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Abstract. Soil bioturbation plays a key role in soil functions such as carbon and nutrient cycling. Despite its importance, 

fundamental knowledge on how different organisms and processes impact the rates and patterns of soil mixing during 10 

bioturbation is lacking. However, this information is essential for understanding the effects of bioturbation in present-day soil 

functions and on long-term soil evolution.  

Luminescence, a light-sensitive mineral property, serves as a valuable tracer for long-term soil bioturbation over decadal to 

millennial timescales. The luminescence signal resets (bleaches) when a soil particle is exposed to daylight at the soil surface 

and accumulates when the particle is buried in the soil, acting as a proxy for subsurface residence times. In this study, we 15 

compiled three luminescence-based datasets of soil mixing by different biota and compared them to numerical simulations of 

bioturbation using the soil-landscape evolution model ChronoLorica. The goal was to understand how different mixing 

processes affect depth profiles of luminescence-based metrics, such as the modal age, width of the age distributions and the 

fraction of bleached particles.  

We focus on two main bioturbation processes: mounding (advective transport of soil material to the surface) and subsurface 20 

mixing (diffusive subsurface transport). Each process has a distinct effect on the luminescence metrics, which we summarized 

in a conceptual diagram to help with qualitative interpretation of luminescence-based depth profiles. A first attempt to derive 

quantitative information from luminescence datasets through model calibration showed promising results, but also highlighted 

gaps in data that must be addressed before accurate, quantitative estimates of bioturbation rates and processes are possible. 

The new numerical formulations of bioturbation, which are provided in an accompanying modelling tool, provide new 25 

possibilities for calibration and more accurate simulation of the processes in soil function and soil evolution models.  
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1 Introduction 30 

Bioturbation is a fundamental process of soil mixing by different biota that plays a key role in nutrient cycling, carbon 

sequestration, erosion, and in the distribution of contaminants and pollutants (Wilkinson et al., 2009; Briones, 2014; Creamer 

et al., 2022).the umbrella term for soil mixing processes by various organisms. Bioturbation plays a key role in soil nutrient 

cycling, carbon sequestration, erosion, and the redistribution of contaminants and pollutants (Wilkinson et al., 2009; Briones, 

2014; Creamer et al., 2022). Despite its pivotal role in regulating soil functions, there is still a deficiency in fundamentally 35 

understanding how different organisms impact the rates and directions of soil fluxes during bioturbation (Schiffers et al., 2011; 

Michel et al., 2022)we have an incomplete understanding regarding how different organisms and ecosystems impact the types 

and rates of mixing processes, how these rates vary with soil depth and how different mixing processes interact within the soil 

(Schiffers et al., 2011; Michel et al., 2022). These insights are essential for accurately modelling the effects of bioturbation on 

present-day soil functions and the long-term evolution of soils (Creamer et al., 2022; Meng et al., 2022).  40 

In this work, we focus onexamine two types ofkey soil bioturbation processes: mounding and subsurface mixing (Wilkinson 

et al., 2009). Mounding is the upward advective transport of soil material, which is deposited on the surface in mounds and 

later eroded and buried by newly mounded material. Subsurface mixing isinvolves the diffusive up- and downward exchange 

of soil material throughout the entire soil profile at various depths. Many soil organisms display both processes in different 

capacities, depending on their feeding and burrowing behaviour. Gophers and mound-building termites such as Macrotermes 45 

are mainly known for mounding (e.g., by gophers and termites; Gabet, 2000; Kristensen et al., 2015), while organisms that 

mainly reside in the subsurface, such as gallery-building ants, endogeic earthworms and tree roots, typically show subsurface 

mixing behaviour (e.g., by endogeic and anecic earthworms and galley-building ants; Richards, 2009; Halfen and Hasiotis, 

2010; Taylor et al., 2019). Anecic earthworms and Aphaenogaster ants, that visit the surface and create deep vertical burrows 

and galleries, contribute to both mounding and subsurface mixing (Bouché, 1977; Richards, 2009).  50 

Bioturbation is thus often an interplay of mounding and subsurface mixing, driven by various organisms, but also by 

environmental and climatic factors (Wilkinson et al., 2009; Kraus et al., 2022), which leads to mixed bioturbation signals in 

the soil. Although subsurface mixing is generally considered the dominant process, there is a lack of data or methods to 

differentiate the effects of both bioturbation processes (Wilkinson et al., 2009; Halfen and Hasiotis, 2010; Michel et al., 2022).  

Luminescence emitted by quartz and feldspar grains has successfully been used as tracer for bioturbation (Heimsath et al., 55 

2002; Madsen et al., 2011; Stockmann et al., 2013; Johnson et al., 2014; Gliganic et al., 2015; Hanson et al., 2015; Reimann 

et al., 2017; Román-Sánchez et al., 2019a; Zhang et al., 2024). The luminescence signal accumulates over time due to ionizing 

radiation emitted from radionuclides of elements within the uranium and thorium decay chains, as well as potassium-40, which 

are present in the soil, and due to cosmic rays The luminescence signal accumulates over time due to ionizing radiation coming 

from naturally occurring radionuclides in the soil (uranium and thorium decay chains and potassium-40) and from cosmic rays. 60 

The luminescence signal is reset (bleached) when a soil particle is exposed to daylight. Thus, the luminescence signal is a 

proxy for the residence time of soil particles in the subsurface and is ideally measured on single grains when used as a tracer 
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for soil mixing (Duller, 2008). The distribution of the luminescence signal of different grains in a sample informs about the 

type and intensity of the mixing process (Bateman et al., 2003, 2007). Moreover, their changes with depth provide additional 

information on rates, patterns and intensity of bioturbation. 65 

Luminescence signals are often used in combination with numerical or analytical tools to calculate particle ages and soil mixing 

rates, and characterize mixing patterns (Furbish et al., 2018a, b; Román-Sánchez et al., 2019b; Schiffers et al., 2011; Gray et 

al., 2020; Yates et al., 2024). These tools are often based on a single diffusion-based implementation of the mixing process, 

which limits the possibilities to separate mixing signals by different biota (Schiffers et al., 2011), or are based on models 

stemming from aquatic ecology without adequate testing for terrestrial environments (Michel et al., 2022). Recent 70 

developments in soil-landscape evolution modelling enable the integration of luminescence tracers with process-based 

simulations of soil and landscape processes (ChronoLorica model; van der Meij et al., 2023). This integration enables the 

simulation of the effects of different bioturbation processes on luminescence-depth profiles, which can help to quantify the 

impacts of different bioturbation processes on soil mixing, better formulate bioturbation processes and their effects on nutrient 

cycling and other soil functions (Creamer et al., 2022), simulate soil mixing over different spatial and temporal scales (e.g., 75 

Schiffers et al., 2011) and provide a strongerbetter represent the role of biota in soil-landscape evolution models (Meng et al., 

2022). 

The objective of this study is to provide qualitative and quantitative tools for differentiating the impacts of mounding and 

subsurface mixing during soil bioturbation using luminescence tracers. By integrating experimental luminescence-based 

bioturbation datasets with soil evolution modelling, we aim to 1) characterize typical luminescence-depth profiles for 80 

mounding and subsurface mixing, 2) determine how varying parameters and combinations of these processes affect these depth 

profiles and 3) derive quantitative process rates and contributions from experimental data through model calibration.  

