

error norm of the surface pressure for 𝑝 = 3,7, and 11. In the figure, the gray shade represents the
::
an uncertainty range of

reference solutions estimated by various dynamical cores in JW2006. In our evaluation strategy, due to the cancelation of

vertical errors between different horizontal resolutions for each 𝑝, we successfully captured the numerical convergence with

horizontal discretization and temporal errors. The 𝐿2 errors until
::::
This

::
is

:::::::
because

::
the

:::::::
vertical

::::::
spatial

:::::
errors

::::
have

::::::
similar

::::::
values650

:::::
among

::::::::
different

::::::::
horizontal

:::::::::
resolution

::::
cases

::::
with

:::
the

:::::
same

:
𝑝
::::
and

::::
these

:::::
errors

:::::::
virtually

::::::
cancel

:::
out

:::::
when

:::
the

::
𝐿2::::

error
::
is
:::::::::
evaluated.

::::
Until

:
about 6 days (except

::
the

:
initial adjustment stage)decreases with ,

:::
the

:::
𝐿2::::

error
:::::::::
decreased

::::
with

:::
the

:
horizontal resolution.

The magnitude is
:::
was significantly small compared to that

:::::::
reported in previous studies(for example, the FV dynamical core

and Mcore (Ullrich and Jablonowski, 2012b)).
:
. For example, in the horizontal grid spacing of 50 km (0.5 degrees), the 𝐿2

error was 1×10−2 for the FV dynamical core and 5×10−3 for Mcore (Ullrich and Jablonowski, 2012b)
:
. After 6 days when the655

baroclinic wave starts
:::::
started

:
to develop significantly, the 𝐿2 errors rapidly grow

::::
grew and the difference between horizontal
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Figure 8. Horizontal resolution dependence of (a) surface pressure and (b) temperature at 850 hPa after 𝑡 = 9 days in a baroclinic instability

test. We present the results obtained from the experiments using 𝑝 = 7 with the vertical DOF of 24.

resolutions decreases
::::::::
decreased. For 𝑝 = 3, the feature of numerical convergence at the mature stage is

:::
was

:
similar to that

obtained from MCore. In summary, the 𝐿2 errors for Δℎ,eq < 250 km are within the uncertainty range suggested by JW2006.

Thus, we consider that the numerical solutions obtained from the proposed model are reasonable.

3.5 Held–Suarez test660

As a long-term idealized benchmark toward
:::
for real climate simulations, we conducted the Held–Suarez test (Held and Suarez,

1994), which uses
:::
used

:
a prescribed forcing that mimics complex physics parameterization. The boundary-layer friction is

:::
was

:
represented in a form of Rayleigh damping. The diabatic heating/cooling effect is

:::
was represented using a Newtonian

relaxation term to a prescribed temperature in radiative equilibrium 𝑇𝑒. For further details on these terms, see p.1826 in Held

and Suarez (1994). In this study, a rest atmospheric field in hydrostatic balance with 𝑇𝑒 was given as the initial condition.665

To investigate the spatial resolution dependence, the effective
::::::::
horizontal grid spacing Δℎ,eq and vertical DOF changed as

::::
from

(208 km, 32) , (104 km, 64), and (
:
to

:
(52 km, 128) for 𝑝 = 3,7, and as

::::
from (208 km, 36) , (104 km, 72), and (

:
to

:
(52 km, 144) for

𝑝 = 11. The vertical grid spacing was stretched
:::::
using

:::
the

:::::::
strategy

::
in

::::::::
Appendix

::
C. For example, when the vertical DOF is 32,
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Figure 9. Dependence of the 𝐿2 error norm for surface pressure on horizontal spatial resolution in a baroclinic instability test using (a) 𝑝 = 3,

(b) 𝑝 = 7,
:::
and (c) 𝑝 = 11. Note that the reference solution for each 𝑝 is the result from the corresponding highest resolution experiment.

the effective vertical grid spacing near the surface becomes about
::::::::::::
approximately 350 m. For

::
In the cases of Δℎ,eq = 208,104,

and 52 km, the temporal integration was performed for at least 1200 days; The first 200-days data was discarded during the670

statistical analysis. For high resolution cases of Δℎ,eq = 52 km and 26 km, the results after the spin-up period with coarser

resolutions were used as the initial data, and shorter temporal integration was conducted because of the limited computational

resources
::
for

::::
1000

:::::
days. As the temporal scheme, we adopted the third-order HEVI scheme with the Courant number against

the horizontally propagating sound wave of 𝐶𝑟ℎ,𝑐𝑠 ∼ 0.13the acoustic Courant number of 𝐶𝑟 ,𝑐𝑠 = 1.26× 10−1 for 𝑝 = 3,7 and

𝐶𝑟 ,𝑐𝑠 = 7.56× 10−2 for 𝑝 = 11. Moreover, we used the modal filters summarized in Table 9. To
::::
Note

:::
that

::::
the

::::
large

::::::
decay675

:::::::::
coefficients

:::::
were

::
set

::
to

:
stabilize long temporal integrations with nonlinear flow processes, note that the large decay coefficients

were set. The reference solution was obtained from a high-resolution experiment where Δℎ,eq and vertical DOF were (26 km,

256) with 𝑝 = 7.

Figure 10 shows the zonally and temporally averaged atmospheric fields in a statistical equilibrium state for Δℎ,eq = 208

km using 𝑝 = 7. The obtained pattern and strength of general circulations are
::::
were similar with the results obtained by using680

nearly spatial resolution nearly the same horizontal
:::::
spatial

:::::::::
resolution

::::
used

:
in previous studies (e.g., Wan et al., 2008). For a

single westerly jet in each hemisphere, a maximum velocity of about 30
::
32

:
m s−1 is

:::
was

:
obtained at 𝑝 = 250 hPa. Easterlies

exist
::::::
existed

:
in equatorial and polar lower atmosphere and near the model top at low latitude. As shown in Fig. 10(c)-(f), the

baroclinic wave activity in the proposed DG model is
:::
was

:
similar to that reported in previous studies. At 𝑝 = 250 hPa in the mid-

latitudes, the magnitude of eddy momentum flux reaches about
::::::
reached

::::::::::::
approximately

:
70 m2/s2. The maximum of poleward685

eddy heat flux is
:::
was

:
located at 𝑝 = 850 hPa in the midlatitude ; its values reaches about

:::
and

::
its

:::::
value

:::::::
reached

::::::::::::
approximately
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Figure 10. Zonally and temporally averaging averaged atmospheric fields in a statistical equilibrium state: (a) zonal wind, (b) temperature,

(c) meridional eddy flux of zonal momentum, (d) meridional eddy flux of temperature, (e) eddy kinetic energy, and (f) eddy temperature

variance obtained from a Held–Suarez test with Δℎ,eq = 208 km using 𝑝 = 7. As is typically done in previous studies, when taking the zonal

and temporal average, we used the 1000-days data after the spin-up calculation.

22 K m s−1. The eddy kinetic energy and temperature variance reach
::::::
reached

:
maximum values of about

:::::::::::
approximately

:
430

m2/s2 at 𝑝 = 250 hPa and 45 K2 at 𝑝 = 800 hPa in the midlatitude, respectively.

As discussed in a previous study (Wan et al., 2008), these eddy quantities such as the eddy kinetic energy and tempera-

ture variance are sensitive to the spatial resolutionsresolution. As shown in Figs. 11(a), (c), the absolute peak values increase690

::::::::
increased with the spatial resolutions and begin resolution

::
and

::::::
began

:
to converge when the horizontal grid spacing is less

than about
:::
was

::::
less

::::
than

:
50 km. The convergence of peak values with 𝑝 = 7,11 is

:::
was faster than that in the case of 𝑝 = 3.

For comparison, the corresponding peak values indicated from previous studies are shown by the colored boxes in the figure.

The obtained trend of spatial resolution dependence for 𝑝 = 3 is
:::
was similar to that reported by studies by using conventional

low-order grid point methods (Tomita and Satoh, 2004; Wan et al., 2013). On the other hand, the peak values from 𝑝 = 7,11695

at the horizontal grid spacing of about
::::::::::::
approximately

:
200 km are

::::
were

:
similar to the results obtained by using the horizontal

spectral method (Wan et al., 2008).
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Figure 11. Dependence of absolute peak values on the spatial resolution: (a) eddy temperature variance, (b) eddy heat flux, (c) eddy kinetic

energy,
::
and

:
(d) eddy momentum flux. The time averaging period is the same as that in Fig. 11. In each panel, the difference between the

Northern and Southern hemispheres is represented using the error bars. The colored boxes labeled by T04, W08, UJ12, and W13 denote the

corresponding peak values indicated by the results reported in Tomita and Satoh (2004), Wan et al. (2008), Ullrich et al. (2012), and Wan

et al. (2013), respectively;
:
. Because the peak values were estimated from the contour figures, note that the uncertainty is large, and its range

is roughly represented by the box height.

