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Abstract 9 

Accurately modelling optical snow properties like snow albedo and specific surface 10 

area (SSA) are essential for monitoring the cryosphere in a changing climate and are 11 

parameters that inform hydrologic and climate models. These snow surface properties can be 12 

modelled from spaceborne imaging spectroscopy measurements but rely on Digital Elevation 13 

Models (DEMs) of relatively coarse spatial scales (e.g. Copernicus at 30 m), which degrade 14 

accuracy due to errors in derived products – such as slope and aspect. In addition, snow 15 

deposition and redistribution can change the apparent topography and thereby static DEMs 16 

may not be considered coincident with the imaging spectroscopy dataset. Testing in three 17 

different snow climates (tundra, maritime, alpine), we established a new method that 18 

simultaneously solves snow, atmospheric, and terrain parameters, enabling a solution that is 19 
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more unified across sensors and introduces fewer sources of uncertainty. We leveraged 20 

imaging spectroscopy data from AVIRIS-NG and PRISMA (collected within 1 hour) to 21 

validate this method and showed a 25% increase in performance for the radiance-based 22 

method over the static method when estimating SSA. This concept can be implemented in 23 

missions such as Surface Biology and Geology (SBG), Environmental Mapping and Analysis 24 

Program (EnMap), and Copernicus Hyperspectral Imaging Mission for the Environment 25 

(CHIME).  26 

 27 

Key Words: Imaging Spectroscopy, Snow Properties, Topography, Snow Albedo 28 

 29 

1 Introduction 30 

Accurately mapping snow surface properties is essential for seasonal snow zones in a 31 

changing climate especially in regions where seasonal snowpack is expected to change 32 

dramatically in the coming decades (Siirila-Woodburn et al., 2021). For example, snow 33 

albedo plays a crucial role in melting of the snowpack during the ablation season (Wang et 34 

al., 2020) with changes in snow albedo directly affecting the amount of absorbed solar 35 

radiation, and therefore the amount of snow that is melted off. Throughout the winter season, 36 

snow albedo fluctuates due in part to grain size (Seidel et al., 2016) and light absorbing 37 

particles (Kaspari et al., 2015; McKenzie, 2020; Schmale et al., 2017; Skiles & Painter, 38 
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2017). With a limited number of in situ snow stations around the globe, and the snow surface 39 

constantly undergoing metamorphism across space and time, satellite imagery represents the 40 

best potential for spatially and temporally complete mapping of snow properties. Accurately 41 

retrieving snow albedo and other snow surface properties from satellite imagery is 42 

paramount, especially in a rapidly changing climate (Malmros et al., 2018). 43 

Retrieval of snow properties from satellite remote sensing relies on Digital Elevation 44 

Models (DEMs) to correct for local terrain effects (Bair et al., 2021; Bair et al., 2022; Dozier 45 

et al., 2022). In a previous study, researchers found global DEM products to have “blunders 46 

and errors” when compared to airborne lidar, particularly in derived slope and aspect which 47 

cause severe errors in calculated cosine of local solar illumination angles (𝜇!) (Dozier et al., 48 

2022). They found errors in 𝜇! ranging from 0.048 to 0.117 (dimensionless) across several 49 

sites for Copernicus global DEMs caused by errors in slope and aspect. The 𝜇! term is a 50 

function (Eq. 1) of slope angle (S), slope azimuth angle or aspect (A), solar zenith angle (𝜃"), 51 

and solar azimuth angle (𝜙")  – with the last two being well constrained: 52 

 53 

𝜇! 	= 	max[0, cos(𝜃")	cos	(𝑆) + sin(𝜃") sin(𝑆) cos(𝜙" − 𝐴)]	 (1) 54 

 55 

Because 𝜃" and 𝜙" are calculable with low errors, the biggest contribution to errors in 𝜇! 56 

stem from slope and aspect. Errors in 𝜇! increase monotonically with increasing 𝜃" (e.g., sun 57 
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setting has high 𝜃", as does solar noon in high latitude winters). This phenomenon can be 58 

explained by plotting Eq. 1 for various 𝜃" (Figure 1). Put simply, at higher 𝜃" there is a 59 

higher standard deviation in 𝜇! surrounding a known slope and aspect (with some temporally 60 

consistent uncertainty), increasing the probability and magnitude of such an error. If one were 61 

to compute standard deviations of 𝜇! across varying 𝜃", one would arrive at similar errors of 62 

𝜇! presented in Dozier et al. (2022). For clarity, in Figure 1 we have highlighted an example 63 

case with slope=25° +/- 4.73 and aspect=280° +/- 36.3. Example uncertainties for this 64 

exercise can be found in Table 2 of Dozier et al. (2022).  65 
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 66 

Figure 1. Cosine of local illumination angles (𝜇!) as a function of slope (x-axis) and aspect 67 