2 Methods 

2.1 Conceptual models of soil mixing 

Mounding and subsurface mixing have distinct effects on the soil and luminescence tracers. In this section, we conceptually 85 

discuss these effects as a basis for their numerical implementation. 

Soil bioturbation by mounding causes a net upward transport of soil material to the soil surface (Figure 1Figure 1Aa). This soil 

material is mined from previously buried material from the upper part of the soil (~ 1 m for termites, Kristensen et al., 2015), 

effectively leading to recycling of soil material in the mounding process over longer timescales. This recycling exposes a large 

part of the soil grains to daylight, leading to only a limited amount on non-surfaced grains that can carry a saturated 90 

luminescence signal. Typical mounding organisms are gophers, moles and termites (Gabet, 2000; Wilkinson et al., 2009; 

Kristensen et al., 2015). Mounding rates most likely decrease with depth due to decreasing biotic activity (Gray et al., 2020).  

The diffusion-like transport caused by organisms that perform subsurface mixing moves soil material in between subsurface 

layers (Figure 1Figure 1Bb). Typical mixing organisms are endogeic and anecic earthworms which (partly) live underground 
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(Taylor et al., 2019), ants and subterranean termites that create subsurface galleries (Richards, 2009; Halfen and Hasiotis, 95 

2010; Rink et al., 2013; Stewart and Anand, 2014; Taylor et al., 2019) and tree roots that shift material around when growing 

and which leave pores that can be filled with material after decay of the root material (Johnson et al., 2014; Ruiz et al., 2015). 

With subsurface mixing, there is much smaller proportion of grains that is transported to the surface, leaving a higher 

proportion of non-surfaced grains. Also, for subsurface mixing, mixing rates probably decrease with depth, due to decreased 

biotic activity (Figure 1Figure 1Bb).  100 

 

Figure 1: Conceptual drawing of (a) mounding and (b) subsurface mixing. Subsurface mixing and mounding are visualized here 

with an exponential depth function (see Sect. 2.3.2). The arrows indicate direction and their thickness the intensity of soil transport.  

2.2 Experimental studies 

We compiled three quartz and feldspar single-grain luminescence-based datasets of soil mixing by different organisms to 105 

characterize luminescence-depth profiles (Table 1Table 1). The main bioturbating organisms are termites who preferentially 

mound (Kristensen et al., 2015), anecic earthworms who both mound and mix the subsurface (von Suchodoletz et al., 2023) 

and ants who mainly mix the subsurface (Román-Sánchez et al., 2019a). All measurements were performed using Risø TL/OSL 

DA15 and DA20 luminescence readers equipped with 90Sr/90Y beta sources. The luminescence signals of single-grain quartz 

for the termites study were stimulated using a green laser for single grains (Kristensen et al., 2015). The signals were detected 110 

by a UV-sensitive photomultiplier tube (PMT) through a 7.5 mm Schott U-340 filter. K-rich feldspars were stimulated using 

an IR laser and the signals were detected with a LOT/ORIEL D410 interference filter (Román-Sánchez et al., 2019a; von 
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Suchodoletz et al., 2023). Details regarding the sample preparation and the exact measurement conditions are given in the 

respective publications and a summary is provided in Table 1Table 1.  

  115 
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Table 1: Overview of experimental single-grain luminescence datasets used in this study. When reported in the original publications, 

species names, climate zones and ecosystems are mentioned. Q = Quartz, FSP = Feldspar, SG = single grains, Post-IR IRSL = Post-

infrared infrared stimulated luminescence, PH = preheat 

Organism Primary 

mixing 

process 

Climate zone 

and ecosystem  

Reference  Selected 

profile 

Active 

mixing 

depth 

Defined bioturbation 

period or saturation 

criteria 

Luminescence method 

Termites 

(Macrotermes 

natalensis) 

Mounding Tropical (Aw), 

Savannah 

(Kristensen 

et al., 2015) 

Unit II 1.02 m < 4 ka, onset of 

deforestation and start 

of savannah ecosystem 

Q, SG, OSL, grain size: 90-

180 μm, OSL 

Anecic 

earthworms 

Subsurface 

mixing and 

mounding 

Warm-summer 

humid 

continental 

(Dfb), 

ecosystem not 

reported 

(von 

Suchodoletz 

et al., 2023) 

Profile 2 60 cm < 13.2 ka, estimated 

start of bioturbation by 

earthworms 

> 3.8 ka, end of 

bioturbation, due to 

burial of soil below 

burial mound 

FSP SG, post-IR50IRSL150 

(PH 175 °C, 60 s), grain 

size: 212-250 µm 

Ants Subsurface 

mixing 

Mediterranean 

climate (BSk), 

Oak-woodland 

savannah 

(Román-

Sánchez et 

al., 2019a) 

SC-10 50 cm 2*D0 (Wintle and 

Murray, 2006) 

FSP SG, post-

IR50IRIRSLeIR50IRIRSL175 

(PH 200 °C, 60 s), grain 

size: 212-250 µm 

From these datasets, we are only interested in the ages of grains that have been bioturbated by the current dominant bioturbating 

agent. For the termites and worms datasets, there is a defined time period in which the current agent has been and continues to 120 

be active (Table 1Table 1). Grains falling outside of this timeframe are filtered out and excluded from our analysis of age 

distributions. Instead, we incorporate this fraction of particles (ffiltered) with the fraction of grains that have not reached the 

surface at all and have a saturated luminescence signal (fnon-surfaced). The remaining fraction (fbio) contains the grains that have 

reached the surface through bioturbation by the current dominant agent (Eq. (1)). fbio, or the bioturbated fraction, is similar to 

the non-saturation factor (NSF) as defined by Reimann et al. (2017), with the addition of another rejection criterion based on 125 

the bioturbation period.  

𝑓𝑏𝑖𝑜 = 1 − (𝑓𝑛𝑜𝑛−𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑑 + 𝑓𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)        (1) 

2.3 Simulations 

2.3.1 Model description 

The bioturbation simulations are performed in the model ChronoLorica (Van der Meij and Temme, 2022; Van der Meij et al., 130 

2023), which is an extension of the soil-landscape evolution model Lorica (Temme and Vanwalleghem, 2016; Van der Meij 

et al., 2020). Lorica is a mass-based four-dimensional numerical model that simulates the development of terrain and soil 
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properties due to various geomorphic and pedogenic processes. The landscape is represented by a raster, where every raster 

cell contains a pre-defined number of soil layers. The layers contain a mass of five mineral soil textures (coarse, sand, silt, clay 

and fine clay) and two organic matter types (young and old). Throughout the simulations, the contents of the layers change 135 

due to the addition, removal or transformation of the soil material by the simulated processes. At this stage, the model is 

insensitive to parent material variations, as it does not include grain-size dependent mixing rates. Changes in the mass 

composition of each layer are translated to changes in layer thickness and surface elevation through the bulk density. Lorica 

works with dynamic layer thicknesses, enabling easy calculation of additions and subtractions from each layer. The layers start 

with a pre-defined initial thickness. When a layer thickness becomes more than 55% thicker than the initial thickness, the layer 140 

splits into two new layers. When a layer thickness becomes thinner than 55% of the initial thickness, the layer is merged with 

a neighbouring layer. Due to its coarse spatial resolution and temporal resolution, the model is not suitable to simulate pore 

size dynamics due to bioturbation. 

