1	Improved Snow Property Retrievals by Solving for Topography in the Inversion of At-
2	sensor Radiance Measurements
3	
4	
5	Brenton A. Wilder ¹ , Joachim Meyer ¹ , Josh Enterkine ¹ , Nancy F. Glenn ^{1*}
6	¹ Department of Geosciences, Boise State University, Boise, ID, USA
7	
8	Correspondence to: Nancy F. Glenn (<u>nancyglenn@boisestate.edu</u>)
9	
10	Abstract
11	Accurately modelling optical snow properties like snow albedo and specific surface
12	area (SSA) are essential for monitoring the cryosphere in a changing climate and are
13	parameters that inform hydrologic and climate models. These snow surface properties can be
14	modelled from spaceborne imaging spectroscopy measurements but rely on Digital Elevation
15	Models (DEMs) of relatively coarse spatial scales (e.g. Copernicus at 30 m), which degrade
16	accuracy due to errors in derived products – like such as slope and aspect. In addition, snow
17	deposition and redistribution can change the apparent topography and thereby static DEMs
18	may not be considered coincident with the imaging spectroscopy dataset. Testing in three
19	different snow climates (tundra, maritime, alpine), we established a new method that

20	simultaneously solves snow, atmospheric, and terrain parameters, enabling a solution that is
21	more unified across sensors and introduces fewer sources of uncertainty. We leveraged
22	imaging spectroscopy data from AVIRIS-NG and PRISMA (collected within 1 hour) to
23	validate this method and showed a 25% increase in performance for the radiance-based
24	method versus usingover the static method when estimating SSA. This concept can be
25	implemented in future missions such as Surface Biology and Geology (SBG), Environmental
26	Mapping and Analysis Program (EnMap), and Copernicus Hyperspectral Imaging Mission
27	for the Environment (CHIME).
28	
29	Key Words: Imaging Spectroscopy, Snow Properties, Topography, Snow Albedo
30	
31	1 Introduction
32	Accurately mapping snow surface properties is essential for seasonal snow zones in a
33	changing climate especially in regions where seasonal snowpack is expected to change
34	dramatically in the coming decades (Siirila-Woodburn et al., 2021). For example, snow
35	albedo plays a crucial role in melting of the snowpack during the ablation season (Wang et
36	al., 2020) with changes in snow albedo directly affecting the amount of absorbed solar
37	radiation, and therefore the amount of snow that is melted off as liquid water. Throughout the
38	winter season, snow albedo fluctuates due in part to grain size (Seidel et al., 2016) and light

39	absorbing particles (Kaspari et al., 2015; McKenzie, 2020; Schmale et al., 2017; Skiles &
40	Painter, 2017). With <u>a limited number of <i>in situ</i> snow stations around the globe measuring</u>
41	surface properties, and the snow surfaces constantly undergoing metamorphism across space
42	and time, satellite imagery represents the best potential for spatially and temporally complete
43	mapping of snow properties. Accurately retrieving snow albedo and other snow surface
44	properties from satellite imagery is paramount, especially in a rapidly changing climate
45	(Malmros et al., 2018).
46	Retrieval of snow properties from satellite remote sensing relies on Digital Elevation
47	Models (DEMs) to correct for local terrain effects (Bair et al., 2021; Bair et al., 2022; Dozier
48	et al., 2022). In a previous study, researchers found global DEM products to have "blunders
49	and errors" when compared to airborne lidar, particularly in derived slope and aspect which
50	cause severe errors in calculated <u>cosine of local</u> solar illumination angles (μ_s) (Dozier et al.,
51	2022). Dozier et al. (2022)They found errors in μ_s -local solar illumination angles ranging
52	from 0.048 to 0.117 (dimensionless) across several sites for Copernicus global DEMs caused
53	by errors in slope and aspect. The cosine of the local solar illumination angle, μ_{s7} term is a
54	function (Eq. 1) of slope angle (S), slope aspectslope azimuth angle or aspect (A), solar
55	zenith angle (θ_0), and <u>solar</u> azimuth angle (ϕ_0) – with the last two being well constrained:
56	

$$\mu_s = \max[0, \cos(\theta_0)\cos(S) + \sin(\theta_0)\sin(S)\cos(\phi_0 - A)]$$
(1)

59	Because θ_0 and ϕ_0 are calculable with low errors (less than 0.05°), the biggest contribution to
60	errors in μ_s stem from slope and aspect. Errors in μ_s increase monotonically with increasing
61	θ_0 (e.g., sun setting has high θ_0 , as does solar noon in high latitude winters). This
62	phenomenon can be explained by plotting Eq. 1 for various solar zenith angles, θ_0 . (Figure
63	1). Put simply, at higher θ_0 there is a higher standard deviation in μ_s surrounding a known
64	slope and aspect (with some temporally consistent uncertainty), increasing the probability and
65	magnitude of such an error. If one were to compute standard deviations of μ_s across varying
66	θ_0 , one would arrive at similar errors of μ_s presented in Dozier et al. (2022). For clarity, in
67	<u>Figure 1 we have highlighted an example case with slope=25° +/- 4.73 and aspect=280° +/-</u>
68	36.3. Example uncertainties for this exercise can be found in Table 2 of Dozier et al. (2022).
69	For example, if one were to arbitrarily choose slope and aspect (with some uncertainty), and
70	varying θ_{θ} (20-70°), one could find a similar range of errors as presented in Dozier et al.
71	(2022).

81 example point at slope=25° +/- 4.73 and aspect=280° +/- 36.3 and are bordered by their
82 uncertainty and the resulting σ.

83

84

Recent work has shown μ_s can be modelled using an optimal estimation framework 85 given the Top of Atmosphere (TOA) radiance observed from imaging spectroscopy (Carmon 86 et al., 2023). The authors solve for surface, atmospheric, and topographic state variables 87 simultaneously in their model. This works physically because the partition of direct to diffuse 88 light introduces a shape and magnitude effect on the TOA radiance spectra. However, 89 retrieving snow optical properties is sensitive to directional reflectance which is significantly 90 influenced by the viewing geometry -and surface roughness (Bair et al., 2022), leading to 91 possible shortcomings in this method specifically for snow covered pixels. To address this 92 93 and expand upon this framework, we present a new method to account for terrain in snow covered areas. Our method was tested on pixels with greater than 75% snow cover in three 94 different snow climates (tundra, maritime, and alpine) with spaceborne imaging spectroscopy 95 96 with the aim to reduce error in derived snow properties by optimally solving for topography. The spaceborne results are validated against high confidence airborne spectrometer data-and 97 further evaluated with error distributions. This work directly contributes to snow property 98 retrievals in steep terrain and/or at times of high solar illumination-zenith angles for 99

100	upcoming satellite imagine imaging spectroscopy missions such as Surface Biology and
101	Geology (SBG) (Cawse-Nicholson et al., 2021), and Copernicus Hyperspectral Imaging
102	Mission for the Environment (CHIME) (Celesti et al., 2022), and EnMap (Guanter et al.,
103	<u>2015)</u> .
104	
105	2 Methods
106	2.1 Study area
107	For our study, we used PRecursore IperSpettrale della Missione Applicativa
108	(PRISMA) imagery over three sites capturing different snow climates and solar zenith angles:
109	San Juan Mountains (Colorado, USA, 29 April 2021, θ_0 =27°), Mount Shasta (California,
110	USA, 28 February 2021, θ_0 =52°), and the Toolik area (Alaska, USA, 21 March 2021,
111	θ_0 =68°) (Figure 2). The San Juan Mountains location is considered a high alpine site located
112	in interior continental USA with an elevation range of 2208-4129 m. The Mount Shasta site is
113	a maritime snow climate along the western coast of USA with an elevation range of 750-4232
114	m. The Toolik site (elevation range = 504-1748_m) is a high-latitude tundra site, being mostly
115	flat but with steep sections along the Brooks Range (along the southern part of the image).
116	PRISMA, launched by the Italian Space Agency (ASI) and beginning operation on March 22,
117	2019, is a spaceborne imaging spectroscopy mission collecting radiance at 30 m spatial
118	resolution across 2397 bands spanning 400-2500 nm at a spectral resolution better than 12 nm
I	

across at a spectral resolution of 9.24 nm and 9.27 nm in the visible-near and shortwave
infrared, respectively (Cogliati et al., 2021).