Figure 12 shows kinetic energy spectra of horizontal winds at 𝑝 = 850 hPa and 𝑝 = 250 hPa. As reported in previous studies

(e.g., Malardel and Wedi, 2016; Tolstykh et al., 2017), the obtained spectra have
::
had

:
the 𝑛−3 slope at the spherical harmonic

degrees between 10 ∼ 100. The steep
::::::
steeper slope compared to −3 reflects the influence of numerical dissipation mechanism700

with
::
the

:
upwind numerical flux and

::
the modal filter. For the cases of 𝑝 = 7,11, the obtained energy spectra well follow

:::::::
followed

that for the reference experiment at the wavelengths longer than about eight grids
::::
eight

::::
grid

::::::
lengths. In the spatial resolution

dependence of peak values with the eddy quantities shown in Fig .. 11, there is
:::
was no significant difference between 𝑝 = 7 and

𝑝 = 11, whereas the improvement of effective resolution by higher polynomial order of 𝑝 = 11 can be observed in the energy

spectra as the grid spacing decreases. For 𝑝 = 3, the energy spectra overlap
:::::::::
overlapped

:
with that of the reference experiment705

up to about 10∼20 gridsat a wavelength range longer than 10∼20 grid lengths. Furthermore, for Δℎ,eq = 208 km with 𝑝 = 3, the

spectra are entirely
::::
entire

::::::
spectra

:::::
were smaller than the reference solution. Thus, using strong modal filters to ensure numerical

stability for long-term integration has a significant effect on the spectra and effective resolutions in relatively small polynomial

orderwhen using 𝑝 ≤ 3. These results indicate that there is room for improving our treatment of the nonlinear terms to weaken

the modal filters.710

3.6 Planetary boundary layer turbulence experiment on a small planet

As a first step toward future global LES with O(10 m) grid spacing, we performed a global extension of the LES experiment

of idealized planetary boundary layer turbulence in Nishizawa et al. (2015), KT2021, and KT2023. Currently, it is not feasible

to conduct a global LES for a planetary size of Earth using a uniform spatial resolution of O(10 m). To save the required
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Figure 12. Energy spectra of horizontal wind in a statistical equilibrium state at (a) 𝑝 = 850 hPa and (b) 𝑝 = 250 hPa in a Held–Suarez test.

As explained in the legend, the difference between spatial resolutions is represented by line types, and the line color indicates the polynomial

order. The results from the reference experiment are shown by solid black lines. Lower panels represent the compensated spectra, which is

proportion to 𝐸 (𝑛)𝑛3. The temporal average was calculated over 1000 days after the spin-up period; In the highest resolution case (Δℎ,eq = 26

km), it was performed over 300 days.
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computational resources, the planetary radius set to be
:::
was

:::
set

::
to

:
3.4 kmhere. Although this value is significantly different from715

that in realistic planets such as Earth and the effect of spherical geometry may affect the convection structure, we consider that

this test is useful to validate verify the turbulent model described in Sect. 2.2. We focused on the case of applying the shallow

atmosphere approximation because we expected the results to be comparable to the results
::::
those

:
reported in our previous

studies. This approximation is obviously unsuitable for discussing physical aspect in this experimental setting; .
:
For the case

without approximation, refer to Appendix D. The experimental setup is as follows: The altitude of model top was set to 3 km.720

There were no rotation and topography. Initially, we set a stable stratification with a vertical gradient of potential temperature

of 4 K/km and added random perturbations with an amplitude of 1 K. Since
:::::::
Because

:
it is difficult to consider a uniform wind

in the global situation, there is
:::
was

:
no initial motion in contrast to that in our previous studies. To drive thermal convections,

a constant heat flux with of 200 W m−2 was imposed at the surface. To focus on the validation of turbulent model, radiation

and moist processes were not considered. In the turbulent model, we set the filter length to double that of effective
::
the

:
local725

grid spacing, which is same as that in
::::::
follows

:
our previous studies. A reflection of waves at the model top is prevented using a

sponge layer located above 𝑧 = 2 km
:::
was

::::::::
prevented

:
using a sponge layer, where the vertical wind was decayed by the Rayleigh

damping. The 𝑒-folding time varied as the half cosine function from zero at 𝑧 = 2 km to 10 s at the model top.

To check the impact of polynomial order on the energy spectra in the same context as
:
as

::
in

:
KT2023, we changed 𝑝 as 3,4,7

:::
3,4,

::::
and

:
7
:
while setting the effective

::::::::
horizontal

:::
and

:::::::
vertical grid spacing to be about

::::::::::::
approximately 10 m. Numerical stability730

was ensured by using a modal filter with parameters 𝑝𝑚,ℎ = 𝑝𝑚,𝑣 = 32 and 𝛼𝑚,ℎ = 𝛼𝑚,𝑣 = 10−3. As the temporal scheme, a

fully explicit fourth-order RK scheme described in Sect. 2.4.2 was used for the inviscid terms, whereas the forward Euler

scheme was adopted for the SGS terms. The time step was set to 0.0125 s; The corresponding Courant number for the sound

wave is about 0.438We set the timestep such that 𝐶𝑟 ,𝑐𝑠 = 4.38× 10−1. The integration time was 4 hours for the case of 𝑝 = 7.

To reduce the computational cost, the output at 3 hours was used as the initial condition of the other experiments for which the735

integration time was 1 hour.

Figure 13 shows the horizontal distribution for vertical wind at 𝑧 = 500 m and cross-section along the equator after 𝑡 = 4

hours in the case of 𝑝 = 7. The convective cells have
:::
had polygonal structures with a horizontal scale of about

::::::::::::
approximately

2-3 km. The height of PBL reaches
::::::
reached

:
between 1–1.5 km. To present the vertical structure of PBL, Figure 14 shows the

vertical distribution of potential temperature, turbulent transport of heat and momentum, and skewness of vertical wind for740

𝑝 = 7. In these panels, the gray shade represents the results obtained from KT2023 using the plane regional model. The results

obtained in this study are
:::
were

:
well similar to those reported in KT2023.

Figure 15 shows the kinetic energy spectra of three-dimensional wind at 𝑧 = 500 m, which was temporally averaged during

the last 30 minutes. The features of the obtained energy spectra are
::::
were

:
similar to those reported in KT2023. At longer

wavelengths than eight gridseight grid lengths, the slope of spectra was about
:::::::::::
approximately

:
−5/3. On the other hand, the745

slope of spectra at the shorter wavelength range deepens
::::::::
deepened due to the turbulent model, numerical dissipation with the

upwind numerical flux, and modal filter used in this study
::
the

::::::
modal

::::
filter. KT2023 indicated that the required polynomial order

is 𝑝 > 3, which is 𝑝 > 3 is required that the effect of numerical diffusion term is sufficiently small compared to that of the SGS
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Figure 13. The horizontal distribution of vertical wind at 𝑧 = 500 m after 𝑡 = 4 hours when the shallow atmosphere approximation is applied

in the LES of an idealized planetary boundary layer turbulence for the case of Δℎ,eq = 10 m using 𝑝 = 7: (a) Northern hemisphere (NH), (b)

Southern hemisphere (SH), and (c) their corresponding cross-sections along the equator.

(a) (b)
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Potential temperature [K]

Variance of vertical wind [m2 s-2] Skewness of vertical wind
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Figure 14. The vertical structure of PBL temporally averaging averaged during the last 30 minutes: (a) potential temperature, (b) resolved

eddy heat flux plus SGS heat flux, (c) variable variance of vertical wind,
:::
and (d) skewness of vertical wind for 𝑝 = 3,4,7.

::::::
𝑝 = 3,4,

:::
and

::
7. The

gray shade represents the results obtained from KT2023 using the plane model.
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Figure 15. (a) Density-weighted energy spectra 𝐸 (𝑛) of three-dimensional wind at the height of 500 m for 𝑝 = 3,4,7.
:::::
𝑝 = 3,4,

::::
and

:
7.
:

The

dash-dotted gray line represents 𝑎𝐸 (𝑛) where 𝑎 = 8.0×101. (b) Compensated spectra 𝐸 (𝑛)/(𝑎𝑛−
5
3 )

::::::
Spectra

::::::::
normalized

::
by

:::
the

::::
result

::
of

::::
𝑝 = 7.

(c) Partial expanded view of energy spectra in the short wavelength range.

eddy viscosity term at the wavelength longer than eight grid length. This
::
is true for global LES based on the results obtained

in this studyas shown in Fig. 15(b).750

4 Conclusions

For conducting future high-resolution atmospheric simulations precisely, our previous studies
:::::
study (KT2021) indicated that

conventional low-order discretization methods used in the state-of-the-art global nonhydrostatic dynamical cores have a prob-

lem of numerical errors because it is possible to contaminate the effect of physical parameterization schemes. To overcome

this issue, we developed a global nonhydrostatic atmospheric dynamical core of dry atmosphere using the discontinuous755

Galerkin method (DGM) as the spatial discretization considering advantages, such as because DGM has several advantages

over grid-point methods
:
,
::::::::
including

:
the simple strategy for the high-order discretization and high computational efficiency

:::
the

::::
high

:::::::::::
floating-point

:::::::::
operations

:::
per

::::::
second

::::::::
(FLOPS)

::::::
count in recent parallel supercomputers, over grid-point methods.

:
. Fur-

thermore, considering global LES, we formulated a Smagorinsky–Lilly type turbulent model in the cubed sphere coordinate

:::::::::
coordinates

:
and discretized it in the DGM framework. To validate verify the proposed global dynamical core, several numerical760
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experiments, from
:::
the linear advection test to

::
the

:
Held–Suarez test, were conducted. To show

::::::::::
demonstrate the high-order nu-

merical convergence, the experimental setup of existing test cases were slightly modified. In addition, an idealized test case was

proposed to validate the global dynamical core
::::
check

:::
the

::::::::
behavior

::
of

::::::
global

:::::::::
dynamical

:::::
cores including the turbulent model.

Thorough the numerical experiments with various polynomial orders (𝑝) and spatial resolutions, we discussed the impact of

high-order spatial discretization on atmospheric flows
::
the

::::::
quality

:::
of

::::::::
numerical

::::::::
solutions

::
in

:::
the

::::::::::
atmospheric

::::
flow

::::::::::
simulations.765

For the deterministic test cases, such as
::
the linear advection and gravity wave test cases

::::
tests, 𝑝+1-order spatial accuracy was

confirmed until the temporal discretization and round-off errors became significant compared to the spatial errors. In the gravity

wave test, it was observed that the temporal errors with the third-order HEVI scheme can contaminate the convergence rate of

high-order spatial discretization even when using the Courant number against horizontal propagating sound wave
::::::::
horizontal

:::::::
acoustic

:::::::
Courant

::::::
number

:
of O(0.1). To investigate the numerical performance of terrain-following coordinate with DGM, we770

conducted a mountain wave test case based on that used in Klemp et al. (2015). However, we made some modifications to

investigate high-order numerical convergence. When comparing the results for a fixed DOF, the advantage of large polynomial

order is
:::
was apparent in terms of the fast numerical convergence, although the convergence rate is

:::::::
resultant

::::::::::
convergence

::::
rate

:::
was

:
slightly smaller than the optimal order associated with the spatial discretization. The results of the baroclinic instability test

showed that, when 𝑝 ≥ 3 and Δℎ,eq < 240 km, the obtained 𝐿2 error norms of surface pressure entered the uncertainty range775

indicated by the previous studies. We confirmed the rapid numerical convergence over the second-order accuracy until the

mature stage was reached. Subsequently, the sharp gradient with the front structure developed and the waves began to break,

which made it difficult to identify the numerical convergence with the high-order schemes.

