
Response to reviewer 3 (egusphere-2024-1477 manuscript) 

Thank you for your careful review. We appreciate your thoughtful comments to improve our 
paper. We copied your comments in the blue text and have provided our responses in the black 
text. We have revised the manuscript according to your suggestions. Our point-by-point responses 
to the reviewer’s comments are provided below. We hope that these improvements satisfactorily 
address the issues pointed out by you.  

General comments 

1. The authors make the claim that for global LES modeling (100km grid spacing), high-order 
DG methods will be important in this context. I dont object to this argument (and dont request 
any changes), but I will mention that I dont find the arguments persuasive.  If the arguments are 
correct, I think DG methods would be more common in regional models, which often run in the 
LES regime. 
 We agree that currently there are less studies of atmospheric LES using DGM. This may be 
because the numerical behavior was not well investigated in the LES regime. However, recent 
studies (Sridhar et al., 2022; Kawai and Tomita, 2023; Souza et al., 2024) indicate the possibility 
of DG dynamical cores to the atmospheric LES. Furthermore, in the CFD community, DGM 
seems to be regarded as a promising method for turbulent simulations using explicit and implicit 
LES in terms of high-order accuracy, flexibility of complex geometry, and scalability of parallel 
computations. These features would be benefit for the future high-resolution atmospheric 
simulations with O(10-100 m) grid spacing where the complex structure of small-scale 
topography need to be treated. Thus, we expect that global dynamical cores based on the high-
order element-based method will become more common in the LES regime. 
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2. One issue not address in this paper is the timestep. DG methods with the values of p proposed 
here will be quite expensive.  A good comparison showing how expensive high order DG can be 
compared to finite volumes is given in Brdar et al, https://doi.org/10.1007/s00162-012-0264-z 
which compares the DG based DUNE model with the finite volume (operational weather forecast 
model), COSMO. See also my comment below in the conclusions about numerical efficiency.   
 Thank you for informing us about an important work, Bardar et al. (2011), who discussed the 
computational time to reach a given error tolerance for DG and conventional FV dynamical cores, 
the DUNE and the COSMO. First, please notice that the temporal scheme is quite different 
between the two dynamical cores. DUNE adopted a fully explicit Runge-Kutta (RK) method for 
the inviscid terms. On the other hand, the COSMO adopted a sophisticated time-splitting approach 
in which the slow processes are integrated with an explicit RK method, while the fast processes 
are integrated with a small timestep horizontally by a forward-backward scheme and vertically 
by an implicit Crank-Nicholson scheme. Thus, it is difficult to directly evaluate the computational 
overhead due to the timestep restriction with DGM. (We would like to emphasize that, as 
described in the conclusion of Bardar et al. (2011), the different treatment of temporal scheme 
was not the focus in their experiments. We think that their comparison of the behavior of 
numerical convergence between the two dynamical cores is very valuable.)  
 On the other hand, it is well known that the timestep restriction with the explicit Runge-Kutta 
DGM is more severe compared to that in the grid-point methods (e.g., Cockburn and Shu, 2001). 
When we use a polynomial order p for the spatial discretization, an approximate allowable 
timestep for an explicit p+1 stage RK method with p+1 order is given in the form  
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where p is the polynomial order, he is the element size, λmax is the maximum eigenvalue of 
Jacobian matrix with the advection terms. This means that we need to set the time step for the 
DGM such that it is approximately smaller by a factor of 1/2 compared to the grid-point methods 
with an approximately same DOF, as you have pointed out. However, it is possible that the 
computational overhead can be ignored in several situations: i) the spatial errors for high-order 
DGM rapidly reach to a given error tolerance due to the fast numerical convergence compared to 
conventional low-order methods with totally second-order accuracy. By using a coarser grid, we 
can significantly reduce the computational cost in three-dimensional problems. Bardar et al. 
(2011) also pointed out such situation. ii) In massively parallel computations, we consider the 
situation where there is little DOF per computational node. For conventional high-order grid point 
methods, the communication of halo data can occupy most of the execution time.  