(y-axis) incremented by 1°, illustrating the problem at higher latitude, and/or winter 68 

acquisitions, where standard deviation (𝜎) of 𝜇! increases monotonically with solar zenith 69 

angles (𝜃"). Aspect is shown here measured clockwise from north (with north containing a 70 

discontinuity at 360 degrees). For this illustration 𝜙" is fixed at a value of 175°. The red dots 71 

represent the example point at slope=25° +/- 4.73 and aspect=280° +/- 36.3 and are bordered 72 

by their uncertainty and the resulting 𝜎. 73 
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 74 

 Recent work has shown 𝜇! can be modelled using an optimal estimation framework 75 

given the Top of Atmosphere (TOA) radiance observed from imaging spectroscopy (Carmon 76 

et al., 2023). The authors solve for surface, atmospheric, and topographic state variables 77 

simultaneously in their model. This works physically because the partition of direct to diffuse 78 

light introduces a shape and magnitude effect on the TOA radiance spectra. However, 79 

retrieving snow optical properties is sensitive to directional reflectance which is significantly 80 

influenced by the viewing geometry and surface roughness (Bair et al., 2022), leading to 81 

possible shortcomings in this method specifically for snow covered pixels. To address this 82 

and expand upon this framework, we present a new method to account for terrain in snow 83 

covered areas. Our method was tested on pixels with greater than 75% snow cover in three 84 

different snow climates (tundra, maritime, and alpine) with spaceborne imaging spectroscopy 85 

with the aim to reduce error in derived snow properties by optimally solving for topography. 86 

The spaceborne results are validated against high confidence airborne spectrometer data. This 87 

work directly contributes to snow property retrievals in steep terrain and/or at times of high 88 

solar zenith angles for satellite imaging spectroscopy missions such as Surface Biology and 89 

Geology (SBG) (Cawse-Nicholson et al., 2021), Copernicus Hyperspectral Imaging Mission 90 

for the Environment (CHIME) (Celesti et al., 2022), and EnMap (Guanter et al., 2015). 91 

 92 
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2 Methods 93 

2.1 Study area 94 

For our study, we used PRecursore IperSpettrale della Missione Applicativa 95 

(PRISMA) imagery over three sites capturing different snow climates and solar zenith angles: 96 

San Juan Mountains (Colorado, USA, 29 April 2021, 𝜃"=27°), Mount Shasta (California, 97 

USA, 28 February 2021, 𝜃"=52°), and the Toolik area (Alaska, USA, 21 March 2021, 98 

𝜃"=68°) (Figure 2). The San Juan Mountains location is considered a high alpine site located 99 

in interior continental USA with an elevation range of 2208-4129 m. The Mount Shasta site is 100 

a maritime snow climate along the western coast of USA with an elevation range of 750-4232 101 

m. The Toolik site (elevation range = 504-1748 m) is a high-latitude tundra site, being mostly 102 

flat but with steep sections along the Brooks Range (along the southern part of the image). 103 

PRISMA, launched by the Italian Space Agency (ASI) and beginning operation on March 22, 104 

2019, is a spaceborne imaging spectroscopy mission collecting radiance at 30 m spatial 105 

resolution across 239 bands spanning 400-2500 nm at a spectral resolution better than 12 nm 106 

across the visible-near and shortwave infrared (Cogliati et al., 2021).  107 

To validate our method, we used four existing Airborne Visible Infrared Imaging 108 

Spectrometer-Next Generation (AVIRIS-NG) flightlines over the San Juan Mountains from 109 

29 April 2021 (flying 1 hour after PRISMA acquisition). AVIRIS-NG collects radiance 110 

measurements at variable spatial resolution (depending on the flight altitude) across 425 111 
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bands spanning 380-2510 nm in 5nm intervals (Green et al., 2023). For this flight, data were 112 

collected at 4 m spatial resolution. We downloaded AVIRIS-NG apparent reflectance from 113 

National Snow and Ice Data Center (NSIDC) and observation geometry data from NASA 114 

Search Earth Data (Skiles & Vuyovich, 2023).  115 

 116 
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Figure 2. PRISMA true colour images for Toolik on 21 March 2021 (A), San Juan 117 

Mountains on 29 April 2021 (B), and Mount Shasta on 28 February 2021 (C). Four 118 

coincident AVIRIS-NG flightlines (F1-F4) are shown in cyan over the San Juan Mountains.  119 

 120 

2.2 Modelling surface, atmosphere, and topography from PRISMA 121 

The algorithmic improvements build off a workflow that estimates snow properties 122 

given PRISMA TOA radiance, titled Global Optical Snow properties via High-speed 123 

Algorithm using K-means (GOSHAWK) (Wilder et al., 2024). In short, our method uses the 124 

analytic asymptotic radiative transfer model (AART) (Kokhanovsky & Zege, 2004) coupled 125 

with libRadtran (Mayer & Kylling, 2005) to invert snow surface and atmospheric properties 126 