To validate our method, we used four existing Airborne Visible Infrared Imaging 121 Spectrometer-Next Generation (AVIRIS-NG) flightlines over the San Juan Mountains from 122 29 April 2021 (flying 1 hour after PRISMA acquisition). AVIRIS-NG collects radiance 123 measurements at variable spatial resolution (depending on the flight altitude) across 425 124 bands spanning 380-2510 nm in 5nm intervals (Green et al., 2023). For this flight, data were 125 collected at 4 m spatial resolution. We downloaded AVIRIS-NG apparent reflectance from 126 National Snow and Ice Data Center (NSIDC) and observation geometry data from NASA 127 Search Earth Data (Skiles & Vuyovich, 2023). 128

- 130 Figure 2. PRISMA true colour images for Toolik on 21 March 2021 (A), San Juan
- 131 Mountains on 29 April 2021 (B), and Mount Shasta on 28 February 2021 (C). Four
- 132 coincident AVIRIS-NG flightlines (F1-F4) are shown in cyan over the San Juan Mountains.

2.2 Modelling surface, atmosphere, and topography from PRISMA

135	The algorithmic improvements build off a workflow that estimates snow properties
136	given PRISMA TOA radiance, titled Global Optical Snow properties via High-speed
137	Algorithm using K-means (GOSHAWK) (Wilder et al., 2023; Wilder et al., 2024). In short,
138	GOSHAWK our method uses the analytic asymptotic radiative transfer model (AART)
139	(Kokhanovsky & Zege, 2004) coupled with libRadtran (Mayer & Kylling, 2005) to invert
140	snow surface and atmospheric properties (Bohn et al., 2021; Dalcin & Fang, 2021), and
141	fractional covers of mixed pixels under varied lighting conditions using non-linear numerical
142	optimization (Bair et al., 2021). The parameters solved for in the optimization routine include
143	fractional covers, specific surface area (SSA), light absorbing particle concentration
144	(modelled as sootdust), liquid water_content (LWC) percentage, dimensionless aerosol
145	optical depth at 550nm, and columnar water vapor in the atmosphere. Here, we expand upon
146	the GOSHAWK algorithm considering recent work showing the capacity to estimate μ_s from
147	TOA radiance (Carmon et al., 2023; Bohn et al. 2024). This capacity idea is demonstrated in
148	Figure 3 using fixed snow properties via AART and fixed atmosphere properties via
149	libRadtran across the range of plausible μ_s (i.e. 0 to 1). Like the findings in Carmon et al.
150	(2023), Figure 3 shows that μ_s controls both the spectral shape and magnitude of observed
151	TOA radiance with the effect varying across wavelengths. The greatest shape effect can be
152	seen in the visible spectrum (roughly 400-700 nm) due to the magnitude of the diffuse

153	irradiance. In combination with the magnitude and shape shift, this parameter becomes
154	solvable during optimization due to its strong separability – especially when considering the
155	entire spectrum data from a hyperspectral remote sensing source such as _PRISMA. It is
156	important to note that μ_s impacts both the AART estimation of snow reflectance and
157	libRadtran estimation of incoming solar irradiance.
158	

Figure 3. Synthetic data showing change in magnitude (A) and shape (B) of top of atmosphere radiance (L_{TOA}) with respect to changing local solar illumination angle (μ_s) for fixed snow surface state variables modelled with AART, and fixed atmospheric state variables modelled with libRadtran (viewing geometry was fixed as well). State variables and solar/view geometry were based on a PRISMA acquisition over southern Idaho on 8

December 2022. Figure (B) shows normalized radiance with respect to peak TOA radiance
across wavelengths to highlight the change in shape.

168

However, if we were only to optimize μ_s , the other key terms, local viewer zenith angle (μ_v) and local phase angle (ξ) in the AART formulation for bidirectional reflectance of snow (Eq. 2) (Kokhanovsky & Zege, 2004; Kokhanovsky et al., 2021a) would remain constant from the available DEM (i.e., μ_s , μ_v , ξ are all derived from DEM) (Eq. 2; Wilder et al., 2024),

174

175
$$r_{snow}(\mu_s, \mu_v, \xi, \lambda) = r0(\mu_s, \mu_v, \xi) \ \frac{a_{snow}(\lambda)a_{snow}(\lambda)^f}{a_{snow}(\lambda)^f}$$
(2)

176

177 where $r0_i$ is the reflection function of a semi-infinite non-absorbing snow layer (Tedesco & 178 Kokhanovsky, 2007), α_{snow} is the plane spherical albedo [plane albedo can be computed 179 using (26) in Kokhanovsky et al. (2021a)], f is the escape function (Kokhanovsky et al., 180 2021a), and r_{snow} is the bidirectional reflectance of snow. Keeping other terms μ_v and ξ the 181 same are problematic because snow reflectance is poorly approximated as a non-Lambertian 182 surface (Leroux & Fily, 1988), and the outcome will be greatly influenced by μ_v and ξ . 183 Therefore, to incorporate solving for μ_s , μ_v , and ξ from TOA radiance into the 184 GOSHAWKthe algorithm, we instead elect to optimally solve for cos(aspect) (i.e.,

185 "northness") and sin(aspect) (i.e., "eastness") (Table 1).

186

187 **Table 1.** Parameter space and initial vectors used in numerical optimization for PRISMA

188 data<u>.</u>

<u>Parameter</u> <u>[unit]</u>	Definition	<u>Feasible</u> <u>Range</u>	<u>Initial</u> <u>State</u>	<u>Type</u>
<u>f_{snow} [%]</u>	Fractional snow in the mixed pixel	<u>[0, 100]</u>	<u>10</u>	<u>Surface</u>
<u>fshade</u> [%]	Fractional shade in the mixed pixel	<u>[0, 100]</u>	<u>20</u>	Surface
<u>f_{LC1} [%]</u>	<u>Fractional cover of endmember 1 (based</u> <u>on land cover value at pixel)</u>	[0, 100]	<u>50</u>	<u>Surface</u>
<u>f_{LC2} [%]</u>	<u>Fractional cover of endmember 2 (based</u> <u>on land cover value at pixel)</u>	<u>[0, 100]</u>	<u>20</u>	<u>Surface</u>
$\underline{\text{SSA}\left[\text{m}^2\text{kg}^{-1}\right]}$	Specific surface area (SSA)	<u>[2, 156]</u>	<u>40</u>	Surface
<u>LAP [μg g⁻¹]</u>	Concentration of light absorbing particles, LAP, modelled as dust (PM-2.5).	<u>[0, 145]</u>	<u>0</u>	<u>Surface</u>
Liquid water [%]	Percentage of liquid water on the snow surface	[0, 50]	<u>2</u>	<u>Surface</u>
<u>AOD 550 [%]</u>	Dimensionless Aerosol Optical Depth (AOD) at 550 nm	[<u>1,100]</u>	<u>10</u>	<u>Atmospheric</u>
<u>H₂O [mm]</u>	Columnar water vapor in the atmosphere	[1,50]	<u>1</u>	Atmospheric
Eastness	sin(aspect)	[-1,1]	Variable	<u>Topographic</u>
Northness	cos(aspect)	[-1,1]	Variable	Topographic

190 Aspect can be solved during optimization by using the atan2 function. (Van Rossum, 2020). We chose to use this method because eastness and northness are continuously differentiable, 191 and therefore, are suited for numerical optimization methods, whereas aspect is discontinuous 192 at north (using the convention of 0 and 360 degrees as north)is circular. We then can use this 193 optimal aspect to estimate μ_s (Eq. 1), μ_v (Eq. 3), and ξ (Eq. 4). 194 195 $\mu_{22} = \max[0, \cos(\theta_{22})\cos(S) + \sin(\theta_{22})\sin(S)\cos(\phi_{22} - A)] - (3)$ 196 197 $\frac{\xi = \cos^{-1}(-\mu_c \mu_n + \sin(\theta_i) \sin(\theta_n) \cos(180 - (\phi_n - \phi_n)))}{(4)}$ 198 199 where ϕ_{μ} is the viewing azimuth angle, and θ_{μ} is the viewer zenith angle on a flat plane. 200 TThis directly impacts Eq.2 and Eq. 5 (and the formulation of incoming solar energy in the 201 202 model) (Picard et al., 2020), 203 L $\left[\left(\cos(s) \right) \right]$

204
$$E(\lambda) = \psi \mu_s E(\lambda)_{dir} + V_{\Omega} E(\lambda)_{diff} + \left[\left(1 + \frac{\cos(\beta)}{2} - V_{\Omega} \right) r(\lambda)_{surf} E(\lambda)_{diff} \left(\frac{E(\lambda)_{dir}}{4} + \frac{E(\lambda)_{diff}}{4} \right) \right]$$
205
$$E(\lambda)_{diff} = \frac{E(\lambda)_{diff}}{4} \left[(5) + \frac{E(\lambda)_{diff}}{4} + \frac{E(\lambda)_{diff}}{4} \right]$$

where E is total incoming irradiance, ψ is binary shade or no shade, E_{dir} and E_{diff} are the direct and diffuse irradiance, respectively, V_{Ω} is the sky view factor (Dozier, 2022), and r_{surf}