The ChronoLorica extension couples the pedogenic and geomorphic processes in the model to several geochronometers. In 

this study, we use soil particle burial ages, akin to luminescent grains, as tracer for bioturbation. We term these luminescence 145 

particles in this study. These particles act similarlydo not have specific dimensions, but should be considered as objects that 

carry a specific age that is analogous to grains of sand-sized quartz or feldspar in real soils. Theira luminescence age. This age 

increases during their time of burial. When and resets when the particles are transported into the surface layer, their age is 

reset. This surface layer has a fixed depth that represents the bleaching depth. The transport of luminescence particles is coupled 

to the transport of the sand fraction of the model, whichbecause the sand fraction is the texture class that is typically used for 150 

single-grain luminescence dating (Duller, 2008). Due to memory constraints in the model, the number of tracked luminescence 

particle ages is much lower than the number of sand particles present in each layer. Therefore, we used a probabilistic approach 

to determine whether a luminescence particle is transported together with the sand from one layer to another. The transport 

probability for each individual particle is determined by dividing the transported mass of sand out of a source layer by the total 

mass of sand present in that source layer (Eq. (2)).  155 

𝑃𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 =
𝑠𝑎𝑛𝑑 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑒𝑑 [𝑘𝑔]

𝑡𝑜𝑡𝑎𝑙 𝑠𝑎𝑛𝑑 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 [𝑘𝑔]
         (2) 

2.3.2 Depth functions 

Bioturbation is most likely a depth-dependent process, but whether the mixing rates decrease linearly or exponential with depth 

is still unknown (Gray et al., 2020). In our simulations, we consider three typical depth functions for changes in bioturbation 

rate that describe how the bioturbation ratemixing intensity changes with increasing soil depth (Minasny et al., 2016; Figure 160 

2Figure 2). These depth functions can be applied to both bioturbation processes. The depth functions describe i) a linear 

decrease with depth (gradational, dfgrd(z), Eq. (3)), ii) an exponential decrease with depth (exponential, dfexp(z), Eq. (4)) and 

iii) a uniform mixing rate, which reduces abruptly to zero below the mixing zone (abrupt, dfabr(z), Eq. (5)). In these equations, 

the bioturbation rate at depth z (BT(z)) [kg m-2 a-1] is controlled by the potential bioturbation rate BTpot [kg m-2 a-1] and aThe 
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depth decay parameterparameters (ddgrd, ddexp, ddabr) [m-1] that determinesdetermine the shape and gradient of the depth 165 

functionfunctions. 

𝐵𝑇(𝑧)𝑑𝑓𝑔𝑟𝑑(𝑧) = {
 𝐵𝑇𝑝𝑜𝑡 ∗ (1 − 𝑑𝑑𝑔𝑟𝑑 ∗ 𝑧), 𝑧 ≤

1

𝑑𝑑𝑔𝑟𝑑
 

0, 𝑧 >
1

𝑑𝑑𝑔𝑟𝑑

{
 −𝑑𝑑𝑔𝑟𝑑 ∗ 𝑧, 𝑧 ≤

1

𝑑𝑑𝑔𝑟𝑑
 

0, 𝑧 >
1

𝑑𝑑𝑔𝑟𝑑

    

    (3) 

𝐵𝑇(𝑧)𝑑𝑓𝑒𝑥𝑝(𝑧) = 𝐵𝑇𝑝𝑜𝑡  ∗ (1 − 𝑒−𝑑𝑑𝑒𝑥𝑝∗𝑧)1 − 𝑒−𝑑𝑑𝑒𝑥𝑝∗𝑧       

   (4) 170 

𝐵𝑇(𝑧)𝑑𝑓𝑎𝑏𝑟(𝑧) = {
𝐵𝑇𝑝𝑜𝑡 , 𝑧 ≤ 𝑑𝑑𝑎𝑏𝑟

0, 𝑧 > 𝑑𝑑𝑎𝑏𝑟
{
1, 𝑧 ≤ 𝑑𝑑𝑎𝑏𝑟

0, 𝑧 > 𝑑𝑑𝑎𝑏𝑟
        

 (5) 

The part of BTpot that occurs in one layer (BTlayer) is determined by calculating the integral of the bioturbation depth function 

from the upper to the lower depth (zupper, zlower) of the respective layer, and divide this by the integral over the entire depth 

function (Eq. (6)). The integral over the entire depth function is limited to depth zlim, which represents the active mixing depth 175 

and determines where the bioturbation stops. ThisThe total bioturbation occurring in the soil profile, BTpot [kg m-2 a-1], is 

distributed across all soil layers using one of the depth functions (Eqs. (3-5)) and depths of each layer (Eq. (6)). To determine 

how much bioturbation occurs in a particular layer, the depth function df(z) is integrated between the upper and lower depths 

of that layer (zupper, zlower). This value is divided by the integral of the depth function df(z) over the entire active mixing depth. 

The resulting fraction is multiplied by BTpot to calculate the bioturbation occurring in that specific layer (BTlayer, [kg m-2 a-1]). 180 

The limit of the active mixing depth is indicated with the parameters zlim, which is 1/ddgrd for the gradational function, the total 

soil depth sd for the exponential function, where z ≤ sd, and ddabr for the abrupt function.  

𝐵𝑇𝑙𝑎𝑦𝑒𝑟 = 𝐵𝑇𝑝𝑜𝑡 ∗
∫ 𝐵𝑇(𝑧)𝑑𝑧

𝑧𝑙𝑜𝑤𝑒𝑟
𝑧𝑢𝑝𝑝𝑒𝑟

∫  𝐵𝑇(𝑧)𝑑𝑧
𝑧𝑙𝑖𝑚

0

∫ 𝑑𝑓(𝑧)𝑑𝑧
𝑧𝑙𝑜𝑤𝑒𝑟

𝑧𝑢𝑝𝑝𝑒𝑟

∫  𝑑𝑓(𝑧)𝑑𝑧
𝑧𝑙𝑖𝑚

0

          

 (6) 
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Figure 2: Depth functions that are used for bioturbation simulations. The depth functions determine how bioturbation rates change 

with soil depth. The parameters are selected, so that all bioturbation effectively occurs in the top 1 meter of the soil (grey-dashed 

line).active mixing zone (grey area), ranging from the surface to the depth of zlim. 

2.3.3 Process descriptions 190 

We simulate the mounding process as upward transport of soil material from the subsurface. Eq. (6) determines how much 

material is taken from each soil layer. This material is then transported to the surface layer, gradually burying previously 

mounded material. In this implementation, the development and erosion of surface mounds is simplified into generation of a 

new surface layer, that results from the mound erosion.  

