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Abstract: There has been widespread adoption of downscaled products amongst practitioners 

and stakeholders to ascertain risk from climate hazards at the local scale (e.g., ~5 km resolution). 10 

Such products must nevertheless be consistent with physical laws to be credible and of value to 

users. Here we evaluate statistically and dynamically downscaled products by examining local 

co-evolution of downscaled temperature and precipitation during convective and frontal 

precipitation events (two mechanisms testable with just temperature and precipitation). We find 

that two widely-used statistical downscaling techniques (LOCalized Analogs version 2 (LOCA2) 15 

and Seasonal Trends and Analysis of Residuals Empirical-Statistical Downscaling Model 

(STAR-ESDM)) generally preserve expected covariances during convective precipitation events 

over the historical and future projected intervals as compared to European Centre for medium-

Range Weather Forecasts Reanalysis v5 (ERA5) and two observation-based data products 

(Livneh and nClimGrid-Daily). However, both techniques dampen future intensification of 20 

frontal precipitation that is otherwise robustly captured in global climate models (i.e., prior to 

downscaling) and with process-based dynamical downscaling across five different regional 

climate models. In the case of LOCA2, this leads to appreciable underestimation of future frontal 

precipitation event intensity. This study is one of the first to quantify a likely ramification of the 

stationarity assumption underlying statistical downscaling methods and identify a phenomenon 25 

where projections of future change diverge depending on data production method employed. 

Finally, our work proposes expected covariances during convective and frontal precipitation as 

useful evaluation diagnostics that can be applied universally to a wide range of statistically 

downscaled products.   

 30 
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1. Introduction:  

Extreme weather events are among the costliest disasters to the United States. Over the 

past four decades (1980-2023), there have been more than 370 billion-dollar disasters that 

cumulatively cost over 2.6 trillion dollars (NOAA, 2023). To ascertain risk from climate hazards, 35 

a broad community of practitioners, stakeholders and policymakers rely on historical 

reconstructions and future projections of local to regional climate that are “downscaled” from 

coarse global climate model outputs (Fiedler et al. 2021, Pitman et al. 2022). This is because 

global climate model (GCM) data alone are too coarse in resolution: GCM outputs from the 

Coupled Model Intercomparison Project 6 (CMIP6), for instance, have grid spacing of ~100 to 40 

300 kilometers in the midlatitudes and cannot adequately represent finer scale features like 

topography and extreme storms (Eyring et al. 2016).  

Numerous climate data products have emerged over the last several years that represent 

the contiguous United States (herein CONUS) at local scales, including dynamically and 

statistically downscaled products. Dynamically downscaled products (e.g., Jones et al. 2022; Liu 45 

et al. 2017; Dai et al. 2020; Rasmussen et al. 2023; Chen et al. 2023) use regional climate models 

that simulate local meteorology, providing a comprehensive set of climate variables that are 

inherently self-consistent. While the general expectation is that dynamical downscaling 

implicitly preserves physical relationships among variables because they are generated by a 

modeling system based on physical laws, it is known that some biases can arise from insufficient 50 

representation of relevant physical processes (such as eddies; Xu et al. 2019), inherent error from 

lateral boundary input (e.g., from GCMs; Rahimi et al. 2024), and/or sensitivity to regional 

climate model configurations (the limitations of regional climate models were comprehensively 

reviewed by Giorgi (2018) and Lloyd et al. (2021)) that must be considered. Statistically 

downscaled products (e.g., Abatzoglou and Brown, 2012; Thrasher et al. 2012, 2022; Pierce et 55 
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al. 2014, 2023) are derived based on relationships between coarse climate model outputs and 

observed local meteorology (e.g., Livneh et al. 2015; Durre et al., 2022). Since they are 

generated through simple functional relationships, statistically downscaled products can be 

generated more rapidly than dynamically downscaled products (albeit for fewer variables, as 

dense observational networks are only available for select quantities).  60 

Given their computational convenience, there has been widespread adoption of 

statistically downscaled products. Statistically downscaled products must nevertheless be 

credible to be of value to users; the data must be consistent with physical laws to be trusted for 

future projections (Cash et al., 2002). Importantly, common statistical downscaling methods 

downscale variables independently of one another and thus do not explicitly account for 65 

covariances across variables at the local scale (notwithstanding existing covariances generated 

by climate models prior to downscaling). This may be problematic, as the loss of process-

relevant covariances, if any, would undermine downstream assessments of multi-variate hazards 