For test cases in which small-scale turbulent structures developed, such as
::
the

:
Held–Suarez test and

::
the LES experiment of

PBL turbulence, we mainly focused on the energy spectra in the terms of effective resolutions
::::
terms

::
of

:::
the

::::::::
effective

::::::::
resolution.780

In the Held–Suarez test, where the turbulence model was not used, the extent of dissipation effect with the numerical flux

and modal filters is clearly visible;
:::
was

:::::::
clearly

::::::
visible.

:
Based on the comparison with the energy spectra for the reference

experiment, we confirmed that the effective resolution is
:::
was improved as the polynomial order increases

::::::::
increased. When we

used high-order modal filters with large decay coefficients to ensure numerical stability during long temporal integration, the

effective resolution was estimated to be between about 10∼20 grids grid lengths for 𝑝 = 3 and eight grids grid lengths for785

𝑝 = 7,11. To enhance the effective resolutions by weakening the modal filters, we consider that entropy stable DGM adopted

in Souza et al. (2023) is a promising method, although this topic is beyond the
:::::
scope

::
of current study. To check the behavior

of turbulent model included in global dynamical cores, we proposed an idealized test case of global LES considering a small

planet
:::
with

::
a
:::::
small

::::::::
planetary

::::::
radius, which is an extension of

:::
the experimental setup used in KT2021 and KT2023 with the

regional plane model
:::::::
regional

:::::
plane

::::::
models. In our numerical experiments with the shallow atmosphere approximation, the790

convective cell pattern and vertical structures of PBL well reproduce
:::::::::
reproduced

:
the results of the regional plane model.

We confirmed that the obtained energy spectra obey
::::::
obeyed

:
the Kolmogorov spectra of turbulence at the wavelength range

longer than about eight grids
::::
eight

:
grid lengths when 𝑝 > 3 is

:::
was used together with the Rusanov numerical flux and a

sufficiently high-order modal filter; This result is
:::::::::::
scale-selective

::::::
modal

:::::
filter.

::::
This

:::::
result

::::
was

:
consistent with the numerical

criteria discussed in KT2023.795
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Table 1. Values of parameters.

Symbol Description Value

𝐶𝑝 Specific heat for constant pressure of dry air 1.0046× 104 J K−1 kg−1

𝐶𝑣 Specific heat for constant volume of dry air 7.1760× 103 J K−1 kg−1

𝑅 Gas constant 𝐶𝑝 −𝐶𝑣

𝑃0 Reference value of pressure 1000 hPa

𝑎 Planetary radius of planet 6.3712× 103 km

𝑋𝑟 Factor of reduced planetary radius 166.7

𝜔 Angular velocity of planet 7.2920× 10−5 s−1

𝑔 Standard gravitational acceleration 9.8066 m/s2

This study indicates
::::::::::
demonstrated

:
the applicability of high-order DGM to global atmospheric dynamical cores via a series

of numerical experiments, while
:
;
::::::::
However,

:
several tasks required to conduct actual atmospheric simulations are

:::::::
realistic

::::::::::
atmospheric

::::::::::
simulations

::::
were

:
not performed. To treat the effect of topography in LES, we also need to

::::
must

::::
also

:
consider

the vertical coordinate transformation in the SGS terms of turbulent model. Such formulation can be achieved using the chain

rule, as performed in the differential terms with inviscid fluxes. A related issue is the treatment of topography with steep800

slopes in high-order strategies. To investigate whether DGM-based dynamical core is robust for realistic topography, a Held-

Suarez experiment with realistic topography may be appropriate. Such work is expected to yield deep understandings about

the impact of effective resolutions of topography on large-scale flows when high-order DGM is used. Furthermore,
:
a
::::::
severe

:::::::
timestep

:::::::::
restriction

:::
for

::::::
explicit

::::::::
temporal

::::::::
schemes

::
is

::::
one

::
of

:::
the

::::::::::
unresolved

:::::
issues

::
in
::::::::::

high-order
::::::
DGM.

:::
We

::::::
expect

::::
that

:::
the

:::::::::::
computational

:::::::::
overheads

::::::
would

::
be

:::::::
ignored

::
in
:::::::

several
:::::
cases;

::
A
:::::::
coarser

::::::
spatial

::::::::
resolution

::::
can

::
be

:::::
used

:::
due

::
to
::::

the
:::::::::
high-order805

::::::::
numerical

::::::::::
convergence

:::
or

:::
the

::::
small

:::::::::::::
communication

::::
cost

::
in

:::::
DGM

::
is

:::::
taken

::::::::
advantage

:::
of.

::::::::
However,

::
to

:::::::::
accelerate

:::
DG

:::::::::
dynamical

::::
cores

::
in
:::

all
:::::::::
situations,

:::::::::
developing

:::::::::::
sophisticated

::::::::
temporal

:::::::::
treatments

::
is
:::
an

::::::::
important

::::::
future

:::::
work.

::::::
Finally,

:
it is indispensable

to perform a coupling between the physics (such as moist and radiation processes) and DGM-based dynamics. Recent studies

begin to discuss the potential difficulties with the element-based methods;
:
. For example, in the context of spectral element

method
::::
SEM, Herrington et al. (2019) indicated that a straightforward evaluation for physics tendencies at irregular nodes810

within the element causes a grid imprinting along the element boundaries. To solve this problem, they introduced a physics

grid with a quasi-equal volume coarser than the node intervals with the dynamics when calculating the physics tendencies.

While taking care of the advantages associated with the effective resolutions of high-order dynamical cores, we will explore

how to treat the coupling of physics and dynamics in the DGM framework.

Code and data availability. Source codes of SCALE-DG v0.8.0 and setting files for numerical experiments are available at the Zenodo815

repository (https://doi.org/10.5281/zenodo.10901697), where we have provided scripts to create figures in this paper. They are provided

as open source under the MIT license. SCALE library v.5.5.1 which is a key dependent software of SCALE-DG is available at the Zenodo
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Table 2. Double Butcher table for a third-order IMEX RK scheme proposed by Kennedy and Carpenter (2003).

𝑐𝑠 𝑎𝑠𝑠′

0 0 0 0 0
1767732205903
2027836641118

1767732205903
2027836641118 0 0 0

3
5

5535828885825
10492691773637

788022342437
10882634858940 0 0

1 6485989280629
16251701735622 − 4246266847089

9704473918619 − 10755448449292
10357097424841 0

𝑏𝑠
1471266399579
7840856788654 − 4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236

𝑐𝑠 �̃�𝑠𝑠′

0 0 0 0 0
1767732205903
2027836641118

1767732205903
4055673282236

1767732205903
4055673282236 0 0

3
5

2746238789719
10658868560708 - 640167445237

6845629431997
1767732205903
4055673282236 0

1 1471266399579
7840856788654 − 4482444167858

7529755066697
1767732205903
11593286722821

1767732205903
4055673282236

�̃�𝑠
1471266399579
7840856788654 − 4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236

Table 3. Butcher table for a fourth-order fully explicit RK scheme with ten stages porposed by Ketcheson (2008).

𝑐𝑠 𝑎𝑠𝑠′

0
1
6

1
6

1
3

1
6

1
6

1
2

1
6

1
6

1
6

2
3

1
6

1
6

1
6

1
6

1
3

1
15

1
15

1
15

1
15

1
15

1
2

1
15

1
15

1
15

1
15

1
15

1
6

2
3

1
15

1
15

1
15

1
15

1
15

1
6

1
6

5
6

1
15

1
15

1
15

1
15

1
15

1
6

1
6

1
6

1 1
15

1
15

1
15

1
15

1
15

1
6

1
6

1
6

1
6

𝑏𝑠
1

10
1
10

1
10

1
10

1
10

1
10

1
10

1
10

1
10

1
10

repository (https://doi.org/10.5281/zenodo.10952494), and is subject to the BSD-2-Clause license. Due to large data size, the obtained results

from the numerical experiments are saved in the local storage at RIKEN R-CCS.
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Table 4. Summary of numerical experiments for validating the proposed dynamical core.

Test case Focus

Linear advection

Validation of the cubed-sphere projection,

Convergence rate with advection,

Impact of modal filters on numerical convergence

Internal gravity wave
Validation of the pressure gradient and buoyancy terms,

Convergence rate with wave propagation

Mountain wave
Validation of the terrain-following coordinate,

Convergence rate with vertical coordinate transformation

Baroclinic instability
Numerical robustness in developing small-scale flow structures,

Numerical convergence discussed in previous studies

Held–Suarez test
Numerical robustness in climatic simulations with long-term integrations,

Numerical convergence and effective resolutions

Global LES in a small planet

Validation of the turbulent model formulated in cubed-sphere coordinate,

Effective resolutions on energy spectra,

Consistency of numerical criterion indicated in KT2023

Appendix A:
:::::::::
Additional

::::::
linear

::::::::
advection

::::
test820

::
In

::::::::
Sect. 3.1,

::
by

::::::::::
conducting

:
a
::::::

linear
::::::::
advection

::::
test

::::
with

:
a
:::::::

smooth
::::::
profile

::
in

::
a

:::::::::
solid-body

:::::::
rotation

::::
flow,

:::
we

::::::
tested

:::
the

::::::
spatial

:::::::::::
discretization

::::
with

:::
the

:::::::::::
cubed-sphere

::::::::
geometry

:::
and

:::::::
checked

:::
the

:::::::::::
convergence

:::
rate

::::
with

:::
the

:::::::::
high-order

::::::
DGM.

