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Abstract 10 

Accurately modelling optical snow properties like snow albedo and specific surface 11 

area (SSA) are essential for monitoring the cryosphere in a changing climate and are 12 

parameters that inform hydrologic and climate models. These snow surface properties can be 13 

modelled from spaceborne imaging spectroscopy measurements but rely on Digital Elevation 14 

Models (DEMs) of relatively coarse spatial scales (e.g. Copernicus at 30 m), which degrade 15 

accuracy due to errors in derived products – like such as slope and aspect. In addition, snow 16 

deposition and redistribution can change the apparent topography and thereby static DEMs 17 

may not be considered coincident with the imaging spectroscopy dataset. Testing in three 18 

different snow climates (tundra, maritime, alpine), we established a new method that 19 
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simultaneously solves snow, atmospheric, and terrain parameters, enabling a solution that is 20 

more unified across sensors and introduces fewer sources of uncertainty. We leveraged 21 

imaging spectroscopy data from AVIRIS-NG and PRISMA (collected within 1 hour) to 22 

validate this method and showed a 25% increase in performance for the radiance-based 23 

method versus usingover the static method when estimating SSA. This concept can be 24 

implemented in future missions such as Surface Biology and Geology (SBG), Environmental 25 

Mapping and Analysis Program (EnMap), and Copernicus Hyperspectral Imaging Mission 26 

for the Environment (CHIME).  27 

 28 
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 30 

1 Introduction 31 

Accurately mapping snow surface properties is essential for seasonal snow zones in a 32 

changing climate especially in regions where seasonal snowpack is expected to change 33 

dramatically in the coming decades (Siirila-Woodburn et al., 2021). For example, snow 34 

albedo plays a crucial role in melting of the snowpack during the ablation season (Wang et 35 

al., 2020) with changes in snow albedo directly affecting the amount of absorbed solar 36 

radiation, and therefore the amount of snow that is melted off as liquid water. Throughout the 37 

winter season, snow albedo fluctuates due in part to grain size (Seidel et al., 2016) and light 38 
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absorbing particles (Kaspari et al., 2015; McKenzie, 2020; Schmale et al., 2017; Skiles & 39 

Painter, 2017). With a limited number of in situ snow stations around the globe measuring 40 

surface properties, and the snow surfaces constantly undergoing metamorphism across space 41 

and time, satellite imagery represents the best potential for spatially and temporally complete 42 

mapping of snow properties. Accurately retrieving snow albedo and other snow surface 43 

properties from satellite imagery is paramount, especially in a rapidly changing climate 44 

(Malmros et al., 2018). 45 

Retrieval of snow properties from satellite remote sensing relies on Digital Elevation 46 

Models (DEMs) to correct for local terrain effects (Bair et al., 2021; Bair et al., 2022; Dozier 47 

et al., 2022). In a previous study, researchers found global DEM products to have “blunders 48 

and errors” when compared to airborne lidar, particularly in derived slope and aspect which 49 

cause severe errors in calculated cosine of local solar illumination angles (𝜇!) (Dozier et al., 50 

2022). Dozier et al. (2022)They found errors in 𝜇!  local solar illumination angles ranging  51 

from 0.048 to 0.117 (dimensionless) across several sites for Copernicus global DEMs caused 52 

by errors in slope and aspect. The cosine of the local solar illumination angle,  𝜇!, term is a 53 

function (Eq. 1) of slope angle (S), slope aspectslope azimuth angle or aspect (A), solar 54 

zenith angle (𝜃"), and solar azimuth angle (𝜙")  – with the last two being well constrained: 55 

 56 

𝜇! 	= 	max[0, cos(𝜃")	cos	(𝑆) + sin(𝜃") sin(𝑆) cos(𝜙" − 𝐴)]	 (1) 57 
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 58 

Because 𝜃" and 𝜙" are calculable with low errors (less than 0.05°), the biggest contribution to 59 

errors in 𝜇! stem from slope and aspect. Errors in 𝜇! increase monotonically with increasing 60 

𝜃" (e.g., sun setting has high 𝜃", as does solar noon in high latitude winters). This 61 

phenomenon can be explained by plotting Eq. 1 for various solar zenith angles, 𝜃" , (Figure 62 

1). Put simply, at higher 𝜃" there is a higher standard deviation in 𝜇! surrounding a known 63 

slope and aspect (with some temporally consistent uncertainty), increasing the probability and 64 

magnitude of such an error. If one were to compute standard deviations of 𝜇! across varying 65 

𝜃", one would arrive at similar errors of 𝜇! presented in Dozier et al. (2022). For clarity, in 66 

Figure 1 we have highlighted an example case with slope=25° +/- 4.73 and aspect=280° +/- 67 

36.3. Example uncertainties for this exercise can be found in Table 2 of Dozier et al. (2022). 68 

For example, if one were to arbitrarily choose slope and aspect (with some uncertainty), and 69 

varying 𝜃" (20-70°), one could find a similar range of errors as presented in Dozier et al. 70 

(2022). 71 

 72 
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 73 

Figure 1. Cosine of local illumination angles (𝜇!) as a function of slope (x-axis) and aspect 74 

(y-axis) incremented by 1°, . illustrating the problem at higher latitude, and/or winter 75 

acquisitions, where standard deviation (𝜎) of 𝜇! increases monotonically with solar zenith 76 

angles (𝜃"). Aspect is shown here measured clockwise from north (with north containing a 77 

discontinuity at 360 degrees). Increasing solar zenith angles (𝜃") illustrates the problem at 78 

higher latitude, and/or winter acquisitions, where variability increases with respect to slope 79 

and aspect. For this illustration 𝜙" is fixed at a value of 175°. The red dots represent the 80 
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example point at slope=25° +/- 4.73 and aspect=280° +/- 36.3 and are bordered by their 81 

uncertainty and the resulting 𝜎. 82 

 83 

 84 

 Recent work has shown 𝜇! can be modelled using an optimal estimation framework 85 

given the Top of Atmosphere (TOA) radiance observed from imaging spectroscopy (Carmon 86 

et al., 2023). The authors solve for surface, atmospheric, and topographic state variables 87 

simultaneously in their model. This works physically because the partition of direct to diffuse 88 

light introduces a shape and magnitude effect on the TOA radiance spectra. However, 89 

retrieving snow optical properties is sensitive to directional reflectance which is significantly 90 

influenced by the viewing geometry  and surface roughness (Bair et al., 2022), leading to 91 

possible shortcomings in this method specifically for snow covered pixels. To address this 92 

and expand upon this framework, we present a new method to account for terrain in snow 93 

covered areas. Our method was tested on pixels with greater than 75% snow cover in three 94 

different snow climates (tundra, maritime, and alpine) with spaceborne imaging spectroscopy 95 

with the aim to reduce error in derived snow properties by optimally solving for topography. 96 