209	is the reflectance of nearby terrain (which is assumed to be equal to the pixel itself).
210	Explicitly within GOSHAWK the following equation is then The term E is -solved using
211	within our non-linear numerical optimization method as described in (Wilder et al. (,-2024).
212	This was modelled incorrectly in Wilder et al. (2024); however, this was corrected in this
213	paper where only diffuse irradiance is used in the 3 rd term in Eq. 5. Also, -aAdding in the two
214	extra parameters (eastness and northness) in our updated optimization scheme did not change
215	our run time significantly., which still hovered around 15 minutes (depending on the image),
216	as noted in Wilder et al. (2024). It is Caution is advised against solving for slope and aspect in
217	the inversion due to the non-unique solution space (Figure 1); however, only considering
218	aspect ensures unique solutions of aspect, μ_s , μ_v , and ξ . We chose aspect because of its
219	greater impact on determining partition of direct and diffuse illumination and has been found
220	to be more impactful to errors associated with snow property retrieval (Donahue et al., 2023).
221	also worth noting that while the optimal aspect cannot be solved accurately due to a non-
222	unique solution space (Figure 1), the resulting μ_s , μ_v , and ξ are unique and the solution is
223	such. In this study we used estimate of total ozone column as input into creating the
224	libRadtran look up table specific for each image. We used the average weekly ozone over the
225	bounds of the image from Sentinel-5P NRTI O3: Near Real-Time Ozone dataset. This
226	approach serves an improvement over Wilder et al. (2024), where ozone was fixed at 300
227	Dobson Units.

2.2-3 Estimating snow properties from AVIRIS-NG for validation 229 Due to the fine signal to noise ratio and the higher spatial resolution of AVIRIS-NG, 230 we treated the dataset as the ground reference. It also captured a similar spectral range to 231 PRISMA which made it a suitable comparison dataset. The main assumption here is that 232 AVIRIS-NG pixels at 4 m are relatively homogenous and are either snow or no-snow -233 which may not always be the case. This could be a potential source of uncertainty in our 234 analysis It also captured a similar spectral range to PRISMA which made it a suitable 235 comparison dataset... To select snow-covered pixels, we solved for NDSI (Normalized 236 Difference Snow Index) using bands at 600 nm and 1500 nm. We limited our retrieval of 237 snow properties for NDSI greater than or equal to 0.90 (Painter et al., 2013). A common 238 approach to retrieve snow grain size from pure snow pixels is to apply the scaled band area 239 algorithm (Nolin & Dozier, 2000); however, it is recognized that the large presence of LWC 240 liquid water is a limitation. The maximum air temperature of 10.8° C on the day of the image 241 at the San Juan Mountains site indicated that elevated **LWC** liquid water at the surface was 242 probable (Center for Snow and Avalanche Studies, 2023). Additionally, reflectance spectra 243 appeared to be shifted along the x-axis (wavelength) due to the presence of LWCliquid water. 244 Therefore, we used constrained non-linear numerical optimization to model apparent snow 245 reflectance with AART by allowing fractional snow, fractional shade, liquid waterLWC, and 246

247	SSA to vary. We did not include rock or forest endmembers in this formulation, assuming the
248	4 m pixels are relatively homogenous as previously stated. Topographic incident angles were
249	held constant based on the 4 m resolution DEM provided by AVIRIS-NG. We minimized
250	Root Mean Square Error (RMSE) between observed-apparent and modelled-apparent snow
251	reflectance from AART wavelengths in the range, 1000-1250 nm. This range has high ice
252	absorption and limited impacts from atmospheric interference and LAP (Miller et al., 2016).
253	greater than 900 nm and not impacted by atmospheric interference and LAP (Miller et al.
254	2016) (901-1299 nm, 1451-1779 nm, and 1951-2449 nm). The presence of LWC-liquid water
255	was included in our analysis by means of the composite refractive index of water and ice
256	(Donahue et al., 2022; Hal <u>e & Querry, 1973</u> ; Warren & Brandt, 2008). We assumed similar
257	grain shape assumptions for both PRISMA and AVIRIS-NG, and that if there is a bias due to
258	this it should be consistent between the two datasets in our analysis.
259	
260	2.4 Comparing modelled snow albedo and SSAsnow properties
261	The GOSHAWK algorithm was used in two different modes: 1) static topography
262	based on the Copernicus DEM (hereon called "static"); and 2) solved topography based on
263	the algorithm updates (hereon called " <i>radiance</i> "). To compare the accuracy of PRISMA
264	derived SSA and LWC liquid water, we resampled the AVIRIS-NG optical property results
265	(SSA and LWC) to match the PRISMA resolution (30 m) and extents by using bilinear

266	interpolation. Then, we sampled all valid pixels where PRISMA and AVIRIS-NG had snow.
267	We then computed r-pearson correlation coefficient, Mean Bias, and RMSE for the radiance
268	and static methods (with respect to AVIRIS-NG). Finally, we used Copernicus derived slope
269	and aspect maps to determine where the largest errors were occurring on the landscape to
270	compare with the theoretical basis presented in Figure 1. We do this by using the Mean
271	Absolute Error (MAE)mean absolute difference with respect to μ_s slope and aspect. We
272	expected to see higher differences in north facing aspects (i.e., μ_s approaches 0), and where
273	θ_0 was higher. To test the interaction with θ_0 more fully, we extended the analysis to Mount
274	Shasta, CA, and Toolik, Alaska, where no in situ data existed. Finally, weWe compared the
275	modelled broadband albedo and SSAproperties between the radiance and static methods to
276	assess how these assumptions propagated into outputs.impacted results for these types of data
277	<u>at 30 m scale.</u>
278	

279 **2.5 Comparing DEM and radiance derived** μ_s

To ensure the resulting <u>radiance derived</u> μ_s were valid we downloaded the best available validation data sources for comparison. For the San Juan and Shasta site<u>s</u>, we collected DEM products at 1_m spatial <u>resolution and resolution and collected 5</u> m spatial resolution <u>DEM</u> for the Toolik site (U.S. Geological Survey, 2019; U.S. Geological Survey, 2022). Then, we computed slope, aspect, solar zenith angle, and solar azimuth angle for all

285	pixels to compute μ_s at the native resolution (Eq. 1). Then, we used bilinear interpolation to
286	resample the 1 m and 5 m products to 30 m to exactly match the extents and resolution of our
287	PRISMA images. We would like to acknowledge that while these are the best freely available
288	datasets for our images, they still do not capture the true snow-on topography, and instead are
289	a representation of the "snow-free" surface. We compared matching pixels to determine
290	RMSE, R ² , and Mean Bias. Pixels that were marked as shadow from ray tracing were
291	excluded from this comparison.
292	
293	3 Results
294	3.1 Validation using AVIRIS-NG data over the San Juan Mountains
294 295	3.1 Validation using AVIRIS-NG data over the San Juan Mountains Over all flightlinesOver the area of the flightlines, AVIRIS-NG estimated mean SSA =
294 295 296	3.1 Validation using AVIRIS-NG data over the San Juan Mountains Over all flightlinesOver the area of the flightlines, AVIRIS-NG estimated mean SSA = 18.0 +/- 8.313.18 m ² kg ⁻¹ , PRISMA radiance method estimated mean SSA = 23.6719.6 +/-
294 295 296 297	 3.1 Validation using AVIRIS-NG data over the San Juan Mountains Over all flightlinesOver the area of the flightlines, AVIRIS-NG estimated mean SSA = 18.0 +/- 8.313.18 m² kg⁻¹, PRISMA radiance method estimated mean SSA = 23.6719.6 +/- 5.812.45 m² kg⁻¹, and PRISMA static method estimated mean SSA = 22.025.06 +/- 16.0612.1
294 295 296 297 298	 3.1 Validation using AVIRIS-NG data over the San Juan Mountains Over all flightlinesOver the area of the flightlines, AVIRIS-NG estimated mean SSA = 18.0 +/- 8.313.18 m² kg⁻¹, PRISMA radiance method estimated mean SSA = 23.6719.6 +/- 5.812.45 m² kg⁻¹, and PRISMA static method estimated mean SSA = 22_025.06 +/- 16.0612.1 m² kg⁻¹. When comparing the SSA performance over each pixel to the AVIRIS-NG flightlines
294 295 296 297 298 299	 3.1 Validation using AVIRIS-NG data over the San Juan Mountains Over all flightlinesOver the area of the flightlines, AVIRIS-NG estimated mean SSA = 18.0 +/- 8.313.18 m² kg⁻¹, PRISMA radiance method estimated mean SSA = 23.6719.6 +/- 5.812.45 m² kg⁻¹, and PRISMA static method estimated mean SSA = 22.025.06 +/- 16.0612.1 m² kg⁻¹. When comparing the SSA performance over each pixel to the AVIRIS-NG flightlines (Figure 4) we found the PRISMA radiance method (r=0.43; RMSD=8.0 m² kg⁻¹; bias=+1.7 m²
294 295 296 297 298 299 300	 3.1 Validation using AVIRIS-NG data over the San Juan Mountains Over all flightlinesOver the area of the flightlines, AVIRIS-NG estimated mean SSA = 18.0 +/- 8.313.18 m² kg⁻¹, PRISMA radiance method estimated mean SSA = 23.6719.6 +/- 5.812.45 m² kg⁻¹, and PRISMA static method estimated mean SSA = 22.025.06 +/- 16.0612.1 m² kg⁻¹. When comparing the SSA performance over each pixel to the AVIRIS-NG flightlines (Figure 4) we found the PRISMA radiance method (r=0.43; RMSD=8.0 m² kg⁻¹; bias=+1.7 m² kg⁻¹; n=36,412) performed slightly better than the static method (r=0.23; RMSD=13.6 m² kg⁻¹