 To accelerate DG dynamical cores in other situations discussed above, we agree that relaxing 
the severe timestep restriction with DG is an important topic. In fact, previous studies have 
attempted to extend the allowable timestep, for example, by optimizing the stability region of RK 
methods (e.g., Jahdali et al., 2022) or by using co-volume grids (Warburton, 2008). However, we 
would like to leave it as a future work. 
 Based on your comment, we have mentioned the issue of the timestep restriction in lines 673-
677 of the revised manuscript as  
“Furthermore, a severe timestep restriction for explicit temporal schemes is one of the unsolved 
issues in high-order DGM. We expect that the computational overheads would be ignored in 
several cases; A coarser spatial resolution can be used due to the high-order numerical 
convergence or the small communication cost in DGM is taken advantage of. However, to 
accelerate DG dynamical cores in all situations, developing sophisticated temporal treatments is 
an important future work.”  
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3.  While reading the text, it was clear that the authors use different settings (timestepping, 
filtering, and Smagorinsky diffusion) for the different test cases.   This can be good practice 
during the development process in order to test specific characteristics of the dycore.  But it is 
also useful to present results with the dycore configured as it would be used in practice. As the 
authors mention in their conclusions, they have not yet run the model with realistic topography 
(which is well known to create a lot of problems with high order element methods), and thus the 
"operational" configuration of SCALE-DG, especially with regards to how much 
filtering/diffusion will ultimately be needed, may not be known. One suggestion would be to also 
include all test results with the same configuration used for the planetary boundary layer 
turbulence test.  If the authors consider that beyond the scope of this paper, I would request to 



add a table summarizing all the settings used for each test. 
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Fig. R1: Impact of the order pm and the coefficient αm in the modal filter on the numerical 

convergence in a linear advection test: (a) pm=64, (b) pm=32, (c) pm=16, and (d) pm=8. In each pm, 

we changed αm as 0 (without the filter), 10-3, 10-1, and 101. Please note that the results for αm=0 are 

identical to those obtained for φ0=0 in Fig. 1 of our paper.  



We agree that a series of numerical experiments using the turbulent model will provide useful 
information about numerical and physical dissipation mechanisms necessary for operational runs 
wherein the realistic topography is included. But we would like to leave comprehensive numerical 
experiments as a future work.  
Instead, in a linear advection test, we discussed how much the strength of modal filter can 

degrade high-order numerical convergence in Sect. 3.1 of the revised manuscript. Fig. R1 shows 
the impact of order pm and the decay coefficient αm in the modal filter on the numerical 
convergence. Based on these results, when the scale-selective strong modal filters which 
immediately remove two-grid scale structure, it is possible to decrease the original convergence 
rate by 1~3 for p=7, 11. For p=3, although the degradation of convergence rate appears less 
obvious, the errors without the modal filter were much larger. Thus, for p=3, the effect of the 
increased error due to the filter may be more pronounced in the representation of the flow fields. 
It is difficult to determine filter levels required for numerical stability in realistic simulations a 
priori because they depend on various factors including nonlinearity, spatial resolution, turbulence 
parametrization, and smoothing of topography. However, we expect that the information about 
the sensitivity of filters is useful for readers who want to be careful about how much the strong 
filters can contaminate the quality of flow fields represented by high-order dynamical cores.  
In addition, we have summarized all settings of the dissipation mechanism for each test case in 

Table. 6 of the revised manuscript.  
 