::
In

:::
this

:::::::
section,

:::
we

::::::::
performed

::
a

:::::
linear

::::::::
advection

:::
test

:::::
using

::
the

::::::::
Gaussian

::::
hills

:::
and

::::::
slotted

:::::::
cylinder

::::::
profiles

::
in
::
a
::::::::::
deformation

::::
flow,

:::::
which

::
is
:::
the

::::
Case

::
4

::::::::
presented

::
in

:::::::::::::::::::::
Nair and Lauritzen (2010)

::::::::::
(hereinafter,

:::::::
referred

::
to

::
as

::::::::
NL2010).

::::
The

:::::::::::
experimental

::::
setup

::::
with

:::
the

::::::
spatial

:::::::::
resolution,

:::::::::
polynomial

:::::
order,

::::
and

:::::::
timestep

:::
was

::::::
similar

:::
to

:::
that

::::::::
described

::
in

::::::::
Sect. 3.1.

:::
To

:::::::
compare

:::
the

:::::
errors

:::::::
reported

::
in

::::::::::::::::
Guba et al. (2014)825

::::::::::
(hereinafter,

:::::::
referred

::
to

::
as

:::::::
G2014),

:::
we

:::::::::
normalized

:::
the

:::::
errors

:::::::::
following

::::::::
Appendix

::
C

::
of

::::::::
NL2010.

:::::
Figure

:::
A1

::::::
shows

:::
the

::::::::::
dependence

:::
of

::::
error

::::::
norms

:::
on

:::
the

:::::::::
horizontal

::::::::
resolution

:::::
when

:::
the

::::::::
Gaussian

:::::
hills

::::
were

:::::
given

:::
as

:::
the

:::::
initial

::::::::
condition

::
of

:::
the

::::::
tracer.

:::::::
Because

:::
of

:::
the

::::::::
infinitely

::::::
smooth

::::::
profile,

:::
we

::::::::
obtained

::::::::::
𝑝 + 1-order

:::::::
accuracy

:::
for

:::::::::
𝑝 = 1,3,7,

::::
and

:::
11.

:::
The

::::::::
behavior

::
of

:::::::::
numerical

::::::::::
convergence

::::
and

:::
the

:::::::::
magnitude

::
of

:::::
errors

:::::
were

::::::::::
comparable

::
to

:::::
those

::
in

::::::
G2014

::::
(see

:::
the

::::::
values

::
of

::
𝑙1,

:::
𝑙2,

::
𝑙∞:::

for
::::::::
"Gauss.”

::::
with

:::
the

::::::::::::
hyperviscosity

::::
(but

:::::::
without

:::
the

::::::
limiter)

:::
in

:::::
Tables

::::
1-4

:::
and

::::
Fig.

:
4
:::

of
:::::::
G2014).

::
In

:::
our

:::::::
results,830

::
the

::::
𝐿inf:::::

error
:::
was

::::::
larger

::::
than

:::
the

::::
unity

:::
for

::::::
𝑝 = 11

::
in

:::
the

:::::::
coarsest

::::::
spatial

:::::::::
resolution.

:::::
This

::::::
reflects

:
a
:::::::::
numerical

:::::::::
instability

::::
with

::
the

:::::::
aliasing

::::::
errors

::::
near

:::
the

:::::
static

:::::::::
stagnation

::::
point

:::
of

:::
the

::::::::::
deformation

:::::
flow.

::
It

:::::::
occurred

:::::
when

:::
the

:::::
static

:::::::::
stagnation

:::::
point

::::
was

::::::
located

::
at

:::
the

:::::::
element

:::::::::
boundaries

::::
and

::::::::
numerical

:::::::::
dissipation

::::
was

:::
not

:::::::::
sufficient.

:::
By

:::::::::
introducing

::
a
::::
very

:::::
weak

:::::
modal

:::::
filter

::::
with

::::::::::::::
𝛼𝑚,ℎ = 2.5× 10−2

::::
and

:::::::::
𝑝𝑚,ℎ = 64,

:::
we

:::
can

::::::
control

:::
the

:::::::::
numerical

::::::::
instability

::
as

::::::
shown

::
by

:::
the

:::::
green

::::::
dashed

::::
line

::
in

:::::::
Fig. A1.

:::::
Figure

:::
A2

::::::
shows

:::
the

::::::::::
dependence

::
of

:::::
error

:::::
norms

:::
on

:::
the

:::::::::
horizontal

::::::::
resolution

:::::
when

:::
the

::::::
slotted

::::::::
cylinders

::::
were

:::::
given

:::
as

:::
the835

:::::
initial

:::::
tracer

::::::
profile.

:::::::
Because

:::
of

:::
the

:::
𝐶0

:::::::::::
discontinuous

:::::
field,

:::
we

::::::
cannot

:::::
expect

:::
the

:::::::::::
convergence

:::
rate

::::::
higher

::::
than

:::
the

:::::::::
first-order

:::::::
accuracy.

:::::
Even

:::::
when

:::::
using

:::
the

::::
high

::::::::::
polynomial

::::::
orders

:::::
𝑝 > 3,

:::
we

::::::::
obtained

::
at

::::
most

:::
the

::::
first

:::::
order

:::
for

:::
the

:::
𝐿1 ::::

error
:::::
norm.

::::
For
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Figure A1.
:::::::::
Dependence

::
of

::
(a)

:::
𝐿1,

:::
(b)

:::
𝐿2,

:::
and

::
(c)

::::
𝐿inf:::::

errors
:
at
:::::
𝑡 = 12

::::
days

::
on

:::
the

::::::::
horizontal

::::::::
resolution

::
in

::
the

::::
Case

::
4
::
in

::::::
NL2010

::::
with

:::
the

:::::::
Gaussian

:::
hills

:::::
using

::::
𝑝 = 1,

::
3,

::
7,

:::
and

:::
11.

:::
The

::::
green

::::::
dashed

:::
line

::::::::
represents

::
the

::::
case

::
of

:::::::
applying

:
a
:::::
modal

::::
filter

::
for

::::::
𝑝 = 11.
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Figure A2.
:::::::::
Dependence

::
of

::
(a)

:::
𝐿1,

:::
(b)

:::
𝐿2,

:::
and

::
(c)

::::
𝐿inf:::::

errors
:
at
:::::
𝑡 = 12

::::
days

::
on

:::
the

::::::::
horizontal

::::::::
resolution

::
in

::
the

::::
Case

::
4
::
in

::::::
NL2010

::::
with

:::
the

:::::
slotted

:::::::
cylinders

::::
using

:::::
𝑝 = 1,

::
3,

::
7,

:::
and

::
11.

::::
The

:::::
dashed

::::
lines

::::::::
represents

::
the

::::
cases

::
of
:::::::
applying

:
a
:::::
modal

::::
filter

:::
for

:::::::
𝑝 = 7,11.
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Table 5. Summary of the polynomial order 𝑝, the number of elements, and the resulting equatorial resolution Δℎ,eq in the numerical experi-

ments. For the number of elements, we denote the number of horizontally one-dimensional elements on a panel of the cubed-sphere as 𝑁𝑒,ℎ

and the number of vertical elements as 𝑁𝑒,𝑣 .

Test case 𝑝 (𝑁𝑒,ℎ, 𝑁𝑒,𝑣) Δℎ,eq

Linear advection

1 (16,−), (32,−), (64,−), (128,−) 313, 156, 78, 39 km

3 (8,−), (16,−), (32,−), (64,−) 313, 156, 78, 39 km

7 (4,−), (8,−), (16,−), (32,−) 313, 156, 78, 39 km

11 (2,−), (4,−), (8,−), (16,−) 417, 208, 104, 52 km

Internal gravity wave

1 (16,12), (32,24), (64,48), (128,96) 313, 156, 78, 39 km

3 (8,6), (16,12), (32,24), (64,48) 313, 156, 78, 39 km

7 (4,3), (8,6), (16,12), (32,24), (64,48) 313, 156, 78, 39 km

11 (3,2), (6,4), (12,8) 278, 139, 69 km

Mountain wave

3 (24,12), (48,20), (96,36) 625, 313, 156 m

7 (12,6), (24,12), (48,20), (96,36) 625, 313, 156, 78 m

11 (8,5), (16,8), (32,14) 625, 313, 156 m

Baroclinic wave

3 (10,8), (20,8), (40,8), (80,8) 250, 125, 63, 31 km

7 (5,4), (10,4), (20,4), (40,4), (80,4) 250, 125, 63, 31, 16 km

11 (3,3), (6,3), (12,3), (24,3) 278, 139, 69, 35 km

Held–Suarez test

3 (12,8), (24,16), (48,32) 208, 104, 52 km

7 (6,4), (12,8), (24,16), (48,32) 208, 104, 52, 26 km

11 (4,3), (8,6), (16,12) 208, 104, 52 km

Global LES in a small planet

3 (128,64) 10 m

4 (100,52) 11 m

7 (64,32), (12,8), (24,16), (48,32) 10 m

::
the

::::
𝐿inf:::::

error,
:::
the

::::::::::
convergence

::::
rate

:::
was

::::
near

:::
the

::::
zero

:::::
order.

::::
The

:::::::
behavior

::
of

::::
slow

:::::::::
numerical

::::::::::
convergence

::::
and

:::
the

:::::::::
magnitude

::
of

::::::::
numerical

:::::
errors

:::::
were

::::::
similar

::
to

:::::
those

:::::::
reported

::
in

::::::
G2014

::::
(see

:::
the

::::
error

::::::
norms

::
for

::::::
“Cyl.”

::::
with

:::
the

::::::::::::
hyperviscosity

::::
(but

:::::::
without

::
the

:::::::
limiter)

::
in

:::::
Tables

:::
1-4

:::
of

:::::::
G2014).