315	PRISMA static (RMSD=14.2 m ² kg ⁻¹ ; rRMSD=49%; n=181) and radiance (RMSD=6.9 m ² kg ⁻¹)
316	1; rRMSD=23%; n=181) methods were more accurate for these areas. The radiance method
317	performed slightly better, suggesting a modest 25% improvement in accuracy for SSA over the
318	static method when considering pixels that were less impacted by melt.
319	
320	Additionally, comparing all pixels we found improvement from radiance occurred
321	mostly on steep, north facing aspects (e.g., when μ_s approached 0). We found the absolute
322	residual increased as μ_s approached zero for the static method (r = -0.47; p<0.01), while this
323	<u>relationship was diminished</u> nearly by a factor of 5 for the radiance method ($r = -0.10$; p<0.01)
324	(Figure 5.A). These errors were caused by incorrect terrain information in the inversion, where
325	inversion error increased proportionately in the static method (Figure 5.B).

Figure 5. Absolute difference in modelled SSA when compared to AVIRIS-NG for radiance method (green) and static method (pink) respect to μ_s (A) and resulting RMSE from the

inversion from PRISMA with respect to μ_s (B). Error in the static method increases significantly when μ_s approached zero (r = -0.47; p<0.01); however, the difference was less noticeable in the radiance method (r = -0.10; p<0.01).

332

333 3.2 Comparing radiance and static methods between sites

On average across each of the images, radiance and static methods provided similar 334 retrieved parameters within less than one standard deviation (Table 2). In general, this means 335 there is not a significant difference at the 30 m scale for computing parameters such as SSA 336 and broadband albedo (BA) when considering the entire image. Interestingly when terrain is 337 fixed, the static model compensated for incorrect illumination by increasing the aerosol optical 338 depth (thereby reducing the amount of direct solar radiation). Investigating the errors more 339 closely, we found much larger differences in retrieved properties where μ_s approached 0 340 (Figure 6). The difference in distributions matched closely to the theoretical demonstration 341 (Figure 1) and is most likely associated with the standard error of slope and aspect from 342 Copernicus DEM given the illumination conditions. This result also demonstrates the 343 difference between the two methods had the biggest impact for images where θ_0 was high, 344 resulting in potentially inaccurate retrievals that impact both surface and atmospheric state 345 variables on relatively mild slopes. 346

347	_Interestingly when terrain is fixed, the static model compensated for incorrect illumination by
348	increasing the acrosol optical depth (thereby reducing the amount of direct solar radiation). <u>).</u>
349	The difference in distributions matched closely to the theoretical demonstration (Figure 1) and
350	is most likely associated with the standard error of slope and aspect from Copernicus DEM
351	given the illumination conditions. This result demonstrated that the difference between the two
352	methods had the biggest impact for images where θ_{σ} was high. On average for the Mount
353	Shasta site, the radiance method estimated SSA was 17.57 +/- 14.58 m ² kg ⁻¹ , and static method
354	SSA was 17.74 +/- 12.67 m ² kg ⁻¹ (Table 3). Notably, there were more data gaps in the static
355	method, resulting from failed inversions likely due to errors in the slope and aspect. On average
356	for the Toolik site the radiance method estimated SSA to be $51.50 \pm 12.46 \text{ m}^2 \text{ kg}^4$, and the
357	static method estimated 52.07 +/- 14.49 m ² kg ⁻¹ .
358	
359	
360	
361	
362	
363	
364	
365	
1	

366	
367	
368	
369	
370	
371	
372	
373	
374	
375	
376	Table 2. Image-wide statistics comparing derived properties of SSA and broadband albedo
377	between the two methods (static vs. radiance) processing the PRISMA imagery for all three

378 sites.

					Standard	<u>Mean</u>
			<u>Mean</u>	Mean		
				D II I	Deviation of	<u>water</u>
	DDIGMA	Moon SSA	Broadband	Broadband	Proodband	column
Site	I KISMA	Mean SSA	AlbedoStandard	AlbedoMean	Dioaubanu	<u>corumn</u>
Site	Method	$[-m^2 kg^{-1}]$		1 Hocuo <u>irrean</u>	Albedo Mean	vapour
			Deviation of	<u>Liquid</u>		
					AOD at 550	<u>[mm]</u>
			SSA (m² kg⁻¹)	water [%]		
					nm	

	Static	23.3 <u>2.14+/-</u>	<u>0.</u> 79 <u>+/-</u>	<u>3.5 +/-</u>	<u>0.0</u> 5 <u>+/-</u>	6.7 +/- 1.1
San		<u>1</u> 4.9	<u>0.03</u> 19.40	<u>4.</u> 8 0.79	<u>0.</u> 13 0.03	
Juan	Radiance	19.6 <u>+/-</u> 5.9	<u>0.</u> 78 <u>+/-</u>	<u>3.9+/-</u>	<u>0.01 +/-</u>	6.8 + - 0.3
	Tudiunee	21.27	<u>0.03</u> 15.94	5.0 0.78	<u>0.01</u> 0.04	0.0 <u>-17</u> 0.5
	Static	<u>11.0</u> 4 <u>+/-</u>	<u>0.778 +/-</u>	<u>1.6 +/-</u>	<u>0.04 +/-</u>	7.6 +/-
Shasta		6. <u>0</u> 317.74	<u>0.04</u> 12.67	<u>3.3</u> 0.74	<u>0.10</u> 70.05	1. <u>3</u> 0
	Radiance	<u>10</u> 1 <u>.7</u> 3 <u>+/-</u>	<u>0.778 +/-</u>	<u>1.9 +/-</u>	<u>0.0</u> 1 <u>+/-</u>	<u>7.7 +/-</u>
		6. <u>26_17.57</u>	<u>0.05</u> 14.58	<u>3.8</u> 0.72	<u>0.04</u> 0.06	<u>1.1</u> 9
	Static	30.1 <u>+/-</u>	<u>0.85 +/-</u>	<u>0.0 +/-</u>	<u>0.0</u> 2 <u>+/-</u>	1.0 +/- 0.4
Toolik		9.6 52.07	<u>0.02</u> 14.49	<u>0.0</u> 0.82	<u>0.0</u> 3 0.03	
	Radiance	27.7 <u>+/-</u>	<u>0.8</u> 4 <u>+/-</u>	<u>0.0 +/-</u>	<u>0.01 +/-</u>	1.0 +/- 0.2
		7.9 51.50	<u>0.0</u> 2 12.46	<u>0.0</u> 0.81	<u>0.0</u> 1 0.03	2.0

380

When looking more closely at these errors we found6

381

382

Additionally, we saw the highest difference between the two methods on north facing aspects, where μ_s approached 0 (Figure 7). The difference in distributions matched closely to the theoretical demonstration (Figure 1) and is most likely associated with the standard error of 386 slope and aspect from Copernicus DEM given the illumination conditions. This result
387 demonstrated that the difference between the two methods had the biggest impact for images

388 where θ_{μ} was high.

Figure 6. 2D Histogram plots showing absolute error-difference in SSA (left), broadband albedo (middle) and AOD (left) with respect to slope and aspect across the entire dataset. In this figure, treating radiance method as validation, absolute difference is calculated as |Static - Radiance|. This is shown for the San Juan Mountains site (A,D,G), Shasta site (B,E,H), and Toolik site (C,F,I). The average solar zenith angle (θ_0) is shown for reference on each panel.