(e.g., droughts, flooding, and wildfires). Drought and wildfire metrics, for instance, may require 

self-consistent inputs of temperature and precipitation. Additionally, statistical downscaling 70 

assumes that observed functional relationships will be preserved in the future (i.e., the 

stationarity assumption) despite climate change (Milly et al. 2008); however, there is no 

guarantee that historically derived statistical relationships will remain valid in the future. A 

precise understanding of the extent to which such assumption may undermine projections 

nevertheless remains elusive.  75 

Here we assess the extent to which two locally relevant covariances between temperature 

and precipitation are preserved (or lost), as compared to outputs from global climate models and 

their dynamically downscaled counterparts, in two widely-used (e.g., Martin, 2023; Ullrich, 

2023; Jia et al. 2024; Najibi et al. 2024; Wang et al. 2024) statistical downscaling techniques 
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selected to accompany the Fifth National Climate Assessment (NCA5; the preeminent guidance 80 

on national climate risks; USGCRP, 2023): LOCalized Analogs version 2 (LOCA2; Pierce et al. 

2014) and Seasonal Trends and Analysis of Residuals Empirical-Statistical Downscaling Model 

(STAR-ESDM; Hayhoe et al. 2024). A central goal of our paper is to understand the 

representation of physical mechanisms in statistical downscaling products with only daily 

surface temperature and precipitation outputs (often the only two variables available with 85 

statistical downscaling). For this reason, we examine expected covariances between temperature 

and precipitation during convective and frontal precipitation events, including for the projection 

interval where the stationarity assumption may not hold. Although the credibility of both LOCA2 

and STAR-ESDM has been evaluated for single variables (e.g., Pierce et al., 2014; Hayhoe et al., 

2024), we propose for the first time diagnostics for evaluating covariances that can be applied 90 

universally to a wide range of statistically downscaled products. Collectively, our work attempts 

to address the following questions: 

1) To what extent is physical consistency across variables preserved, as compared to 

observations, when variables are (i) statistically downscaled independently and (ii) 

dynamically downscaled concurrently?   95 

2) How much does the stationarity assumption inherent in statistical downscaling 

undermine credibility of projections, particularly for potentially non-stationary 

hydrologic processes? 

 

2. Data and Methods:  100 

We employ outputs from eight Coupled Model Intercomparison Project Phase 6 (CMIP6) 

models and their statistically downscaled counterparts (see Table 1). The statistically downscaled 
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products come from LOCalized Analogs version 2 (LOCA2; Pierce et al. 2014) and Seasonal 

Trends and Analysis of Residuals Empirical-Statistical Downscaling Model (STAR-ESDM; 

Hayhoe et al. 2024). The following description of LOCA2 and STAR-ESDM is from Ullrich 105 

(2023), with minor modifications. LOCA2 is a statistical downscaling technique based on signal 

decomposition employing analogs (i.e., days in the historical record that exhibit regional 

meteorology most like the regional patterns of a given day in the CMIP6 model). The LOCA2 

algorithm first bias-corrects historical CMIP6 outputs to observations using quantile mapping. It 

then adjusts the amount of variability seen in different frequency bands to match observations 110 

using a digital filter (Pierce et al., 2014). To downscale data at a given grid cell, the 30 days in 

the historical record best exhibiting regional meteorology as compared to the CMIP6 model day 

is identified. The single day best matching the model day is used as the analog for the local 

region around the grid point (Pierce et al., 2023). The LOCA2 North American product uses an 

updated version of Livneh et al. 2015 with 6-km grid spacing as the training dataset (Pierce et al. 115 

2021). Outputs from LOCA2 are also available at 6-km grid resolution.  

STAR-ESDM is a statistical downscaling technique based on signal decomposition 

(Hayhoe et al., 2023). The STAR-ESDM algorithm first disaggregates observations and GCM 

outputs into four separate components: the long-term trend, climatological annual cycle, 

annually-varying annual cycle, and high frequency daily anomalies. For each of these 120 

components, mappings are constructed between observations and historical GCM outputs. Future 

projections are bias-corrected using these mappings, then components are recombined to produce 

a consistent estimate of future time series. The STAR-ESDM product uses nClimGrid-Daily data 

with 5-km grid spacing for training over CONUS (Durre et al., 2022). Both the LOCA2 and 

STAR-ESDM datasets were chosen for operational use in the Fifth National Climate 125 

Assessment.  
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We compare convective and frontal precipitation processes (specifics of how these 

processes are defined are provided in subsequent paragraphs) from (i) the European Centre for 

Medium-Range Weather Forecasts Reanalysis fifth Generation data (ERA5; Hersbach 

et al., 2020) against (ii) CMIP6 GCMs and their statically downscaled counterparts (LOCA2 and 130 