::
As

::::
seen

::
in

:::
the

::::::::
Gaussian

::::
hills

::::
case,

:::
due

::
to

:::
the

::::::::
numerical

:::::::::
instability

::::
near

::
the

:::::
static

:::::::::
stagnation840

:::::
point,

:::
we

:::::::
observed

:::::
very

::::
large

::::
𝐿inf ::::

error
::::::

values
:::
for

:::
the

:::::
cases

::
of

::::::::
𝑝 = 7,11

::::
with

:::
the

::::::
coarse

::::::
spatial

:::::::::
resolution.

::::
The

:::::
modal

:::::
filter

::::
used

::
for

:::
the

::::::::
Gaussian

::::
hills

::::
case

:::
can

::::::::
suppress

:::
the

::::::::
numerical

:::::::::
instability

::
as

::::::
shown

::
by

:::
the

::::::
dashed

::::
lines

::
in
:::::::
Fig. A2.

:

Appendix B: Additional information for mountain wave test

In this section, we detail the spin-up strategy and sponge layer, which were used in the mountain wave test described in

Sect. 3.3. In addition, we consider some reasons why the obtained convergence rate is
:::
was

:
slightly less than the optimal order845

accuracy.
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Table 6. Summary of dissipation mechanism in the numerical experiments. In the table, ⃝ means it is included, while − means it is not

included. For the modal filtering in the mountain wave, baroclinic wave, and Held–Suarez tests, “scale-selective” means a high-order filter

with 𝑝𝑚 ≥ 8 and “strong” means a large decay coefficient of 𝛼𝑚 ≥ O(1). The parameters of the filters are detailed in Tables 7, 8, and 9.

Test case
Implicit diffusion Explicit diffusion Turbulence parameterization

with Rusanov flux with modal filtering

Linear advection ⃝ − −

Impact of modal filters
⃝ 𝑝𝑚,ℎ = 64,32,16,8 and 𝛼𝑚,ℎ = 10−3,10−1,101 −

in linear advection

Internal gravity wave ⃝ − −
Mountain wave ⃝ scale-selective, weak (see Table. 7) −

Baroclinic wave
⃝ scale-selective, weak for 𝑝 = 3, −

scale-selective, strong for 𝑝 = 7,11 (see Table. 8)

Held–Suarez test
⃝ scale-selective, weak for 𝑝 = 3, −

scale-selective, strong for 𝑝 = 7,11 (see Table. 9)

Global LES in a small planet ⃝ 𝑝𝑚,ℎ = 𝑝𝑚,𝑣 = 32, 𝛼𝑚,ℎ = 𝛼𝑚,𝑣 = 10−3 ⃝

Table 7. Modal filter orders and decay coefficients used in the mountain wave test.

𝑝𝑚,ℎ, 𝑝𝑚,𝑣 𝛼𝑚,ℎ, 𝛼𝑚,𝑣

𝑝 = 3 32 1.0× 10−2

𝑝 = 7 (Δℎ,eq = 625 m) 64 1.0× 10−2

𝑝 = 7 (Δℎ,eq = 313,156,78 m) 64 5.0× 10−3

𝑝 = 11 (Δℎ,eq = 625 m) 64 1.0× 10−2

𝑝 = 11 (Δℎ,eq = 313 m) 64 7.5× 10−2

𝑝 = 11 (Δℎ,eq = 156 m) 64 5.0× 10−3

Table 8. Modal filter orders and decay coefficients used in the baroclinic instability test. Because the vertical resolution was fixed when

increasing the horizontal resolution, the decay coefficient for the vertical filter 𝛼𝑚,𝑣 was reduced in proportion to the timestep.

𝑝𝑚,ℎ 𝛼𝑚,ℎ 𝑝𝑚,𝑣 𝛼𝑚,𝑣 (for Δℎ,eq = 250 km)

𝑝 = 3 16 2.0× 10−1 12 8.0× 10−1

𝑝 = 7 16 2.0× 100 16 1.2× 100

𝑝 = 11 24 1.6× 101 24 1.6× 101
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Table 9. Modal filter orders and decay coefficients used in the Held–Suarez test after 250-days spin-up experiments. Note that we temporarily

increased 𝛼𝑚,ℎ to 6.0× 100 for 20 days during the 1000-day integration for the case of Δℎ,eq = 26 km using 𝑝 = 7.

𝑝𝑚,ℎ 𝛼𝑚,ℎ 𝑝𝑚,𝑣 𝛼𝑚,𝑣

𝑝 = 3 8 1.0× 10−1 8 5.0× 10−2

𝑝 = 7 (Δℎ,eq = 208,104 km) 16 4.0× 100 16 4.0× 100

𝑝 = 7 (Δℎ,eq = 52,26∗ km) 16 5.0× 100 16 5.0× 100

𝑝 = 11 16 4.0× 100 16 4.0× 100

B1 Spin-up strategy

To mitigate the influence of impulsive start on numerical solutions, we gradually accelerated the wind as performed in previ-

ous studies with regional experimental setup
::::::::::::::::::::::::::::::::::::
(e.g., Durran, 1986; Sachsperger et al., 2016). The initial condition is

:::
was a rest

isothermal atmosphere and is
:::
was represented as850

𝑢 𝜉 = 0, 𝑢𝜁 = 0, 𝑢𝜂 = 0,

𝑝 = 𝑃0 exp
(
− 𝑔𝑧

𝑅𝑇0

)
, (B1)

𝜌 =
𝑃0
𝑅𝑇0

exp
(
− 𝑔𝑧

𝑅𝑇0

)
,

where 𝑃0 = 105 Pa and𝑇0 = 300 K. To accelerate a zonal wind, we added the relaxation terms in the right-hand side of governing

equations as855

𝜕
√
𝐺𝜌′

𝜕𝑡
= · · · −𝛼 𝑓

√
𝐺𝜌′,

𝜕
√
𝐺𝜌𝑢 𝜉

𝜕𝑡
= · · · −𝛼 𝑓

√
𝐺

(
𝜌𝑢 𝜉 − 𝜌𝑈 𝜉

)
,

𝜕
√
𝐺𝜌𝑢𝜂

𝜕𝑡
= · · · −𝛼 𝑓

√
𝐺 (𝜌𝑢𝜂 − 𝜌𝑈𝜂) , (B2)

𝜕
√
𝐺𝜌𝑢𝜁

𝜕𝑡
= · · · −𝛼 𝑓

√
𝐺

(
𝜌𝑢𝜁 − 𝜌𝑈𝜁

)
,

𝜕
√
𝐺 (𝜌𝜃)′
𝜕𝑡

= · · · −𝛼 𝑓

√
𝐺 (𝜌𝜃)′,860

where (𝑈 𝜉 ,𝑈𝜂 ,𝑈𝜁 ) are the vector components of prescribed wind and 𝛼 𝑓 is a time-dependent coefficient with Rayleigh

forcing terms,
::::::
which

:
is
::::::::
provided

::
in

:::
this

:::::::::
subsection. Note that we set the hydrostatic balance part of pressure and density as

𝑝hyd = 𝑃0 exp
(
−
𝑢eq

2𝑅𝑇0
sin2 𝜃 − 𝑔𝑧

𝑅𝑇0

)
, 𝜌hyd =

𝑝hyd

𝑅𝑇0
,

𝑝hyd = 𝑃0 exp
(
−
𝑢eq

2𝑅𝑇0
sin2 𝜙− 𝑔𝑧

𝑅𝑇0

)
, 𝜌hyd =

𝑝hyd

𝑅𝑇0
,

:::::::::::::::::::::::::::::::::::::::::

(B3)865
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which satisfies a dynamically balanced state associated with a zonal wind in solid rotation, 𝑢eq cos𝜃
:::::::
𝑢eq cos𝜙. Then, the pertur-

bation at the initial time is given by 𝑝′ = 𝑝 − 𝑝hyd, 𝜌′ = 𝜌 − 𝜌hyd.

As the horizontal component of prescribed wind, we consider
:::::::::
considered

:
a zonal wind in solid body rotation where 𝑢eq = 20

m s−1. The corresponding (𝑈 𝜉 ,𝑈𝜂) can be calculated by considering the coordinate conversion between the cubed-sphere

and geographic coordinates. To improve the inconsistency with no-flux boundary condition at the surface, we add the vertical870

component
:::
was

::::::
added in the form of

𝑈𝜁 = −
√
𝐺𝑣 (𝐺13

𝑣 𝑈
𝜉 +𝐺23

𝑣 𝑈
𝜂) exp

(
− 𝜁

𝐻 𝑓

)
,

𝑈𝜁 = −
√
𝐺𝑣 (𝐺13

𝑣 𝑈
𝜉 +𝐺23

𝑣 𝑈
𝜂) exp

(
− 𝜁

𝐻 𝑓

)
,

::::::::::::::::::::::::::::::::::

(B4)

where 𝐻 𝑓 was set to 2 km in this study. This modification also reduces the influence of initial shock. On the other hand, the875

coefficient with the forcing terms is
:::
was

:
given as 𝛼 𝑓 (𝑡) = 𝑤(𝑡)𝜏−1

𝑓
, where

𝑤= 1 for 0 ≤ 𝑡 ≤ 𝑡1,

𝑤=
1
2

[
1− cos

(
𝜋
𝑡 − 𝑡1
𝑡2 − 𝑡1

)]
for 𝑡1 ≤ 𝑡 ≤ 𝑡2,

𝑤= 0 for 𝑡 ≥ 𝑡2,
880

𝑤
:
= 1
::::

for
::

0 ≤ 𝑡 ≤ 𝑡1,
:::::::::

𝑤
:
=

1
2

[
1− cos

(
𝜋
𝑡 − 𝑡1
𝑡2 − 𝑡1

)]
:::::::::::::::::::::

for
::

𝑡1 ≤ 𝑡 ≤ 𝑡2,
:::::::::

(B5)

𝑤
:
= 0
::::

for
::

𝑡 ≥ 𝑡2,
::::::

and 𝜏 𝑓 is the forcing time scale. In this study, these parameters were set as 𝜏 𝑓 = 60 s, 𝑡1 = 200 s, and 𝑡2 = 1800 s.