Specific comments: 
 
4. line 36: (or line 55) "... some researchers have successfully developed global nonhydrostatic 
atmospheric dynamical cores based… element-based methods". The authors mention some 
research codes, but neglect recent and larger efforts using high-order element based methods from 
major modeling centers.  These include E3SM: ( Caldwell et al., JAMES 2021 e2021MS002544, 
Donahue et al, JAMES 2024 e2024MS004314 ), the Korean KIM model (Hong et al, 2018, 
https://link.springer.com/article/10.1007/s13143-018-0028-9), and NRL's NEPTUNE 
NEPTUNE Model, Kelly et al, 2024, https://arxiv.org/abs/2405.06076. 
 Thank you very much for informing us that we missed several important works with global 
nonhydrostatic dynamical cores based on the element-based method. In the introduction, we 
should refer to HOMME-NH and a spectral-element nonhydrostatic dynamical core in Korean 
Integrated Model. Based on other reviewer’s comment, we have mentioned NUMA in the revised 
manuscript. Thus, we would like to referred to NEPTUNE which utilizes and extends the 
numerical methods prototyped in NUMA.  
In lines 68-75 of the revised manuscript, we have added new statements as 

https://arxiv.org/abs/2405.06076


“In the Nonhydrostatic Unified Model of the Atmosphere (NUMA; Kelly and Giraldo, 2012; 
Giraldo et al., 2013), which is applicable for both limited-area and global atmospheric simulations, 
the continuous and discontinuous Galerkin methods are adopted for the spatial discretization. The 
numeric prototyped in the NUMA is utilized and extended to a global spectral-element dynamical 
core in the Navy Environmental Prediction System Utilizing a Nonhydrostatic Engine 
(NEPTUNE) for both horizontal and vertical discretization (e.g., Zaron et al., 2022). SEM is also 
used for the nonhydrostatic High Order Method Modeling Environment (HOMME-NH; Dennis 
et al., 2005, 2012; Taylor et al., 2020) included in the Energy Exascale Earth System Model 
(E3SM), and for the nonhydrostatic dynamical core in the Korean Integrated Model (KIM) system 
(Hong et al., 2018).” 
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5. line 75:  "Few such studies for global nonhydrostatic dynamical cores are available although 
the numerical convergence characteristics of DGM was investigated for regional dynamical 
core..." For the citations of regional DG dynamical cores, the authors should also cite: Brdar et al, 
https://doi.org/10.1007/s00162-012-0264-z. This part of the introduction focuses only on three 
dimensional models, and gives the impression there is limited work on DG for global atmospheric 
modeling.  There are quite a few papers looking at DG on the cubed-sphere grid for the shallow 
water equations, such as Nair MWR 2005, Ullrich GMD 2014, and the very recent entropy stable 
formulations: Ricardo et al, 2024,  
https://www.sciencedirect.com/science/article/pii/S0021999124000123. I also think that the 
NUMA model from Giraldo et al. (cited in this text for their regional configuration) has a global 
version that runs both DG and CG, but I dont have a reference for that. A key model that needs to 
be mentioned is NEPTUNE, which is a global high order element based method that uses CG and 
DG, making it quite 
similar to SCALE-DG.  NEPTUNE is one of the few models I know that is using 3D higher order 
elements (as proposed here). (See NEPTUNE references in Kelly et al, 2024, 
https://arxiv.org/abs/2405.06076) 
 Thank you for your suggestion. As a previous study that investigated the numerical convergence 
with DGM in regional nonhydrostatic dynamical cores, we have added Bardar et al. (2013) in line 
115 of the revised manuscript.  
 
 To mention previous studies with the element-based methods for the global shallow water 
equations, we have cited Nair (2005, MWR) and Ullrich (2014, GMD) in lines 64-66 of the 
revised manuscript as  
 “…developed global nonhydrostatic dynamical core based on high-order grid point and element-
based methods. The essence of the numerical methods can be found in the horizontal 
discretization of the global shallow water equations; For example, Ullrich et al. (2010) for a high-
order finite volume method (FVM), while Nair et al. (2005a) and Ullrich (2014) for high-order 
element-based methods.” 
In addition, we have cited Ricardo et al. (2024) in lines 79-80 of the revised manuscript as 
“A similar method was successfully applied to a global shallow water model in Ricardo et al. 
(2024) and to a global nonhydrostatic dynamical core…” 
  