STAR-ESM). We also examine convective and frontal precipitation processes in the observation-

based Livneh (Livneh et al. 2015) and nClimGrid-Daily (Durre et al., 2022) hydrometeorological 

datasets. Finally, to assess the extent to which the stationarity assumption affects projections 

across statistical and dynamical downscaling, we compare LOCA2 and STAR-ESMD against the 

North America component of the Coordinated Regional Downscaling Experiment (NA-135 

CORDEX; Mearns et al. 2017). NA-CORDEX dynamically downscales ERA-Interim reanalysis 

data and climate model simulations under historical and Representative Concentration Pathway 

8.5 W/m2 (RCP8.5) forcings with a suite of regional climate models. We employ five different 

raw GCM experiments downscaled with five different regional climate models that provide daily 

outputs on ~ 25 km resolution. See Table 1 for a summary of all the datasets examined in this 140 

paper. 

Statistically downscaled products generally only provide a few variables at daily or 

higher frequencies, which can make it difficult to evaluate covariances. Directly computing 

covariance between temperature and precipitation at daily timescales may not be useful due to 

non-linear physical relationships and/or the stochastic nature of weather. We follow Zhang et al. 145 

(2023) in isolating for a single convective precipitation event each year by considering 

precipitation at each grid point coincident with the highest daily maximum temperature during 

that year (herein convective precipitation). Similarly, we isolate for a single (cold) frontal 

precipitation event each year by considering precipitation coincident with the greatest drop in 

surface temperature for that year (herein convective precipitation). For every grid point, our 150 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022AV000834#aga220176-bib-0026


 

7 
 

method thus identifies one convective precipitation event and one frontal precipitation event per 

year. To evaluate our method of identifying precipitation events, we (i) identify grid-by-grid the 

calendar day of convective and frontal precipitation, respectively, for each year over 1980-2014; 

(ii) create histograms of the number of times that the day of convective or frontal precipitation 

falls between day 0 and day 365 of each year (days 0 – 365 are thus effectively histogram bins); 155 

and (iii) fit a discrete Fourier transform onto the respective histogram to identify the dominant 

frequency (i.e., frequency corresponding to peak day) present in the data. 

We examine daily near-surface temperature and precipitation fields on a per-grid basis 

during convective and frontal precipitation events over CONUS, focusing on a 21-day window 

from 10 days prior to and 10 days following the day of convective and frontal precipitation, 160 

respectively (and including the day of convective or frontal precipitation itself). For the raw 

GCMs and ERA5, we also examine moist static energy, which we estimate using daily 

temperature, specific humidity, and geopotential height, but monthly surface pressure (due to 

data availability). For the purposes of this study, we examine (i) a 35-year period spanning the 

1980-2014 historical interval and (ii) a 35-year period spanning the 2065-2099 interval under the 165 

Shared Socioeconomic Pathway “Fossil Fueled Development” scenario with 8.5 W/m2 of 

radiative forcing (SSP585). For dynamical downscaling outputs, we examine the 2065-2098 

interval under the RCP8.5 forcing (note that the years 2006-2014 fall under the RCP8.5 scenario 

for NA-CORDEX).  

 170 

3. Results 

3.1 Convective and frontal precipitation processes in observation-based datasets 
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We first examine convective precipitation in the ERA5 Reanalysis dataset (Figure 1). 

Composite time series centered around the hottest day (day 0) shows surface temperature 

anomalies increase exponentially from -1K 10 days prior (day -10), peak at 3-4K on the hottest 175 

day (day 0), then decrease exponentially to -1K 10 days following (day + 10). Spatial composites 

of the hottest day show warm temperature anomalies over the CONUS domain, while the 5th day 

after shows broad cool anomalies. Coincident composite time series of precipitation show 

anomalies that decrease from day -10 to day 0 (co-occurring with temperature anomalies 

increasing). Precipitation anomalies are lowest on the hottest day (between -1 and -1.5 mm/day), 180 

with the spatial composite of day 0 showing broad dryness. Precipitation anomalies increase 

rapidly in the immediate days following, coincident with rapid surface temperature anomaly 

decreases, then remains elevated after the onset of convection. The spatial composite of 

precipitation on day +5, for instance, shows broad wetting indicative of convective precipitation. 

