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Abstract. We used empirical-statistical downscaling to derive local statistics for 24-hr and sub-daily precipitation over the
Nordic countries, based on large-scale information provided by global climate models. The local statistics included proba-
bilities for heavy precipitation and intensity-duration-frequency curves for sub-daily rainfall;-and-the-, The downscaling was
based on estimating key parameters defining the shape of mathematical curves describing probabilities and return-values—Fhe
parameters-were-, namely the annual wet-day frequency f,, and the wet-day mean precipitation p;-and-both-. Both parameters
were used as predictands representing local precipitation statistics as well as predictors representing large-scale conditions.
We used multi-model ensembles of global climate model (CMIP6) simulations, calibrated on the ERAS5 reanalysis, to derive
local projections for future outlooks. Our analysis included an evaluation of how well the global climate models reproduced
the predictors, in addition to assessing the quality of downscaled precipitation statistics. The evaluation suggested that present
global climate model-eapture-essentialmodels capture essential aspects of the covariance, and there was a good match between
annual wet-day frequency and wet-day mean precipitation derived from ERAS on the one hand, and local rain gauges in the
Nordic region on the other. Furthermore, the ensemble downscaled results for annual f,, and 4 were approximately normally.
distributed which may justify using the ensemble mean and standard deviation to describe the ensemble spread. Hence, our ef-

forts provide a demonstration for how empirical-statistical downscaling can be used to provide practical information on heavy
rainfall which subsequently may be used for impact studies. Future projections for the Nordic region indicated little increase
in precipitation due to more wet days, but most of the contribution comes from increased mean intensity. The west coast of
Norway had the highest probabilities of receiving more than 30 mm/day precipitation, but the strongest relative trend in this
probability was projected over northern Finland. HeweverFurthermore, the highest estimates for trends in 10-year and 25-year
return-values were projected over western Norway where they were high from the outset. Our results also suggested that future

precipitation intensity is sensitive to future emissions whereas the wet-day frequency is less sensitive.

1 Introduction

Increasing atmospheric concentrations of greenhouse gases, such as carbon dioxide CO; and methane C'H4 from human
activity, strengthen the greenhouse effect and bring on global warming as well as changes in the global hydrological cycle

aexpressed as the sum of changes in
local temperature and rainfall statistics, which may affect both nature and society. Global climate models (GCMs) and earth

(?). Such climate change can be s
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system models (ESMs') are our primary tools for making projections of the future climate and represent main features of
Earth’s climate systembut-, but they are not designed to describe the small scales and local climate change (?). Nevertheless,
the local response to global warming can be estimated through downscaling (see Appendix ??), and international efforts on
downscaling have been coordinated under the World Climate Research Programme (WCRP) eoordinated-and its downscaling
experiment (CORDEX) (?). The term downscaling in this case refers to the process of using aspeets-large-scale information
that GCMs are able to reproduce skillfully, on scales larger than their minimum skillful scale (?), and subsequently add addi-

tional information about inter-scale dependencies and systematic effects from fixed geographical factors. Hence, downsealing

is-distinet-to-bias-adjustment-which-merely-invelves-an-adjustment-of-our definition of downscaling is different to both merel

transforming the data to a finer grid mesh and bias adjustment that corrects model output so that they have similar statistical
characteristics as observations without further considerations of the GCMs’ minimum skillful scale?. Results from GCMs are

often downscaled to provide projections for a future climate on a regional or local scale, but the omnipresence of pronounced

non-deterministic deeadal-variability(?)regional-scale decadal variability (??) represents a challenge and a source of uncer-
tainty (?). The non-deterministic chaotic contribution from natural and internal regional variations isrelevantfor-downsealing

approaches-within-the European-effort; Euro-CORDEXHtalse-complicates the assessment of the credibility and robustness of
ensemble projections, and one question is how to synthesize them into user-relevant information. This is highly relevant for

results from downscaling approaches on national climate service levels, for instance within the European downscaling efforts
Another source of uncertainty in downscaled climate projections is connected to dewnsealing-assumptions-and-choieces
regarding-methods-methodological choices and assumptions (?). There are two main approaches in downscaling: (i) dynami-

cal downscaling with regional climate models (RCMs) and (ii) empirical-statistical downscaling (ESD). The former has often
been more visible within CORDEX, many climate service providers as well as impacts and adaptation communities (?), and
CORDEX data often refers to a set of RCM simulations excluding ESD results, e.g. the IPCC interactive atlas’. The one-sided
focus may be a legacy of the past European projects PRUDENCE (2001-2004) and STARDEX (2002-2005) which had their
distinct focus (???), however, results from STARDEX didn’t indicate that RCMs were superior in terms of reproducing infor-
mation about extreme rainfall (?). Traditionally, ESD has been used to estimate small-scale (local) temperature or precipitation
in terms of daily variability or aggregated statistics over months, seasons or years (?), and downscaling of heavy precipitation
has mainly involved dynamical downscaling with RCMs, while the merits of ESD perhaps have not been so widely recognised.

One advantage with ESD is that it requires little computational resources which makes it suitable for downscaling large multi-
model ensembles (??). Furthermore, ESD can be designed so that it’s transparent and easily traceable, as the R-markdown script
in this paper’s supporting material tries to facilitate (?). It is also possible to estimate various statistical aspects on precipitation

through ESD, and ? argued that the characteristics of precipitation are just as vital as the amount. The characteristics of rain

'Henceforth, we use the term ’GCM’ when referring to both GCMs and ESMs.

2There are, however, ESD methods that are closer to bias correction, downscaling grid points separately and hence not taking minimum skillful scale into

consideration. For example, NASA’s NEX-GDDP data set (https://www.nccs.nasa.gov/services/data-collections/land-based-products/nex-gddp) is presented

as downscaled climate scenarios but the method is a t
3https://interactive-atlas.ipcc.ch/regional-information/about

e of bias correction. Also see Appendix ?? for further discussion on this topic.
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may indeed be more apt to change as climate changes, and some key statistics on precipitation involve both the typical amount
falling on a rainy day (wet-day mean precipitation p), how often it rains (wet-day frequency f,,), how long it is between each
rainfall (dry-spell duration or number of consecutive dry-dry days n4q), the duration of wet-spells (number of consecutive wet
wet days n.,q to account for clustering of precipitation events in time), the spatial extent of the precipitation (?), and its phase
(rain/snow). Here we will show how ESD can be designed to extract information on precipitation statistics such as probabilities
of exceeding a certain threshold and intensity-duration-frequency curves.