(Bohn et al., 2021; Dalcin & Fang, 2021), and fractional covers of mixed pixels under varied 127 

lighting conditions using non-linear numerical optimization (Bair et al., 2021). The 128 

parameters solved for in the optimization routine include fractional covers, specific surface 129 

area (SSA), light absorbing particle concentration (modelled as dust), liquid water 130 

percentage, dimensionless aerosol optical depth at 550nm, and columnar water vapor in the 131 

atmosphere. Here, we expand upon the algorithm considering recent work showing the 132 

capacity to estimate 𝜇! from TOA radiance (Carmon et al., 2023; Bohn et al. 2024). This idea 133 

is demonstrated in Figure 3 using fixed snow properties via AART and fixed atmosphere 134 

properties via libRadtran across the range of plausible 𝜇! (i.e. 0 to 1). Like the findings in 135 
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Carmon et al. (2023), Figure 3 shows that 𝜇! controls both the spectral shape and magnitude 136 

of observed TOA radiance with the effect varying across wavelengths. The greatest shape 137 

effect can be seen in the visible spectrum (roughly 400-700 nm) due to the magnitude of the 138 

diffuse irradiance. In combination with the magnitude and shape shift, this parameter 139 

becomes solvable during optimization due to its strong separability – especially when 140 

considering the entire spectrum data from a hyperspectral remote sensing source such as 141 

PRISMA. It is important to note that 𝜇! impacts both the AART estimation of snow 142 

reflectance and libRadtran estimation of incoming solar irradiance.   143 

 144 

 145 



11 
 

 146 

Figure 3. Synthetic data showing change in magnitude (A) and shape (B) of top of 147 

atmosphere radiance (LTOA) with respect to changing local solar illumination angle (𝜇!) for 148 

fixed snow surface state variables modelled with AART, and fixed atmospheric state 149 

variables modelled with libRadtran (viewing geometry was fixed as well). State variables and 150 

solar/view geometry were based on a PRISMA acquisition over southern Idaho on 8 151 
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December 2022. Figure (B) shows normalized radiance with respect to peak TOA radiance 152 

across wavelengths to highlight the change in shape.  153 

 154 

However, if we were only to optimize 𝜇!, the other key terms, local viewer zenith 155 

angle (𝜇#) and local phase angle (𝜉) in the AART formulation for bidirectional reflectance of 156 

snow (Eq. 2) (Kokhanovsky & Zege, 2004; Kokhanovsky et al., 2021a) would remain 157 

constant from the available DEM (i.e., 𝜇!, 𝜇# , 𝜉 are all derived from DEM),   158 

 159 

𝑟!$%&(𝜇!, 𝜇# , 𝜉, 𝜆) = 𝑟0(𝜇!, 𝜇# , 𝜉)		𝑎!$%&(𝜆)'     (2) 160 

 161 

where 𝑟0 is the reflection function of a semi-infinite non-absorbing snow layer (Tedesco & 162 

Kokhanovsky, 2007), 𝛼!$%& is the spherical albedo [plane albedo can be computed using (26) 163 

in Kokhanovsky et al. (2021a)], f is the escape function (Kokhanovsky et al., 2021a), and 164 

𝑟!$%& is the bidirectional reflectance of snow. Keeping other terms 𝜇#	𝑎𝑛𝑑	𝜉 the same are 165 

problematic because snow reflectance is poorly approximated as a non-Lambertian surface 166 

(Leroux & Fily, 1988), and the outcome will be greatly influenced by 𝜇#	𝑎𝑛𝑑	𝜉. Therefore, to 167 

incorporate solving for 𝜇!, 𝜇# , 𝑎𝑛𝑑	𝜉 from TOA radiance into the algorithm, we instead elect 168 

to optimally solve for cos(aspect) (i.e., “northness”) and sin(aspect) (i.e., “eastness”) (Table 169 

1).  170 
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 171 

Table 1.  Parameter space and initial vectors used in numerical optimization for PRISMA 172 

data.  173 

Parameter 
[unit] 

Definition Feasible 
Range 

Initial 
State 

Type 

fsnow [%] Fractional snow in the mixed pixel [0, 100] 10 Surface 

fshade [%] Fractional shade in the mixed pixel [0, 100] 20 Surface 

fLC1 [%] Fractional cover of endmember 1 (based 
on land cover value at pixel) 

[0, 100] 50 Surface 

fLC2 [%] Fractional cover of endmember 2 (based 
on land cover value at pixel) 

[0, 100] 20 Surface 

SSA [m2 kg-1] Specific surface area (SSA) [2, 156] 40 Surface 

LAP [µg g-1] Concentration of light absorbing particles, 
LAP, modelled as dust (PM-2.5). 