The above co-evolution of surface temperature and precipitation are consistent with 185 

expectations of convective precipitation: surface temperature will rise until it convects, triggering 

precipitation and cooling surface temperature. Analysis of coincident moist static energy 

reinforces this mechanism: moist static energy increases until the precipitation event and rapidly 

decreases immediately afterwards as the atmosphere stabilizes (Figure 1). Finally, our findings 

extend to the observation-based Livneh (Supplemental Figure 1) and nClimGrid-Daily 190 

(Supplemental Figure 2) datasets. Although observational climate datasets themselves have 

inherent uncertainties (such as from generation, sampling, or resolution; Zumwald et al. 2020), 

strong consistency across ERA5 and the two observation-based products indicate our ERA5 

results to be robust.  

We next examine cold frontal precipitation in ERA5, centered around the greatest drop in 195 

surface temperature (Figure 2). Our selection of frontal precipitation events show a very different 
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relationship between temperature and precipitation as compared to convective precipitation. 

Composite time series show temperature anomalies to be highest on the day of frontal 200 

precipitation (day 0), drop to the lowest in the two days following (day +1 to +2), then return to 

~0 by day +10. Spatial composites of surface temperature show warm anomalies on day 0 and 

cold anomalies on day +2. Coincident precipitation time series show anomalies that increase 

dramatically (from < 0 mm/day at day -2 to ~4 mm/day at day 0), before falling back to < 0 

mm/day. Spatial composites of precipitation anomalies on the day 0 show broad wetting, with 205 

the eastern half of CONUS showing greater anomalies; spatial composites on day +2 show 

largely neutral conditions over most of CONUS. Analysis of moist static energy reinforces a cold 

frontal precipitation mechanism, with a steep decline in moist static energy that is coincident 

with a steep decline in surface temperature and with sudden precipitation (Figure 2).  

To further evaluate our method of identifying precipitation events, we apply a discrete 210 

Fourier transform on days of the year when the convective and frontal precipitation events are 

occurring, respectively (Figure 3). We find that convective precipitation occurs predominantly in 

boreal summer (June-July-August; consistent with when warm days are prevalent). Frontal 

precipitation occurs predominantly in boreal winter (December-January-February; consistent 

with when cold fronts would be most prevalent), notwithstanding intermountain regions of the 215 

US West where orographic lifting is prevalent (note that this is also the case with raw CMIP6 

GCMs; Supplemental Figure 3). We also calculate kernel density estimates (KDE) of 

precipitation anomalies before convection (day -2) and after convection (day +2) for the 35-year 

composite of convective precipitation events (Figure 4); the two KDEs are significantly different 

(p<0.01; Kolmogorov-Smirov test). Moreover, we find 97% of the CONUS grid points to higher 220 

precipitation anomalies at day +2 relative to day -2. We perform similar analyses for frontal 

precipitation: KDEs of precipitation anomalies during day +0 and day +1 are significantly 
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different (p<0.01) from the rest of the 21-day window; 93% of the maximum precipitation in our 225 

35-year composite of events occurs on day +0 or day +1. Given the above-mentioned co-

variances, demonstrated skill in selecting for desired events, and expected seasonal occurrence of 

said events, we deem the physical relationships between surface temperature and precipitation 

observed in ERA5 during convective and frontal precipitation (as identified in our methodology) 

to be appropriate for evaluate the credibility of GCMs and their statistically downscaled 230 

products. 

 

3.2 Precipitation processes in raw and statistically downscaled GCMs over the historical 

interval 

Some spread amongst the GCMs notwithstanding, the eight CMIP6 GCMs herein 235 

analyzed behave consistently with ERA5 for both convective and frontal precipitation over the 

1980-2014 historical interval (Figure 5; see Table 1 for list of models). That is, convective 

precipitation anomalies consistently (i) decrease leading up to the hottest day; (ii) are lowest 

about the hottest day; then (iii) drastically increase with convection in the immediate days 

following. Frontal precipitation is also clearly visible in the GCMs, with drastic and acute 240 

precipitation evident centered around the day of greatest temperature decrease. The raw GCMs 

not only match the temporal co-evolution of surface temperature and precipitation as 

demonstrated in ERA5 but correctly simulate the magnitude of anomalies during convective and 

frontal precipitation events. Our results therefore indicate that the CMIP6 GCMs robustly 

capture convective and frontal precipitation processes.  245 

We next examine these same co-evolutions after the GCMs are statically downscaled 

using LOCA2 and STAR-ESDM techniques (Figures 6, 7; note that the same eight models are 
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examined across the raw GCMs and statistically downscaled data). For temperature, differences 

amongst the eight GCMs (i.e., inter-model spread) are noticeably reduced for both convective 

and frontal precipitation (see surface temperature time series of the 21 days examined in Figures 250 

6 and 7). This is somewhat expected, as the downscaling method bias-corrects the GCMs to 