There have been many studies on mean trends or extreme precipitation, but less on moderate heavy rainfall. Extremes
often involves either general extreme value theory (GEV )with-either-bloek-maximaor-, calibrated with block maxima, or the
General Pareto distribution with peak over threshold, thus fitting the tails of the distribution (?). GEV also involves fitting
the three parameters location, scale and shape which are often not well constrained for limited samples of block maxima.
Statistical models for moderate intense events, on the other hand, may be calibrated from the bulk of the data sample with
fewer parameters (f,, and p), and may be easier to evaluate when time series only span a few decades. Furthermore, if the
parameters have a mere-straight-forward physical interpretation, they may also serve to enhance our understanding of shifts
in the statistics. Moderate extremes, such as merely heavy—rainfall’heavy rainfall’ (e.g. 20-50 mm/day), may also trigger

landslides, cause erosion, and affect the spread of water-borne disease or eco-toxins. Sinee-Furthermore, since GCMs only
provide a coarse large-scale representation of the real climate system, it is necessary to use downscaling methods that are
not degraded too much by their lack of precision. Hence we aimed for a robust and approximate method for downscaling
24-hr precipitation statistics, to some extent scarifying its exactitude which perhaps could be obtained through a sophisticated
representation in an ideal setting (e.g. GEV)*. Furthermore, multi-variable predictors (common in traditional downscaling
and in machine learning) place great and unrealistic demand-demands on GCMs because different variables simulated by the
GEMs-a GCM may be strongly correlated with the predictand over a historical calibration period, but may evolve in different
directions in the future (?). In other words, we expect a trade-off between exactitude and robustness, and hence we aimed

for robustand-, reliable low precision, and approximate results for moderate extremes in our case (see Appendix ?? for more
details).

2 Data and Methods
2.1 Data

Daity-The daily rain gauge data used in this analysis were collected from the ECA&D (?) within the latitude range 55-71°N 5
and longitude range 5-30°E. The initial selection comprised 2131 rain gauges as predictand covering the time interval 1950
2021 from Belarus (4), Denmark (14), Estonia (27), Finland (443), Germany (1), Latvia (29), Lithuania (13), Norway (669),
Russtan-Russia (11), and Sweden (920), located at a range of elevations, the highest point being 2062 m above sea level.

Only rain gauge records with sufficient number of valid data were included in the subsequent downscaling, and rain gauge

4This refers to how closely we can reproduce the shape of the mathematical curve describing probabilities rather than a bias/variance issues for the predicted

outcomes.
R
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measurements from only 652 locations remained in our predictand after short station records had been removed. Figure ??
shows the geographical distribution of the rain gauges and their mean annual total rainfall. The analysis was based on key
aggregated statistics: annual wet-day frequency f,, and annual wet-day mean precipitation . We used the threshold of 1
mm/day to distinguish between dry and wet days. Annual f,, and p with the same threshold were also used as predictors and
were estimated from both the ERAS reanalysis (?) as well as GCMs.

The GCM data was taken from CMIP6 (??) for historical runs (HIST) as well as various emission scenarios (SSP370,
SSP126, SSP245, and SSP585) described in ?. Only a subset of GCM runs were included here as daily precipitation was needed

to estimate annual f,, and p for use as predictors. Here-To reduce the data transfer amount, server-side data processing facilities
at the German Climate Computing Centre (DKRZ) were used to derive the annual values with the climate data operators (CDO

software (?) installed on site. Nevertheless, a great deal of effort was required to derive f,, and y from ERAS and all CMIP6
runs, and hence we make a case for a standard protocol for reanalysis and CMIP data arehive-archives that includes monthly
fw and p. The predictors f,, and p from CMIP6 HIST simulations were evaluated against ERAS following ?, testing the
GCMs’ ability to reproduce the mean seasonal cycle, interannual variability in annual f,, and ;1 and their historical trends (see
Appendix ??), and one simulation (CESM2-WACCM-FV2) was removed due to poor evaluation results. Our analysis focused

on 29 model runs following SSP370, but the other emission scenarios are included in the supporting material (?).
2.2 Downscaling methodology

Our analysis introduces a new aspect in terms of downscaling by using large-scale wet-day mean precipitation y as predictors

for estimating the predictand consisting of station-level p, the-predietands;-as well as using large-scale wet-day frequency f,,
as predictors to downscale local f,, at a station level. Both these types of predictors were estimated from the ERAS reanalysis
27-and CMIP6 GCMs (22)-for-the-region-in—questionfor the Nordic region 5°W—-45°E/55-72°N, using common empirical
orthogonal functions (EGFshenceforth *’common EOFs’) as a framework for representing both the real world and modelled
conditions (?). This choice implied using a so-called *hybrid PP-MOS’ framework to represent the predictors and ensures-that
those-ensured that the covariance structures from ERA5 used for calibration matched those from GCMs used for projection.
The introduction of the ERAS reanalysis has been a step change in terms of progress within ESD, as there was a close match
between f,, and p from the reanalysis and rain gauge measurements respectively (see the supperting-materialAppendix ??),
enabling their use as predictors. Petaits-about-the ESB-More details and explanations about the downscaling set-up and analysis
are aceounted-for-in-the R-markdown-seript provided-as-supporting materiak-together-with-all-the results-generatedprovided in
Appendix 2.

Prineipat Here we distinguish between empirical orthogonal functions (EOFs) and principal component analysis (PCA)swas

used-. We used the former for gridded data, as is the normal convention in the scientific literature

?) was used for data series that had an irregular spatial distribution such as rain gauge measurements. Moreover, we used

PCA to represent the predictands as it tends to emphasise large-scale structures in groups of local measurements (2)(?), and

a step-wise multiple ordinary linear regression (OLR) was used to find an optimal connection between principal components

Shttps://cordex.org/wp-content/uploads/2022/08/White- Paper- ESD.pdf


https://cordex.org/wp-content/uploads/2022/08/White-Paper-ESD.pdf

125

130

135

140

145

150

from EOFs representing the large-scale predictors and the principal components

z=UAVT.

Fime—series—representing—from PCA representing local f,, and pwere—generated—from—downsealed-estimates—of W —and
subsequently-computed-aceordingtoequation—22. The downscaled annual f,, and p were subsequently used to estimate te

estimate-the probability that daily precipitation amount (¥.X") exceeded a given threshold (xz') using the simple and approx-

imate relation Pr{X—>a)~fpexpl—a/1)-Pr(X' > 1') = fuexp(—2'/u) based on ?. The analysis for daily precipitation
amounts was extended to sub-daily timescales where the shape of intensity-duration-frequency (IDF) curves was downscaled

based on their dependency on #+—ept{L/ 24l fpr) ! L=ou(L/24 ¢In(f,7), where a was a calibrated adjustment fac-

tor, L was the duration of wet-spells in hours, 7 was the return period, and ¢ described the fractal dimension for temporal

scale inter-dependencies (?). The downscaling was carried out using the R-package esd (?) and the downscaled results for
the sites of the rain gauge measurements were subsequently gridded through kriging of the spatial weights (E-in-equation—22)

with elevation as a co-variable using the R-package Lat t i ceKrig (?)-and-the-downsealing-was-carried-outusingesc (2)(?)
. More details about the methods are provided in Appendix ??.

2.3 Evaluation

The evaluation of the models and methods are documented in fh&%uppeﬁmgﬁafeﬁal—lkwa&eafﬁed—etﬁ—&e%e%ﬁhe—&bﬂﬁy—ef—me

evatuation-was-also-Appendix B and was applied to downscaled results through both conventional cross-validation and testing

standard statistical tests of whether the observations belonged to the same statistical population as the downscaled sample
eonsisting-of-multi-model ensemble. There was a close match between the aggregated rain gauge data and ERAS5 for both f,,
and p, where the cross-validation was 0.93 for the leading PCA mode for annual f,, --aceounting-and where this leading PCA
mode accounted for 50% of the variance. The downscaling exercise for the second PCA (29% of the variance) gave a cross-
validation correlation of 0.92. Furthermore, the geographical weights of the calibrated ERAS predictor matched spatial patterns
of corresponding PCA mode, as should be expected when the same variable is used as both predictor and predictand. Similarly,
the downscaling exercise between aggregated rain gauge and ERAS for annual p returned cross-validation correlations of
0.96 and 0.81 for first and second PCA modes respectively (representing 54 and 26% of the variance respectively), also with
matching spatial weights between calibrated ERA5 data and PCA modes. Moreover;-In summary, both high cross-validation
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correlation and similar geographical distribution of spatial weights in the predictors and predictands indicates-indicate a good
match between the ERAS and rain gauge measurement annual precipitation statistics when both involve the same variable.