B2 Sponge layer885

To suppress a reflection of waves at the model top, we introduced a sponge layer at upper computational domain. In addition,

to reduce the disruption of our targeting structure of mountain wave due to the global propagation of initial shocks, a lateral

sponge layer was placedon the 1/4 sector of the sphere. As in Eq. (B2), linear damping terms were added to the governing

equations as follows:

𝜕
√
𝐺𝜌′

𝜕𝑡
= · · · −𝛼𝑠

√
𝐺𝜌′,890

𝜕
√
𝐺𝜌𝑢 𝜉

𝜕𝑡
= · · · −𝛼𝑠

√
𝐺

(
𝜌𝑢 𝜉 −𝑈 𝜉

)
,
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𝜕
√
𝐺𝜌𝑢𝜂

𝜕𝑡
= · · · −𝛼𝑠

√
𝐺 (𝜌𝑢𝜂 − 𝜌𝑈𝜂) , (B6)

𝜕
√
𝐺𝜌𝑢𝜁

𝜕𝑡
= · · · −𝛼𝑠

√
𝐺

(
𝜌𝑢𝜁 − 𝜌𝑈𝜁

)
,

𝜕
√
𝐺 (𝜌𝜃)′
𝜕𝑡

= · · · −𝛼𝑠
√
𝐺 (𝜌𝜃)′.

The decay coefficient is
:::
was

:
given as 𝛼𝑠 = (1−𝑤(𝑡)) (𝛼𝑠,ℎ +𝛼𝑠,𝑣) where 𝛼𝑠,ℎ and 𝛼𝑠,𝑣 are the coefficients for lateral and upper895

sponge layers, respectively. To avoid the sponge layer interfering with the initial forcing in Eq. (B2), as the initial forcing

weakens,
::
we

::::::::
gradually

::::::::
activated the sponge layer is gradually activated using the coefficient (1−𝑤(𝑡)). The coefficient for the

upper sponge layer is
:::
was given as

𝛼𝑠,𝑣 =
𝜏−1
𝑠,𝑣

2

{
1
2

[
1+ tanh

(
𝑧 − (𝑧𝑇 + 𝑧sp)/2
𝛿sp,𝑣 (𝑧𝑇 − 𝑧sp)

)]}
,

900

𝛼𝑠,𝑣 =
𝜏−1
𝑠,𝑣

2

{
1
2

[
1+ tanh

(
𝑧 − (𝑧𝑇 + 𝑧sp)/2
𝛿sp,𝑣 (𝑧𝑇 − 𝑧sp)

)]}
,

::::::::::::::::::::::::::::::::::::

(B7)

whereas, for the lateral sponge layer,

𝛼𝑠,ℎ=
𝜏−1
𝑠,ℎ

2

{[
1− tanh

(
𝜆− 𝜋/4
𝛿sp,ℎ𝜋/2

)]
+

[
1+ tanh

(
𝜆− 7𝜋/4
𝛿sp,ℎ𝜋/2

)]}
·1
2

[
1+ tanh

(
|𝜃 | − 𝜋/3
8𝜋/180

)]
,

905

𝛼𝑠,ℎ =
𝜏−1
𝑠,ℎ

2

{[
1− tanh

(
𝜆− 𝜋/4
𝛿sp,ℎ𝜋/2

)]
+

[
1+ tanh

(
𝜆− 7𝜋/4
𝛿sp,ℎ𝜋/2

)]}
· 1

2

[
1+ tanh

(
|𝜙 | − 𝜋/3
8𝜋/180

)]
,

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(B8)

where 𝑧𝑇 is the height of model top, and 𝜏𝑠,𝑣 and 𝜏𝑠,ℎ are the decay time scales corresponding to the upper and lateral sponge

layers. Note that the coefficient for the lateral sponge layer is multiplied by a tapering function in the latitudinal direction to

avoid an infinite zonal scale near the poles, as performed in Eq. (48). In this study, we set 𝑧sp = 15 km, 𝛿sp,𝑣 = 𝛿sp,ℎ = 0.16, and

𝜏𝑠,𝑣 = 𝜏𝑠,ℎ = 100 s.910

B3 Investigation of degrading Investigation on the degradation of the optimal numerical convergence

Figure 6indicates that
::
In

::::::
Fig. 6, the convergence rate obtained from the mountain test case is

:::
was slightly smaller than

:::
that

:::::::
achieved

:::
for

:
𝑝 + 1-order accuracy. We consider the reasons behind this result to be as follows;

:
. First, to evaluate the differ-

entials with the Jacobian cofactors (
√
𝐺𝑣𝐺

13
𝑣 and

√
𝐺𝑣𝐺

23
𝑣 ), we used same discretization operator, as described in Sect. 2.3.

This strategy is beneficial to simply satisfy the geometric conservation law identity in the discretized equations. However,915

because the calculated geometric factors have the order 𝑝, it is possible to degrade the optimal convergence. Figures B1 (a),
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Figure B1. After 2 hours in a mountain wave test case with global model, spatial distribution of (a) 𝐿2 error norm and (b) local convergence

rate for the vertical wind at the equator. For the 𝐿2 errornorm, we show the result obtained from the experiment where the effective horizontal

and vertical grid spacing (Δeff,ℎ,Δeff,𝑣 :::::
Δℎ,Δ𝑣) are set to 156 m and 125 m, respectively, using 𝑝 = 3. The cell color in the figure corresponds

to the average values within the finite element. When evaluating the local convergence rate, we used the element average of 𝐿2 error

norm obtained from two experiments: a coarse resolution experiment (Δeff,ℎ = 625
:::::::
Δℎ = 625 m, Δeff,𝑣 = 500

:::::::
Δ𝑣 = 500 m) and the highest

resolution experiment for 𝑝 = 3 (Δeff,ℎ = 156
:::::::
Δℎ = 156

:
m, Δeff,𝑣 = 125

:::::::
Δ𝑣 = 125

:
m). To see the large-scale structure of local convergence

rate, moving average was taken across the five elements horizontally. In each figure, the white lines represent the vertical wind in the highest

resolution experiment for 𝑝 = 3.

(b) show the spatial distribution of numerical errors for vertical wind and the local convergence rate, respectively, for 𝑝 = 3.

The numerical error is
:::
was

:
large near the surface where the mountain exists. Furthermore, the relatively slow convergence rate

appears
:::::::
appeared. The rate near the surface is

:::
was

:
between two and three, while it approaches

:::::::::
approached

:
the value of four

at locations apart from the surface. Second, the modal filter can reduce the convergence rate during the long-term temporal920

integrations even if we adopted a high-order modal filter with a relatively small decay coefficient.

To increase the certainty of our speculations, we conducted additional numerical experiments. To simplify the investigations

and save the computational resources, we treated the corresponding two-dimensional experimental setup. With respect to the

Jacobian cofactors, we considered two cases: (i) the case where it is numerically given by using the same discretization operator

mentioned in Sect. 2.3, and (ii) the case when it is given by analytically evaluating the spatial derivatives at the node. In addition,925

to discuss the impact of modal filters on the convergence rate, we consider
:::::::::
considered the case of no modal filter for 𝑝 = 3

because we found that the 2-hours temporal integration without filters can be somehow performed only for 𝑝 = 3. As performed

with the global model case, we conduct a series of
:::::::::
conducted

::::::
several numerical experiments changing the spatial resolutions

and polynomial orders. To evaluate the error norms, we used the results from the reference experiments with 𝑝 = 7, where

Δeff,ℎ = 78 m and Δeff,𝑣 = 62.5
::::::::
horizontal

:::
and

:::::::
vertical

:::
grid

:::::::
spacing

::::
were

:::::::
Δℎ = 78

::
m

:::
and

:::::::::
Δ𝑣 = 62.5 m (𝑧 < 15 km),

::::::::::
respectively.930

Figures B2(a), (b) show the spatial distribution of numerical errors for vertical wind and the local convergence rate obtained

from the two-dimensional experiments with 𝑝 = 3. As shown in the global experiment (see Fig. B1), the convergence rate near

the mountain achieves
:::::::
achieved

:
only the third-order accuracy in the cases of numerically calculated Jacobian cofactor. On the
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Figure B2. After 2 hours in a two-dimensional
::::::::::::
two-dimensional

:
mountain wave test case, spatial distribution of (a) 𝐿2 error norm and (b)

local convergence rate for the vertical wind in the cases of numerically calculated Jacobian cofactor (upper panels) and analytical Jacobian

cofactor (lower panels) for 𝑝 = 3. In the 𝐿2 errornorm, we show the results obtained from the experiments with Δeff,ℎ = 156
:::::::
Δℎ = 156 m

and Δeff,𝑣 = 125
:::::::
Δ𝑣 = 125 m. When evaluating the local convergence rare

:::
rate, we used the results obtained from two experiments: a coarse

resolution experiment (Δeff,ℎ = 312
::::::
Δℎ = 312

:
m, Δeff,𝑣 = 250

:::::::
Δ𝑣 = 250 m) and the highest resolution experiment for 𝑝 = 3 (Δeff,ℎ = 39

::::::
Δℎ = 39 m, Δeff,𝑣 = 31.25

::::::::
Δ𝑣 = 31.25

:
m). In each figure, the white lines represent the vertical wind in the reference experiment.

other hand, when the analytical Jacobian cofactor is
:::
was

:
used, the numerical errors near the mountain decrease

::::::::
decreased

:
and

the convergence rate reaches to about
:::::::::
approached

:::
the fourth-order accuracy. Thus, we confirm that the calculation strategy of935

Jacobian cofactor is one of
::
the

:
reasons for sub-optimal convergence.