The spaceborne results are validated against high confidence airborne spectrometer data and 97 

further evaluated with error distributions. This work directly contributes to snow property 98 

retrievals in steep terrain and/or at times of high solar illumination zenith angles for 99 
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upcoming satellite imagineimaging spectroscopy missions such as Surface Biology and 100 

Geology (SBG) (Cawse-Nicholson et al., 2021),  and Copernicus Hyperspectral Imaging 101 

Mission for the Environment (CHIME) (Celesti et al., 2022), and EnMap (Guanter et al., 102 

2015). 103 

 104 

2 Methods 105 

2.1 Study area 106 

For our study, we used PRecursore IperSpettrale della Missione Applicativa 107 

(PRISMA) imagery over three sites capturing different snow climates and solar zenith angles: 108 

San Juan Mountains (Colorado, USA, 29 April 2021, 𝜃"=27°), Mount Shasta (California, 109 

USA, 28 February 2021, 𝜃"=52°), and the Toolik area (Alaska, USA, 21 March 2021, 110 

𝜃"=68°) (Figure 2). The San Juan Mountains location is considered a high alpine site located 111 

in interior continental USA with an elevation range of 2208-4129 m. The Mount Shasta site is 112 

a maritime snow climate along the western coast of USA with an elevation range of 750-4232 113 

m. The Toolik site (elevation range = 504-1748 m) is a high-latitude tundra site, being mostly 114 

flat but with steep sections along the Brooks Range (along the southern part of the image). 115 

PRISMA, launched by the Italian Space Agency (ASI) and beginning operation on March 22, 116 

2019, is a spaceborne imaging spectroscopy mission collecting radiance at 30 m spatial 117 

resolution across 2397 bands spanning 400-2500 nm at a spectral resolution better than 12 nm 118 
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across at a spectral resolution of 9.24 nm and 9.27 nm in the visible-near and shortwave 119 

infrared, respectively (Cogliati et al., 2021).  120 

To validate our method, we used four existing Airborne Visible Infrared Imaging 121 

Spectrometer-Next Generation (AVIRIS-NG) flightlines over the San Juan Mountains from 122 

29 April 2021 (flying 1 hour after PRISMA acquisition). AVIRIS-NG collects radiance 123 

measurements at variable spatial resolution (depending on the flight altitude) across 425 124 

bands spanning 380-2510 nm in 5nm intervals (Green et al., 2023). For this flight, data were 125 

collected at 4 m spatial resolution. We downloaded AVIRIS-NG apparent reflectance from 126 

National Snow and Ice Data Center (NSIDC) and observation geometry data from NASA 127 

Search Earth Data (Skiles & Vuyovich, 2023).  128 
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 129 

Figure 2. PRISMA true colour images for Toolik on 21 March 2021 (A), San Juan 130 

Mountains on 29 April 2021 (B), and Mount Shasta on 28 February 2021 (C). Four 131 

coincident AVIRIS-NG flightlines (F1-F4) are shown in cyan over the San Juan Mountains.  132 

 133 
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2.2 Modelling surface, atmosphere, and topography from PRISMA 134 

The algorithmic improvements build off a workflow that estimates snow properties 135 

given PRISMA TOA radiance, titled Global Optical Snow properties via High-speed 136 

Algorithm using K-means (GOSHAWK) (Wilder et al., 2023; Wilder et al., 2024). In short, 137 

GOSHAWK our method uses the analytic asymptotic radiative transfer model (AART) 138 

(Kokhanovsky & Zege, 2004) coupled with libRadtran (Mayer & Kylling, 2005) to invert 139 

snow surface and atmospheric properties (Bohn et al., 2021; Dalcin & Fang, 2021), and 140 

fractional covers of mixed pixels under varied lighting conditions using non-linear numerical 141 

optimization (Bair et al., 2021). The parameters solved for in the optimization routine include 142 

fractional covers, specific surface area (SSA), light absorbing particle concentration 143 

(modelled as sootdust), liquid water  content (LWC) percentage, dimensionless aerosol 144 

optical depth at 550nm, and columnar water vapor in the atmosphere. Here, we expand upon 145 

the GOSHAWK algorithm considering recent work showing the capacity to estimate 𝜇! from 146 

TOA radiance (Carmon et al., 2023; Bohn et al. 2024). This capacity idea is demonstrated in 147 

Figure 3 using fixed snow properties via AART and fixed atmosphere properties via 148 

libRadtran across the range of plausible 𝜇! (i.e. 0 to 1). Like the findings in Carmon et al. 149 

(2023), Figure 3 shows that 𝜇! controls both the spectral shape and magnitude of observed 150 