Fhe-Our evaluation also involved testing the ability of the GCMs in reproducing the predictors in a skillful way, and is

described in more details in Appendix ??. It is important that the GCMs skillfully reproduce the same large-scale information
that was found in the ERAS reanalysis during calibration since we use it as predictors for making projections for the future.

The test of simulated predictor quality used common EOFs (?) to compare the spatio-temporal covariance structure captured
by simulations with corresponding information derived from the ERAS5 reanalysis, as in ? but applied to f,, and p respec-
tively(supporting-material). The CMIP6 GCMs reproduced the mean seasonal cycle of-in_f,, and u in-aggregated from the
ERAS reanalysis, as well as the historical interannual mean variability in the annual f,, and p (for the period 1959-2021). A
comparison of historie-historical trends in GCM historical runs and ERAS further indicated that the GCMs were able to repro-
duce the observed historical changes in f,, and p. The CMIP6 ensembles for f,, and ; were of limited size since thesestatisties

they were generated from daily data and were-not-yet-e.g. monthly f,, and u values are not (yet) part of the CMIP standard

output protocol. We thus limited our analysis to one particular configuration from each GCM (e.g. menthly—fandwrlilplfl).
The number of ensemble members of regional or local climate projections can be interpreted as equivalent to statistical sam-

ple size, as each model simulation involves non-deterministic stochastic decadal variability ¢2)(??). The normal distribution
may provide useful information on statistical data samples with about 30 data points if the data are normally distributed, and
hence, distributions of downscaled ensemble results were tested against a normal distribution as in ?. The results of these tests
suggested that the ensemble mean and standard deviation can provide an approximate description of the ensemble.

The evaluation of both downscaling method and the GCM simulations established that local wet-day frequency f,, and wet-
day mean precipitation p can be skillfully estimated over the Nordic region from corresponding large-scale quantities from
both the ERAS reanalysis and CMIP6 simulations. The subsequent step was to use these results to make projections for future

climatic outlooks and estimate changes in precipitation statistics, based on relationships established from previous studies (??).

Fhese-Such steps are to the best of our knowledge the first efforts to downscale such-statistical-properties-statistical properties
for daily precipitation directly beyond downscaling extreme climate indices (??). ? provided an evaluation of the statistical
framework for estimating probabilities of moderate 24-hr precipitation, which involved 1875 rain gauge records from North
America and Europe with more than 50 years of valid data over the period 19612018, and this evaluation will not be repeated
here. To compensate for the thin upper tail of the exponential distribution, which is expected to significantly underestimate
extremes, they introduced an empirical scaling factor « and restrained the analysis to ‘moderate extremes’ (20-50 mm/day).

3 Results

Figure ?? shows time series for the wet-day frequency f,, and wet-day mean precipitation p extracted for Oslo-Blindern,
and the black symbols show the annual statistics derived from historical measurements, whereas the green band show-shows

corresponding statistics downscaled from a-the CMIP6 SSP370 ensemble—multi-model ensemble. The comparison between
model results (green band) and observations (black symbols) gives an indication of the precision of the downscaling, as it did
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not involve any further calibration beyond the original training of the downscaling model against the PCA-based predictand.
Neither the observations nor the projections indieate-indicated any pronounced trend in the annual f,, for Oslo, however,

statistics based on rain gauge measurements over all the Nordic sites nevertheless suggestsuggested a general weak increase in
the number of wet days over the 19502021 period that is-was statistically significant at the 5%-level (supporting material). The
downscaled projections for Oslo (green shading in Figure ??) and the Nordics (lower left panel in Figure ??), however, indieate
a-weak-indicated a weak (geographically mixed and non-significant) general decrease in number of wet days for the period
2015-2099, based on the ensemble mean of the CMIP6 simulations following the SSP370 emission scenario. Other emission
scenarios gave some variations in the outlook, and the SSP126 as well as the SSP585 results gave a more mixed picture of
trends in future f,,, (supporting material). Frend-The trend estimates in f,, are-were expected to vary with the frequency of
weather types, and the forces driving the atmospheric circulation that characterise different weather types tend to arise from
variations in the distribution of atmospheric mass which is not necessarily strongly constrained by an inerease-in-the-increased
greenhouse effect. However, there has been as slight trend in annual f,, in Oslo that was reproduced in a downscaling exercise
using ERAS as predictor (supporting material).

There has alse-been a modest increase in annual wet-day mean precipitation y that has-been-skightly-was more pronounced
than the trends in f,, which also is visible in Figure ?? (right panel) and Figure ?? (lower right panel). The trend estimates in
1 were more spatially consistent within the various emission scenarios, although higher emissions were connected to stronger
trends, and the results indicated increases for most of the region except in the vicinity of Troms municipality in northern
Norway. Table ?? presents the ensemble mean and standard deviation for a small selection of locations projected for the period
2071-2100. The downscaled results suggested that projected trends in f,, were not sensitive to the emission scenario (SSPs),
however, the magnitude of projected trends in y ranked in increasing magnitude for SSP126, SSP245, SSP370, and SSP585
respectively.

Since the mean precipitation is the product of the wet-day frequency and wet-day mean precipitation® we ean-estimate

estimated trends in total precipitation and-based on and the product rule, and used this information to explain total pre-
cipitation changes in terms of ehanged-changing number of wet days or ehanged-changing intensity. Figure ?? shows estimated

future trends in precipitation (mm/day per decade in upper panel: da/fdt—=pdf gt mdptdtds’ /dt = pdf., /dt + frudu/dt)
as well as its contribution from changing number of wet days (lower left) and changes in mean precipitation intensity (lower
right). The projections of the future climate in the Nordic region indieates-indicated a general increase in the total precipitation
mainly due to increased wet-day mean precipitation p and in spite of decreased wet-day frequency f,, according to the selected
CMIP6 simulations.

The wet-day frequency f,, and wet-day mean precipitation y represent two key parameters for approximate estimation of

the probability of heavy rainfall according to Pr{X—>—a)=Ffgexp{—a/p (D

PrX >2) = fexp(z2' /1), M
STl = 3 [ X /1= fupwhere fu = na [/ and pr=—"wtnmn = 32 [y,
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roposed and evaluated by ?. Figure ?? shows observed fraction of days per year with more than 30 mm for Oslo-Blindern
(black symbols) compared with such low-precision estimates based on S anthis expression and the ensemble

means for using the expression f€—30/ #: red solid line) shown with error bars of one standard deviation (red

dashed). Fhe-In other words, the results presented here were the downscaled estimates for f,, and . used as input in equation ??

without further calibration, and the statistics based on rain gauge measurements and information downscaled from the GCM

ensembles indieted-indicated somewhat matching levels, however, the observations included some years with substantially
higher numbers of days with heavy rainfall. These results nevertheless serve as an example where probabilities for heavy rain-

fall have been downscaled directly though theirparameters-the parameters f,, and u, as opposed to aggregating data points from
of a statistical sample containing traditienal-traditionally downscaled time sequences of weather states. Another benefit with

se-a parameterised expression for probability was
2

that we could differentiate it according to the product rule:

Figure ?? shows maps of both P+{X—==}-Pr(X’ > 2’) and percentage trends&%%d#r&\%ﬁ%%ﬁ—} for the
SSP370 ensemble mean, and the results indicate-indicated highest probabilities for days receiving more than 30 mm /day-of

precipitation on the west coast of Norway, but the relative trends were greatest over northern Finland.