[0, 145] 0 Surface 

Liquid water 
[%] 

Percentage of liquid water on the snow 
surface 

[0, 50] 2 Surface 

AOD 550 [%] Dimensionless Aerosol Optical Depth 
(AOD) at 550 nm 

[1,100] 10 Atmospheric 

H2O [mm] Columnar water vapor in the atmosphere [1,50] 1 Atmospheric 

Eastness sin(aspect) [-1,1] Variable  Topographic 

Northness cos(aspect) [-1,1] Variable  Topographic 

 174 

Aspect can be solved during optimization by using the atan2 function. We chose to use this 175 

method because eastness and northness are continuously differentiable, and therefore, are 176 

suited for numerical optimization methods, whereas aspect is discontinuous at north (using 177 



14 
 

the convention of 0 and 360 degrees as north). We then can use this optimal aspect to 178 

estimate 𝜇! (Eq. 1),  𝜇#, and 𝜉.	This directly impacts Eq.2 and Eq. 5 (formulation of incoming 179 

solar energy in the model) (Picard et al., 2020), 180 

 181 

𝐸(𝜆) = 𝜓𝜇!𝐸(𝜆)()* + 𝑉+𝐸(𝜆)()''	 + CD1 +
-./(1)
3

− 𝑉+F 𝑟(𝜆)!4*'𝐸(𝜆)()''G (5) 182 

 183 

where E is total incoming irradiance, 𝜓 is binary shade or no shade, 𝐸()* and 𝐸()'' are the 184 

direct and diffuse irradiance, respectively, 𝑉+ is the sky view factor (Dozier, 2022), and 𝑟!4*' 185 

is the reflectance of nearby terrain (which is assumed to be equal to the pixel itself). The term 186 

E is solved within our non-linear numerical optimization method as described in Wilder et al. 187 

(2024). This was modelled incorrectly in Wilder et al. (2024); however, this was corrected in 188 

this paper where only diffuse irradiance is used in the 3rd term in Eq. 5. Also, adding in the 189 

two extra parameters (eastness and northness) in our updated optimization scheme did not 190 

change our run time significantly. Caution is advised against solving for slope and aspect in 191 

the inversion due to the non-unique solution space (Figure 1); however, only considering 192 

aspect ensures unique solutions of aspect, 𝜇!,  𝜇# , and 𝜉. We chose aspect because of its 193 

greater impact on determining partition of direct and diffuse illumination and has been found 194 

to be more impactful to errors associated with snow property retrieval (Donahue et al., 2023). 195 

In this study we used estimate of total ozone column as input into creating the libRadtran 196 
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look up table specific for each image. We used the average weekly ozone over the bounds of 197 

the image from Sentinel-5P NRTI O3: Near Real-Time Ozone dataset. This approach serves 198 

an improvement over Wilder et al. (2024), where ozone was fixed at 300 Dobson Units. 199 

 200 

2.3 Estimating snow properties from AVIRIS-NG for validation 201 

Due to the fine signal to noise ratio and spatial resolution of AVIRIS-NG, we treated 202 

the dataset as the ground reference. It also captured a similar spectral range to PRISMA 203 

which made it a suitable comparison dataset.  The main assumption here is that AVIRIS-NG 204 

pixels at 4 m are relatively homogenous and are either snow or no-snow – which may not 205 

always be the case. This could be a potential source of uncertainty in our analysis. To select 206 

snow-covered pixels, we solved for NDSI (Normalized Difference Snow Index) using bands 207 

at 600 nm and 1500 nm. We limited our retrieval of snow properties for NDSI greater than or 208 

equal to 0.90 (Painter et al., 2013). A common approach to retrieve snow grain size from pure 209 

snow pixels is to apply the scaled band area algorithm (Nolin & Dozier, 2000); however, it is 210 

recognized that the large presence of liquid water is a limitation. The maximum air 211 

temperature of 10.8° C on the day of the image at the San Juan Mountains site indicated that 212 

elevated liquid water at the surface was probable (Center for Snow and Avalanche Studies, 213 

2023). Additionally, reflectance spectra appeared to be shifted along the x-axis (wavelength) 214 

due to the presence of liquid water. Therefore, we used constrained non-linear numerical 215 
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optimization to model apparent snow reflectance with AART by allowing fractional snow, 216 

fractional shade, liquid water, and SSA to vary. We did not include rock or forest 217 

endmembers in this formulation, assuming the 4 m pixels are relatively homogenous as 218 

previously stated. Topographic incident angles were held constant based on the 4 m 219 

resolution DEM provided by AVIRIS-NG. We minimized Root Mean Square Error (RMSE) 220 

between observed-apparent and modelled-apparent snow reflectance from AART 221 

wavelengths in the range, 1000-1250 nm. This range has high ice absorption and limited 222 

impacts from atmospheric interference and LAP (Miller et al., 2016). The presence of liquid 223 

water was included in our analysis by means of the composite refractive index of water and 224 

ice (Donahue et al., 2022; Hale & Querry,1973; Warren & Brandt, 2008). We assumed 225 

similar grain shape assumptions for both PRISMA and AVIRIS-NG, and that if there is a bias 226 

due to this it should be consistent between the two datasets in our analysis. 227 

 228 

2.4 Comparing modelled snow properties 229 

 The algorithm was used in two different modes: 1) static topography based on the 230 