TOA radiance with the effect varying across wavelengths. The greatest shape effect can be 151 

seen in the visible spectrum (roughly 400-700 nm) due to the magnitude of the diffuse 152 
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irradiance. In combination with the magnitude and shape shift, this parameter becomes 153 

solvable during optimization due to its strong separability – especially when considering the 154 

entire spectrum data from a hyperspectral remote sensing source such as  PRISMA. It is 155 

important to note that 𝜇! impacts both the AART estimation of snow reflectance and 156 

libRadtran estimation of incoming solar irradiance.   157 

 158 

 159 
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 160 

Figure 3. Synthetic data showing change in magnitude (A) and shape (B) of top of 161 

atmosphere radiance (LTOA) with respect to changing local solar illumination angle (𝜇!) for 162 

fixed snow surface state variables modelled with AART, and fixed atmospheric state 163 

variables modelled with libRadtran (viewing geometry was fixed as well). State variables and 164 

solar/view geometry were based on a PRISMA acquisition over southern Idaho on 8 165 
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December 2022. Figure (B) shows normalized radiance with respect to peak TOA radiance 166 

across wavelengths to highlight the change in shape.  167 

 168 

However, if we were only to optimize 𝜇!, the other key terms, local viewer zenith 169 

angle (𝜇#) and local phase angle (𝜉) in the AART formulation for bidirectional reflectance of 170 

snow (Eq. 2) (Kokhanovsky & Zege, 2004; Kokhanovsky et al., 2021a) would remain 171 

constant from the available DEM (i.e., 𝜇!, 𝜇# , 𝜉 are all derived from DEM) (Eq. 2; Wilder et 172 

al., 2024),   173 

 174 

𝑟!$%&(𝜇!, 𝜇# , 𝜉, 𝜆) = 𝑟0(𝜇!, 𝜇# , 𝜉)		𝑎!$%&(𝜆)𝑎!$%&(𝜆)'     (2) 175 

 176 

where 𝑟0 is the reflection function of a semi-infinite non-absorbing snow layer (Tedesco & 177 

Kokhanovsky, 2007), 𝛼!$%& is the plane spherical albedo [plane albedo can be computed 178 

using (26) in Kokhanovsky et al. (2021a)], f is the escape function (Kokhanovsky et al., 179 

2021a), and 𝑟!$%& is the bidirectional reflectance of snow. Keeping other terms 𝜇#	𝑎𝑛𝑑	𝜉 the 180 

same are problematic because snow reflectance is poorly approximated as a non-Lambertian 181 

surface (Leroux & Fily, 1988), and the outcome will be greatly influenced by 𝜇#	𝑎𝑛𝑑	𝜉. 182 

Therefore, to incorporate solving for 𝜇!, 𝜇# , 𝑎𝑛𝑑	𝜉 from TOA radiance into the 183 
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GOSHAWKthe algorithm, we instead elect to optimally solve for cos(aspect) (i.e., 184 

“northness”) and sin(aspect) (i.e., “eastness”) (Table 1).  185 

 186 

Table 1.  Parameter space and initial vectors used in numerical optimization for PRISMA 187 

data.  188 

Parameter 
[unit] 

Definition Feasible 
Range 

Initial 
State 

Type 

fsnow [%] Fractional snow in the mixed pixel [0, 100] 10 Surface 

fshade [%] Fractional shade in the mixed pixel [0, 100] 20 Surface 

fLC1 [%] Fractional cover of endmember 1 (based 
on land cover value at pixel) 

[0, 100] 50 Surface 

fLC2 [%] Fractional cover of endmember 2 (based 
on land cover value at pixel) 

[0, 100] 20 Surface 

SSA [m2 kg-1] Specific surface area (SSA) [2, 156] 40 Surface 

LAP [µg g-1] Concentration of light absorbing particles, 
LAP, modelled as dust (PM-2.5). 

[0, 145] 0 Surface 

Liquid water 
[%] 

Percentage of liquid water on the snow 
surface 

[0, 50] 2 Surface 

AOD 550 [%] Dimensionless Aerosol Optical Depth 
(AOD) at 550 nm 

[1,100] 10 Atmospheric 

H2O [mm] Columnar water vapor in the atmosphere [1,50] 1 Atmospheric 

Eastness sin(aspect) [-1,1] Variable  Topographic 

Northness cos(aspect) [-1,1] Variable  Topographic 

 189 
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Aspect can be solved during optimization by using the atan2 function.  (Van Rossum, 2020). 190 

We chose to use this method because eastness and northness are continuously differentiable, 191 

and therefore, are suited for numerical optimization methods, whereas aspect is discontinuous 192 

at north (using the convention of 0 and 360 degrees as north)is circular. We then can use this 193 

optimal aspect to estimate 𝜇! (Eq. 1),  𝜇# (Eq. 3), and 𝜉 (Eq. 4).,	 194 

 195 

𝜇# 	= 	max[0, cos(𝜃#)	cos	(𝑆) + sin(𝜃#) sin(𝑆) cos(𝜙# − 𝐴)]	  (3) 196 

 197 

 𝜉	 = cos()(−𝜇!𝜇# + 𝑠𝑖𝑛(𝜃*) 𝑠𝑖𝑛(𝜃#) 𝑐𝑜𝑠(180 − (𝜙# −	𝜙")))	 (4) 198 

 199 

where 𝜙# is the viewing azimuth angle, and 𝜃# is the viewer zenith angle on a flat plane. 200 

TThis directly impacts Eq.2 and Eq. 5 (and the formulation of incoming solar energy in the 201 

model) (Picard et al., 2020), 202 

 203 

𝐸(𝜆) = 𝜓𝜇!𝐸(𝜆)+*, + 𝑉-𝐸(𝜆)+*''	 + IJ1 +
/01(3)
5

− 𝑉-K 𝑟(𝜆)!6,'𝐸(𝜆)+*''L𝐸(𝜆)+*, +204 

𝐸(𝜆)+*''MN (5) 205 

 206 

where E is total incoming irradiance, 𝜓 is binary shade or no shade, 𝐸+*, and 𝐸+*'' are the 207 

direct and diffuse irradiance, respectively, 𝑉- is the sky view factor (Dozier, 2022), and 𝑟!6,' 208 
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is the reflectance of nearby terrain (which is assumed to be equal to the pixel itself). 209 

Explicitly within GOSHAWK the following equation is thenThe term E is  solved using 210 

within our non-linear numerical optimization method as described in (Wilder et al. (, 2024). 211 