The subsurface mixing process is simulated by an exchange of soil material between all present soil layers. (Figure 1b). Eq. 195 

(6) determines how much material each soil layer (donor layer) can exchange in total with all other exchange layers in the 

profile. The exchange BTexchange between the donor layer and all otherthe exchange layers is controlled by Eq. (7). This equation 

is similar to Eq. (6), in that it calculates the proportion of material exchange by bioturbation for a certain donor layer by 

integrating and dividing exponential depth functions. Eq. (7) integrates an exponential equation that starts at over the vertical 

distance from the centre thicknessdepth of the donor layer (zlayer), over) to the upper and lower depths of an exchange layer 200 

(zupper, zlower) of the exchange layer.). This integral is divided by the sum of the integralintegrals of two other exponential 

equations, starting from zlayer and going towards the soil surface (z = 0) and towards the bottom of the soil profile (sd). Through 

this equation, the amount of exchange between a donor layer and an exchange layer decreases with increasing distance between 
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the layers, leading to diffusive mixing. The gradient of these exponential equations is controlled by depth parameter ddmix [m-

1]. 205 

𝐵𝑇𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 = 𝐵𝑇𝑙𝑎𝑦𝑒𝑟 ∗
|∫ 𝑒(−𝑑𝑑𝑚𝑖𝑥∗𝑧)𝑑𝑧 

𝑧𝑙𝑎𝑦𝑒𝑟−𝑧𝑙𝑜𝑤𝑒𝑟
𝑧𝑙𝑎𝑦𝑒𝑟−𝑧𝑢𝑝𝑝

 |

∫ 𝑒(−𝑑𝑑𝑚𝑖𝑥∗𝑧)𝑑𝑧
𝑠𝑑−𝑧𝑙𝑎𝑦𝑒𝑟

0
+∫ 𝑒(−𝑑𝑑𝑚𝑖𝑥∗𝑧)𝑑𝑧

𝑧𝑙𝑎𝑦𝑒𝑟
0

     (7) 

2.3.4 Model set-up 

We simulate the mixing processes in a 2 m deep, one-dimensional soil profile (pedon).The model requires several parameters 

as input. These parameters can be grouped in environmental parameters that are determined by the organisms, ecosystem and 

climate (type of mixing processes, depth of active mixing zone, bioturbation period), model-based parameters that determine 210 

the configuration and construction of the modelled soil (soil and layer properties, bleaching depth) and process-based 

parameters that control process behaviour (bioturbation rate, depth functions and their parameters, combination of processes). 

We ran our simulations using the values in Table 2 to illustrate how bioturbation affects luminescence-based depth profiles. 

These parameters should be constrained with experimental data or through inverse modelling when applied to real-world 

settings. 215 

The environmental and model-based parameters were the same for all the simulations. We ran our simulations in a one-

dimensional soil profile (pedon), to focus on vertical mixing processes and avoid effects from lateral redistribution processes. 

We simulated bioturbation over a period of 10 ka with an annual time step and with an active mixing zone of 1 m deep. Due 

to the diffusive transport of subsurface mixing, material sourced in the active mixing zone can also be transported to layers 

below the active mixing zone. To account for this effect, we perform the simulations on a 2 m deep pedon. The pedon contains 220 

200 soil layers of 1 cm thick, with an upper layer of 5 mm representing the bleaching depth. The bleaching depth is based on 

model-based estimates (Furbish et al., 2018b) and is in line with light penetration depths in rocks (0-15 mm, Meyer et al., 

2018)... Each layer initially contains 150 luminescence particles. We simulate a uniform loess-like soil texture (25% sand, 

60% silt, 15% clay) with a constant bulk density of 1500 kg m-3 to avoid effects of textural and density variations on the age 

distributions in the simulations. The simulations start with 150 luminescence particles per soil layer. Each simulation ran for 225 

10 ka with a step size of one year. 

We simulatedTo study how the different scenarios to show how age-depth profiles change due to varying bioturbation 

processes and modeltheir parameters can influence luminescence-based depth profiles, we adjusted the process-based 

parameters in turns according to the values reported in Table 2 under scenario variations.  (Table 2). Except when indicated 

differently in Table 2, each scenario ran with a gradational depth profile and a potential bioturbation rate (BTpot) of 10 kg m-2 230 

 a-1 (loosely based on rates reported in Wilkinson et al., 2009: 0.3-110 kg m-2 a-1). The depth decay parameters were 

selected such that bioturbation is restricted to the upper 1 meter of the pedon (Figure 2; ddgrd: 1 m-1, ddexp: 6 m-1, ddabr: 1 m-1, 

ddmix: 10 m-1). These parameters were selected to illustrate how bioturbation affects luminescence-based depth profiles and 

need to be constrained with experimental data, or through inverse modelling, when applied to real-world settings.  
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The standard total bioturbation BTpot was set to 10 kg m-2 a-1 (loosely based on rates reported in Wilkinson et al., 2009: 0.3-235 

110 kg m-2 a-1) and was varied from 1 – 10 kg m-2 a-1. The standard depth function was gradational, but was also varied with 

exponential and abrupt depth profiles. The depth parameters were selected such that the active mixing zone is restricted to the 

upper 1 meter of the pedon to facilitate comparison between the simulations (Figure 2). The two bioturbation processes were 

combined with various contributions, ranging between 0 and 100%.  

Table 2: Simulation scenarios in this study. The simulated mixing processes and the variations in the model parameters are indicated. 240 

Scenario Process Variations in model parameters 

1 Mounding  Different depth functions (gradational, exponential, abrupt) 

2 Subsurface mixing Different depth functions (gradational, exponential, abrupt) 

3 Mounding BTpot (1-10 kg m-2) 

4 Subsurface mixing BTpot (1-10 kg m-2) 

5 Mounding + subsurface 

mixing 

Relative contribution of processes (0-100%) 

 

Table 2: The parameters used in this study, categorized by type. The reported values remained constant throughout the simulations, 

except when adjusted according to the scenario variations listed in the last column.  

Parameter type Description Value Scenario variations 

Environmental Process Mounding, subsurface 

mixing 

 

Depth mixing zone 1  

Bioturbation period [ka] 10  

Model-based Soil depth [m] 2  

Number of layers 200  

Initial layer thickness [m] 0.01  

Number of grains per layer 150  

Bleaching depth [m] 0.005  

Soil texture [% sand, silt, clay] 25, 60, 15  

Bulk density [kg m-3] 1500  

Process-based Total bioturbation BTpot [kg m-2 a-1] 10 1 – 10 

Depth function df with depth parameter 

dd [m-1] in brackets 

Gradational (1) Gradational (1), Exponential (6), 

Abrupt (1) 

Exchange parameter ddmix [m-1] 10  

Relative contribution of processes [%] 100 0-100 
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2.4 Data presentation and comparison 245 

Because we expect non-normal distributions in the data, we use probability functions to represent the age distributions. We 

calculate theseThe model produces a large amount of data, as there are multiple simulations with a large number of layers that 

all contain about 150 luminescence particles. To facilitate visualization and comparison between the different model scenarios, 

we took two steps to summarize the model output before presentation. First, we aggregated the model output per five layers, 

so that their thickness resembles typical 5-cm thick OSL samples. This reduced the scatter resulting from the stochastic particle 250 

transport. Second, we present the simulated ages as age distributions using probability functions (Bateman et al., 2003), which 

we then summarized with different metrics. Working with age distributions instead of statistical age models (e.g. Galbraith 

and Roberts, 2012) provides the advantage that we don’t need to select a suitable age model and estimate its corresponding 

statistical parameters for each individual sample. This allows us to automate and speed up the modelling and calibration process 

(see Section 4.3), without introducing uncertainties from age model selection. A disadvantage of this approach is that we don’t 255 

get a robust estimate of the error of the estimated age, but that is not required in this study. Because we expect non-normal or 

even multimodal distributions in the data, we calculated the probability functions using a bandwidth following the method of 

Sheather and Jones (1991), which was developed for non-normal distributions. Saturated or non-bleached grains were excluded 

from the probability functions. We present our results using three metrics derived from the luminescence-based depth 

profiles:We use the following metrics to summarize the age distributions:  260 

• The modal age of the probability function, as, which corresponds to the highest peak in the age distribution, which 

we consider the most likely age;burial age of the sample or layer;  

• The interquartile range, as a robust measure of the width of the distribution; 

• The bioturbated fraction(fbio, Eq. (1)), as a measure of the fraction of bleached particles due to bioturbation. 