“match” observations; deviations relative to observations (Livneh dataset for LOCA2 and 

nClimGrid-Daily dataset for STAR-ESDM) will thus be minimized. Spatial composites of 

downscaled surface temperature, for instance, closely mirror those shown in ERA5 for both 

convective and frontal precipitation. Inter-model spread for precipitation can also be reduced, 255 

though this influence is less pronounced than for temperature. Note that bias-correction during 

statistical downscaling is performed variable by variable (i.e., independently and without explicit 

consideration of local co-variances across variables) and that our definitions of convective and 

frontal precipitation in effect selects precipitation fields based on surface temperature 

characteristics. Inter-model spread for downscaled precipitation fields are thus not explicitly 260 

prescribed for reduction. Our results suggest that the LOCA2 and STAR-ESDM downscaling 

techniques generally preserve co-variances shown in the raw GCMs with high fidelity (compare, 

for instance, mean absolute error values for raw GCMs against their downscaled counterparts in 

Figures 5-7).  

There are nevertheless clear ensemble-mean differences between the downscaled 265 

products and the raw GCMs (and by extension ERA5 which the raw GCMs simulate with high 

skill) that require careful attention. LOCA2 appears nearly identical to ERA5 for convective 

precipitation; however, it dampens frontal precipitation relative to ERA5 (and the raw GCMs) by 

up to ~2 mm/day (Figures 5, 6). Composite time series show LOCA2 frontal precipitation to 

peak at lower anomaly values (2.5 mm/day for the LOCA2 ensemble mean verses 3.9 mm/day in 270 

ERA5); the wet pattern apparent in the ERA5 composite is also diminished in the ensemble 
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mean spatial composite. Importantly, such dampening is robust across most of the LOCA2 

ensemble (Figure 6), indicating it to be an emergent feature of the LOCA2 downscaling method. 

STAR-ESDM does not exhibit this dampening: it shows frontal precipitation anomalies that 

closely match the frontal precipitation anomalies of ERA5 and the raw GCMs (Figure 7j-l). 275 

STAR-ESDM may slightly overshoot drying anomalies prior to convective precipitation (by less 

than ~0.5 K); this influence is nevertheless modest and the STAR-ESDM ensemble simulates a 

range that encapsulates the evolution of frontal precipitation shown in ERA5.   

 

3.3 Precipitation processes in raw and statistically downscaled GCMs over the future interval 280 

We next examine convective and frontal precipitation in the raw GCMs over the future 

interval (2065-2099; Figure 8). For convective precipitation, the co-evolution of surface 

temperature and precipitation (including the magnitude of their respective anomalies) does not 

change substantially across the ensemble mean relative to the historical interval (compare Figure 

5a-c to Figure 8a-c). For frontal precipitation, however, there is robust intensification that is 285 

present across all ensemble members: frontal precipitation peaks at ~ 4 mm/day over the 

historical interval (Figure 5e) but ~5-6 mm/day in the future interval (Figure 8e). Scatterplots of 

surface temperature and peak frontal precipitation (Supplemental Figure 4) show steeper 

associations between the two in the future interval, indicating that frontal precipitation is driven 

at least in part by temperature increases. Moist static energy levels prior to frontal precipitation 290 

are also greater in the future interval relative to the historical interval (compare Figure 5f to 

Figure 8f), consistent with frontal precipitation intensification. 

We again examine these same co-variances after the GCMs are statically downscaled for 

the future interval. Future interval time series and spatial composite results for both LOCA2 and 
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STAR-ESDM products appear nearly identical to those of the historical interval, respectively, for 295 

convective precipitation (Figures 9a-f, 10a-f). This is consistent with expectations, as the raw 

GCMs themselves do not show appreciable changes for convective precipitation relative to the 

historical interval. The robust intensification of frontal precipitation (relative to the historical 

interval) simulated by the raw GCMs is not evident in LOCA2 (Figure 9g-i), some slight wetting 

notwithstanding. LOCA2 dampens frontal precipitation over both the historical and future 300 

intervals; the net effect is that it substantially underestimates future frontal precipitation relative 

to the raw GCMs. For instance, frontal precipitation anomalies reach ~7 mm/day in the raw 

GCMs but less than 4 mm/day in LOCA2 (and as low as a little as 2 mm/day). Frontal 

precipitation is intensified in STAR-ESDM (Figure 10j-l; ~4-6 mm/day in the future interval 

compared to ~3-5 mm/day in the historical interval), although the magnitude of the 305 

intensification falls short of what is simulated by the raw GCMs.  