This was modelled incorrectly in Wilder et al. (2024); however, this was corrected in this 212 

paper where only diffuse irradiance is used in the 3rd term in Eq. 5. Also,  aAdding in the two 213 

extra parameters (eastness and northness) in our updated optimization scheme did not change 214 

our run time significantly. , which still hovered around 15 minutes (depending on the image), 215 

as noted in Wilder et al. (2024). It isCaution is advised against solving for slope and aspect in 216 

the inversion due to the non-unique solution space (Figure 1); however, only considering 217 

aspect ensures unique solutions of aspect, 𝜇!,  𝜇# , and 𝜉. We chose aspect because of its 218 

greater impact on determining partition of direct and diffuse illumination and has been found 219 

to be more impactful to errors associated with snow property retrieval (Donahue et al., 2023).  220 

also worth noting that while the optimal aspect cannot be solved accurately due to a non-221 

unique solution space (Figure 1), the resulting 𝜇!,  𝜇# , and 𝜉 are unique and the solution is 222 

such. In this study we used estimate of total ozone column as input into creating the 223 

libRadtran look up table specific for each image. We used the average weekly ozone over the 224 

bounds of the image from Sentinel-5P NRTI O3: Near Real-Time Ozone dataset. This 225 

approach serves an improvement over Wilder et al. (2024), where ozone was fixed at 300 226 

Dobson Units.  227 
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 228 

2.2 3 Estimating snow properties from AVIRIS-NG for validation 229 

Due to the fine signal to noise ratio and the higher spatial resolution of AVIRIS-NG, 230 

we treated the dataset as the ground reference. It also captured a similar spectral range to 231 

PRISMA which made it a suitable comparison dataset.  The main assumption here is that 232 

AVIRIS-NG pixels at 4 m are relatively homogenous and are either snow or no-snow – 233 

which may not always be the case. This could be a potential source of uncertainty in our 234 

analysis It also captured a similar spectral range to PRISMA which made it a suitable 235 

comparison dataset. . To select snow-covered pixels, we solved for NDSI (Normalized 236 

Difference Snow Index) using bands at 600 nm and 1500 nm. We limited our retrieval of 237 

snow properties for NDSI greater than or equal to 0.90 (Painter et al., 2013). A common 238 

approach to retrieve snow grain size from pure snow pixels is to apply the scaled band area 239 

algorithm (Nolin & Dozier, 2000); however, it is recognized that the large presence of LWC 240 

liquid water is a limitation. The maximum air temperature of 10.8° C on the day of the image 241 

at the San Juan Mountains site indicated that elevated LWC liquid water at the surface was 242 

probable (Center for Snow and Avalanche Studies, 2023). Additionally, reflectance spectra 243 

appeared to be shifted along the x-axis (wavelength) due to the presence of LWCliquid water. 244 

Therefore, we used constrained non-linear numerical optimization to model apparent snow 245 

reflectance with AART by allowing fractional snow, fractional shade, liquid waterLWC, and 246 
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SSA to vary. We did not include rock or forest endmembers in this formulation, assuming the 247 

4 m pixels are relatively homogenous as previously stated. Topographic incident angles were 248 

held constant based on the 4 m resolution DEM provided by AVIRIS-NG. We minimized 249 

Root Mean Square Error (RMSE) between observed-apparent and modelled-apparent snow 250 

reflectance from AART wavelengths in the range, 1000-1250 nm. This range has high ice 251 

absorption and limited impacts from atmospheric interference and LAP (Miller et al., 2016). 252 

greater than 900 nm and not impacted by atmospheric interference and LAP (Miller et al. 253 

2016) (901-1299 nm, 1451-1779 nm, and 1951-2449 nm). The presence of LWC liquid water 254 

was included in our analysis by means of the composite refractive index of water and ice 255 

(Donahue et al., 2022; Hale & Querry,1973; Warren & Brandt, 2008). We assumed similar 256 

grain shape assumptions for both PRISMA and AVIRIS-NG, and that if there is a bias due to 257 

this it should be consistent between the two datasets in our analysis. 258 

 259 

2.4 Comparing modelled snow albedo and SSAsnow properties 260 

 The GOSHAWK algorithm was used in two different modes: 1) static topography 261 

based on the Copernicus DEM (hereon called “static”); and 2) solved topography based on 262 

the algorithm updates (hereon called “radiance”). To compare the accuracy of PRISMA 263 

derived SSA and LWCliquid water, we resampled the AVIRIS-NG optical property results 264 

(SSA and LWC) to match the PRISMA resolution (30 m) and extents by using bilinear 265 
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interpolation. Then, we sampled all valid pixels where PRISMA and AVIRIS-NG had snow. 266 

We then computed r-pearson correlation coefficient, Mean Bias, and RMSE for the radiance 267 

and static methods (with respect to AVIRIS-NG). Finally, we used Copernicus derived slope 268 

and aspect maps to determine where the largest errors were occurring on the landscape to 269 

compare with the theoretical basis presented in Figure 1. We do this by using the Mean 270 

Absolute Error (MAE)mean absolute difference with respect to 𝜇! slope and aspect. We 271 

expected to see higher differences in north facing aspects (i.e., 𝜇! approaches 0), and where 272 

𝜃" was higher. To test the interaction with 𝜃" more fully, we extended the analysis to Mount 273 

Shasta, CA, and Toolik, Alaska, where no in situ data existed. Finally, weWe compared the 274 

modelled broadband albedo and SSAproperties between the radiance and static methods to 275 

assess how these assumptions propagated into outputs.impacted results for these types of data 276 

at 30 m scale.  277 

 278 

2.5 Comparing DEM and radiance derived 𝝁𝒔 279 

 To ensure the resulting radiance derived 𝜇! were valid we downloaded the best 280 

available validation data sources for comparison. For the San Juan and Shasta sites, we 281 

collected DEM products at 1 m spatial resolution andresolution and collected 5 m spatial 282 

resolution DEM for the Toolik site (U.S. Geological Survey, 2019; U.S. Geological Survey, 283 