Detailed plots of the simulated age distributions are provided in Supplementary Figures S1-S3.  265 

For the comparison of experimental data and simulations, we normalized the depths and luminescence ages. For the 

experimental data, we normalized depths by dividing sampling depth by the maximum sampling depth and the luminescence 

ages by dividing the individual grain ages by the extent of the bioturbation period (or the saturation criteria (Table 1Table 1), 

or by the maximum age in the dataset if the former wasn’t defined.). For the simulations, the depth was normalized by dividing 

simulation depth by the active mixing depth of 1 m. The simulated ages were normalized by dividing by the simulation time 270 

of 10 ka.  
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3 Results 

3.1 Experimental studies 

Figure 3Figure 3 shows the luminescence-based depth profiles from the experimental datasets. The plots are in order of 

increasing contribution of subsurface mixing (termites -> worms -> ants). With a larger contribution of subsurface mixing, the 275 

interquartile ranges increase and the bioturbated fractions in the subsurface decrease. The termites and worms datasets show 

clear age-depth trends, while the ants dataset shows a more scattered depth profile with a discontinuity in the modes. The 

termites and ants datasets show an increasing interquartile range with depth, while the worms dataset shows relatively constant 

interquartile range. There are also clear differences in the bioturbated fraction. The termites dataset has a bioturbated fraction 

over 50% for the entire profile with over 90% bleaching in the upper 60 cm. The worms dataset also has a well-bleached upper 280 

samplesamples, but the bioturbated fraction approaches 25% for the lowest sample. For the ants, only the upper sample shows 

good bleaching, with a bioturbated fraction of 97%. This drops to 12% and 6% deeper in the profile, where only 6 to 8 samples 

contain a luminescence signal.  
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Figure 3: Age-depth profiles for the experimental datasets used in this study.: (a) termites (Kristensen et al., 2015), (b) anecic 285 
earthworms (von Suchodoletz et al., 2023), (c) ants (Román-Sánchez et al., 2019a). The bottom axes show the ages of the 

measurements. The upper axes show the bioturbated fraction. Where provided, the red dashed line indicates the period of 

bioturbation by the current agent (Table 1Table 1).  

3.2 Comparison of depth functions and bioturbation rates 

The simulations of separate mounding and subsurface mixing processes with varying depth functions show in clear differences 290 

in the resulting depth profiles (Figure 4Figure 4). The mounding shows curved age-depth trends with low interquartile ranges 

for all different depth functions, which slightly increase closer to the lower boundary of the active mixing zone of 1 m (Figure 

4Figure 4Aa). The gradational and exponential profiles approach the simulation time of 10 ka at the bottom of the profile, 
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while the abrupt profile has much younger ages and a steeper depth profile. For each depth profile, almost all particles have 

been bioturbated and bleached in the active mixing zone, as shown by the bioturbated fraction. Below this zone, none of the 295 

particles are bioturbated.  

 

Figure 4: Luminescence-based depth profiles resulting from simulations of (Aa) mounding and (Bb) subsurface mixing, using 

different depth functions, with potential bioturbation rates of 10 kg m-2 a-1. Detailed plots of the simulated luminescence ages and 

their distributions are provided in Fig. S1. 300 

In contrast, the simulations of subsurface mixing show more chaotic, scattered age-heterogeneous depth profiles of modal age, 

that only show a general increasing trend with depth (Figure 4Figure 4B b). This. The scatter in the depth trends of the modal 

ages also increases with depth and even reaches below the active mixing zone of 1 m, due to exchange of material from 

bioturbated layers with all other soil layers. It should be noted that below 1 meter there are only a few bioturbated grains 

present. The modes are similar for each simulated depth function, with slightly lower interquartile ranges for the upper part of 305 

the exponential depth profile. The interquartile ranges are high for all simulations, and generally decrease down the profile. 

This concerns only a small number of particles, as evidenced by the bioturbated fraction. The amount of bioturbated particles 

decreases with soil depth. The exponential profile contains most bioturbated particles, followed by the gradational and abrupt 

profiles.  

Variations in the bioturbation rate for the mounding and subsurface mixing processes shows a clear effect on the steepness of 310 

the age-depth curves (Figure 5Figure 5). For the mounding process, higher rates lead to a steeper age-depth profile. Throughout 

the bioturbated profiles, almost all luminescence particles have been bleached, independent of the rate. For the subsurface 

mixing process, higher rates show younger modal ages and higher bioturbated fractions. The interquartile ranges show 
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comparable trends, with different levels of scatter. in the depth trends. Bioturbation rates also affect the depth of the mixed 

profiles, where lower bioturbation rates lead to shallower mixing bioturbated profiles.  315 

 

Figure 5: Age-depth profiles resulting from bioturbation by A(a) mounding and B(b) subsurface mixing, using a gradational depth 

profile and varying bioturbation rates. Detailed plots of the simulated luminescence ages and their distributions are provided in Fig. 

S2. 

3.3 Combination of mounding and subsurface mixing 320 

Simulations where mounding and mixing were combined in different ratios show that the mounding process dominates the 

age-depth characteristics (Figure 6Figure 6Aa). Only when the fraction of mounding decreases to less than 5%, the depth 

curves start to turn towardsresemble the profile with solely subsurface mixing. The same pattern is visible for the bioturbated 

fraction, but the interquartile range reacts quicker to changes in the ratio of mounding and subsurface mixing. Overall, a larger 

contribution of subsurface mixing leads to older luminescence particles in the profile (Figure 6Figure 6Aa), wider age 325 

distributions (Figure 6Figure 6Bb) and less bioturbated particles (Figure 6Figure 6Cc).  