The parameterised expression for probabilities also enabled downscaling of approximate estimates of return-values where
the—retarn—valse———-ecpln{fz7and-based on =/ = auln(f,7) where o was-is a calibration coefficient (?). Figure 2??
shows both 10-year (left panels) and 25-year (right panels) return-values as well as their estimated trends (lower panels)
based on the ensemble mean SSP370 results. The greatest return-values were estimated over western Norway, with 10-year
estimates ranging in 30-170 mm/day while 25-year estimates varied within the range 40-220 mm/day. The lowest estimates
were downscaled for parts of northern Finland, Sweden and Norway. Projected future trends in «+z, were estimated based
on trends in the wet-day frequency df,,/dt and wet-day mean precipitation du/dt (lower panels in Figure ??), the above
expression and the product rule, and increases in =z’ were in general a result of increasing mean intensity rather than more
wet days. The greatest trends in the return-values dz+/dt-dz’. /dt were downscaled over western Norway with already high
levels, but there were also notable increases over southwestern Finland and over parts of southwestern Sweden.

These-return-values-may-alse-provide-a-Downscaled f,, and u also provided first-guess estimate-estimates for intensity-

duration-frequency (IDF) curvesif-, assuming there is a fractional dependence between temporal scales. We based our esti-
mates of IDFs on 2, using the expression ()= ep{h/24) Il fmrral = au(L/24)¢ In(f,7) which describes mathe-
matical curves whose shapes are approximately similar to IDF curves estimated through more traditional means, where ¢ is a
calibration coefficient, L was-is the duration in hours, 7 is the return interval, and ¢ deseribed-describes the fractional depen-
dency between temporal scales and was fitted to observational rain gauge measurement data. We estimated how the shape of
IDF curves may change due to trends in f,, and p (their trends are shown in the lower panels in Figure ??), and IDFs for Oslo
for present and the future are shown in Figure ??. Different estimates for IDFs for the present a%é]:}g;’ulhand the future #-(5}
provides=z] ; provide an opportunity to estimate scaling factors for IDF curves : Wo account for further

climate change: 1.13-1.14 for f,, and p projected with SSP370 ensemble mean, not taklng into account decadal variability.

7100 x dPr(X' > z')/Pr(X' > z')
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A crude measure for accounting for decadal variability was to use the ensemble spread +o, and subtracting o for the present
and adding o in the future gave scaling factors within the range 1.18—1.20 for SSP370. For higher emissions associated with
SSP585, the scaling factors were 1.27-1.38, in this case only based on the ensemble mean and not accounting for decadal
variability. All these estimates varied with the return-period 7, but the scaling factors were the same across time durations L in
accordance with the expression above. In this case, we assumed that o and ¢ were constant for a given site.

We also explored the connection between the wet-day frequency and duration of dry spells (number of consecutive dry days),
which may provide some indication of meteorological drought risk (supporting material). The calibration of our ESD method
indicated that there is-was a link between large-scale f,, from ERAS and the mean duration of dry spells. The spell duration
approximately followed a geometric distribution where the mean duration (number of consecutive dry days) is-was the inverse
of the "success" probability, which implies that we approximately can estimate the probability of a dry spell lasting longer than
a given threshold. A projected weak reduction in f,, over the Nordic region will therefore suggest tightslightly increased risks

of meteorological droughts in the future.

4 Discussions

& /s

instanee-using-targe-To our knowledge, this is the first time the shape of curves representing probabilities for heavy rainfall or

IDF curves have been downscaled using a hybrid PP-MOS approach (which addresses the *domain adaption’ aspect discussed
in ?) applied to multi-model . o . - ,

estimating the parameters defining their shapes. Those parametric expressions nevertheless enabled us to analyse the causes
for trends in precipitation, probabilities, return-values, probability of meteorological droughts, or for shifts in the shape of IDF
curves. These statistics were calculated from formulas which used downscaled f,, and p were-appreximatelynermal-which

input, and the results underscored that both the wet-day frequency and the wet-day mean precipitation are two key parameters
for describing 24-hr precipitation. In our case, the results were more sensitive to the mean precipitation intensity p than wet-da
frequency fy,.

< ur results suggested a slight reduction in the future wet-da
frequency over the Nordic countries which may reflect predominant changes in the atmospheric circulation patterns, due to the

2 o 2 I e 2 no A 2
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blocking high-pressure systems. Present state-of-the-art GCMs still have biases when it comes to storm tracks and blockin
frequencies, which is possibly due to a coarse representation of the polar jet stream and other processes in the Arctic (?). The

downscaling may underestimate long-term effert-and-a—series-of-projeets(e-e—EU-SPECS; Klimabigitah—Thedownsealing

)

for-water-borne diseases-that-may-lead-to-diarrhoeaCMIP6 models seemed to score well on the comparison between trends
in GCMs and ERAS. A separate test where p was downscaled solely based on ERAS reanalysis didn’t capture the historical
changes observed in Oslo (supporting material). Furthermore, the projections of wet-day frequencies f,, didn’t account for the
risk that circulation patterns may change in ways not captured by present models. There may also be tipping points in the North
Atlantic and sea ice cover, changes in the jet stream, effects from displaced storm tracks, and inaccurate simulation of blocking
high-pressure system frequencies (?). Nevertheless, a take-home message is that long-term trends in /1 were sensitive to future

~One question is whether

the fractal temporal scaling properties utilised in the approximate IDF representation in Figure ?? is stable or if we can

expect it to change in time and space.

It is also possible that there are diverging trends in or

during different seasons that cancel each other in the annual mean, e.g. associated by prevailing presence of different seasonal
meteorological phenomena. Our results suggested that the annual wet-day frequency f,, was more coherent over space, as all

the 20 leading EOFs combined accounted for 88% of the variance in the ERAS reanalysis compared to 74% for the annual
wet-day mean precipitation p. Moreover, the leading EOF mode for the annual wet-day mean precipitation 1 from ERAS
captured 19% of the variance as opposed to 30% for f,,, which suggests that y may-refleet-to a greater degree reflects small
scale processes and phenomena not being as strongly eeerdinated-correlated over the region on annual time scales. Local and
mesoscale processes and phenomena that may influence 1 include eonveetive-activity;-surface-air fluxes, and local geographical
effects such as orographic forcing. However, both f,, and p are expected to reflect meteorological phenomena ranging from
local microscale, mesoscale and synoptic scales that may produce precipitation with different characteristics, dynamics and
mechanisms, including convection, cut-off lows, mid-latitude cyclones, frontal systems, atmospheric rivers, and orographic
forcing. Both increased precipitation amount from higher surface temperature as well as changes in the distribution of the

precipitation over the planetary surface play a role in the trends in extreme precipitation amounts. ? found a link between
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increased intensity on the one hand, and increased rate of evaporation as well as changes in the global surface area receiving

daily precipitation on the other. They also observed that changes in the global fractional surface area with daily precipitation

were connected to the global statistics of the wet-day frequency f,,.