Copernicus DEM (hereon called “static”); and 2) solved topography based on the algorithm 231 

updates (hereon called “radiance”). To compare the accuracy of PRISMA derived SSA and 232 

liquid water, we resampled the AVIRIS-NG optical property results (SSA and LWC) to 233 

match the PRISMA resolution (30 m) and extents by using bilinear interpolation. Then, we 234 
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sampled all valid pixels where PRISMA and AVIRIS-NG had snow. We then computed r-235 

pearson correlation coefficient, Mean Bias, and RMSE for the radiance and static methods 236 

(with respect to AVIRIS-NG). Finally, we used Copernicus derived slope and aspect maps to 237 

determine where the largest errors were occurring on the landscape to compare with the 238 

theoretical basis presented in Figure 1. We do this by using the mean absolute difference with 239 

respect to 𝜇! . We expected to see higher differences in north facing aspects (i.e., 𝜇! 240 

approaches 0), and where 𝜃" was higher. To test the interaction with 𝜃" more fully, we 241 

extended the analysis to Mount Shasta, CA, and Toolik, Alaska, where no in situ data 242 

existed. We compared the modelled properties between the radiance and static methods to 243 

assess how these assumptions impacted results for these types of data at 30 m scale. 244 

 245 

2.5 Comparing DEM and radiance derived 𝝁𝒔 246 

 To ensure the resulting radiance derived 𝜇! were valid we downloaded the best 247 

available validation data sources for comparison. For the San Juan and Shasta sites, we 248 

collected DEM products at 1 m spatial resolution and collected 5 m spatial resolution DEM 249 

for the Toolik site (U.S. Geological Survey, 2019; U.S. Geological Survey, 2022). Then, we 250 

computed slope, aspect, solar zenith angle, and solar azimuth angle for all pixels to compute 251 

𝜇! at the native resolution (Eq. 1). Then, we used bilinear interpolation to resample the 1 m 252 

and 5 m products to 30 m to exactly match the extents and resolution of our PRISMA images. 253 
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We would like to acknowledge that while these are the best freely available datasets for our 254 

images, they still do not capture the true snow-on topography, and instead are a 255 

representation of the “snow-free” surface. We compared matching pixels to determine 256 

RMSE, R2, and Mean Bias. Pixels that were marked as shadow from ray tracing were 257 

excluded from this comparison. 258 

 259 

3 Results 260 

3.1 Validation using AVIRIS-NG data over the San Juan Mountains 261 

Over the area of the flightlines, AVIRIS-NG estimated mean SSA = 18.0 +/- 8.3 m2 kg-262 

1, PRISMA radiance method estimated mean SSA = 19.6 +/- 5.8 m2 kg-1, and PRISMA static 263 

method estimated mean SSA = 22.0 +/- 12.1 m2 kg-1. When comparing the SSA performance 264 

over each pixel to the AVIRIS-NG flightlines (Figure 4) we found the PRISMA radiance 265 

method (r=0.43; RMSD=8.0 m2 kg-1; bias=+1.7 m2 kg-1; n=36,412) performed slightly better 266 

than the static method (r=0.23; RMSD=13.6 m2 kg-1; bias=+4.0 m2 kg-1; n=36,412) for SSA.  267 
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 268 

Figure 4. Snow properties computed from AVIRIS-NG (4 m spatial resolution) on 29 April 269 

2021 including NDSI (A), SSA (B), and LWC (C) for the San Juan Mountains site. 270 

 271 

There was not a significant improvement in liquid water estimation between radiance (r=0.67; 272 

RMSD=10%; bias=-8%; n=36,412) and static (r=0.67; RMSD=10%; bias=-9%; n=36,412). 273 

Furthermore, it appeared that there was a consistent liquid water bias of 8 to 9%, hinting that 274 

more melt had occurred during the AVIRIS-NG flights. As previously noted, the temperatures 275 

were well above freezing during the overpass of AVIRIS-NG and occurred roughly 1 hour later 276 

in the day compared to the PRISMA acquisition. This most likely explains the higher liquid 277 

water and lower SSA observed by AVIRIS-NG. We further tested this by masking out areas 278 

where AVIRIS-NG liquid water content was greater than 0.1%, to establish areas where low 279 

amounts of melt occurred between the two acquisitions. We found that performance of 280 
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PRISMA static (RMSD=14.2 m2 kg-1; rRMSD=49%; n=181) and radiance (RMSD=6.9 m2 kg-281 

1; rRMSD=23%; n=181) methods were more accurate for these areas. The radiance method 282 

performed slightly better, suggesting a modest 25% improvement in accuracy for SSA over the 283 

static method when considering pixels that were less impacted by melt.  284 

Additionally, comparing all pixels we found improvement from radiance occurred 285 

mostly on steep, north facing aspects (e.g., when 𝜇! approached 0). We found the absolute 286 

residual increased as 𝜇! approached zero for the static method (r = -0.47; p<0.01), while this 287 

relationship was diminished nearly by a factor of 5 for the radiance method (r = -0.10; p<0.01) 288 