Putting this into spatial context (Figure 7), San Juan site had 37% of pixels (135.3 km²) with an absolute difference in BA ($[\delta BA]$) >= 0.01 and 14% pixels (49.9 km²) with $|\delta BA|$ >= 0.02. Shasta site had <u>3028</u>% of pixels (1<u>64.74 km²</u>) with $|\delta BA|$ >= 0.01 and 9% pixels (5.1 km²) with $|\delta BA|$ >= 0.02. Toolik site had 40% of pixels (325.3 km²) with $|\delta BA|$ >= 0.01 and 8% pixels (66.6 km²) with $|\delta BA|$ >= 0.02.

402	We observed a small but notable difference between the methods in derived snow
403	broadband albedo (BA) values (Figure 8). On average the standard deviation between BAstatie
404	$-BA_{Radiance}(\delta BA)$ for the San Juan Mountains site was 0.02, standard deviation for the Shasta
405	site was 0.01, and standard deviation for the Toolik site was 0.02. Generally, there was not a
406	clear bias with respect to μ_s . For the San Juan Mountains site, most of the pixels from the static
407	method showed a consistent small, negative bias of around -0.002. However, for shadier slopes
408	at this site, this bias flipped positive and was much more uncertain at around +0.02.
409	Interestingly, δBA from the Toolik site had the opposite relationship to San Juan Mountains
410	site, where δBA was more positive on sunnier slopes (μ_s approaching 1), and more negative
411	on shadier slopes (μ_s approaching 0), suggesting there could be different mechanisms for
412	which the static method may lead to inaccuracies. The result for the Toolik site confirms the
413	need to model the illumination conditions even in relatively flat terrain, because of implications
414	for net radiative forcing in the cryosphere. The Mount Shasta site δBA had no strong
415	relationship with respect to μ_s

Figure 7. Modelled broadband snow albedo (BA) for San Juan Mountains site (A-C), Shasta
Mountain site (D-F), and Toolik site (G-I). Left column represents BA from static method,
middle column represents BA from radiance method, and right column represents absolute
difference in BA (|δBA|). Dark grey colour symbolizes data that is not a value.

422	Median $ \delta BA $ for all sites with respect to μ_s general increased as μ_s approached zero
423	(Figure 8). For example, <u>for the San Juan site</u> , -median $ \delta BA $ ranged from 0.03 to 0.00 across
424	μ_s . For the Shasta and Toolik sites, median $ \delta BA $ ranged from 0.02 to 0.00 across μ_s . This
425	relation was highly non-linear and depended on the site and illumination conditions. For
426	example, standard deviation of $ \delta BA $ (shown as the shaded regions in Figure 9) for well-lit
427	slopes ($\mu_s > 0.8$) were generally smaller for San Juan site, and conversely were higher for
428	the Toolik site. Similar to Dozier et al. (2022), one can see a monotonic relation with respect
429	to θ_{g} across the three sites. This analysis demonstrates the levels of uncertainty potentially
430	left in for retrievals relying on static, non-coincident DEMs. This shows quantitatively the
431	improvements to snow broadband albedo at 30 m scale by using radiance-based approach to
432	be relatively small for well-lit slopes – on the order 0-1%. While shaded slopes may have
433	errors in snow broadband albedo on the order of 1-3%. Interestingly for the Toolik site, $ \delta BA$
434	also increased as μ_s approached one.

Figure 8. Modelled absolute difference in broadband albedo ($|\delta BA| = |BA_{Static} - BA_{Radiance}|$) 438 for San Juan (A), Shasta (B), and Toolik (C). Note these boxplots were created by rounding 439 μ_s to the nearest hundredth place.

<u>3.3 Comparing DEM and radiance derived</u> μ_s

450	Figure 9. Comparing μ_s at 30 m pixel scale derived from radiance and Copernicus against high
451	resolution DEM for San Juan site (A,D), Shasta site (B,E), and Toolik site (C,F).
452	
453	
454	4 Discussion
455	
456	4.1 Implications in accounting for terrain in snow property retrievalRadiance derived
457	DEMs may replace coincident DEMs and contain information related to surface
458	roughness
459	Derivative slope and aspect maps are prone to errors at 30 m spatial resolutions
460	(Dozier et al., 2022)., This which is become relevant for derived snow products from
461	upcoming missions such as SBG and CHIME which will rely on such topographic
462	information to calculate optical properties like snow albedo so that we can better monitor
463	seasonal snowmelt. These errors can be inherent to the DEM itself, or a product of spatial
464	and/or temporal misalignments (Carmon et al., 2023). To enable high quality snow products
465	regardless of illumination angles and conditions, we have demonstrated benefits of
466	computing optimal terrain using TOA radiance over snow. This new method is especially
467	useful for steep mountain terrain and/or high latitudes where illumination conditions are
468	suboptimal. The θ_0 (solar zenith angle) was relatively low for the San Juan Mountain site in
1	

469	our study, and thus represents a lower bound of the improvement in accuracy one could
470	expect (Figure 1; Dozier et al., 2022). This disparity was demonstrated further for the Mount
471	Shasta and Toolik sites when θ_{σ} was larger (i.e. a greater differences in SSA due to more
472	challenging solar and sensor geometry). Even for the relatively flat Toolik site, we showed
473	that correctly accounting for incidence angels can have an impact when θ_{σ} is large. Our
474	modelled δBA with respect to the non-coincident DEM was similar to work by Donahue et
475	al. (2023), who found <u>slightly higher similar</u> -uncertainties of <u>SBA-broadband albedo</u> (ranging
476	from -10 to 10%) for their investigation on Place Glacier, British Columbia, Canada. With
477	the surface and roughness undergoing dramatic change on glaciers throughout a given season,
478	using this radiance-based approach may be especially impactful for improving estimates over
479	<u>glaciers. We corroborated with this research showing similar ranges of δBA for our three</u>
480	study sites.
481	Snow surface roughness has long been a challenging issue in modelling snow
482	properties from space where the solar incidence angle at high spatial resolution for snow-on
483	DEM is not well known (Bair et al., 2022). Previous research found radiance derived μ_s from
484	airborne imaging spectroscopy showed a negative bias and postulated this could be due to
485	within-pixel topography, shadows, and surface roughness (Carmon et al., 2023). Since a bi-
486	directional reflectance function (BRDF) model was not used in their study, it then would be
487	plausible for the optimal μ_s to compensate for these effects. Interestingly when using a BRDF

488	model in our study (i.e., AART) and solving for aspect optimally (therefore informing μ_s, μ_{ν} .
489	and ξ) we did not find a strong bias – negative or positive. Although, we did not take surface
490	roughness measurements, and therefore do not know to the extent this impacted our study.
491	Within-pixel shadows, textures, and surface roughness remain difficult to validate, and we
492	were unable to achieve this in our study. Future work interested in further understanding this
493	radiance-based approach may investigate how such approaches interact with micro-scale
494	topography through the use of ground measurements such as snow-on-terrestrial and airborne
495	<u>lidar.</u>
496	
497	4.2 <mark>2 Future considerationsNext steps</mark> in possibly improving this radiance
498	besedradiance-based annroach
	based<u>radiance-based</u> approach
499	based <u>radiance-based</u> approach
499 500	While we solved for a few terrain parameters in this study, we did <u>not</u> entirely
499 500 501	While we solved for a few terrain parameters in this study,-we did <u>not</u> entirely remove <u>the use of the DEM-the static DEM, even</u> from the radiance method. The elevation
499 500 501 502	While we solved for a few terrain parameters in this study_, we did_not entirely remove the use of the DEM-the static DEM, even from the radiance method. The elevation from global a-DEMs has a much higher confidence than its derivative products (Dozier et al.,
499500501502503	While we solved for a few terrain parameters in this study_, we did_not entirely remove the use of the DEM_the static DEM, even from the radiance method. The elevation from global a-DEMs has a much higher confidence than its derivative products (Dozier et al., 2022). Therefore, we used these values to inform our atmospheric routine, as well as our
 499 500 501 502 503 504 	While we solved for a few terrain parameters in this study, we did <u>not</u> entirely remove the use of the <u>DEM</u> the static <u>DEM</u> , even from the radiance method. The elevation from <u>global</u> a <u>DEMs</u> has a much higher confidence than its derivative products (Dozier et al., 2022). Therefore, we used these values to inform our atmospheric routine, as well as our shadow casting ray tracing module in <u>GOSHAWK</u> (Wilder et al., 2024). Additionally, as
 499 500 501 502 503 504 505 	While we solved for a few terrain parameters in this study, we did <u>not</u> entirely remove the use of the DEM the static DEM, even from the radiance method. The elevation from <u>global</u> a-DEMs has a much higher confidence than its derivative products (Dozier et al., 2022). Therefore, we used these values to inform our atmospheric routine, as well as our shadow casting ray tracing module in <u>GOSHAWK</u> (Wilder et al., 2024). Additionally, as stated in Wilder et al. (2024), <u>GOSHAWK</u> used the Dozier & Frew (1981) we used the