Figure B3 shows that the dependence of 𝐿1, 𝐿2, and 𝐿inf errors on the spatial resolution. First, we focus on the results

with 𝑝 = 3. When the metric cofactors are
::::
were analytically evaluated and the modal filter is

:::
was

:
not used, the fourth-order

accuracy is
:::
was

:
observed except for the density. In case of numerically calculated Jacobian cofactor, the convergence rate

of 𝐿2 and 𝐿inf errors are
::::
were

:
characterized by the sub-optimal order because the Jacobian cofactors have only 𝑝th-order940

accuracy, as mentioned above. Such behavior is
::::
was observed for horizontal wind, vertical wind, and the perturbation of

potential temperature weighted density based on the comparison between (i) and (ii) cases. On the other hand,
:
as

::::::::
indicated

:::
by

the blue and cyan linesindicate that
:
, the order reduction with the modal filters is

:::
was

:
obvious for the horizontal wind, while for

other variables, there is
:::
was

:
little influence. This may be because the filters act on not only the perturbation part of horizontal

wind but also on the mean flow part. For higher order cases (𝑝 = 7,11), the filters are unavoidable for ensuring numerical945

49



(a) Density (ρ’)

(b) Horizontal wind (uξ)

O3

O4 O4

O6
O4

O
12

O
12

O
7

O3

O
12

O
7O
8

O3

O
12 O
8

O4

O3

O
12 O
8

O4

O3

O
9

O4
O3

O
12
O
9

O6

O
10O
10

O
9

O
8

O
8

O
7

Case of numerically calculated Jacobian cofactor

O3

O4 O4

O6
O4

O
12

O
12

O
7

O3

O
12

O
7O
8

O3

O
10 O

10

O
9

O
8

O
8

O
12 O
8

O4

O3

O
12 O
8

O4

O3

O
9

O4
O3

O
12
O
9

O6

O
7

Case of analytical Jacobian cofactor

(a) Density (ρ’)

(b) Horizontal wind (uξ)

O2 O2
O2

O2
O2O2

O2 O2
O2 O2 O2

O2

(c) Vertical wind (w)

(d) Density x Potential temperature ((ρθ)’)

O
9

O4 O4 O4

O
12

O
12 O

8

O
12

O
9 O
8

O6O
8

O
12

O
8

O4

O
12

O
8

O4 O4

O
12

O
8

O
7

O
10O

9

O
12

O
7

O4

O
12

O
7

O4 O4

O
12

O
7O
10

O3 O3

O2

O4

O4

O4

O
12

O
12

O
9 O
8

O6O
8

O
7

O3

O3

(c) Vertical wind (w)

(d) Density x Potential temperature ((ρθ)’)

O
12

O2
O2

O2 O2 O2

O2

O2 O2O2O2O2

Figure B3. Dependence of 𝐿1, 𝐿2, and 𝐿inf errors on spatial resolution for (a) density perturbation (𝜌′), (b) horizontal wind (𝑢 𝜉 ), (c)

vertical wind (𝑤), and (d) perturbation of potential temperature weighted density ((𝜌𝜃)′) after 2 hours in a mountain wave test case with the

two-dimensional experimental setup
::::::::::::
two-dimensional

::::::::::
experimental

::::
setup. Note that the cyan lines represent the results for the case 𝑝 = 3

without the modal filter (MFoff).
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stability in classical DGM. Then, the convergence rate can be limited by the modal filters, and the analytical Jacobian cofactor

would have little impact. Even for the case (ii), 𝐿2 and 𝐿inf errors of horizontal and vertical wind have
:::
had

:
the convergence

rate slightly less than the optimal order. As for the density, note that the third-order accuracy is
:::
was

:
obtained for 𝑝 = 3 even

when using the analytical Jacobian cofactor and removing the modal filter. It remains unclear why the density error does not

decrease in the optimal order. We may need to pursue how to discretely deal with the hydrostatic balance (e.g., Li and Xing,950

2018) and investigate the boundary errors with no-normal flux condition near the surface.

Appendix C:
:::::::
Vertical

::::
grid

:::::::::
stretching

::
in

:::
the

:::::::::
baroclinic

:::::
wave

:::
and

::::::::::::
Held–Suarez

::::
tests

::
In

:::
the

::::::::
baroclinic

:::::
wave

::::
and

:::::::::::
Held–Suarez

::::
tests,

::
a
:::::::
function

:::::
form

:::
for

::::::::
stretching

:::
the

:::::::
vertical

:::::::
element

::::
size

::
is

::::::
similar

::::
with

::::
that

::
in

::::::::::::::::::::::::::
Ullrich and Jablonowski (2012b)

:
.
:::
We

:::::::::
calculated

:::
the

::::::
vertical

:::::::::
coordinate

::
𝜁

:
at
:::
the

:::
top

:::::::
element

::::::::
boundary

:::
of

::::
𝑘 ′-th

:::::::
element

::
as

𝜁𝑘′+ 1
2
= 𝑧𝑇

1
√
𝑏 + 1− 1


√︄
𝑏

(
𝑘 ′

𝑁𝑒,𝑣

)2
+ 1− 1


::::::::::::::::::::::::::::::::::

(C1)955

:::::
where

:
𝑏
::
is
:
a
:::::::
positive

:::::::::
parameter

:::
and

::::
𝑁𝑒,𝑧::

is
:::
the

::::::
number

::
of

::::::::
elements

::
in

:::
the

::::::
vertical

::::::::
direction.

:::
As

:
𝑏
:::::::::
decreases,

:::
the

::::::
vertical

:::::::
element

:::
size

::::
near

:::
the

::::::
surface

:::::::
reduces

::::::::
compared

::
to

:::
the

:::::
upper

::::::
domain

:::
of

:::
the

:::::
model.

::::
We

::
set

::::::
𝑏 = 20

:::
for

::::::
𝑝 = 3,7

::::
and

::::
𝑏 = 5

:::
for

::::::
𝑝 = 11

::
in

:::
the

::::::::
baroclinic

:::::
wave

:::
test,

:::::
while

:::::
𝑏 = 3

:::
for

::::::
𝑝 = 3,7

::::
and

:::::
𝑏 = 5

::
for

::::::
𝑝 = 11

::
in

:::
the

:::::::::::
Held-Suarez

:::
test.

:

Appendix D: The effect of not using shallow atmosphere approximation on global PBL turbulence experiment

In Sect. 3.6, we showed the results of PBL turbulence experiment with shallow atmosphere approximation. By applying this960

approximation, the obtained results become comparable with those reported in KT2021 and KT2023 which used the plane

regional model. However, because the planetary radius is set to be 3.4 km, this approximation is not suitable for discussing

physical aspects such as the impact of sphere geometry on the convective cells. This section shows the results when the shallow

atmosphere approximation is not applied.

Figures D1 and D2 show the horizontal distributions of convective cells and vertical structure of PBL when the shallow965

atmosphere approximation is not applied. In Fig. D2, all results with the shallow atmosphere approximation are represented by

the gray shade. An open cell pattern with the characteristic horizontal scale of a few kilometers is
:::
was

:
observed irrespective of

whether we apply the shallow atmosphere approximation. On the other hand, the winds become
::::::
became weaker and the PBL

is
:::
was shallower compared to that in the shallow atmosphere approximation. We consider that such changes are consistent with

the effect of spherical geometry because horizontal area increases with the altitude.970

Figure D3 shows the energy spectra when the shallow atmosphere approximation is not applied. The major features
::::::
feature

of energy spectra in the inertia subrange (such as inertial
:::::::
subrange

::::::::
remained

::::::
mostly

::::::::::
unchanged.

:::
For

::::::::
example,

:
the wavelength

range obeyed -5/3 power law and the relation of effective resolution with polynomial order), remain mostly unchanged.
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(a) (b)

NH SH

(c)

Without shallow atmosphere approximation

[m s-1]

Figure D1. Same as Fig. 13, but these results were obtained without shallow atmosphere approximation. The horizontal distribution for

vertical wind at 𝑧 = 500 m after 𝑡 = 4 hours: (a) Northern hemisphere (NH), (b) Southern hemisphere (SH), and (c) the corresponding cross-

sections along the equator.

(a) (b)

(c) (d)

Potential temperature [K]

Variance of vertical wind [m2 s-2] Skewness of vertical wind

Heat flux [W m-2]

Figure D2. Same as Fig. 14, but figures show the vertical structure of PBL temporally averaged during the last 30 minutes without shallow

atmosphere approximation: (a) potential temperature, (b) resolved eddy heat flux plus SGS heat flux, (c) variance of vertical wind,
::

and
:
(d)

skewness of vertical wind. In these panels, the blue, red, and yellow lines represent the results for 𝑝 = 3,4, and 7, respectively. We indicate

the corresponding results with the shallow atmosphere approximation, shown in Fig. 14, by the gray shade.
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[kg m-3・m2 s-2]

(a) (c)

(b)

~8Δh,eq ~2Δh,eq

Spherical harmonic degree (n) Spherical harmonic degree (n)

E(n) ~4Δh,eq~8Δh,eq ~2Δh,eq~4Δh,eq

-5/3

-5/3

Figure D3. Same as Fig. 15, but figures show the results without shallow atmosphere approximation: (a) Density-weighted energy spectra

𝐸 (𝑛) of three-dimensional wind at a height of 500 m for 𝑝 = 3,4, and 7. The dash-dotted gray line represents 𝑎𝐸 (𝑛) where 𝑎 = 8.0× 101.

(b) Compensated spectra 𝐸 (𝑛)/(𝑎𝑛−
5
3 )

:::::
Spectra

:::::::::
normalized

::
by

:::
the

::::
result

:::
of

::::
𝑝 = 7. (c) Partial expanded view of energy spectra in the short

wavelength range.
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Sachsperger, J., Serafin, S., and Grubišić, V.: Dynamics of rotor formation in uniformly stratified two-dimensional flow over a mountain,

Quarterly Journal of the Royal Meteorological Society, 142, 1201–1212, https://doi.org/https://doi.org/10.1002/qj.2746, 2016.1100

Sadourny, R.: Conservative Finite-Difference Approximations of the Primitive Equations on Quasi-Uniform Spherical Grids, Monthly

Weather Review, 100, 136 – 144, https://doi.org/10.1175/1520-0493(1972)100<0136:CFAOTP>2.3.CO;2, 1972.