Using the same variables for predictors and predictands, as in his-this case, leaves it up to the GCMs to represent the

underlying phenomena that generate precipitation. H-in-the-terms—proposed-by—2;-one-could-perhaps-We could refer to this
strategy as a hybrid ’'SR-MOS’ in the terms proposed by ? rather than ’PP-MOS’there-, however, we stick to "PP-MOS’ jfor

EICVAVSI Y
simplicity. Improved GCMs in the future may reproduce various meteorological phenomena and processes with improved skill
which may lead to better estimates for future projections. It is also important that the reanalysis used for calibration mateh

matches the predictands closely.
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Our results were produced with a hybrid PP-MOS strategy for downscaling climatic parameters represented through PCAs

that may serve as a benchmark for machine learning and artificial intelligence (?). In-addition-te-combining ESD-and RCMs
beeause-they-are-based-on-different-assumption;-there-There is value in combining this ESD approach with more advanced

machine learning (ML) or artificial intelligence (AI) methods that produce results with very different constraints. However,

since downscaling f,, and-or ;1 doesn’t require as large data volume or as long time series as either ML/AI or traditional
methods for studying extremes, such a comparison will be limited to cases with ample observational data or *pseudo-realities’
using model output. One merit of our strategy is that it provides an explainable method which enhances our understanding
of projected changes and thus compliments many ML/AI methods. Hence, our downscaling strategy addresses some of the
research questions stated in ?, and when the recipe of the entire analysis can be documented through an R-markdown script
(supporting material), it’s easier to provide transparency and traceabilitysought-within-the traceability sought in scientific
discourse.
‘Fhis-analysishas-explored-annuataggregated-fo-and-It's important to combine equivalent results from both ESD and RCMs
when downscaling is used to produce regional or local climate projections for the future, since they are based on different
assumptions and have different strengths and weaknesses but are expected to give similar results for aggregated precipitation
and temperature. We leave a comparison with similar information from RCMs for future work, and it is also important
to_account for chaotic and stochastic variability on regional and decadal scales (2?), for instance using large multi-model
ensembles as a surrogate for statistical sampling and letting the ensemble spread give a crude representation of probable
outcomes. This analysis suggested that the ensemble spread for both annual f,, and p butthepresenee-various-meteorological

trends—in-both-were approximately normal which implies that the ensemble mean as well as standard deviation may provide
useful information about the ensemble spread.
All expressions used here in connection with ESD can also be combined with RCMs, as ? used the EURO-CORDEX
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(EPSysoutheast Africaand-the Norad-funded-projeet- SAREPTA. They subsequently used the IDF curves as a basis for weather

enerators (Monte-Carlo simulations) to provide input for landslide modelling. Nevertheless, based on their utility, the wet-da

frequency f,, and the wet-day mean precipitation 4 should be listed among essential climate indicators®, and they should be
included in the standard output from reanalysis, GCMs (e.g. CMIPQWWMQXIO)%MMM
1. The CMIP ensemble here was limited to one simulation per GCM because f,, and 4 had to be estimated from available daily.
output, making it difficult to explore uncertainties connected to initial conditions, natural variability as well as model choices
(2). However, it may be possible to use factorial regression or ANOVA to assess how model choice affects the downscaled

ensemble with larger multi-model ensembles that include multiple simulations with the same GCM (??). With the available

CMIP6 data in this case, it was only possible to carry out an assessment of the sensitivity to emissions through comparin

5 Conclusions

We used the ERAS reanalysis and local rain gauge measurements from the Nordic countries to calibrate empirical-statistical
downscaling models, which were applied to CMIP6 projections ;-using annual wet-day frequency f,, and wet-day mean pre-
cipitation f respectively both as predictors and predictands.

between-A good match between the ERAS reanalysis and rain gauge measurements was—close-and-gave-for these two key
statistics over the Nordic region gave a good calibration of our downscaling methedsmethod. Predictors from global climate

models from CMIP6 were evaluated and scored well in terms of their ability to represent mean seasonal variations, interan-
nual variability of annual aggregates and past trends -and-the-of the large-scale predictors needed for the downscaling, and our
downscaling used a hybrid PP-MOS approach for estimating parameters for mathematical curves providing actionable regional
climate information. The downscaled f,, and © were subsequently used to estimate local probabilities for heavy rainfall, return
values and changes in the shape of intensity-duration-frequency curves. We used kriging with elevation as covariate to generate
Nordic maps of f,, and p and their projected changes. Projected changes in the future suggest increases in p but very slight
decreases in f,,, hinting at mere-infrequentless frequent or similar level of wet days in the future but also more intense future
rainfall. The amplitude of projected trend-trends in ;1 was sensitive to the emission scenario, but trends in f,, were not. The

spread between the ensemble members was approximately normally distributed, which implies that essential information about

the ensemble may be captured through the ensemble mean and standard deviation. Our-analysis-incladed-evaluations-of-the

= hao = he b m amade anrad cd-thaenred O ndthere aran nd ad
as OW—w 2100d a OGCT proat - P G o155t SHTts O G a c

Shitps://gcos.wmo.int/en/essential-climate- variables/
https://esgf-data.dkrz.de/search/cmip6-dkrz/ or https://cds.climate.copernicus.ew/
10 T i

https://esgf-data.dkrz.de/search/cordex-dkrz/
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415 Code availability. The R-markdown script, on which this analysis is based, is provided in the supporting material and available from

FigShare (?)
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Appendix A: Summary-of Detailed information about the supporting-material: R-markdown-outputdownscaling
methodolo

downscaling, one being the mapping of data onto a finer grid and another for which the information on large-scale features,
which climate models are able to reproduce, is combined with information about the dependency across spatial scales to derive
small-scale information. The former may not always take into account the fact that numerical models have a minimum skillful
scale and onl i ridded data with
higher resolution, and there are examples where downscaling has been carried out for a single location (222). Moreover, the
Wmthe 1 o < an < 1 A 1ale ot 10 + 1 1otande an

rovide a limited representation of reality (?). is not restricted to producin

e COST-Value project (2)
was to establish a standard evaluation scheme based on 85 different single locations scattered across Europe. On the other hand,
a stight-high-bias: i plain interpolation to finer a grid is usually not considered to be a downscaling approach, but
bias-adjustment is sometimes referred to as downscaling. Neither an interpolation, spatial disaggregation nor bias-adjustment,
or any combination thereof, emphasise the large-scale aspects that numerical models are able to reproduce with greater skill
than grid-point estimates. Global climate models have a typical spatial resolution of 100 km and therefore only have a coarse
representation of the land surface, and the mountain regions are represented by crude pixels with typically lower heights than in
reality. Some of the said simple approaches for producing data on a finer grid may implicitly add information about elevation,
e.g. through the inclusion of bias-adjustment or kriging with elevation as a covariate, but the models’ minimum skillful scale
is_not the same as the model resolution. Moreover, it is acknowledged that the models’ minimum skillful scale typically
encompasses several grid boxes (2?). Various models in the CMIP6 ensemble have different spatial resolution, ranging from
S0 km to 260 km, whereas the ERAS has a resolution of approximately 31 km (this data is provided on a reduced Gaussian grid
which has quasi-uniform spacing over the globe). Furthermore, model data typically represent the average value over a grid-box

volume (e.g. temperature) or area (e.g. precipitation) with a spatial dimension of several cubic or square kilometres, whereas
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observations represent conditions with spatial scales of metres. The local rain gauge data can, for all intents and purposes, be
considered as point source measurements (collected by funnels with a 20 mm/day-and-36-mm/daycm diameter) and represent
local (small-scale) climate information. In our analysis, downscaling provides the translation of large-scale information, that
can be provided by global climate models, to local statistics for precipitation collected by rain gauges by adding information