 

3.4 Precipitation processes in NA-CORDEX dynamical downscaling 

 Finally, we examine how convective and frontal precipitation processes are affected post 

dynamical downscaling across five different regional climate models. Dynamical downscaling of 310 

ERA-Interim preserves expected hydroclimate covariances during convective and frontal 

precipitation processes (Supplemental Figure 5; note that inter-model differences are entirely 

attributable to regional climate models as the underlying data being downscaled is identical 

across the five models). Biases in regional climate models appear to be relatively small and are 

not prohibitive in representing convective and frontal precipitation processes on local-scales. 315 

These biases are also small when GCM data, instead of observation data, is downscaled. 

Convective precipitation processes in dynamical downscaled GCM data in the future interval do 
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not change much relative to the historical interval, consistent with the raw GCMs and with 

statistical downscaling (Figure 11). However, we find that dynamical downscaling preserves 

robust intensification of future frontal precipitation simulated by raw GCMs, in strong contrast to 320 

the dampening of this intensification seen with statistical downscaling (Figure 12). For instance, 

frontal precipitation in the future interval of dynamically downscaled GCM data is ~1.5 mm/day 

to 2 mm/day greater than dynamically downscaled GCM data in the historical interval, consistent 

with the magnitude of intensification seen with the raw GCMs (Figure 12, Supplemental Figure 

6). This finding is robust across all five regional climate models examined, indicating low 325 

sensitivity to regional model biases. Note that the comparison between the raw CMIP6 GCMs 

and downscaled CMIP5 outputs may be somewhat influenced by the specific subset of models, 

as some CMIP6 GCMs exhibit higher climate sensitivity in comparison to CMIP5 (e.g., Meehl et 

al., 2020).  

 330 

4. Conclusions 

Using (only) surface temperature and precipitation outputs, we have employed 

convective and frontal precipitation mechanisms to evaluate the credibility of statistical (and 

dynamical) downscaling products. We find that the LOCA2 and STAR-ESDM statistical 

downscaling techniques generally preserve expected covariances between temperature and 335 

precipitation during convective precipitation over both the historical and future intervals. 

Statistical downscaling also preserves expected covariances of temperature and precipitation 

during frontal precipitation events over the historical interval; however, it dampens projected 

intensification of frontal precipitation in the future interval that is otherwise robustly simulated in 

the raw CMIP6 GCMs (i.e., prior to downscaling) and with dynamical downscaling.  340 
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Convective precipitation in the raw GCMs as examined in our analyses does not exhibit 

material differences across the historical and future intervals (as opposed to frontal precipitation 

which shows robust intensification in the future interval). Convective precipitation is therefore 

likely more insensitive to the stationarity assumption, notwithstanding the possibility that CMIP6 

models themselves may not effectively resolve global cloud-systems (and thus may not capture 345 

non-stationary changes in convective precipitation). Frontal precipitation, on the other hand, 

shows robust intensification over the future interval, providing a useful evaluation case into the 

(in)ability of historical functional relationships inherent to statistical downscaling to resolve non-

stationary phenomena. Indeed, the dampening of frontal precipitation shown suggests that 

LOCA2 and STAR-ESDM may not appropriately capture structural changes to meteorological 350 

phenomena. This is in strong contrast to dynamical downscaling (regardless of the regional 

climate model chosen), which preserves non-stationary physical relationships among variables.  

Our results are, to some extent, qualitatively intuitive: common statistical downscaling 

methods apply historical functional relationships to the future under the assumption that they will 

be preserved despite climate change. It is therefore somewhat expected that such techniques will 355 

may underestimate changes within non-stationary phenomena. This effect should be 

acknowledged when estimating the magnitude of future change, particularly when considering 

the dominant (e.g., Baek et al. 2019, 2021) and/or non-stationary (e.g., Baek et al. 2020; Scholz 

et al. 2022) nature of internal atmospheric variability in driving hydrologic hazards. Evaluation 

frameworks clearly demonstrating this to be the case have nevertheless proved elusive. Our work 360 

addresses this important gap by demonstrating divergence between statistically and dynamically 

downscaled methods when estimating enhancement of frontal precipitation (an example of non-

stationary process testable with just daily surface temperature and precipitation). These same 

issues are likely to arise among data-driven (i.e., machine learning based) climate models, 
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particularly if those methods are only trained on historical data and subsequently used for future 365 

projections. Equally importantly, our work highlights expected co-evolution of precipitation and 

temperature during convective and frontal precipitation events as process-based evaluation 

diagnostics that can be applied universally to a wide range of statistically downscaled products.  