(Figure 5.A). These errors were caused by incorrect terrain information in the inversion, where 289 

inversion error increased proportionately in the static method (Figure 5.B). 290 
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 291 

Figure 5. Absolute difference in modelled SSA when compared to AVIRIS-NG for radiance 292 

method (green) and static method (pink) respect to 𝜇!  (A) and resulting RMSE from the 293 
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inversion from PRISMA with respect to 𝜇!  (B). Error in the static method increases 294 

significantly when 𝜇! approached zero (r = -0.47; p<0.01); however, the difference was less 295 

noticeable in the radiance method (r = -0.10; p<0.01). 296 

 297 

3.2 Comparing radiance and static methods between sites 298 

On average across each of the images, radiance and static methods provided similar 299 

retrieved parameters within less than one standard deviation (Table 2). In general, this means 300 

there is not a significant difference at the 30 m scale for computing parameters such as SSA 301 

and broadband albedo (BA) when considering the entire image. Interestingly when terrain is 302 

fixed, the static model compensated for incorrect illumination by increasing the aerosol optical 303 

depth (thereby reducing the amount of direct solar radiation). Investigating the errors more 304 

closely, we found much larger differences in retrieved properties where 𝜇!  approached 0 305 

(Figure 6). The difference in distributions matched closely to the theoretical demonstration 306 

(Figure 1) and is most likely associated with the standard error of slope and aspect from 307 

Copernicus DEM given the illumination conditions. This result also demonstrates the 308 

difference between the two methods had the biggest impact for images where 𝜃" was high, 309 

resulting in potentially inaccurate retrievals that impact both surface and atmospheric state 310 

variables on relatively mild slopes. 311 

 312 
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Table 2. Image-wide statistics comparing derived properties between the two methods (static 313 

vs. radiance) processing the PRISMA imagery for all three sites.  314 

Site 
PRISMA 

Method 

Mean SSA 

[m2 kg-1] 

Mean 

Broadband 

Albedo 

Mean 

Liquid 

water [%] 

Mean AOD 

at 550 nm 

Mean 

water 

column 

vapour 

[mm] 

San 

Juan 

Static 23.3 +/- 14.9 0.79 +/- 0.03 3.5 +/- 4.8 0.05 +/- 0.13 6.7 +/- 1.1 

Radiance 19.6 +/- 5.9  0.78 +/- 0.03 3.9 +/- 5.0 0.01 +/- 0.01 6.8 +/- 0.3 

Shasta 
Static 11.0 +/- 6.0 0.77 +/- 0.04 1.6 +/- 3.3 0.04 +/- 0.10 7.6 +/- 1.3 

Radiance 10.7 +/- 6.2  0.77 +/- 0.05 1.9 +/- 3.8 0.01 +/- 0.04 7.7 +/- 1.1 

Toolik 
Static 30.1 +/- 9.6 0.85 +/- 0.02 0.0 +/- 0.0 0.02 +/- 0.03 1.0 +/- 0.4 

Radiance 27.7 +/- 7.9 0.84 +/- 0.02 0.0 +/- 0.0 0.01 +/- 0.01 1.0 +/- 0.2 

 315 

 316 
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 317 

Figure 6. 2D Histogram plots showing absolute difference in SSA (left), broadband albedo 318 

(middle) and AOD (left) with respect to slope and aspect across the entire dataset. In this figure 319 

absolute difference is calculated as |Static – Radiance|. This is shown for the San Juan 320 

Mountains site (A,D,G), Shasta site (B,E,H), and Toolik site (C,F,I). The average solar zenith 321 

angle (𝜃") is shown for reference on each panel. 322 

  323 

Putting this into spatial context (Figure 7), San Juan site had 37% of pixels (135.3 km2) 324 

with an absolute difference in BA (|δBA|) >= 0.01 and 14% pixels (49.9 km2) with |δBA| >= 325 



25 
 

0.02. Shasta site had 30% of pixels (16.7 km2) with |δBA| >= 0.01 and 9% pixels (5.1 km2) 326 

with |δBA| >= 0.02. Toolik site had 40% of pixels (325.3 km2) with |δBA| >= 0.01 and 8% 327 

pixels (66.6 km2) with |δBA| >= 0.02.  328 

 329 

Figure 7. Modelled broadband snow albedo (BA) for San Juan Mountains site (A-C), Shasta 330 

Mountain site (D-F), and Toolik site (G-I). Left column represents BA from static method, 331 
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middle column represents BA from radiance method, and right column represents absolute 332 

difference in BA (|δBA|). Dark grey colour symbolizes data that is not a value. 333 

 334 

 Median |δBA| for all sites with respect to 𝝁𝒔 general increased as 𝝁𝒔 approached zero 335 

(Figure 8). For example, for the San Juan site, median |δBA| ranged from 0.03 to 0.00 across 336 

𝜇!. For the Shasta and Toolik sites, median |δBA| ranged from 0.02 to 0.00 across 𝜇!. This 337 

relation was non-linear and depended on the site and illumination conditions. This analysis 338 

demonstrates the levels of uncertainty potentially left in for retrievals relying on static, non-339 

coincident DEMs. This shows quantitatively the improvements to snow broadband albedo at 340 