While RCMs and

traditional ESD provide output for a sequence of atmospheric states (or "outcomes") on daily or sub-daily resolution, which

we can refer to as weather conditions, our strategy has been to downscale the key parameters describing the shape of the
mathematical curve for local probability, rather than estimating the statistics from samples made up of such data sequences. We
can loosely refer to the former as *downscaling weather’ whereas the latter can be termed *downscaling climate’ if climate can
be defined as weather statistics or probability density functions
properties of precipitation are expected to follow a more systematic geographical distribution than any random individual
weather event, being influenced by prevailing large-scale conditions as well as estimating sealing factorsmeant-to-capture-the
effect-of climate-change—fixed local geographical factors. Our objective was to downscale parameters describing the shape
of a pdf or similar mathematical curves. and this approach was first inspired by ?? and is based on a long-term effort and a
series of projects (e.g. EU-SPECS'!, CixPAG'?, KlimaDigital *, EU-SPRINGS'*). The ’downscaling climate’ approach can
also be applied to e.g. summertime heatwaves or used to downscale the probability of the occurrences nyy as well as duration
of hot spells Ly (?). however, heatwaves were beyond the scope of the present analysis. Another example of the merit of this
concept is the downscaling of storm track density (?). and future work in the EU-SPRINGS project will explore the possibility
to downscale public health statistics for water-borne diseases that may lead to diarrhoea. The application of the "downscaling.
climate’ approach is not as wide-spread as downscaling of time sequences with individual atmospheric states.

recipitation amounts. Statistical

A2 The predictors representing the large scales

Both the covariates from reanalyses used for calibrating the downscaling methods and corresponding covariates from global
climate models used for making projections are referred to as predictors in the context of downscaling. Such predictors
represent large-scale fy-over-the surrounding region(ERAS)—aspects that global climate models are able to reproduce with
skill. Here we chose predictors that consisted of the same variables as the small-scale information that we sought through
downscaling: the annual wet-day frequenc and the annual wet-day mean precipitation z. This choice was motivated by the
expectation of a systematic dependency between the large-scale and small-scale aspects of the same variable.

mAll of the CMIP6 models in our analysis were

regridded to match the grid of ERAS for the region 5°W-45°E/

https://cordis.europa.eu/project/id/308378
2https://cicero.oslo.no/no/prosjekter/cixpag
Bhttps://www.sintef.no/projectweb/klimadigital/
https://www.springsproject.eu/
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and-peaks-Only-modest-eross-validation-correlations33-72°N. Since data produced by reanalyses and global climate models
have a high degree of redundancy, the information contained therein can be reorganised as spatially coherent patterns which
represent substantial fractions of the covariance structure. These patterns involve mathematical technigues within linear algebra
?) known as empirical orthogonal functions (?2???), commonly referred to as ’EQFs’. EOFs (and PCA used to describe
predictands in the next subsection) make use of this redundancy and organise the information so that the most salient aspects
of its covariance structure is represented by its leading modes. Furthermore, the high degree of redundancy makes it possible to
represent the most important covariance information in a much smaller volume of data than the original raw data, as illustrated
by the schematic in Figure ??. Here we use X to represent the anomalies of the original data with a temporal dimension 7,
and a spatial dimension 1, (for gridded data, n, = 1, X 1. but here the particular geographical arrangement of the data points
is not affecting the calculations). Both the EOFs (and the PCA for the predictand) were implemented though the means of a
singular value decomposition (SVD) (?) where U represented the spatial weights ("geographical pattern’), A was a diagonal
matrix that held the eigenvalues (variances) in decreasing order, and V_ contained the time series (principal components, PCs,
used in the regression analysis) according to_

X=UAVT. (A1)

One important issue is that the same large-scale structures in the predictors found for the reanalysis during calibration of
the downscaling methods must be found in the model simulations to make projections for the future. A simple way to ensure
identical covariance structures in the two is to use so-called common EOFs as proposed more than 20 years ago by ?, where
anomalies of the GCM data are mapped onto the same grid ("regridded”) as those from the reanalysis and the respective
anomalies are combined so that the GCM data follows the ERAS5 data in time, X = | X X 7|. Here, each GCM
simulation was regridded to match the grid of ERAS through bilinear interpolation, and ordinary EOFs were estimated for
the joint data matrix. Since the spatial patterns U _and the eigenvalues A were common for the joint data matrix, the two data

sources were only distinguished through V = [V Voo ] in equation ??2.

A3 The predictands representing the small scales

The predictand consisted of 652 local rain gauge measurements from the Nordic countries over the period 1951-2021, and one

reason to use a principal component analysis (PCA) of annually aggregated statistics and p) was that its gravest modes had

a closer link to large-scale predictors than each local time series (?). The mathematics of PCA was similar to equation ??, but

the original data and hence the matrices therein were distinct from that of the predictor and can be expressed as X' = U'A'V'T.
The downscaling only involved a representation of the predictands in the shape of PCA, where the local climate information
was embedded in the spatial weights U” and eigenvalues A,

Bewnsealed The results from the downscaling were subsequently post-processed to provide maps as shown herein. The maps
were generated though a kriging based on Markov random fields (?) and made use of the R-package LatticeKrig which follows
a "fixed rank Kriging" approach with a large number of basis functions. It was designed to provide spatial estimates that were
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Maps: 144 x 73 x 60 Modes: 144 x 73 x5 + (5x 60 + 5)

PCs

Variance (%)
20
!

o
R e,
—

Figure Al. A graphical illustration of representing the predictors in terms of EOFs. The left hand side shows the data matrix with one map
for each year, but since there are many reoccurring/similar ("typical") spatial patterns, it is possible to represent the most salient information
of this data matrix in terms of three dominant patterns (right hand side) with temporal weights describing their presence and eigenvalues
indicating their general prominence. This schematic furthermore illustrates the concept of *common EOFs’ where part of the data matrix
holds reanalysis data and the other part holds GCM data. Their temporal weights are also distinguished with different background colour
on the right, and the part representing the reanalysis are then used in the calibration against rain gauge data whereas the other is used for
making projections. Typically, the common EOFs require much less computer memory and are easier to process than the original data. They
also provide a framework for evaluating the predictors since the temporal weights associated with the reanalysis and the GCM should have
similar statistical properties. Since our schematic only includes the three leading mode it reflects the expression X ~ UAV'” rather than

comparable to standard families of covariance functions. and its Markov random field approach, combined with a basis function
representation, was supposed to enable an implementation of different geometries. The kriging aspect here was merely used to
provide spatial maps once local information had been derived for f,, indicated-highestvalues-along the-coastforall-emission
iOfH and 4. for the locations of the rain

gauge measurements, and the
objectives here was to demonstrate how daily precipitation statistics can be derived through empirical-statistical downscalin
and then be used for making local projections for a future climate. Furthermore, the kriging was only applied to the spatial