We have added a new statement referring to NUMA in lines 68-71 of the revised manuscript as 

“In the Nonhydrostatic Unified Model of the Atmosphere (NUMA; Kelly and Giraldo, 2012; 
Giraldo et al., 2013), which is applicable for both limited-area and global atmospheric simulations, 
…” 

https://doi.org/10.1007/s00162-012-0264-z
https://www.sciencedirect.com/science/article/pii/S0021999124000123


 As for NEPTUNE, we have mentioned it in lines 70-73 of the revised manuscript as 
“The numerical method prototype used in NUMA is utilized and extended to a global spectral-
element dynamical core in the Navy Environmental Prediction System Utilizing a Nonhydrostatic 
Engine (NEPTUNE) for both horizontal and vertical discretization (e.g., Zaron et al., 2022).” 
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6.  line 84: "However, they did not consider the vector Laplacian operator for the vector quantities 
(for 85 example, momentum). This might be because the rigorous form of vector Laplacian is so 
complex that it may not be worth the computational cost required numerical stabilization." The 
authors should note that vector viscosity for both DG and CG was developed in: Ullrich 2014, 
https://gmd.copernicus.org/articles/7/3017/2014/gmd-7-3017-2014.pdf as well (for CG) in Guba 
et al., https://gmd.copernicus.org/articles/7/2803/2014/gmd-7-2803-2014.pdf 
 Thank you very much for informing us about the references with vector Laplacian operator in 
the element-based methods. We agree with you that the two papers should be mentioned.  

In lines 96-100 of the revised manuscript, we have added new statements as 
“On the other hand, Ullrich (2014) presented a discretization strategy for the vector Laplacian 
operator with the continuous and discontinuous Galerkin methods. This approach can distinguish 
the divergence damping and vorticity damping with constant viscous coefficients. Guba et al. 
(2014) proposed a strategy of hyperviscosity with variable viscous coefficients in SEM where the 
vector Laplacian operator acts on the Cartesian component of the vector fields. For our purpose 
of introducing the turbulent model, ...” 
 
[References] 
• Guba, O., Taylor, M. A., Ullrich, P. A., Overfelt, J. R., & Levy, M. N. (2014). The spectral element 
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method (SEM) on variable-resolution grids: Evaluating grid sensitivity and resolution-aware 

numerical viscosity. Geoscientific Model Development, 7(6), 2803-2816.  

https://doi.org/10.5194/gmd-7-2803-2014 

 
7. line 470 " In addition, the effective resolution is apparently higher than that of the low-order 
global dynamical core." See my general comment above. The authors are running different 
dissipation/fiter settings for each test case.  As the authors mention, SCALE-DG needs stronger 
filtering when running more realistic test cases presented later.  It is also very likely that even 
more dissipation will be needed when realistic topography is added.  For the baroclinic instability 
test case, (as well as Held-Suarez) models are recommend to run with their operational diffusion 
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Fig. R2: Impact of the decay coefficient αm of modal filter with pm=16 on the surface pressure [hPa] 

at day 9 in the baroclinic wave test changed αm as 102, 101, and 100. This figure focused on the results 

whereΔh,eq=250, 125 km using p=7. For the comparison, we presented the results obtained from the 

FV dynamical core shown in Fig. 6 of Jablonowski and Williamson (2006) at the top panels. The 

lowest panels show our result obtained from Δh,eq=31 km using p=7 as a reference solution. 