The general trends in the experimental data conform with the trends in the simulation data. Termites, as mounding organisms, 

show lower modes of ages compared to worms, which both mound and mix (Figure 6Figure 6Aa). The ants show lower modes 

of ages than both other organisms, but this. The patterns in the topsoil are similar for all simulations and experimental datasets, 

but in the subsurface the termites, as mounding organisms, show lower modes of ages compared to worms, which both mound 330 

and mix (Figure 6a). The ants dataset shows lower modal ages than both other organisms. This can be attributed to the 

normalization procedure: while the observed period of bioturbation had been constrained in case of the termites and worms 

dataset, the ants dataset had no such constraint and was consequently normalized by much higher age values, leading to lower 
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normalized ages (Table 1Table 1). The experimental datasets show increasingThe worms dataset shows higher interquartile 

ranges with a larger contribution of subsurface mixing, with deviations fromcompared to the trends in the simulated data 335 

mainly in the topsoiltermites dataset. (Figure 6Figure 6Bb). Also in this case, the ants dataset forms the exception due to the 

high normalization age. The simulated interquartile ranges are much lower for mounding-dominated scenarios than the 

experimental studies, indicating an underestimation of the spread in age distributions. The bioturbated fraction also shows 

clear differences between mounding and subsurface mixing organisms, with a higher proportion of bioturbated grains for 

mounding organisms and mounding simulations (Figure 6Figure 6Cc).  340 
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Figure 6: Statistics for mixes between mounding and subsurface mixing (grey lines), aggregated per 5 soil layers (~ 5 cm), compared 

to the experimental datasets (coloured lines and points). Results were normalized for age (â) and depth (ẑ). The different windows 

show different statistics: A:(a) mode of age distributions; B:(b) interquartile range; C:(c) bioturbated fraction fbio. The simulations 345 
were run with a gradational depth function and active mixing zone of 1 m, with a total bioturbation rate of 10 kg m-2 a-1, divided 

over the two processes. Detailed plots of the simulated luminescence ages and their distributions in this plot are provided in Fig. S3. 
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4 Discussion 

4.1 Mixing patterns by mounding and subsurface mixing 

Bioturbation induces different mixing patterns in the soil, depending on the organism and process. By the integration of 350 

luminescence tracers and numerical simulations, we identified distinct ways in which different processes and parameters 

impact soil mixing. Here, we will elaborate on the processes, their effects on luminescence tracers and show that they are 

consistent across experimental datasets. 

The upward advective transport of soil material by mounding animals continuously buries previously mounded material, which 

leads to age-depth profiles in the active mixing zone that resemble depositional profiles. The continuous upward transport of 355 

material to the surface results in a high degree of bleaching and consequently narrow age distributions, as evidenced by the 

termites dataset and the numerical simulations (Figure 3Figure 3Aa; Figure 4Figure 4Aa). The lower boundary of the active 

mixing zone is often characterized by an abrupt increase in ages, changing widths of age distributions, lower age-depth rates 

and a decrease in the bioturbated fraction. This is clearly visible in the termites study by Kristensen et al. (2015), where the 

fraction of saturated grains increases from 0–4 % in the active mixing zone to up to 60% in the layers below (data not shown), 360 

accompanied by a jump in the luminescence ages and increase in the uncertainties. The same is visible in the data from Madsen 

et al. (2011), who measured luminescence-based age-depth curves from aliquots collected in tidal flats, which are bioturbated 

by mounding lugworms. There is a clear distinction between the active mixing zone, with narrow age distributions and steeper 

age-depth gradients, and the underlying depositional sequence.  

The age-depth curves of bioturbation by subsurface mixing display completely different characteristics (Figure 6Figure 6). 365 

The limited bleaching at the surface and diffusion-like transport leads to a low population of bleached particles in the 

subsurface and wide luminescence distributions. The stochastic nature of particle transport by subsurface mixing is clearly 

visible in the ants dataset (Figure 3Figure 3Cc; Román-Sánchez et al., 2019a), with only a few luminescent grains in the subsoil 

that show a high age range. Ants often create mounds at their nest entrances (Richards, 2009), suggesting that luminescence-

based depth profiles for ants should contain mounding signals as well. Román-Sánchez et al. (2019a) studied a profile on a 370 

hilltop with an equilibrium between soil erosion and soil production. If the erosion primarily removed the surface mounds, the 

subsurface mixing component of bioturbation would be amplified. The low bioturbated fraction and wide age distributions are 

also consistent in other luminescence datasets with considerable subsurface mixing components, for example by root activity 

(Heimsath et al., 2002; Stockmann et al., 2013; Johnson et al., 2014).(Stockmann et al., 2013; Johnson et al., 2014), or sites 

where mounded material by ants and gophers has been washed away by overland flow (Heimsath et al., 2002; Wackett et al., 375 

2018). Two of these datasets only contained a small proportion of non-saturated grains (Heimsath et al., 2002; Stockmann et 

al., 2013). Surprisingly, the data of Johnson et al. (2014) had a very low number of saturated grains in their dataset, which they 

attribute to an aeolian input of bleached quartz grains. Erosion by water or soil creep can result in shallower bioturbated profiles 

with older ages varying impacts on bioturbated fractions. Water erosion tends to produce lower bioturbated fractions, while 

soil creep leads to higher bioturbated fractions (Román-Sánchez et al., 2019a). These effects are comparable to those caused 380 
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by changes is bioturbation rates in stable landscape positions. Therefore, it is important to consider the potential occurrence of 

erosion before interpreting luminescence-depth profiles resulting from bioturbation, as it can substantially change the 

interpretation. The worms and termites datasets were collected from flat terrain and were therefore not significantly impacted 

by erosion processes. 

In addition to the studied processes, there are various other forms of bioturbation such as. One example is upheaval, involving 385 

the sudden detachment, homogenization, and re-deposition of soil. For example, when a tree is uprooted, the soil from the root 

clump falls back into the pit (Gabet et al., 2003). Ploughing could also be considered upheaval. Here, a body of soil is efficiently 

detached, turned over and redeposited, for example by a mouldboard plough (De Alba et al., 2004; Van der Meij et al., 2019). 

Upheaval likely induces similar age-depth patterns as mounding, but depending on the frequency and mixing depth will have 

older ages and lower bioturbated fractions.Due to its constant mixing rate with depth and homogenization of the soil, upheaval 390 

likely produces relatively homogeneous age distributions in the active mixing zone, with an abrupt increase in age below this 

zone. The ages, distribution widths and bioturbated fractions depend on the frequency and mixing depth of upheaval. We 

expect that upheaval did not contribute to the experimental datasets used in this study, as they were sampled from sparsely 

forested savannah ecosystems and there are no homogeneous age distributions in the active mixing zones (Figure 3). 

Bioturbation by upheaval, and its interactions with mounding and subsurface mixing, will be explored in future research. 395 

The distinct effects of different bioturbation processes on soil fluxes that we identified here emphasize the necessity of 

including multiple formulations of bioturbation processes in soil evolution models and soil function models, as conventional 

diffusion-type subsurface mixing processes account for only a part of soil mixing.  

4.2 Luminescence as tracer of soil mixing processes 

Luminescence-based tracers rely on the exposure and bleaching of soil particles to daylight at the surface. Bleached particles 400 

are transported downward by various processes, where they can be measuredused as a tracer for soil mixing. As a result, 

luminescence primarily traces downward transport within soils (Gliganic et al., 2016). Luminescence-based age-depth profiles 

are predominantly influenced by mounding, because this process exposes more grains to daylight, and therefore do not 

adequately represent subsurface mixing processes (Figure 6Figure 6Aa). The interquartile range, as proxy for the width of the 

age distributions, reacts quicker to changes in the balance of mounding and subsurface mixing (Figure 6Figure 6Bb). This 405 

suggests that the interquartile range might be key in separating between mounding and subsurface mixing signals using 

luminescence-based tracers, which is still one of the main challenges of determining bioturbation rates (Wilkinson et al., 2009; 

Halfen and Hasiotis, 2010). This will be explored further in Sect. 4.3.  