atterns of the PCA for the leading modes U’ to produce U} ;.. and the expression X' = U, . A’V'T was subsequently used
to generate maps of fu w i i i
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westeoast-(nore-wet-days)-and theinteriorparts-ess-wet-days)-of the Nordic-countriesfor-downsealed-y with X' representing
either f,, from-SSP585-

general-pulled-the-trends-towards-drierconditionswere subject to downscaling, we sought solutions for expressing probabilities
Pr(X’ > 2') and return periods of heavy precipitation ("moderate extremes", typically, X’ € [10,---,50]mm) based on a

modified exponential distribution. We used approximated estimates for the probability of heavy precipitation based on Pr(X’ > z’

and return values according to 2/ = auln( f,, 7). ? evaluated these expressions for 9817 locations in Europe and North America,

and we will not repeat this evaluation here (the results are published in an open-access journal). The approach for estimating the
parameters that determine the shape of intensity-duration-frequency (IDF) curves was evaluated by ? and ? for sites in Norway,
and this evaluation will not be repeated here either (the said papers are also in open-access journals). The main objective here
was to show how parameters that specify the shape of mathematical curves for local precipitation statistics can be derived
directly through empirical-statistical downscaling, given that the curves themselves provide useful information.

the same spatial covariance structure in ERAS associated with variation in the rain gauge statistics is the same in the GCM,
the regression analysis was carried out within a framework of the spatial patterns held in matrix U that are common for both
reanalysis and model. The calibration involved a set-wise multiple ordinary linear regression (OLR) which only used part of
The-evatuation-of CMIP6—f-against

‘}J/ = fo,; +Zﬁi7jVERA57i~ (A2)
i
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In equation ?? the term V/ ; is principal component 7 of the EOFs representing the predictor from ERAS eﬂ—par—v&&&hl
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V! represents the order j principal component from the PCA representing the predictand and the aggregated statistics based
on the local rain gauge data. In this case, V' and i i i i

VEpas. were synchronised time series representing local and
and is referred to as the downscaling method, in this case involving a regression model, whereas the rest of the data processing.
provides the preparations, framing and the proper context for this analysis. The calibration provided estimates for the regression
coefficients 3; which were then used to make projections for the future according to

X' =U'AVps, (A3

where U’ and A’ are the spatial weights and eigenvalues from the PCA representing the predictand, and V7

interannual—variations—n—regression coefficients and the part of the common EOFs representing the global climate models

Vie=[V] v/ ---]) to make projections.
In our downscaling attempts over the Nordic region, we used the 5 leading PCA modes (5 = [1,2,---,5]) to represent
the most salient information of annual f,, was37%:-the2nd-16%;-and p estimated from the rain gauge measurements (the

redictands), representing 100% of the variance in the

~n a step-wise multiple OLR to
estimate each PCA mode for the predictand. In other words, the OLR was used to relate large-scale information from ERAS
to local information provided by the rain gauge data, and time series representing annual f,, and was-omittedfrom-the
i idef jeeti i ied-to-y, were generated based on the regression coefficients 3; and

subsequently computed according to equation ??.

The first step of the model calibration involved a 5-fold cross-validation (?), where the data was split into 5 equal segments
and one was withheld from the calibration of the remaining 4 segments and then compared with predicted values ("out-of-sample).
This exercise was repeated for all combinations and the final cross-validation scores were estimated based on all iterations.
The final calibration, however, was carried out for annual data over the entire period 19512021 (31 data points for each PCA

mode).
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Appendix B: Evaluation

Bl Cross-validation

It is a standard practice to evaluate downscaled results through a cross-validation exercise and tables ??— ?? show cross-validation
590 correlations for each of the five PCA modes and for each type of GCMs. The scores vary slightly due to different spatial
resolution and slight differences in their embedded covariance information.
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Table B1. Cross-validation correlation of the principal components from PCA used to represent the predictand for f., (columns). The rows
represent the different results for the different ensemble members.

RCLL RCZL BC3

ECEuth3 AerChemylilplfl 09 093 08
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Table B2. Cross-validation correlation of the principal components from PCA used to represent the predictand for p (columns). The rows
represent the different results for the different ensemble members.

JPCLL TRC2T TRC3
ACCESS.CM2.r1ilplfl 094 08 077

ACCESS.ESMLSrlilplfl 094 079 074
AWLCM. 1.1 MR rlilplfl 095 078 078

|

23



595

PCA Pattern #1 (unitless)

70

a
e §

v
v

e

65

i
60

55
N

Cross-validation: r= 0.93

] s ™
° © | —e— estimated
— / _ L) .
— I/
5 o / - ;_
S ] **
3 - %, e
a o o ;_
— ,/ ‘
(<) ,/
31 2
1 1 T 1 T 1 UL UL
-03 -01 0 0.3 1950 1970 1990 2010
original data Date

Figure B1. Diagnostics of the calibration of the multiple regression model for the leading PCA mode for annual f,,. The upper left panel
shows the spatial weights of annual f,, from derived from rain gauge measurements and the upper right panel shows the spatial weights from
the weighted combination of EOFs of corresponding ERAS data weighted according to the regression coefficients from calibration exercise.
the long-term trends are well reproduced.

B2 Evaluation of ERAS.

A good match between annual rain gauge statistics and corresponding statistics derived from ERAS suggested-thatthe-GEMs
reproduced-the-mean-also constitutes an evaluation of the ERAS reanalysis. Hence, diagnostics of empirical-statistical downscalin
can be used to evaluate reanalyses such as ERAS. Figure ?? gives a graphical presentation of diagnostics associated with the
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Figure B2. Same as Figure ?? but for 4.

600 modes-98%Fer-interannual-variability-f,, in annual-#ERAS match the geographical distribution of the sites with greatest
weight in U] (upper panels shows ,1U;), and the firs

cross-validation applied to pure ERAS gav
Figure ?? shows similar results for y near-the-west-coast-of Norwayand shows that there was a close match between the
605 annual wet-day mean precipitation ageregated from rain gauge data and from the ERAS reanalysis.
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B3 Evaluation of the global climate models

Since large-scale aspects were used as predictors in the downscaling, we evaluated the skill of the selected global climate
models in reproducing them. Large-scale aspects from ERAS were used for the calibration of the downscaling models and
therefore the climate simulations were compared with corresponding ERAS data to make the evaluation relevant for the
downscaling results. We started by assessing the mean annual cycle to provide a test of whether the representation of physical
processes and conditions in the models capture the most salient variations such as the mean seasonal cycle. Further steps in
our evaluation involved testing their ability to reproduce the characteristics of interannual variations and past trends in
i Both interannual variability and assessment of past trends are relevant for when downscaling is used to make projections
for the future, because the former reveals whether the models are able to reproduce the covariance information associated with
Earth’s climate. It is also important that the models are able to capture changes (interannual variability and long-term trends)
in the past if they are to be trusted for predicting changes in the future. The results of these evaluations can be found in the
supporting material, but are not presented here in more detail as our main objective was to demonstrate how it is possible to
downscale statistical properties on daily precipitation directly.

B4 Ensemble evaluation

An evaluation of downscaled ensemble results may include an assessment of whether the data follows a normal distribution,
and rank statistics can be used to test whether the model results belong to the same statistical population as the observed target
data. We tested the downscaled data both in terms of their rank statistics based on individual years as well as the ratio of
observed to modelled standard deviations associated with their reproduction of the interannual variability. It is important that
the downscaled results reproduce the typical interannual variability and historical trends for the selected locations.