 

  370 
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Tables 

 

(a) CMIP6 Models Analyzed 
CCCma CanESM5 (2.8°x2.8°) INM-CM5-0 (2.0°x1.5°) 

AS-RCEC TaiESM1* (1.25°x0.9°) NCC NorESM2-MM (1.25°x0.9°) 
CAS FGOALS-g3 (2.0°x5.2°) NOAA GFDL-ESM4 (1.25°x1.0°) 

Earth-Consortium EC-Earth3 (0.7°x0.7°) BCC BCC-CSM2-MR (1.125°x1.1°) 
(b) Observation-based Datasets Analyzed 

ERA5 (0.25°x0.25°) 
Livneh (6-km grid) 

nClimGrid-Daily (5-km grid) 
(c) Statistically Downscaled Data Analyzed 

LOCA2 (6-km grid) 
STAR-ESDM (5-km grid) 

(d) NA-CORDEX (Dynamically Downscaled) Data Analyzed 
RCM 

BC 
RegCM4 WRF CRCM5-

OUR 
CRCM5-
UQAM 

CanRCM4 

ERA-Int 25 km 25 km 0.22° 0.22° 0.22° 
MOHC 

HadGEM2-
ES 

25 km   
 

  

CCCma 
CanESM2 

    0.22° 

MPI-M MPI-
ESM-MR 

   0.22°  

CERFACS 
CNRM-CM5 

  0.22°   

NOAA 
GFDL-

ESM2M 

 25 km    

 
Table 1: (a) List of CMIP6 models analyzed. All models use the r1i1p1f1 member. We examine 
the same eight models in the LOCA2 and STAR-ESDM downscaled data. *TaiESM1 is only 375 
analyzed over the historical interval (and not the future interval) for the raw GCM due to data 
availability. Longitude by latitude grid resolution is provided in parenthesis (rounded to nearest 
tenth of a degree except in cases where resolution ends exactly in a quarter or eighth of a 
degree). (b) List of observation-based datasets analyzed. (c) List of statistically downscaled 
datasets analyzed. (d) Simulation matrix adapted from NA-CORDEX. Left column shows the 380 
underlying boundary condition (BC) data being dynamically downscaled. Top row shows the 
regional climate model (RCM) driving the downscaling. The simulations analyzed show the 
grid-spacing of downscaled model. In addition to global climate models, NA-CORDEX 
downscales ERA-Interim (top of left column) across different regional climate models (this 
allows for a comparison of downscaling across a common dataset).    385 



 

18 
 

Figures  

 
Figure 1: (a) 21-day composite (spatially averaged over contiguous US (CONUS) domain) time 
series of surface temperature anomalies (relative to 21 day average) centered around the day of 
convective precipitation using ERA5 data over the 1980-2014 interval. (b) Spatial composite of 390 
surface temperature anomalies on the day of convective precipitation (c) Spatial composite of 
surface temperature anomalies 5 days after convective precipitation (d-f) Same as (a-c) but for 
precipitation. Note that these are anomalies relative to the 21 day window, yielding both positive 
and negative values. (g-i) Same as (a-c) but for moist static energy (MSE). Moist static energy 
increases until the precipitation event and rapidly decreases immediately afterwards as the 395 
atmosphere stabilizes. 
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Figure 2: (a) 21-day composite (spatially averaged over CONUS domain) time series of surface 400 
temperature anomalies (relative to 21 day average) centered around the day of cold frontal 
precipitation using ERA5 data over the 1980-2014 interval. (b) Spatial composite of surface 
temperature anomalies on the day of convective precipitation (c) Spatial composite of surface 
temperature anomalies two days following the day of frontal precipitation (d-f) Same as (a-c) but 
for precipitation. (g-i) Same as (a-c) but for moist static energy.   405 

Deleted: ¶



 

20 
 

 