2022). Then, we computed slope, aspect, solar zenith angle, and solar azimuth angle for all 284 
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pixels to compute 𝜇! at the native resolution (Eq. 1). Then, we used bilinear interpolation to 285 

resample the 1 m and 5 m products to 30 m to exactly match the extents and resolution of our 286 

PRISMA images. We would like to acknowledge that while these are the best freely available 287 

datasets for our images, they still do not capture the true snow-on topography, and instead are 288 

a representation of the “snow-free” surface. We compared matching pixels to determine 289 

RMSE, R2, and Mean Bias. Pixels that were marked as shadow from ray tracing were 290 

excluded from this comparison. 291 

 292 

3 Results 293 

3.1 Validation using AVIRIS-NG data over the San Juan Mountains 294 

Over all flightlinesOver the area of the flightlines, AVIRIS-NG estimated mean SSA = 295 

18.0 +/- 8.313.18 m2 kg-1, PRISMA radiance method estimated mean SSA = 23.6719.6 +/- 296 

5.812.45 m2 kg-1, and PRISMA static method estimated mean SSA = 22.025.06 +/- 16.0612.1 297 

m2 kg-1. When comparing the SSA performance over each pixel to the AVIRIS-NG flightlines 298 

(Figure 4) we found the PRISMA radiance method (r=0.43; RMSD=8.0 m2 kg-1; bias=+1.7 m2 299 

kg-1; n=36,412) performed slightly better than the static method (r=0.23; RMSD=13.6 m2 kg-300 

1; bias=+4.0 m2 kg-1; n=36,412) for SSA.  301 
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 302 

Figure 4. Snow properties computed from AVIRIS-NG (4 m spatial resolution) on 29 April 303 

2021 including NDSI (A), SSA (B), and LWC (C) for the San Juan Mountains site. 304 

 305 

There was not a significant improvement in liquid water estimation between radiance (r=0.67; 306 

RMSD=10%; bias=-8%; n=36,412) and static (r=0.67; RMSD=10%; bias=-9%; n=36,412). 307 

Furthermore, it appeared that there was a consistent liquid water bias of 8 to 9%, hinting that 308 

more melt had occurred during the AVIRIS-NG flights. As previously noted, the temperatures 309 

were well above freezing during the overpass of AVIRIS-NG and occurred roughly 1 hour later 310 

in the day compared to the PRISMA acquisition. This most likely explains the higher LWC 311 

liquid water and lower SSA observed by AVIRIS-NG. We further tested this by masking out 312 

areas where AVIRIS-NG liquid water content was greater than 0.1%, to establish areas where 313 

low amounts of melt occurred between the two acquisitions. We found that performance of 314 
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PRISMA static (RMSD=14.2 m2 kg-1; rRMSD=49%; n=181) and radiance (RMSD=6.9 m2 kg-315 

1; rRMSD=23%; n=181) methods were more accurate for these areas. The radiance method 316 

performed slightly better, suggesting a modest 25% improvement in accuracy for SSA over the 317 

static method when considering pixels that were less impacted by melt.  318 

 319 

Additionally, comparing all pixels we found improvement from radiance occurred 320 

mostly on steep, north facing aspects (e.g., when 𝜇! approached 0). We found the absolute 321 

residual increased as 𝜇! approached zero for the static method (r = -0.47; p<0.01), while this 322 

relationship was diminished nearly by a factor of 5 for the radiance method (r = -0.10; p<0.01) 323 

(Figure 5.A). These errors were caused by incorrect terrain information in the inversion, where 324 

inversion error increased proportionately in the static method (Figure 5.B). 325 
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 326 

Figure 5. Absolute difference in modelled SSA when compared to AVIRIS-NG for radiance 327 

method (green) and static method (pink) respect to 𝜇!  (A) and resulting RMSE from the 328 
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inversion from PRISMA with respect to 𝜇!  (B). Error in the static method increases 329 

significantly when 𝜇! approached zero (r = -0.47; p<0.01); however, the difference was less 330 

noticeable in the radiance method (r = -0.10; p<0.01). 331 

 332 

3.2 Comparing radiance and static methods between sites 333 

On average across each of the images, radiance and static methods provided similar 334 

retrieved parameters within less than one standard deviation (Table 2). In general, this means 335 

there is not a significant difference at the 30 m scale for computing parameters such as SSA 336 

and broadband albedo (BA) when considering the entire image. Interestingly when terrain is 337 

fixed, the static model compensated for incorrect illumination by increasing the aerosol optical 338 

depth (thereby reducing the amount of direct solar radiation). Investigating the errors more 339 

closely, we found much larger differences in retrieved properties where 𝜇!  approached 0 340 

(Figure 6). The difference in distributions matched closely to the theoretical demonstration 341 

(Figure 1) and is most likely associated with the standard error of slope and aspect from 342 

Copernicus DEM given the illumination conditions. This result also demonstrates the 343 

difference between the two methods had the biggest impact for images where 𝜃" was high, 344 

resulting in potentially inaccurate retrievals that impact both surface and atmospheric state 345 

variables on relatively mild slopes. 346 
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  Interestingly when terrain is fixed, the static model compensated for incorrect illumination by 347 

increasing the aerosol optical depth (thereby reducing the amount of direct solar radiation).  ). 348 

The difference in distributions matched closely to the theoretical demonstration (Figure 1) and 349 

is most likely associated with the standard error of slope and aspect from Copernicus DEM 350 

given the illumination conditions. This result demonstrated that the difference between the two 351 

methods had the biggest impact for images where 𝜃" was high.  On average for the Mount 352 

Shasta site, the radiance method estimated SSA was 17.57 +/- 14.58 m2 kg-1, and static method 353 

SSA was 17.74 +/- 12.67 m2 kg-1 (Table 3). Notably, there were more data gaps in the static 354 

method, resulting from failed inversions likely due to errors in the slope and aspect. On average 355 

for the Toolik site the radiance method estimated SSA to be 51.50 +/- 12.46 m2 kg-1, and the 356 

static method estimated 52.07 +/- 14.49 m2 kg-1.  357 

 358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 
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 366 