Figure ?? shows an evaluation of the statistical distribution of the downscaled ensemble results and suggests that the
ensemble results was close to being normally distributed for both f,, and n. Hence, information about the ensemble can
be approximated by the ensemble mean and ensemble standard deviation.

The average rank of annual respective f,, and p from the observations from Oslo-Blindern was estimated over the 19512014
period in terms of the downscaled results (Figure 22). If the ensemble results belonged to the same statistical population as the
observations, then this rank statistics should follow a uniform distribution. For f,, the mean rank was 0.49 and well within the
range 0—1 (p-value of 0.49). The observed standard deviation for f,, was 1.33 times that of the ensemble for the overlappin,
historical simulations. Likewise, the mean rank for y was 0.44 with a corresponding ratio in standard deviation of 1.41.
Figure 22 shows the case for Oslo-Blindern as an example of how the downscaled ensemble can be assessed, and in this case
the downscaled ensemble gave a slight underestimate of the magnitude of the interannual variability,

An evaluation of trends indicated ranges for both f,, and p2 which spanned the observed trends at the 652 locations, but the

ensembles underestimated the interannual variability for both f,, and p (supporting material).
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Figure B3. A comparison between the ensemble distribution (historical run) and the normal distribution for annual (upper) and u (lower

for their respective leading PCA. The near linear fit suggests that the distribution of the ensemble results is close to being normally distributed
for the most important PCA mode.
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Figure B4. A comparison between the downscaled ensemble annual f,, (upper) and p (lower) for Oslo and corresponding observations
indicates that the model results reproduce both amplitude and long-term trends at a realistic level.
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Appendix C: Projections of regional future precipitation statistics

‘We have in our analysis explored annually aggregated and u, but the presence of various meteorological phenomena tend to

vary with the seasons and a mean annual trend may mask possible opposite trends in different regions. To assess this possibility.
we took a random sample from historical rain gauge measurements from Oslo and compared seasonal trends in both f,, and
(supporting material). Qur random test suggested that there were no pronounced opposite trends, but a more thorough exercise
would entail downscaling seasonal mean precipitation statistics for the Nordic region. We leave the task of seasonal focus for
the future, as a part of our objectives was to develop and evaluate downscaling approach for the EU-SPRINGS project and
collaboration with Mozambique through CORDEX flagship pilot study (FPS) southeast Africa and the Norad-funded project
SAREPTA'". This *downscaling climate’ approach for precipitation may work even if there is limited rain gauge data but it is
important that reanalyses such as ERAS correspond well with data on the ground.

IShttps://bistand.met.no/en/Sarepta
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Figure 1. Map showing the rain gauge station network from ECA&D used as predictands in the empirical-statistical downscaling of 24-hr

precipitation statistics. The colour legend shows the mean annual total precipitation.
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Figure 2. Ensembles of downscaled wet-day frequency f,, and wet-day mean precipitation p for Oslo based on the SSP370 emission

scenario. Black symbols show annual such aggregated statistics estimated from rain gauge measurements from Oslo-Blindern and the green

shading mark-marks the ensemble spread of corresponding downscaled results.
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Figure 3. Maps of downscaled mean f,, (upper left) and 4 (upper right) as well as trend estimates (lower).
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Trend in mean precipitation

-01 -008 -006 -0.04 -002 0 002 004 006 008 01
precip change (mm) - trend.coef (2015 -2099)
Trend due to changes in number of rainy days Trend due to changes in rain intensity

-01 -0.08 -0.06 -0.04 -0.02 0 002 004 006 008 01 -0.1 -0.08 -006 -0.04 -002 0 002 004 006 008 0.1

precip change (mm) - trend.coef (2015 -2099) precip change (mm) - (2015-2009)

Figure 4. Estimated trend in mean precipitation # =2’ = f,,u (upper) and the contribution due to wet-days f., (lower left) and mean
intensity p (lower right).
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Oslo: Fraction of days with more than 30 mm precipitation
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Figure 5. Observed and estimated fraction of days per year in Oslo with more than 30 mm. Solid line shows the ensemble mean and dashed

lines the ensemble mean plus or minus the ensemble standard deviation.
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Figure 6. Estimates of the mean probability of more than 30 mm precipitation in 24 hours according to 2+ S=Fw

based-on-downsealed—fo—(right-and1-Pr(X’ > 2') = fy exp(=z'/u) (left), estimates-of-the-future-trend—(middie);-and the proportional
trend in the probability estimated using the product rule (right). These results are based on downscaled f,, and x from the CMIP6 ensemble
following the SSP370 emission scenario.
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Figure 7. Estimates of the 10-year and 25-year return-values based on the expression #==-eptta{fwrra = auln(fy,7) (?), and their

future trend estimates (lower). The results are based on the SSP370 emission scenario and the CMIP6 ensemble mean downscaled f, (right)

and p.
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Figure 8. Estimate of intensity-duration-frequency curves for Oste-blindern—Oslo-Blindern based on downscaled f,, and pu (setidthin

solid-dotted) and their future trend estimates (éashedthick solid-dashed). These results are based on the SSP370 emission scenario and

the expression @ y—epel /24y 9l Forral (L) = ap(L/24) In(f1) ().
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Table 1. The ensemble mean and standard deviation of the wet-day frequency f., and wet-day mean precipitation p projected for 2071-2100

for a selection of locations.

Location emission scenario  f, + o f nEo,
Geiranger SSP370 0.44 £0.06 9.24 +0.78
SSP126 044 £0.06 9.1+£0.78
SSP245 044 £0.06 9.124+0.8
SSP585 044 £0.05 9.28+09
Halden SSP370 0.34+0.05 7.184+043
SSP126 0.34 +0.05 7.06 +0.35
SSP245 0.34+0.05 7.16+0.46
SSP585 0.33+0.05 7.24+0.44
Helsinki SSP370 0.32+0.04 5.89+0.34
SSP126 0.32+0.04 5.62+0.28
SSpP245 0.32+0.04 5.75+0.36
SSP585 0.31 +£0.04 6.05+0.43
Malmd SSP370 0.3 +£0.02 572+ 0.25
SSP126 0.31 £0.02 547+0.22
SSP245 0.3 +0.03 5.6 +0.29
SSP585 0.34+0.03 5.86 +£0.34
Oslo SSP370 0.32+0.04 7.244+0.41
SSP126 0.32+0.04 6.99+0.35
SSP245 0.32+0.04 7.154+045
SSP585 0.32+0.04 7.38+047
Stockholm SSP370 028 +£0.03 5.31+0.21
SSP126 029 +£0.03 5.15+0.17
SSP245 0.29 +£0.03 5244+0.22
SSP585 0.28 +£0.03 5.39 +0.27
Tallinn SSP370 0.34 +0.04 5.67+0.31
SSP126 0.35+0.04 5.3940.28
SSP245 0.34+0.04 5.524+0.36
SSP585 0.33+£0.04 582404
Vestervig SSP370 0.37 + 0.04 6+0.18
SSP126 0.37+£0.04 6.01 +0.16
SSP245 0.37 +£0.04 6.01 +0.18
SSP585 0.36+0.05 599+0.2
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