30 m scale by using radiance-based approach to be relatively small for well-lit slopes – on the 341 

order 0-1%. While shaded slopes may have errors in snow broadband albedo on the order of 342 

1-3%. Interestingly for the Toolik site, |δBA| also increased as 𝝁𝒔 approached one. 343 

 344 
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 345 

Figure 8. Modelled absolute difference in broadband albedo (|δBA| = |BAStatic – BARadiance|) 346 

for San Juan (A), Shasta (B), and Toolik (C). Note these boxplots were created by rounding 347 

𝜇! to the nearest hundredth place.  348 

 349 
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3.3 Comparing DEM and radiance derived 𝝁𝒔 350 

At the 30 m pixel scale, Copernicus DEM derived 𝜇! had similar overall performance 351 

to radiance derived 𝜇! (Figure 9), with Copernicus DEM derived 𝜇! having slightly higher 352 

performance. For example, for the San Juan site, RMSD only varied by 0.006 between the 353 

two methods. Similarly, the R2 for Copernicus derived 𝜇! was 0.86, while the radiance 354 

derived 𝜇! was slightly lower at 0.83. This similar overall performance was common amongst 355 

the three sites. We found the average bias for radiance derived 𝜇! was generally closer to zero 356 

(+/- 0.01), and did not show a strong negative or positive direction. 357 

 358 
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Figure 9. Comparing 𝜇! at 30 m pixel scale derived from radiance and Copernicus against high 359 

resolution DEM for San Juan site (A,D), Shasta site (B,E), and Toolik site (C,F).  360 

 361 

4 Discussion  362 

4.1 Radiance derived DEMs may replace coincident DEMs and contain information 363 

related to surface roughness 364 

Derivative slope and aspect maps are prone to errors at 30 m spatial resolutions 365 

(Dozier et al., 2022). This is relevant for derived snow products from upcoming missions 366 

such as SBG and CHIME which will rely on topographic information to calculate optical 367 

properties like snow albedo. These errors can be inherent to the DEM itself, or a product of 368 

spatial and/or temporal misalignments (Carmon et al., 2023). Our modelled |δBA| with 369 

respect to the non-coincident DEM was similar to work by Donahue et al. (2023), who found 370 

slightly higher uncertainties of broadband albedo (ranging from -10 to 10%) for their 371 

investigation on Place Glacier, British Columbia, Canada. With the surface and roughness 372 

undergoing dramatic change on glaciers throughout a given season, using this radiance-based 373 

approach may be especially impactful for improving estimates over glaciers. 374 

Snow surface roughness has long been a challenging issue in modelling snow 375 

properties from space where the solar incidence angle at high spatial resolution for snow-on 376 

DEM is not well known (Bair et al., 2022). Previous research found radiance derived 𝜇! from 377 
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airborne imaging spectroscopy showed a negative bias and postulated this could be due to 378 

within-pixel topography, shadows, and surface roughness (Carmon et al., 2023). Since a bi-379 

directional reflectance function (BRDF) model was not used in their study, it then would be 380 

plausible for the optimal 𝜇! to compensate for these effects. Interestingly when using a BRDF 381 

model in our study (i.e., AART) and solving for aspect optimally (therefore informing 𝜇!, 𝜇#, 382 

and 𝜉) we did not find a strong bias – negative or positive. Although, we did not take surface 383 

roughness measurements, and therefore do not know to the extent this impacted our study. 384 

Within-pixel shadows, textures, and surface roughness remain difficult to validate, and we 385 

were unable to achieve this in our study. Future work interested in further understanding this 386 

radiance-based approach may investigate how such approaches interact with micro-scale 387 

topography through ground measurements such as terrestrial and airborne lidar. 388 

 389 

4.2 Next steps in possibly improving this radiance-based approach 390 

While we solved for a few terrain parameters in this study we did not entirely remove 391 

the use of the DEM from the radiance method. The elevation from global DEMs has a much 392 

higher confidence than its derivative products (Dozier et al., 2022). Therefore, we used these 393 

values to inform our atmospheric routine, as well as our shadow casting ray tracing module 394 

(Wilder et al., 2024). Additionally, we used the method presented in Dozier (2022) for 395 

estimating the sky view factor (𝑉+) based on nearby terrain and the pixel itself. This factor 396 
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could potentially be problematic but was cited as being not as impactful as 𝜇! in propagating 397 

error (Dozier et al., 2022). Therefore, we elected to use 𝑉+ derived from the static Copernicus 398 