 367 

 368 

 369 

 370 

 371 

 372 

 373 

 374 

 375 

Table 2. Image-wide statistics comparing derived properties of SSA and broadband albedo 376 

between the two methods (static vs. radiance) processing the PRISMA imagery for all three 377 

sites.  378 

Site 
PRISMA 

Method 

Mean SSA 

[(m2 kg-1]) 

Mean 

Broadband 

AlbedoStandard 

Deviation of 

SSA (m2 kg-1) 

Mean 

Broadband 

AlbedoMean 

Liquid 

water [%] 

Standard 

Deviation of 

Broadband 

AlbedoMean 

AOD at 550 

nm 

Mean 

water 

column 

vapour 

[mm] 
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San 

Juan 

Static 
23.3 2.14+/- 

14.9 

0.79 +/- 

0.0319.40 

3.5 +/- 

4.80.79 

0.05 +/- 

0.130.03 
6.7 +/- 1.1 

Radiance 
19.6 +/- 5.9 

21.27 

0.78 +/- 

0.0315.94 

3.9 +/- 

5.00.78 

0.01 +/- 

0.010.04 
6.8 +/- 0.3 

Shasta 

Static 
11.04 +/- 

6.0317.74 

0.778 +/- 

0.0412.67 

1.6 +/- 

3.30.74 

0.04 +/- 

0.1070.05 

7.6 +/- 

1.30 

Radiance 
101.73 +/- 

6.26 17.57 

0.778 +/- 

0.0514.58 

1.9 +/- 

3.80.72 

0.01 +/- 

0.040.06 

7.7 +/- 

1.19 

Toolik 

Static 
30.1 +/- 

9.652.07 

0.85 +/- 

0.0214.49 

0.0 +/- 

0.00.82 

0.02 +/- 

0.030.03 
1.0 +/- 0.4 

Radiance 
27.7 +/- 

7.951.50 

0.84 +/- 

0.0212.46 

0.0 +/- 

0.00.81 

0.01 +/- 

0.010.03 
1.0 +/- 0.2 

 379 

When looking more closely at these errors we found6 380 

 381 

 382 

Additionally, we saw the highest difference between the two methods on north facing aspects, 383 

where 𝜇!  approached 0 (Figure 7). The difference in distributions matched closely to the 384 

theoretical demonstration (Figure 1) and is most likely associated with the standard error of 385 
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slope and aspect from Copernicus DEM given the illumination conditions. This result 386 

demonstrated that the difference between the two methods had the biggest impact for images 387 

where 𝜃" was high.   388 

 389 

Figure 6. 2D Histogram plots showing absolute error difference in SSA (left), broadband 390 

albedo (middle) and AOD (left) with respect to slope and aspect across the entire dataset. In 391 

this figure , treating radiance method as validation, absolute difference is calculated as |Static 392 

– Radiance|. This is shown for the San Juan Mountains site (A,D,G), Shasta site (B,E,H), and 393 

Toolik site (C,F,I). The average solar zenith angle (𝜃") is shown for reference on each panel. 394 
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  395 

Putting this into spatial context (Figure 7), San Juan site had 37% of pixels (135.3 km2) 396 

with an absolute difference in BA (|δBA|) >= 0.01 and 14% pixels (49.9 km2) with |δBA| >= 397 

0.02. Shasta site had 3028% of pixels (164.71 km2) with |δBA| >= 0.01 and 9% pixels (5.1 398 

km2) with |δBA| >= 0.02. Toolik site had 40% of pixels (325.3 km2) with |δBA| >= 0.01 and 399 

8% pixels (66.6 km2) with |δBA| >= 0.02.  400 

 401 
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We observed a small but notable difference between the methods in derived snow 402 

broadband albedo (BA) values (Figure 8). On average the standard deviation between BAStatic 403 

– BARadiance (δBA) for the San Juan Mountains site was 0.02, standard deviation for the Shasta 404 

site was 0.01, and standard deviation for the Toolik site was 0.02. Generally, there was not a 405 

clear bias with respect to 𝜇!. For the San Juan Mountains site, most of the pixels from the static 406 

method showed a consistent small, negative bias of around -0.002. However, for shadier slopes 407 

at this site, this bias flipped positive and was much more uncertain at around +0.02. 408 

Interestingly, δBA from the Toolik site had the opposite relationship to San Juan Mountains 409 

site, where δBA was more positive on sunnier slopes (𝜇! approaching 1), and more negative 410 

on shadier slopes (𝜇!  approaching 0), suggesting there could be different mechanisms for 411 

which the static method may lead to inaccuracies. The result for the Toolik site confirms the 412 

need to model the illumination conditions even in relatively flat terrain, because of implications 413 

for net radiative forcing in the cryosphere. The Mount Shasta site δBA had no strong 414 

relationship with respect to 𝜇! 415 

 416 

Figure 7. Modelled broadband snow albedo (BA) for San Juan Mountains site (A-C), Shasta 417 

Mountain site (D-F), and Toolik site (G-I). Left column represents BA from static method, 418 

middle column represents BA from radiance method, and right column represents absolute 419 

difference in BA (|δBA|). Dark grey colour symbolizes data that is not a value. 420 
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 421 

 Median |δBA| for all sites with respect to 𝝁𝒔 general increased as 𝝁𝒔 approached zero 422 

(Figure 8). For example, for the San Juan site,  median |δBA| ranged from 0.03 to 0.00 across 423 