507	terrain and the pixel itself. This factor could potentially be problematic but was cited as being
508	not as important impactful as μ_s in propagating error (Dozier et al., 2022). Therefore, we
509	elected to use V_{Ω} derived from the static Copernicus DEM. However, this could be an area
510	for future improvement, especially in very steep terrain where V_{Ω} becomes small. It is not
511	advised to attempt to add V_{Ω} directly into the optimization routine presented in this study, as
512	it is a function of pixel slope and aspect, and therefore, altering V_{Ω} and aspect together would
513	create invalid solutions.
514	Finally, we used a static value for slope derived from Copernicus DEM. The slope
515	influences the μ_s term, but also influences the passive radiation from nearby slopes.
516	Ultimately, we concluded that aspect had the largest impact on changing μ_s (Figure 1), as
517	well as large RMSE reported in previous work (Dozier et al., 2022; Donahue et al., 2023),
518	and thus was the focus of our study Caution is advised in including both slope and aspect
519	together, as non-unique solution space for μ_s may cause the optimization outputs to become
520	invalid. In summary, elevation, V_{Ω} , and slope remain static in our current implementation.
521	Future work may explore other algorithmic choices to further remove, or improve, static
522	DEM parameters.
523	Another consideration for improving this method is the inclusion of total column
524	ozone into the optimization. Previous research has been able to use TOA snow reflectance
525	data to retrieve reliable estimates of ozone (Kokhanovsky et al., 2021b). In our paper, we
1	

533 Figure 10. Synthetic data showing change in magnitude of top of atmosphere radiance (L_{TOA}) 534 with respect to changing total column ozone for fixed snow surface state variables modelled 535 with AART, and other fixed atmospheric state variables modelled with libRadtran. Reference 536 data is based on PRISMA image taken over southern Colorado. Note units of total column 537 ozone are shown in in Dobson Units (DU).

538 Finally, future studies should investigate including improvements to BRDF models of 539 540 snow (Mei et al., 2022). For example, recent work by Kokhanovsky et al. (2024) has proposed the use of a two-layer model which may be especially useful for vertically 541 heterogenous snowpacks. Theiris method has been tested using EnMAP data and may easily 542 be transferable to other sensors. The current AART method we used in our paper does not 543 account for these layers, and instead assumes an optically thick, homogenous snowpack. To 544 validate both AART, and the new layered approach, and future BRDF models, snow pit (i.e., 545 546 vertical profile) measurements of SSA (e.g., Meloche et al., 2023) become essential in ensuring models accurately account for diverse layering of snow (Meloche et al., 2023). 547 548 4.3 Big picture implications of the radiance-based approach 549 550 This research responds to the objectives stated in "Thriving on our changing planet: A 551 decadal strategy for Earth observation from space", to improve biogeophysical modelling at 552 scales driven by topography (National Academies of Science, Engineering, & Medicine, 553 554 20189), enabling more accurate snow property retrievals in the cryosphere under challenging illumination conditions. Our work presented on solving terrain where DEM data are not 555 556 available, or reliable, may serve to accelerate improvements to satellite remote sensing tools

557	to monitor and model at both the regional global scale (Sturm et al., 2017), at a critical
558	juncture in time where northern latitudes are changing fast under a warming climate. This
559	includes Earth's glaciers, where radiance-based method may have the largest improvements
560	over static approaches. Our research is complimented by other recent works which show
561	promise in including terrain in the inversions (Bohn et al., 2024; Bohn et al., 2023; Bair et al.,
562	<u>2024; Carmon et al., 2023)</u>
563	
564	We recommend additional coincident AVIRIS-NG flights with spaceborne imaging
565	spectroscopy datasets to further this work. As we have shown for the San Juan Mountains
566	site, for particularly warm days, images that are separated by longer than an hour may exhibit
567	drastically different SSA and liquid water content. As shown in this paper, this creates an
568	issue when trying to validate improvements to retrieval algorithms.
569	
570	
571	However, future work could investigate other model and optimization configurations
572	to improve upon this study. We recommend additional coincident AVIRIS NG flights with
573	spaceborne imaging spectroscopy datasets to further this work.
574	

575 5 Conclusions

576	In this study we used existing PRISMA L1 TOA imagery to demonstrate the
577	improvements in modelling snow optical properties when explicitly modelling the terrain in
578	the inversion. This This presents an interesting concept, that end users who are interested in
579	modelling snow from space, are perhaps better off working with the L1 TOA products, and
580	not using the L2 bottom of atmosphere reflectance products space agencies typically produce.
581	This would especially be true for areas where the surface undergoes rapid change, such as on
582	glaciers. This new method is especially useful for steep mountain terrain and/or high latitudes
583	where illumination conditions are suboptimal. The θ_0 (solar zenith angle) was relatively low
584	for the San Juan Mountains site in our study, and thus represents a lower bound of the
585	improvement in accuracy one could expect. This disparity was demonstrated further for the
586	Mount Shasta and Toolik sites when θ_0 was larger (i.e. a greater difference in retrieved
587	properties due to more challenging solar and sensor geometry). Even for the relatively flat
588	Toolik site, we showed that correctly accounting for incidence angles can impact snow
589	properties when θ_0 is large. Future work may look to build from this radiance-based approach
590	to enable better quantification of snow properties at scales impacted by topography.
591	

592 Code Availability. <u>https://github.com/cryogars/goshawk</u>

593	Author contributions. B.W. created the GOSHAWK algorithm and updates herein, decided
594	on experiment set-up, and performed the subsequent analysis, as well as being the main
595	article writer. J.M., J.E. and N.G. provided ideas, comments, and supervised the work.
596	Competing interests. The contact author has declared that neither they nor their co-authors
597	have any competing interests.
598	Acknowledgements. We acknowledge the Italian Space Agency (ASI) for providing us access
599	to PRISMA imagery and providing us the foundational data necessary for this research. We
600	thank Dr. McKenzie Skiles for aiding us in modelling the snow properties from AVIRIS-NG,
601	and for supplying the dataset.
602	
603	Financial support. This research has been supported by FINESST Award - 21-EARTH21-
604	0249.
605	
606	References
607	1. Bair, E. H., Dozier, J., Stern, C., LeWinter, A., Rittger, K., Savagian, A., Stillinger,
608	T., and Davis, R. E.: Divergence of apparent and intrinsic snow albedo over a season

609		at a sub-alpine site with implications for remote sensing, The Cryosphere, 16, 1765-
610		1778, https://doi.org/10.5194/tc-16-1765-2022, 2022.
611	2.	Bair, E. H., Roberts, D. A., Thompson, D. R., Brodrick, P. G., Wilder, B. A., Bohn,
612		N., Crawford, C. J., Carmon, N., Vuyovich, C. M., & Dozier, J. Brief communication:
613		Not as dirty as they look, flawed airborne and satellite snow spectra. EGUsphere
614		[preprint], <u>https://doi.org/10.5194/egusphere-2024-1681</u> , 2024.
615	3.	Bair, E. H., Stillinger, T., and Dozier, J.: Snow property inversion from remote
616		sensing (SPIReS): A generalized multispectral unmixing approach with examples
617		from MODIS and Landsat 8 OLI, IEEE Transactions on Geoscience and Remote
618		Sensing, 59, 7270–7284, https://doi.org/10.1109/TGRS.2020.3040328, 2021.
(10	4	Dohn M. Dointon T. H. Thomason D. D. Common M. Sucilusto, I. Turmon M. L.
619	<u>4.</u>	Bonn, N., Painter, T. H., Thompson, D. R., Carmon, N., Susiluoto, J., Turmon, M. J.,
620		and Guanter, L.: Optimal estimation of snow and ice surface parameters from imaging
621		spectroscopy measurements, Remote Sensing of Environment, 264, 112613,
622		https://doi.org/10.1016/j.rse.2021.112613, 2021.
623	4. <u>5</u>	Bohn, N., Bair, E. H., Brodrick, P. G., Carmon, N., Green, R. O., Painter, T. H., and
624		Thompson, D. R.: Estimating dust on snow—application of a coupled atmosphere-
625		surface model to spaceborne EMIT imaging spectrometer data, in: IGARSS 2023-