The bioturbated fraction acts as a downward tracer of soil mixing due to supply of bleached grains from the surface, but can 

act as an upward tracer of soil mixing as well (Reimann et al., 2017). Bedrock weathering, increased bioturbation or surface 410 

denudation lead to the to the downward migration of the active mixing zone, introducing saturated grains from the bottom up 

into the soil profile. These processes were not accounted for in this study. However, they do play a significant role in 
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interactions between bioturbation and hillslope processes (Román-Sánchez et al., 2019b, a) and should be taken into account 

when applying bioturbation models in two to three-dimensional settings. 

The modal ages, interquartile range and bioturbated fraction are not only influenced by the type of bioturbation processes, but 415 

also by the applied depth function and process parameters such as soil mixing rate. In Figure 7Figure 7, we have compiled an 

overview of how different processes, implementations and parameters affect the depth functions of luminescence-based 

metrics. The characteristics of these depth functions offer qualitative insights into the characteristics of the underlying mixing 

processes.  

 420 

Figure 7: Conceptual overview ofshowing how different factors and parameters affect the depth profiles of luminescence-based 

metrics. 

The majority of soil mixing happens in the active mixing zone, with the maximum depth being determined by the reach of 

organisms into the soil (Figure 3Figure 3), represented by the depth decay parameters in the simulations. This zone is 

distinguished from underlying layers by younger, measurable ages and a higher bioturbated fraction. It is challenging to 425 

determine the depth function of mixing processes from age-depth profiles. This supports earlier statements about determining 

depth dependency of soil mixing (Gray et al., 2020). The steepness of the exponential age-depth profiles can either be a result 

of a different depth function or a different soil mixing rate. The dominant mixing process can be derived from the bioturbated 

fraction and the interquartile range, where a higher proportion of mounding results in higher bioturbated fractions and lower 

interquartile ranges.  430 

The combination of luminescence-based ages, the interquartile range and the bioturbated fraction provides a comprehensive 

toolbox for tracing soil mixing processes. Ideally, these tracers are combined and verified with independent tracers that trace 

either downward or upward transport. Fallout radionuclides or meteoric cosmogenic radionuclides are examples of downward-

oriented tracers (Tyler et al., 2001; Kaste et al., 2007; Johnson et al., 2014), while in situ created cosmogenic nuclides 

(Heimsath et al., 1997; Brown et al., 2003) and reworked clay coatings originating from Bt horizons (papules, Miedema and 435 

Slager, 1972; Sauzet et al., 2023) are produced in or below the soil column and therefore can act as upward-oriented tracers. 

Numerical methods such as ChronoLorica provides a flexible platform to integrate different soil mixing tracers and simulate 

their distribution in complex multi-mixed environments.  
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4.3 Towards a quantitative evaluation of luminescence-based depth profiles 

This qualitative understanding of the luminescence-based depth profiles, coupled with a model capable of simulating various 440 

bioturbation processes, sets the stage for a quantitatively determining the impact and rates of different bioturbation processes 

through model calibration. Here we make a first attempt at thisto showcase the potential of the model to derive quantitative 

bioturbation parameters through calibration. We do this for the termites and worms datasets, using the accompanying model 

Mixed Signals (See Sect. 4.4). We do not attempt a calibration for the ants dataset, because the effects of erosion and soil 

formation on this profile are not sufficiently constrained in the model.  445 

There are several parameters in the model that need to be estimated or calibrated prior to a successful application. These 

parameters can be grouped in environmental parameters (type of mixing processes, depth of active mixing zone, bioturbation 

period), model-based parameters (bleaching depth, bleaching efficiency) and process-based parameters (bioturbation rate, ratio 

between contributing processes, depth function, depth decay parameters). For this calibration, we based the environmental 

parameters on field observations and experimental results (Table 1) and used the same values as in the simulations above for 450 

the model-based parameters. In this first attempt we use the same depth decay parameters for the exponential depth profile and 

subsurface mixing as in the simulations above, but for actual bioturbation calibration, these parameters should be calibrated as 

well. 

For the calibration, we follow the same categories of parameters as reported in Table 1. We based the environmental parameters 

on field observations and experimental results. We used the same model-based parameters as reported in Table 1, with the 455 

exception of the layer thickness. This was set to 2 cm to increase calculation speed. At this stage, the bioturbation is not grain-

size specific, so the model output is insensitive to differences in parent material composition. Therefore, these were not 

modified for the calibration.  

To determine the process-based parameters, we ran the model with varying depth functions, potential bioturbation rates and 

contributions of mounding and subsurface mixing. We determined the parameter set that produced the closest match with the 460 

experimental data by minimizing the combined squared error (errorsquared) of experimental and simulated modal age, 

interquartile range and bioturbated fraction (Eq. (8),)), where P areis the differentnumber of luminescence metrics and O is the 

number of observations in the experimental dataset. 

𝑒𝑟𝑟𝑜𝑟𝑠𝑞𝑢𝑎𝑟𝑒𝑑 = ∑ ∑ (𝑝(𝑜𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑) − 𝑝(𝑜𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙))
2𝑂

𝑜=1
𝑃
𝑝=1      (8) 

Calibration across all three metrics enabled us to capture the majority of the dynamics observed in the depth profiles resulting 465 

from different processes and parameters (Figure 7Figure 7). To ensure equal weighting of the three metrics, the ages were 

normalized by dividing them by the runtime (i.e. bioturbation period) of the model. Consequently, all metrics have potential 

values ranging from 0 to 1. Alternatively, the evaluation metric could be based on statistical tests that measure the similarity 

between the experimental and simulated age distributions, such as the Kolmogorov-Smirnov Test or Earth Mover’s Distance.  
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 470 

Figure 8: Calibration results for the (a) worms and (b) termites datasets. Initial layer thicknesses in the model were 2 cm. To reduce 

scatter in the visualization of the model results stemming from the stochastic particle transport process, the simulated results (in 

red) are aggregated per three layers, resembling typical 5-cm thick OSL samples.  