𝜇!. For the Shasta and Toolik sites, median |δBA| ranged from 0.02 to 0.00 across 𝜇!. This 424 

relation was highly non-linear and depended on the site and illumination conditions. For 425 

example, standard deviation of |δBA| (shown as the shaded regions in Figure 9) for well-lit 426 

slopes (𝝁𝒔 	> 𝟎. 𝟖) were generally smaller for San Juan site, and conversely were higher for 427 

the Toolik site. Similar to Dozier et al. (2022), one can see a monotonic relation with respect 428 

to 𝜽𝟎 across the three sites. This analysis demonstrates the levels of uncertainty potentially 429 

left in for retrievals relying on static, non-coincident DEMs. This shows quantitatively the 430 

improvements to snow broadband albedo at 30 m scale by using radiance-based approach to 431 

be relatively small for well-lit slopes – on the order 0-1%. While shaded slopes may have 432 

errors in snow broadband albedo on the order of 1-3%. Interestingly for the Toolik site, |δBA| 433 

also increased as 𝝁𝒔 approached one. 434 

 435 
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 436 

Figure 8. Modelled absolute difference in broadband albedo (|δBA| = |BAStatic – BARadiance|) 437 

for San Juan (A), Shasta (B), and Toolik (C). Note these boxplots were created by rounding 438 

𝜇! to the nearest hundredth place.  439 

 440 
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3.3 Comparing DEM and radiance derived 𝝁𝒔 441 

At the 30 m pixel scale, Copernicus DEM derived 𝜇! had similar overall performance 442 

to radiance derived 𝜇! (Figure 9), with Copernicus DEM derived 𝜇! having slightly higher 443 

performance. For example, for the San Juan site, RMSD only varied by 0.006 between the 444 

two methods. Similarly, the R2 for Copernicus derived 𝜇! was 0.86, while the radiance 445 

derived 𝜇! was slightly lower at 0.83. This similar overall performance was common amongst 446 

the three sites. We found the average bias for radiance derived 𝜇! was generally closer to zero 447 

(+/- 0.01), and did not show a strong negative or positive direction. 448 

 449 
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Figure 9. Comparing 𝜇! at 30 m pixel scale derived from radiance and Copernicus against high 450 

resolution DEM for San Juan site (A,D), Shasta site (B,E), and Toolik site (C,F).  451 

 452 

 453 

4 Discussion  454 

 455 

4.1 Implications in accounting for terrain in snow property retrievalRadiance derived 456 

DEMs may replace coincident DEMs and contain information related to surface 457 

roughness 458 

Derivative slope and aspect maps are prone to errors at 30 m spatial resolutions 459 

(Dozier et al., 2022)., Thiswhich isbecome relevant for derived snow products from 460 

upcoming missions such as SBG and CHIME which will rely on such topographic 461 

information to calculate optical properties like snow albedo so that we can better monitor 462 

seasonal snowmelt. These errors can be inherent to the DEM itself, or a product of spatial 463 

and/or temporal misalignments (Carmon et al., 2023). To enable high quality snow products 464 

regardless of illumination angles and conditions, we have demonstrated benefits of 465 

computing optimal terrain using TOA radiance over snow. This new method is especially 466 

useful for steep mountain terrain and/or high latitudes where illumination conditions are 467 

suboptimal. The 𝜃" (solar zenith angle) was relatively low for the San Juan Mountain site in 468 
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our study, and thus represents a lower bound of the improvement in accuracy one could 469 

expect (Figure 1; Dozier et al., 2022). This disparity was demonstrated further for the Mount 470 

Shasta and Toolik sites when 𝜃" was larger (i.e. a greater differences in SSA due to more 471 

challenging solar and sensor geometry). Even for the relatively flat Toolik site, we showed 472 

that correctly accounting for incidence angels can have an impact when 𝜃" is large. Our 473 

modelled |δBA| with respect to the non-coincident DEM was similar to work by Donahue et 474 

al. (2023), who found slightly higher similar uncertainties of δBA broadband albedo (ranging 475 

from -10 to 10%) for their investigation on Place Glacier, British Columbia, Canada. With 476 

the surface and roughness undergoing dramatic change on glaciers throughout a given season, 477 

using this radiance-based approach may be especially impactful for improving estimates over 478 

glaciers. We corroborated with this research showing similar ranges of δBA for our three 479 

study sites. 480 

Snow surface roughness has long been a challenging issue in modelling snow 481 

properties from space where the solar incidence angle at high spatial resolution for snow-on 482 

DEM is not well known (Bair et al., 2022). Previous research found radiance derived 𝜇! from 483 

airborne imaging spectroscopy showed a negative bias and postulated this could be due to 484 

within-pixel topography, shadows, and surface roughness (Carmon et al., 2023). Since a bi-485 

directional reflectance function (BRDF) model was not used in their study, it then would be 486 

plausible for the optimal 𝜇! to compensate for these effects. Interestingly when using a BRDF 487 



36 
 

model in our study (i.e., AART) and solving for aspect optimally (therefore informing 𝜇!, 𝜇#, 488 

and 𝜉) we did not find a strong bias – negative or positive. Although, we did not take surface 489 

roughness measurements, and therefore do not know to the extent this impacted our study. 490 

Within-pixel shadows, textures, and surface roughness remain difficult to validate, and we 491 

were unable to achieve this in our study. Future work interested in further understanding this 492 

radiance-based approach may investigate how such approaches interact with micro-scale 493 

topography through the use ofground measurements such as snow-on terrestrial and airborne 494 

lidar. 495 

 496 

4.22 Future considerationsNext steps in possibly improving this radiance 497 

basedradiance-based approach 498 

 499 

While we solved for a few terrain parameters in this study , we did not entirely 500 

remove the use of the DEM the static DEM, even from the radiance method. The elevation 501 

from global a DEMs has a much higher confidence than its derivative products (Dozier et al., 502 