626	2023 IEEE International Geoscience and Remote Sensing Symposium, 685-688,
627	IEEE, July 2023.
628	5.6.Bohn, N., Bair, E. H., Brodrick, P. G., Carmon, N., Green, R. O., Painter, T. H., and
629	Thompson, D. R.: The pitfalls of ignoring topography in snow retrievals: a case study
630	with EMIT, SSRN [preprint], <u>http://dx.doi.org/10.2139/ssrn.4671920</u> , 2024.
631	6.7. Carmon, N., Berk, A., Bohn, N., Brodrick, P. G., Dozier, J., Johnson, M., Miller, C.
632	E., Thompson, D. R., Turmon, M., Bachmann, C. M., Green, R. O., Eckert, R.,
633	Liggett, E., Nguyen, H., Ochoa, F., Okin, G. S., Samuels, R., Schimel, D., Song, J. J.,
634	and Susiluoto, J.: Shape from spectra, Remote Sensing of Environment, 288, 113497,
635	https://doi.org/10.1016/j.rse.2023.113497, 2023.
636	7.8. Cawse-Nicholson, K., Townsend, P. A., Schimel, D., Assiri, A. M., Blake, P. L.,
637	Buongiorno, M. F., Campbell, P., Carmon, N., Casey, K. A., Correa-Pabón, R. E.,
638	Dahlin, K. M., Dashti, H., Dennison, P. E., Dierssen, H., Erickson, A., Fisher, J. B.,
639	Frouin, R., Gatebe, C. K., Gholizadeh, H., Gierach, M., Glenn, N. F., Goodman, J. A.,
640	Griffith, D. M., Guild, L., Hakkenberg, C. R., Hochberg, E. J., Holmes, T. R. H., Hu,
641	C., Hulley, G., Huemmrich, K. F., Kudela, R. M., Kokaly, R. F., Lee, C. M., Martin,
642	R., Miller, C. E., Moses, W. J., Muller-Karger, F. E., Ortiz, J. D., Otis, D. B.,
643	Pahlevan, N., Painter, T. H., Pavlick, R., Poulter, B., Qi, Y., Realmuto, V. J., Roberts,

644	D., Schaepman, M. E., Schneider, F. D., Schwandner, F. M., Serbin, S. P.,
645	Shiklomanov, A. N., Stavros, E. N., Thompson, D. R., Torres-Perez, J. L., Turpie, K.
646	R., Tzortziou, M., Ustin, S., Yu, Q., Yusup, Y., Zhang, Q., and SBG Algorithms
647	Working Group: NASA's surface biology and geology designated observable: A
648	perspective on surface imaging algorithms, Remote Sensing of Environment, 257,
649	112349, https://doi.org/10.1016/j.rse.2021.112349, 2021.
650	8-9. Celesti, M., Rast, M., Adams, J., Boccia, V., Gascon, F., Isola, C., and Nieke, J.: The
651	Copernicus Hyperspectral Imaging Mission for the Environment (CHIME): Status
652	and Planning, in: IGARSS 2022–2022 IEEE International Geoscience and Remote
653	Sensing Symposium, 5011–5014, IEEE, July 2022.
654	9.10. Center for Snow and Avalanche Studies: Archival Data from Senator Beck
655	Basin Study Area, available at https://snowstudies.org/archived-data/, 2023.
656	10.11. Cogliati, S., Sarti, F., Chiarantini, L., Cosi, M., Lorusso, R., Lopinto, E., and
657	Colombo, R.: The PRISMA imaging spectroscopy mission: Overview and first
658	performance analysis, Remote Sensing of Environment, 262, 112499,
659	https://doi.org/10.1016/j.rse.2021.112499, 2021.

660	11.12. Dalcin, L., and Fang, Y. L. L.: mpi4py: Status update after 12 years of
661	development, Computing in Science & Engineering, 23(4), 47–54,
662	doi:10.1109/MCSE.2021.3083216, 2021.
663	12.13. Donahue, C., Skiles, S. M., and Hammonds, K.: Mapping liquid water content
664	in snow at the millimeter scale: an intercomparison of mixed-phase optical property
665	models using hyperspectral imaging and in situ measurements, The Cryosphere,
666	16(1), 43–59, <u>https://doi.org/10.5194/tc-16-43-2022</u> , 2022.
667	13.14. Donahue, C. P., Menounos, B., Viner, N., Skiles, S. M., Beffort, S.,
668	Denouden, T., and Heathfield, D.: Bridging the gap between airborne and spaceborne
669	imaging spectroscopy for mountain glacier surface property retrievals, Remote
670	Sensing of Environment, 299, 113849, https://doi.org/10.1016/j.rse.2023.113849,
671	2023.
672	14. <u>15.</u> Dozier, J.: Revisiting topographic horizons in the era of big data and parallel
673	computing, IEEE Geoscience and Remote Sensing Letters, 19, 1-5,
674	doi:10.1109/LGRS.2021.3125278, 2022.
675	15.16. Dozier, J., Bair, E. H., Baskaran, L., Brodrick, P. G., Carmon, N., Kokaly, R.
676	F., and Thompson, D. R.: Error and uncertainty degrade topographic corrections of

677	remotely sensed data, Journal of Geophysical Research: Biogeosciences, 127(11),
678	e2022JG007147, <u>https://doi.org/10.1029/2022JG007147</u> , 2022.
679	<u>16.17.</u> European Space Agency: Copernicus Global Digital Elevation Model
680	[Dataset], distributed by Open Topography, <u>https://doi.org/10.5069/G9028PQ</u> , 2021.
681	17.18. Green, R. O., Brodrick, P. G., Chapman, J. W., Eastwood, M., Geier, S.,
682	Helmlinger, M., and Thorpe, A. K.: AVIRIS-NG L2 Surface Reflectance, Facility
683	Instrument Collection, V1, ORNL DAAC, Oak Ridge, Tennessee, USA, 2023.
684	18.19. Guanter, L., Kaufmann, H., Segl, K., Foerster, S., Rogass, C., Chabrillat, S.,
685	Kuester, T., Hollstein, A., Rossner, G., Chlebek, C., Straif, C., Fischer, S., Schrader,
686	S., Storch, T., Heiden, U., Mueller, A., Bachmann, M., Mühle, H., Müller, R.,
687	Habermeyer, M., Ohndorf, A., Hill, J., Buddenbaum, H., Hostert, P., van der Linden,
688	S., Leitão, P. J., Rabe, A., Doerffer, R., Krasemann, H., Xi, H., Mauser, W., Hank, T.,
689	Locherer, M., Rast, M., Staenz, K., and Sang, B.: The EnMAP spaceborne imaging
690	spectroscopy mission for earth observation, Remote Sensing, 7(7), 8830-8857,
691	https://doi.org/10.3390/rs70708830, 2015.
692	<u>19.20.</u> Hale, G. M. and Querry, M. R.: Optical constants of water in the 200-nm to
693	200-µm wavelength region, Applied Optics, 12, 555–563,

694 <u>https://doi.org/10.1364/AO.12.000555</u>, 1973.

695	20.21. Kaspari, S., Skiles, M., Delaney, I., Dixon, D., and Painter, T. H.: Accelerated
696	glacier melt on Snow Dome, Mount Olympus, Washington, USA, due to deposition of
697	black carbon and mineral dust from wildfire, Journal of Geophysical Research:
698	Atmospheres, 120(7), 2793–2807, https://doi.org/10.1002/2014JD022676, 2015.
699	21.22. Kokhanovsky, A. A., and Zege, E. P.: Scattering optics of snow, Applied
700	Optics, 43(7), 1589–1602, doi:10.1364/AO.43.001589, 2004.
701	22.23. Kokhanovsky, A. A.: The Broadband Albedo of Snow, Frontiers in
702	Environmental Science, 9, 757575, https://doi.org/10.3389/fenvs.2021.757575, 2021.
703	24. Kokhanovsky, A., Di Mauro, B., Garzonio, R., and Colombo, R.: Retrieval of dust
704	properties from spectral snow reflectance measurements, Frontiers in Environmental
705	Science, 9, 644551, https://doi.org/10.3389/fenvs.2021.644551, 2021a.
706	23.25. Kokhanovsky, A., Gascoin, S., Arnaud, L., and Picard, G.: Retrieval of snow
707	albedo and total ozone column from single-view MSI/S-2 spectral reflectance
708	measurements over Antarctica, Remote Sensing, 13(21), 4404,
709	https://doi.org/10.3390/rs13214404, 2021b.
710	24.26. Kokhanovsky, A., Brell, M., Segl, K., Efremenko, D., Petkov, B., Bianchini,
711	G., Stone, R., and Chabrillat, S.: The two-layered radiative transfer model for snow

reflectance and its application to remote sensing of the Antarctic snow surface from

713 space, Frontiers in Environmental S	Science, 12, 1416597,
---	-----------------------

- 714 https://doi.org/10.3389/fenvs.2024.1416597, 2024.
- 715 <u>25.27.</u> Leroux, C., and Fily, M.: Modeling the effect of sastrugi on snow reflectance,
- Journal of Geophysical Research: Planets, 103(E11), 25779–25788,
- 717 <u>https://doi.org/10.1029/98JE00558</u>, 1998.