Satoh, M., Tomita, H., Yashiro, H., Miura, H., Kodama, C., Seiki, T., Noda, A. T., Yamada, Y., Goto, D., Sawada, M., et al.: The

Non-hydrostatic Icosahedral Atmospheric Model: Description and development, Progress in Earth and Planetary Science, 1, 18,

https://doi.org/10.1186/s40645-014-0018-1, 2014.1105

Satoh, M., Stevens, B., Judt, F., Khairoutdinov, M., Lin, S.-J., Putman, W. M., and Düben, P.: Global Cloud-Resolving Models, Current

Climate Change Reports, 5, 172–184, https://doi.org/10.1007/s40641-019-00131-0, 2019.

Schär, C., Leuenberger, D., Fuhrer, O., Lüthi, D., and Girard, C.: A New Terrain-Following Vertical Coordinate Formulation for Atmospheric

Prediction Models, Monthly Weather Review, 130, 2459 – 2480, https://doi.org/10.1175/1520-0493(2002)130<2459:ANTFVC>2.0.CO;2,

2002.1110

Skamarock, W. C., Klemp, J. B., Duda, M. G., Fowler, L. D., Park, S.-H., and Ringler, T. D.: A Multiscale Nonhydrostatic Atmospheric Model

Using Centroidal Voronoi Tesselations and C-Grid Staggering, Monthly Weather Review, 140, 3090–3105, https://doi.org/10.1175/MWR-

D-11-00215.1, 2012.

Smagorinsky, J.: General circulation experiments with the primitive equations: I. The basic experiment, Monthly Weather Review, 91, 99–

164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2, 1963.1115

Souza, A. N., He, J., Bischoff, T., Waruszewski, M., Novak, L., Barra, V., Gibson, T., Sridhar, A., Kandala, S., Byrne, S., Wilcox, L. C., Koz-

don, J., Giraldo, F. X., Knoth, O., Marshall, J., Ferrari, R., and Schneider, T.: The Flux–Differencing Discontinuous Galerkin Method

Applied to an Idealized Fully Compressible Nonhydrostatic Dry Atmosphere, Journal of Advances in Modeling Earth Systems, 15,

e2022MS003 527, https://doi.org/10.1029/2022MS003527, 2023.

Sridhar, A., Tissaoui, Y., Marras, S., Shen, Z., Kawczynski, C., Byrne, S., Pamnany, K., Waruszewski, M., Gibson, T. H., Kozdon, J. E.,1120

Churavy, V., Wilcox, L. C., Giraldo, F. X., and Schneider, T.: Large-eddy simulations with ClimateMachine v0.2.0: a new open-source

code for atmospheric simulations on GPUs and CPUs, Geoscientific Model Development, 15, 6259–6284, https://doi.org/10.5194/gmd-

15-6259-2022, 2022.

Taylor, M. A., Guba, O., Steyer, A., Ullrich, P. A., Hall, D. M., and Eldred, C.: An Energy Consistent Discretization of

the Nonhydrostatic Equations in Primitive Variables, Journal of Advances in Modeling Earth Systems, 12, e2019MS001 783,1125

https://doi.org/https://doi.org/10.1029/2019MS001783, 2020.

Tolstykh, M., Shashkin, V., Fadeev, R., and Goyman, G.: Vorticity-divergence semi-Lagrangian global atmospheric model SL-AV20: dynam-

ical core, Geoscientific Model Development, 10, 1961–1983, https://doi.org/10.5194/gmd-10-1961-2017, 2017.

Tomita, H. and Satoh, M.: A new dynamical framework of nonhydrostatic global model using the icosahedral grid, Fluid Dynamics Research,

34, 357–400, https://doi.org/10.1016/j.fluiddyn.2004.03.003, 2004.1130

Ullrich, P. and Jablonowski, C.: Operator-Split Runge–Kutta–Rosenbrock Methods for Nonhydrostatic Atmospheric Models, Monthly

Weather Review, 140, 1257 – 1284, https://doi.org/10.1175/MWR-D-10-05073.1, 2012a.

58

https://doi.org/10.1006/jcph.1996.0047
https://doi.org/10.1016/0041-5553(62)90062-9
https://doi.org/https://doi.org/10.1002/qj.2746
https://doi.org/10.1175/1520-0493(1972)100%3C0136:CFAOTP%3E2.3.CO;2
https://doi.org/10.1186/s40645-014-0018-1
https://doi.org/10.1007/s40641-019-00131-0
https://doi.org/10.1175/1520-0493(2002)130%3C2459:ANTFVC%3E2.0.CO;2
https://doi.org/10.1175/MWR-D-11-00215.1
https://doi.org/10.1175/MWR-D-11-00215.1
https://doi.org/10.1175/MWR-D-11-00215.1
https://doi.org/10.1175/1520-0493(1963)091%3C0099:GCEWTP%3E2.3.CO;2
https://doi.org/10.1029/2022MS003527
https://doi.org/10.5194/gmd-15-6259-2022
https://doi.org/10.5194/gmd-15-6259-2022
https://doi.org/10.5194/gmd-15-6259-2022
https://doi.org/https://doi.org/10.1029/2019MS001783
https://doi.org/10.5194/gmd-10-1961-2017
https://doi.org/10.1016/j.fluiddyn.2004.03.003
https://doi.org/10.1175/MWR-D-10-05073.1


Ullrich, P. A.: A global finite-element shallow-water model supporting continuous and discontinuous elements, Geoscientific Model Devel-

opment, 7, 3017–3035, https://doi.org/10.5194/gmd-7-3017-2014, 2014.

Ullrich, P. A. and Jablonowski, C.: MCore: A non-hydrostatic atmospheric dynamical core utilizing high-order finite-volume methods,1135

Journal of Computational Physics, 231, 5078 – 5108, https://doi.org/10.1016/j.jcp.2012.04.024, 2012b.

Ullrich, P. A., Jablonowski, C., and Van Leer, B.: High-order finite-volume methods for the shallow-water equations on the sphere, Journal

of Computational Physics, 229, 6104–6134, https://doi.org/https://doi.org/10.1016/j.jcp.2010.04.044, 2010.

Ullrich, P. A., Jablonowski, C., Kent, J., Lauritzen, P. H., Nair, R. D., and Taylor, M. A.: Dynamical core model intercomparison project

(DCMIP) test case document, DCMIP Summer School, 83, https://api.semanticscholar.org/CorpusID:197412504, 2012.1140

Wan, H., Giorgetta, M. A., and Bonaventura, L.: Ensemble Held–Suarez Test with a Spectral Transform Model: Variability, Sensitivity, and

Convergence, Monthly Weather Review, 136, 1075 – 1092, https://doi.org/10.1175/2007MWR2044.1, 2008.

Wan, H., Giorgetta, M. A., Zängl, G., Restelli, M., Majewski, D., Bonaventura, L., Fröhlich, K., Reinert, D., Rípodas, P., Kornblueh, L.,

and Förstner, J.: The ICON-1.2 hydrostatic atmospheric dynamical core on triangular grids – Part 1: Formulation and performance of the

baseline version, Geoscientific Model Development, 6, 735–763, https://doi.org/10.5194/gmd-6-735-2013, 2013.1145

Williamson, D. L., Drake, J. B., Hack, J. J., Jakob, R., and Swarztrauber, P. N.: A standard test set for numerical approximations to the shallow

water equations in spherical geometry, Journal of Computational Physics, 102, 211–224, https://doi.org/10.1016/S0021-9991(05)80016-6,

1992.

Winters, A. R., Moura, R. C., Mengaldo, G., Gassner, G. J., Walch, S., Peiro, J., and Sherwin, S. J.: A comparative study on polynomial

dealiasing and split form discontinuous Galerkin schemes for under-resolved turbulence computations, Journal of Computational Physics,1150

372, 1–21, https://doi.org/10.1016/j.jcp.2018.06.016, 2018.

Yi, T.-H. and Giraldo, F. X.: Vertical Discretization for a Nonhydrostatic Atmospheric Model Based on High-Order Spectral Elements,

Monthly Weather Review, 148, 415 – 436, https://doi.org/10.1175/MWR-D-18-0283.1, 2020.

Zängl, G.: Extending the Numerical Stability Limit of Terrain-Following Coordinate Models over Steep Slopes, Monthly Weather Review,

140, 3722–3733, https://doi.org/10.1175/MWR-D-12-00049.1, 2012.1155

Zängl, G., Reinert, D., Rípodas, P., and Baldauf, M.: The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and

MPI-M: Description of the non-hydrostatic dynamical core, Quarterly Journal of the Royal Meteorological Society, 141, 563–579,

https://doi.org/10.1002/qj.2378, 2015.

Zaron, E. D., Chua, B. S., Reinecke, P. A., Michalakes, J., Doyle, J. D., and Xu, L.: The Tangent-Linear and Adjoint Models of the NEPTUNE

Dynamical Core, Tellus A: Dynamic Meteorology and Oceanography, https://doi.org/10.16993/tellusa.146, 2022.1160

59

https://doi.org/10.5194/gmd-7-3017-2014
https://doi.org/10.1016/j.jcp.2012.04.024
https://doi.org/https://doi.org/10.1016/j.jcp.2010.04.044
https://api.semanticscholar.org/CorpusID:197412504
https://doi.org/10.1175/2007MWR2044.1
https://doi.org/10.5194/gmd-6-735-2013
https://doi.org/10.1016/S0021-9991(05)80016-6
https://doi.org/10.1016/j.jcp.2018.06.016
https://doi.org/10.1175/MWR-D-18-0283.1
https://doi.org/10.1175/MWR-D-12-00049.1
https://doi.org/10.1002/qj.2378
https://doi.org/10.16993/tellusa.146