 



settings, which is the case for the FV results.  Thus, I would qualify this statement, and note that 
this might be due to the SCALE-DG's high order discretization, but it could also be due to using 
filtering levels that would not be practical in realistic problems. 
 We would like to inform you that high-order modal filters with large decay coefficients such as 
pm,h=16 andαm,h=O(1) for p=7 were used in the baroclinic wave and the Held-Suarez tests where 
small-scale flow structures develop. For the filtering levels, the flow structures at the short 
wavelength range near two grid scale are immediately dissipated after one timestep in HEVI 
temporal scheme. The total numerical dissipation of upwind numerical flux and modal filter near 
two grid scales is never weaker than the inherent numerical diffusion with the monotonic third-
order piecewise parabolic method in the FV dynamical core or the explicit hyperdiffusion in the 
GME shown in Jablonowski and Williamson (2006).  
 
 To check the sensitivity of modal filter, we conducted additional experiments of the baroclinic 

wave test where the decay coefficient in the modal filters changed asαm,h=100, 101, 102 while pm 
was fixed to 16. Figure R2 shows the impact of the decay coefficient on the surface pressure at day 

9. Based on Figs. R2(a)-(c), the development of low pressure systems weakened as the decay 

coefficient increased in the coarsest resolution of Δh,eq=250 km. For the case ofαm,h=102, the 
extent of numerical dissipation was comparable to that in the FV dynamical core. However, as 
shown Figs. R2(e)-(h), the sensitivity of decay coefficient in the modal filter was not significant 
for the amplitude and phase of high- and low-pressure systems with the increase in the spatial 
resolution. This is because we adopted the scale-selective filter with pm=16. 

 
 It is unclear that how much we need to strengthen the filtering level to treat realistic steep terrain 
in high-order DGM. It must depend on how much the topography is coarsened compared to the 
inherent effective resolution with DGM. As a preliminary investigation, we recently conducted a 
Held-Suarez test with the realistic topography smoothed by approximately 4 grid lengths. Based 
on the numerical experiments, a stable long integration seems to be maintained if the decay 
coefficients of filterαm,h used in the baroclinic wave and the original Held-Suarez test increase 
by a few factors of 2~4. If we assume the required decay coefficient is at mostαm,h=O(10) for 
pm=16 when introducing the realistic topography, we expect such filter level will not fully change 
high-order DG solutions into low-order solutions based on Fig. R2. 
 
As a future work, we need to further investigate how the strength of modal filters used in realistic 

atmospheric simulations (with complex surface geometry and the forcing of physics processes) 
can contaminate the quality of numerical solutions with the high-order DGM. Thank you for your 
comment. 



 
9. line 567: "and high computational efficiency in recent parallel supercomputers, over grid-point 
methods." I doubt this statement is true - given the small timestep required by high order DG (see 
comment above).  One might be able to make the case that the methods achieve higher FLOP 
counts, but most people would interpret computationally efficiency in terms of time-to-solution. 
 As mentioned in our reply to Comment 2, if the same DOF and temporal method are used, 
allowable timesteps for the DGM would be shorter by a factor of 2 compared to the grid-point 
methods. The overhead would be low in several situations where we can utilize the advantage of 
DGM associated with the high-order numerical convergence or small communication cost in 
massively parallel computers. In this case, to reach a given error tolerance, the time-to-solution 
for the DGM can be shorter than the conventional grid-point methods. However, we need to 
further investigate whether this holds true for various situations. Therefore, following your 
suggestion, we determined to describe a high FLOPS count in the DGM here. In line 630 of the 
revised manuscript, we have modified the statement as  
“… the high floating-point operations per second (FLOPS) count in recent parallel 
supercomputers, over …”  
 
10. Terminology: The authors use the phrase ""eight grids" and "10~20 grids" several times.  It's 
clear what they mean, but this is an unusual phrasing and I think technically incorrect because 
they are referring to the grid spacing or grid cell width, not the grid itself. I'd suggest changing to 
$8 ¥Delta x$. 
 Thank you for suggesting an improvement of our terminology. We understood that the term 
“grids” is incorrect because what we would like to mean here is the wavelength corresponding to 
the several grid spacing. In the revised manuscript, we have determined to use “grid length” based 
on an advice of other reviewer.  