719	26.28. Malmros, J. K., Mernild, S. H., Wilson, R., Tagesson, T., and Fensholt, R.:
720	Snow cover and snow albedo changes in the central Andes of Chile and Argentina
721	from daily MODIS observations (2000–2016), Remote Sensing of Environment, 209,
722	240-252, https://doi.org/10.1016/j.rse.2018.02.072, 2018.
723	<u>27-29.</u> Mayer, B., and Kylling, A.: The libRadtran software package for radiative
724	transfer calculations-description and examples of use, Atmospheric Chemistry and
725	Physics, 5(7), 1855–1877, <u>https://doi.org/10.5194/acp-5-1855-2005</u> , 2005.
726	28.30. McKenzie, D.: Mountains in the Greenhouse: Climate Change and the
727	Mountains of the Western U.S.A., 10.1007/978-3-030-42432-9, 2020.

728 29.31. Mei, L., Rozanov, V., Jiao, Z., and Burrows, J. P.: A new snow bidirectional
 729 reflectance distribution function model in spectral regions from UV to SWIR: Model

730	development and application to ground-based, aircraft and satellite observations,
731	ISPRS Journal of Photogrammetry and Remote Sensing, 188, 269–285,
732	https://doi.org/10.1016/j.isprsjprs.2022.04.010, 2022.
733	30.32. Meloche, J., Lemmetyinen, J., Meyer, K., Alabi, I., Vuyovich, C. M., Stuefer,
734	S., Marshall, H., Durand, M., and Langlois, A.: SnowEx23 Laser Snow
735	Microstructure Specific Surface Area Data, Version 1 [Data Set], NASA National
736	Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado,
737	USA, https://doi.org/10.5067/BSEP59ADC6XN, accessed 16 August 2024.
738	31.33. Miller, S. D., Wang, F., Burgess, A. B., Skiles, S. M., Rogers, M., and Painter,
739	T. H.: Satellite-based estimation of temporally resolved dust radiative forcing in snow
740	cover, Journal of Hydrometeorology, 17(7), 1999–2011, https://doi.org/10.1175/JHM-
741	<u>D-15-0150.1</u> , 2016.
742 743 744	32.34. National Academies of Sciences, Engineering, and Medicine: Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space, National Academies Press, Washington, DC, 716 pp., doi:10.17226/24938, 2018.
745	
746	33.35. O'Neel, S., Wilder, B., Keskinen, Z., Zikan, K. H., Enterkine, J., Filiano, D.
747	L., Meehan, T., LeWinter, A., Deeb, E. J., Marshall, HP., & Adebisi, N.: Helicopter-

748	Borne Lidar to Resolve Snowpack Variability in Southwest Idaho, in: AGU Fall
749	Meeting Abstracts, Vol. 2022, C35E-0922, December 2022.
750	36. Painter, T. H., Seidel, F. C., Bryant, A. C., Skiles, S. M., and Rittger, K.: Imaging
751	spectroscopy of albedo and radiative forcing by light-absorbing impurities in
752	mountain snow, Journal of Geophysical Research: Atmospheres, 118(17), 9511-9523,
753	https://doi.org/10.1002/jgrd.50520, 2013.
754	34. Picard, G., Dumont, M., Lamare, M., Tuzet, F., Larue, F., Pirazzini, R., and Arnaud,
755	L.: Spectral albedo measurements over snow-covered slopes: theory and slope effect
756	corrections, The Cryosphere, 14, 1497–1517, https://doi.org/10.5194/tc-14-1497-
757	<u>2020, 2020.</u>
758	<u>37.</u>
759	35.38. Seidel, F. C., Rittger, K., Skiles, S. M., Molotch, N. P., and Painter, T. H.:
760	Case study of spatial and temporal variability of snow cover, grain size, albedo and
761	radiative forcing in the Sierra Nevada and Rocky Mountain snowpack derived from
762	imaging spectroscopy, The Cryosphere, 10(3), 1229–1244, https://doi.org/10.5194/tc-
763	<u>10-1229-2016</u> , 2016.

764	36.39. Siirila-Woodburn, E. R., Rhoades, A. M., Hatchett, B. J., Huning, L. S.,
765	Szinai, J., Tague, C., Nico, P. S., Feldman, D. R., Jones, A. D., Collins, W. D., &
766	Kaatz, L.: A low-to-no snow future and its impacts on water resources in the western
767	United States, Nature Reviews Earth & Environment, 2(11), 800-819,
768	https://doi.org/10.1038/s43017-021-00219-y, 2021.
769	<u>37.40.</u> Skiles, S. M., & Painter, T.: Daily evolution in dust and black carbon content,
770	snow grain size, and snow albedo during snowmelt, Rocky Mountains,
771	Colorado, Journal of Glaciology, 63(237), 118-132, doi:10.1017/jog.2016.125, 2017.
772	38.41. Skiles, M. and Vuyovich, C. M.: SnowEx21 Senator Beck Basin and Grand
773	Mesa, CO AVIRIS-NG Surface Spectral Reflectance, Version 1 [Data Set], NASA
774	National Snow and Ice Data Center Distributed Active Archive Center, Boulder,
775	Colorado USA, https://doi.org/10.5067/ZAI3M64WWN5V, Date Accessed 02-09-
776	2024.
777	
778	39.42. Sturm, M., Goldstein, M. A., and Parr, C.: Water and life from snow: A
779	trillion dollar science question, Water Resources Research, 53(5), 3534-3544,
780	https://doi.org/10.1002/2017WR020840, 2017.

781	40.43. Tedesco, M., and Kokhanovsky, A. A.: The semi-analytical snow retrieval
782	algorithm and its application to MODIS data, Remote Sensing of Environment,
783	111(2-3), 228-241, <u>https://doi.org/10.1016/j.rse.2007.02.036</u> , 2007.
784	
785	41.44. U.S. Geological Survey: 3D Elevation Program 1-Meter Resolution Digital
786	Elevation Model (published 20200606), accessed June 1, 2023,
787	at https://www.usgs.gov/the-national-map-data-delivery, 2019.
788	42.45. U.S. Geological Survey, 2022, 5 Meter Alaska Digital Elevation Models
789	(DEMs) - USGS National Map 3DEP Downloadable Data Collection, accessed June
790	1, 2023, at https://www.usgs.gov/the-national-map-data-delivery, 2022.
791	
792	43.46. Wang, W., Yang, K., Zhao, L., Zheng, Z., Lu, H., Mamtimin, A., Ding, B., Li,
793	X., Zhao, L., Li, H., Che, T., & Moore, J. C. Characterizing surface albedo of shallow
794	fresh snow and its importance for snow ablation on the interior of the Tibetan
795	Plateau, Journal of Hydrometeorology, 21(4), 815-827, https://doi.org/10.1175/JHM-
796	<u>D-19-0193.1</u> , 2020.

798	44.47. Warren, S. G., & Brandt, R. E. Optical constants of ice from the ultraviolet to
799	the microwave: A revised compilation, Journal of Geophysical Research:
800	Atmospheres, 113(D14), <u>https://doi.org/10.1029/2007JD009744</u> , 2008.
801	
802	45. Wilder, B. A., Glenn, N. F., Lee, C. M., Marshall, H. P., Brandt, J., Kinoshita, A. M.,
803	& Enterkine, J. (2023, July). Global Optical Snow properties via High-speed
804	Algorithm With K-means clustering (GOSHAWK). In IGARSS 2023-2023 IEEE
805	International Geoscience and Remote Sensing Symposium(pp. 118-120). IEEE.
806	46.48. Wilder, B. A., Lee, C. M., Chlus, A., Marshall, H. P., Brandt, J., Kinoshita, A.
807	M., Enterkine, J., Van Der Weide, T., & Glenn, N. F. Computationally Efficient
808	Retrieval of Snow Surface Properties From Spaceborne Imaging Spectroscopy
809	Measurements Through Dimensionality Reduction Using k-Means Spectral
810	Clustering, IEEE Journal of Selected Topics in Applied Earth Observations and
811	Remote Sensing, vol. 17, pp. 8594-8605, doi:10.1109/JSTARS.2024.3386834, 2024.