 
Figure 3: Peak convective and frontal day of year using ERA5 dataset. Peak day is determined 
using a discrete Fourier transform.  410 
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Figure 4: (left) Kernel density estimates (KDE) of convective precipitation anomalies 
before convection (orange; day -2) and after convection (blue; day +2) for the 35-year 
composite of convective precipitation events. 97% of grid points during the 21-days 415 
analyzed show higher precipitation anomalies after convection. The two KDEs are 
significantly different (p<0.01) as determined by a Kolmogorov-Smirnov test. (right) 
Kernel density estimates of frontal precipitation anomalies on day +0 and day +1 (blue) 
and all other days of the 21-day window analyzed (orange; randomly sampled). 93% of 
the maximum precipitation occur on day +0 or day +1. The two KDEs are significantly 420 
different (p<0.01) as determined by a Kolmogorov-Smirnov test. 
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 425 
Figure 5: 21-day composite time series (spatially averaged over CONUS domain) of (a) surface 
temperature (K), (b) precipitation (mm/day), and (c) moist static energy (107 Joules) anomalies 
(relative to 21 day average) for (colored lines; list of GCMs provided in Table 1) raw CMIP6 
GCM and (solid black line) ERA5 data. Time series are centered around the day of convective 
precipitation and for the 1980-2014 period (d-f) Same as (a-c) but for frontal precipitation. Mean 430 
absolute error (MAE) is calculated between ERA5 time series and CMIP6 time series and 
provided in upper right corner of plots.  
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Figure 6: (a) 21-day composite (spatially averaged over CONUS domain) time series of surface 435 
temperature anomalies (relative to 21 day average) centered around the day of convective 
precipitation using (colored lines) LOCA2 data (method that bias-corrects and downscales 
climate models) over the 1980-2014 interval. Colored lines indicate same models as in Figure 5. 
(b) Spatial composite of surface temperature on the day of convective precipitation using 
LOCA2. (c) Spatial composite of surface temperature 10 days prior to convective precipitation 440 
using LOCA2 (d-f) Same as (a-c) but for precipitation. (g) 21-day composite time series 
(spatially averaged over CONUS domain) of surface temperature anomalies (relative to 21 day 
average) centered around the day of frontal precipitation using (colored lines) LOCA2 data over 
the 1980-2014 interval. Colored lines indicate same models as in Figure 5. (h) Spatial composite 
of surface temperature on the day of convective precipitation using LOCA2 data. (i) Spatial 445 
composite of surface temperature anomalies 10 days prior to convective precipitation using 
LOCA2 data (j-l) Same as (g-i) but for precipitation. Mean absolute error (MAE) is calculated 
between (i) ERA5 time series and (ii) LOCA2 time series and provided in corner of (a, d, g, j).   
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Figure 7: Same as Figure 6, but for STAR-ESDM data.  
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Figure 8: Same as Figure 5, but for the 2065-2099 interval under SSP585 forcing.  
  460 
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Figure 9: Same as Figure 6, but for the 2065-2099 interval under SSP585 forcing. 
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Figure 10: Same as Figure 7, but for STAR-ESDM data.  
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Figure 11: 21-day composite time series of CONUS (a) surface temperature and (b) 
precipitation anomalies (relative to 21 day average) centered around the day of convective 
precipitation using dynamical downscaling of ERA-Interim data over the 1989-2009 interval. (c-
d) Same as (a-b) but for the future interval over 2065-2098 under RCP8.5 forcing. 475 
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 480 
Figure 12: 21-day composite (spatially averaged over CONUS domain) time series of (a) 
surface temperature anomalies (relative to 21 day average) and (b) precipitation anomalies 
(relative to 21 day average) centered around the day of convective precipitation using NA-
CORDEX dynamical downscaling of GCM data over the 1980-2014 interval. (c-d) Same as (a-b) 
but for the future interval over 2065-2098 under RCP8.5 forcing. Note that the years 2006-2014 485 
fall under the RCP8.5 scenario for NA-CORDEX. 
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Code and Data Availability 
Code required to conduct the analyses herein are available on 490 
https://zenodo.org/records/11194306. All data used in this study are publicly available. The raw 
CMIP6 GCM data can be downloaded from the USA portal of the Earth System Grid Federation 
(https://aims2.llnl.gov/search/cmip6/). ERA5 data can be downloaded from the Copernicus 
Climate Data Store (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-
levels?tab=form). NA-CORDEX data can be downloaded from the National Center for 495 
Atmospheric Research Climate Data Gateway 
(https://www.earthsystemgrid.org/search/cordexsearch.html). Livneh data can be downloaded 
from the National Centers for Environmental Information at 
(https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:0129374). 
The nClimGrid-Daily data can also be downloaded from the National Centers for Environmental 500 
Information at (https://www.ncei.noaa.gov/products/land-based-station/nclimgrid-daily). LOCA2 
data can be downloaded from (https://cirrus.ucsd.edu/~pierce/LOCA2/). The STAR-ESDM data 
can be downloaded from (https://app.globus.org/file-manager?origin_id=9d6d994a-6d04-11e5-
ba46-
22000b92c6ec&origin_path=%2Fglobal%2Fcfs%2Fprojectdirs%2Fm3522%2Fcmip6%2FSTAR505 
-ESDM%2Fssp585%2F&two_pane=true).  
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