The model is well equipped to reproduce the experimental luminescence-based depth profiles (Figure 8Figure 8). The 

simulated depth profiles of the three metrics approach the experimental depth profiles, with some deviations due to fluctuations 475 

in the experimental data and the calibration on three different metrics. For the worms dataset, the best matching parameters 

wereparameter set that resulted in the lowest squared error was a gradational depth profile, potential bioturbation rate of 1.5 

kg m-2 a-1, 90% subsurface mixing and 10% mounding. This ratio of processes agrees well with our expectations for burrowing 

anecic earthworms, which mainly live underground and sometimes visit the surface (Taylor et al., 2019). The parameter set 

that gaveresulted in the best resultslowest squared error for the termites dataset was an abrupt depth profile with a bioturbation 480 

rate of 4.5 kg m-2 a-1, with 80% subsurface mixing and 20% mounding. We expected a much higher contribution of mounding 

for the termites due to their construction of large surface mounds. However, a component of subsurface mixing was also 

expected, as termites transport material in the subsurface when they mine material for their mounds, similar to ant subsurface 

galleries (Rink et al., 2013). The abrupt depth profile that was calibrated for the termites data contradicts the findings of Gray 

et al. (2020), who found that mixing rates generally decrease with depth.  485 

Interestingly, the calibrated bioturbation rates are multiple orders of magnitude larger than the soil reworking rates reported in 

the original studies (~40 g m-2 a-1 for termites, Kristensen et al., 2015; ~20 - 80 g m-2 a-1 for worms, von Suchodoletz et al., 

2023). These reported rates were based on measured OSL ages and their depths. These ages represent the current burial ages 

of the grains, but do not account for previous resurfacing of grains or subsurface transport without bleaching. Hence, they 

represent only the net displacement of soil particles from the surface to the subsurface. The calibrated rates are in the same 490 

order of magnitude as rates of mounding and mixing determined by earthworm ingestion rates and weighing worm casts and 
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surface mounds (see compilation in Wilkinson et al., 2009). Based on these factors, the actual bioturbation rates in the studied 

sites are probably closer to the calibrated rates than to the OSL-based soil reworking rates.  

This modelling exercise provides unique opportunities to quantitatively distinguish mounding and subsurface mixing 

processes. However, the current results do not match with our expectations, especially for the termites dataset. This discrepancy 495 

is probably a consequence of the assumption of complete bleaching within the bleaching depth in the model. The bleaching 

depth of 5 mm in this study was based on model-based estimates (Furbish et al., 2018b) and is in line with light penetration 

depths in rocks (0-15 mm, Meyer et al., 2018). However, in reality, not all near-surface grains are bleached, due to the 

attenuation of light after it penetrates the soil surface and the formation of soil aggregates, which shield inner particles from 

light. Notably, the agents responsible for soil mixing are also largely responsible for soil aggregation (Lee and Foster, 1991; 500 

Bottinelli et al., 2015). A lower bleaching efficiency – the fraction of particles that is bleached within the bleaching depth – 

would result in lower bioturbated fractions and higher interquartile ranges, which are the same effects that a larger contribution 

of subsurface mixing haswould have.  

The bleaching depth and bleaching efficiency need to be better constrained before accurate calibration of the experimental 

profiles is possible. These model-based parameters could be estimated through model calibration, but this comes with the risk 505 

that multiple parameter combinations could result in equally plausible mixing scenarios, as bleaching efficiency and subsurface 

mixing have similar effects on the calibration parameters. Experimental evidence on bleaching depths and bleaching efficiency 

in soils, which likely vary across soil types and vegetation cover, is thus required to constrain these parameters and provide 

accurate, quantitative estimates of bioturbation rates and processes based on luminescence tracers and numerical modelling.  

4.4 Simulation tool for bioturbation 510 

The simulations presented in this paper were modelled with ChronoLorica, which is a comprehensive soil-landscape evolution 

model that simulates multiple pedogenic and geomorphic processes, together with multiple geochronometers (Van der Meij et 

al., 2023). The model, without the new formulations for bioturbation, is available via the Zenodo repository (Van der Meij and 

Temme, 2022).  

We also developed a separate model, named Mixed Signals, which contains the formulations of bioturbation processes and 515 

their effects on luminescence tracers, as described in this paper, as well as visualization and calibration tools. This model can 

be used or adapted for simulating bioturbation effects on luminescence-based tracers, for example in explorative studies or for 

education purposes. The model is written in Julia, which is an interactive high-performance scientific computing language 

(Bezanson et al., 2017). The Mixed Signals model is freely available https://github.com/MarijnvanderMeij/Mixed-

signals_Bioturbation and will be published to the Zenodo repository after potential changes after review of this paper. The 520 

download contains the following files: 

• a readme file with instructions to launch the model,;  

• a Jupyter Notebook with illustrative examples demonstrating how to use the model to simulate soil mixing and its 

effects on luminescence-based depth profiles,; 

https://github.com/MarijnvanderMeij/Mixed-signals_Bioturbation
https://github.com/MarijnvanderMeij/Mixed-signals_Bioturbation
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• a script with all the functions that are required to run the model and create visualizations; 525 

• a synthetic luminescence dataset for illustrating the calibration process.  

5 Conclusions 

Soil bioturbation plays a crucial role in soil functions and soil evolution by cycling carbon and nutrients, but there is limited 

knowledge on how different mixing processes affect fluxes and rates of soil material. In this study, we combined experimental 

luminescence-based datasets and numerical modelling to study two main bioturbation processes – mounding and subsurface 530 

mixing – and their respective mixing patterns. These mixing patterns have distinct effects on luminescence tracers, which we 

characterized with three metrics: the modal age of the age distribution as most probable burial age of each layer, the 

interquartile range as measure of the width of the distributions and the bioturbated fraction as the fraction of bleached particles 

in each layer.  

By numerically simulating mounding and subsurface mixing with varying rates, depth functions and interactions between 535 

processes, we determined how each process affects the luminescence-based depth profiles. Mounding is an advective process 

that moves soil material to the surface, leading to a high degree of luminescence signal resetting (bleaching), low interquartile 

ranges and a high bioturbated fraction. Subsurface mixing is a diffusive process, which transports a much lower number of 

grains atfrom the surface, leading to leading to high interquartile ranges and low bioturbated fractions. We summarized these 

effects in a conceptual diagram to facilitate qualitative interpretation of luminescence-based depth profiles. 540 

A first attempt to quantitatively interpret luminescence-based depth profiles through model calibration showed that the model 

is able to reproduce the experimental depth profiles and provide realistic bioturbation rates. The model is not yet equipped to 

accurately determine the relative contribution of mounding and subsurface mixing in the experimental datasets, likely due to 

the overestimating the degree of bleaching at the surface. Experimental data on bleaching depth and bleaching efficiency in 

soils is required before accurate, quantitative estimates of bioturbation rates and processes can be determined.  545 

Our compilation of luminescence-based soil tracer studies and numerical simulations shows that bioturbation is more than a 

simple diffusive mixing process. Different organisms cause different transport processes in the soil, with major differences in 

fluxes of soil material and consequently nutrients and carbon. We provide numerical formulations of two main bioturbation 

processes, which could be used to improve soil function and soil evolution models. The accompanying model Mixed Signals 

contains these implementations and can be used for explorative studies, education purposes and quantitative determination of 550 

bioturbation parameters through model calibration.  

Code and data availability 

The luminescence data used in this study are published in earlier work (Kristensen et al., 2015; Román-Sánchez et al., 2019a; 

von Suchodoletz et al., 2023) and we refer to the authors of these works for data requests. The ChronoLorica model is publicly 
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available via https://doi.org/10.5281/zenodo.7875033 (Van der Meij and Temme, 2022). The new bioturbation 555 

implementations can be found in the maintained versions of ChronoLorica and other versions of Lorica through 

https://github.com/arnaudtemme/lorica_all_versions (last access: 13 Mayhttps://github.com/arnaudtemme/lorica_all_versions 

(last access: 11 September 2024), and will be added to a new version of the model. The model Mixed Signals is available via 

https://github.com/MarijnvanderMeij/Mixed-signals_Bioturbation and will be published in the Zenodo repository after 

potential changes after review of this paper. 560 
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