2022). Therefore, we used these values to inform our atmospheric routine, as well as our 503 

shadow casting ray tracing module in GOSHAWK (Wilder et al., 2024). Additionally, as 504 

stated in Wilder et al. (2024), GOSHAWK used the Dozier & Frew (1981) we used the 505 

method presented in Dozier (2022) for estimating the sky view factor (𝑉-) based on nearby 506 
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terrain and the pixel itself. This factor could potentially be problematic but was cited as being 507 

not as important impactful as 𝜇! in propagating error (Dozier et al., 2022). Therefore, we 508 

elected to use 𝑉- derived from the static Copernicus DEM. However, this could be an area 509 

for future improvement, especially in very steep terrain where 𝑉- becomes small. It is not 510 

advised to attempt to add 𝑉- directly into the optimization routine presented in this study, as 511 

it is a function of pixel slope and aspect, and therefore, altering 𝑉- and aspect together would 512 

create invalid solutions.  513 

Finally, we used a static value for slope derived from Copernicus DEM. The slope 514 

influences the 𝜇! term, but also influences the passive radiation from nearby slopes. 515 

Ultimately, we concluded that aspect had the largest impact on changing 𝜇! (Figure 1), as 516 

well as large RMSE reported in previous work (Dozier et al., 2022; Donahue et al., 2023), 517 

and thus was the focus of our study.  Caution is advised in including both slope and aspect 518 

together, as non-unique solution space for 𝜇! may cause the optimization outputs to become 519 

invalid. In summary, elevation, 𝑉-, and slope remain static in our current implementation. 520 

Future work may explore other algorithmic choices to further remove, or improve, static 521 

DEM parameters. 522 

Another consideration for improving this method is the inclusion of total column 523 

ozone into the optimization. Previous research has been able to use TOA snow reflectance 524 

data to retrieve reliable estimates of ozone (Kokhanovsky et al., 2021b). In our paper, we 525 
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elected for a simpler approach to first investigate the impacts of including terrain in the 526 

optimization. In this paper we input a fixed ozone for the entire image based on coincident 527 

Sentinel-5 measurements. However, it should be stated that ozone impacts a similar spectral 528 

range to 𝜇! (Figure 10). It therefore may be beneficial to include ozone in the atmospheric 529 

lookup-table (e.g., MODTRAN, libRadtran) to enable optimization of ozone as well. This 530 

may be beneficial in building more realistic radiance-based methods.   531 

 532 

Figure 10. Synthetic data showing change in magnitude of top of atmosphere radiance (LTOA) 533 

with respect to changing total column ozone for fixed snow surface state variables modelled 534 

with AART, and other fixed atmospheric state variables modelled with libRadtran. Reference 535 

data is based on PRISMA image taken over southern Colorado. Note units of total column 536 

ozone are shown in in Dobson Units (DU). 537 
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 538 

Finally, future studies should investigate including improvements to BRDF models of 539 

snow (Mei et al., 2022). For example, recent work by Kokhanovsky et al. (2024) has 540 

proposed the use of a two-layer model which may be especially useful for vertically 541 

heterogenous snowpacks. Theiris method has been tested using EnMAP data and may easily 542 

be transferable to other sensors. The current AART method we used in our paper does not 543 

account for these layers, and instead assumes an optically thick, homogenous snowpack. To 544 

validate both AART, and the new layered approach, and future BRDF models, snow pit (i.e., 545 

vertical profile) measurements of SSA (e.g., Meloche et al., 2023) become essential in 546 

ensuring models accurately account for diverse layering of snow (Meloche et al., 2023).  547 

 548 

4.3 Big picture implications of the radiance-based approach 549 

 550 

This research responds to the objectives stated in “Thriving on our changing planet: A 551 

decadal strategy for Earth observation from space”, to improve biogeophysical modelling at 552 

scales driven by topography (National Academies of Science, Engineering, & Medicine, 553 

20189), enabling more accurate snow property retrievals in the cryosphere under challenging 554 

illumination conditions. Our work presented on solving terrain where DEM data are not 555 

available, or reliable, may serve to accelerate improvements to satellite remote sensing tools 556 
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to monitor and model at both the regional global scale (Sturm et al., 2017), at a critical 557 

juncture in time where northern latitudes are changing fast under a warming climate. This 558 

includes Earth’s glaciers, where radiance-based method may have the largest improvements 559 

over static approaches. Our research is complimented by other recent works which show 560 

promise in including terrain in the inversions (Bohn et al., 2024; Bohn et al., 2023; Bair et al., 561 

2024; Carmon et al., 2023) 562 

 563 

We recommend additional coincident AVIRIS-NG flights with spaceborne imaging 564 

spectroscopy datasets to further this work. As we have shown for the San Juan Mountains 565 

site, for particularly warm days, images that are separated by longer than an hour may exhibit 566 

drastically different SSA and liquid water content. As shown in this paper, this creates an 567 

issue when trying to validate improvements to retrieval algorithms.   568 

 569 

 570 

However, future work could investigate other model and optimization configurations 571 

to improve upon this study. We recommend additional coincident AVIRIS-NG flights with 572 

spaceborne imaging spectroscopy datasets to further this work.  573 

 574 
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5 Conclusions 575 

 In this study we used existing PRISMA L1 TOA imagery to demonstrate the 576 

improvements in modelling snow optical properties when explicitly modelling the terrain in 577 

the inversion. This This presents an interesting concept, that end users who are interested in 578 

modelling snow from space, are perhaps better off working with the L1 TOA products, and 579 

not using the L2 bottom of atmosphere reflectance products space agencies typically produce. 580 

This would especially be true for areas where the surface undergoes rapid change, such as on 581 

glaciers. This new method is especially useful for steep mountain terrain and/or high latitudes 582 

where illumination conditions are suboptimal. The 𝜃" (solar zenith angle) was relatively low 583 

for the San Juan Mountains site in our study, and thus represents a lower bound of the 584 

improvement in accuracy one could expect. This disparity was demonstrated further for the 585 

Mount Shasta and Toolik sites when 𝜃" was larger (i.e. a greater difference in retrieved 586 

properties due to more challenging solar and sensor geometry). Even for the relatively flat 587 

Toolik site, we showed that correctly accounting for incidence angles can impact snow 588 

properties when 𝜃" is large. Future work may look to build from this radiance-based approach 589 

to enable better quantification of snow properties at scales impacted by topography. 590 

 591 

Code Availability. https://github.com/cryogars/goshawk  592 

https://github.com/cryogars/goshawk
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