DEM. However, this could be an area for future improvement, especially in very steep terrain 399 

where 𝑉+ becomes small. It is not advised to attempt to add 𝑉+ directly into the optimization 400 

routine presented in this study, as it is a function of pixel slope and aspect, and therefore, 401 

altering 𝑉+ and aspect together would create invalid solutions. Finally, we used a static value 402 

for slope derived from Copernicus DEM. The slope influences the 𝜇! term, but also 403 

influences the passive radiation from nearby slopes. Ultimately, we concluded that aspect had 404 

the largest impact on changing 𝜇! (Figure 1), as well as large RMSE reported in previous 405 

work (Dozier et al., 2022; Donahue et al., 2023), and thus was the focus of our study. Caution 406 

is advised in including both slope and aspect together, as non-unique solution space for 𝜇! 407 

may cause the optimization outputs to become invalid. In summary, elevation, 𝑉+, and slope 408 

remain static in our current implementation. Future work may explore other algorithmic 409 

choices to further remove, or improve, static DEM parameters. 410 

Another consideration for improving this method is the inclusion of total column 411 

ozone into the optimization. Previous research has been able to use TOA snow reflectance 412 

data to retrieve reliable estimates of ozone (Kokhanovsky et al., 2021b). In our paper, we 413 

elected for a simpler approach to first investigate the impacts of including terrain in the 414 

optimization. In this paper we input a fixed ozone for the entire image based on coincident 415 
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Sentinel-5 measurements. However, it should be stated that ozone impacts a similar spectral 416 

range to 𝜇! (Figure 10). It therefore may be beneficial to include ozone in the atmospheric 417 

lookup-table (e.g., MODTRAN, libRadtran) to enable optimization of ozone as well. This 418 

may be beneficial in building more realistic radiance-based methods.   419 

 420 

Figure 10. Synthetic data showing change in magnitude of top of atmosphere radiance (LTOA) 421 

with respect to changing total column ozone for fixed snow surface state variables modelled 422 

with AART, and other fixed atmospheric state variables modelled with libRadtran. Reference 423 

data is based on PRISMA image taken over southern Colorado. Note units of total column 424 

ozone are shown in in Dobson Units (DU). 425 

 426 
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Finally, future studies should investigate including improvements to BRDF models of 427 

snow (Mei et al., 2022). For example, recent work by Kokhanovsky et al. (2024) has 428 

proposed the use of a two-layer model which may be especially useful for vertically 429 

heterogenous snowpacks. Their method has been tested using EnMAP data and may easily be 430 

transferable to other sensors. The current AART method we used in our paper does not 431 

account for these layers, and instead assumes an optically thick, homogenous snowpack. To 432 

validate both AART, the new layered approach, and future BRDF models, snow pit (i.e., 433 

vertical profile) measurements of SSA (e.g., Meloche et al., 2023) become essential in 434 

ensuring models accurately account for diverse layering of snow.  435 

 436 

4.3 Big picture implications of the radiance-based approach 437 

This research responds to the objectives stated in “Thriving on our changing planet: A 438 

decadal strategy for Earth observation from space”, to improve biogeophysical modelling at 439 

scales driven by topography (National Academies of Science, Engineering, & Medicine, 440 

2018), enabling more accurate snow property retrievals in the cryosphere under challenging 441 

illumination conditions. Our work presented on solving terrain where DEM data are not 442 

available, or reliable, may serve to accelerate improvements to satellite remote sensing tools 443 

to monitor and model at both the regional global scale (Sturm et al., 2017), at a critical 444 

juncture in time where northern latitudes are changing fast under a warming climate. This 445 
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includes Earth’s glaciers, where radiance-based method may have the largest improvements 446 

over static approaches. Our research is complimented by other recent works which show 447 

promise in including terrain in the inversions (Bohn et al., 2024; Bohn et al., 2023; Bair et al., 448 

2024; Carmon et al., 2023) 449 

We recommend additional coincident AVIRIS-NG flights with spaceborne imaging 450 

spectroscopy datasets to further this work. As we have shown for the San Juan Mountains 451 

site, for particularly warm days, images that are separated by longer than an hour may exhibit 452 

drastically different SSA and liquid water content. As shown in this paper, this creates an 453 

issue when trying to validate improvements to retrieval algorithms.  454 

 455 

5 Conclusion 456 

 In this study we used existing PRISMA L1 TOA imagery to demonstrate the 457 

improvements in modelling snow optical properties when explicitly modelling the terrain in 458 

the inversion. This would especially be true for areas where the surface undergoes rapid 459 

change, such as glaciers. This new method is especially useful for steep mountain terrain 460 

and/or high latitudes where illumination conditions are suboptimal. The 𝜃" (solar zenith 461 

angle) was relatively low for the San Juan Mountains site in our study, and thus represents a 462 

lower bound of the improvement in accuracy one could expect. This disparity was 463 

demonstrated further for the Mount Shasta and Toolik sites when 𝜃" was larger (i.e. a greater 464 
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difference in retrieved properties due to more challenging solar and sensor geometry). Even 465 

for the relatively flat Toolik site, we showed that correctly accounting for incidence angles 466 

can impact snow properties when 𝜃" is large. Future work may look to build from this 467 

radiance-based approach to enable better quantification of snow properties at scales impacted 468 

by topography. 469 
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