
RESPONSE TO REVIEWER #1 FOR GEOSCIENTIFIC MODEL DEVELOPMENT:  
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BY SEUNG H. BAEK, PAUL. A. ULLRICH, BO DONG, AND JIWOO LEE 
 
We thank Reviewer #1 for thoughtful and constructive feedback. This Response to the Reviewer 
file provides a complete documentation of the changes that have been made in response to each 
individual comment. Reviewer’s comments are shown in plain text. Authors’ responses are shown 
in bold. Quotations from the revised manuscript are shown in bold italics.  
 

Reviewer #1 

The paper deals with the evaluation of statistical and dynamical downscaling of the outputs of 
global climate models. The goals stated in the introduction are ambitious and interesting; 
however, the methods used have certain caveats, and the results do not bring any new findings, 
and the goals are not achieved. I recommend the rejection of the manuscript and encourage 
resubmission after the following comments are taken into account and the methodology is 
improved. 

We thank the Reviewer for the constructive comments. To our knowledge, it has not been 
observed elsewhere in the literature that statistical methods (at least the ones analyzed 
herein) diverge in estimated enhancement of frontal precipitation (an example of non-
stationary process that is testable with just daily surface temperature and precipitation) 
that is otherwise robustly represented in dynamical methods (e.g., raw GCMs and 
dynamical downscaling across 5 different regional climate models). We have made 
concerted efforts to highlight this novelty in our paper and more clearly state our new 
findings in our revised abstract.  

 

More detailed comments: 

1. There are only a few references to related work (e.g., regarding uncertainties related to 
downscaling methods, evaluation of covariance structure in downscaled products, etc.), 
and the results obtained are not compared to previous studies. 

We now reinforce the introduction section by citing several additional references. 
Giorgi (2018) and Lloyd et al. (2021) in particular comprehensively review the 
limitations of current RCMs (which we note in the manuscript). Regarding the 
comparison of our results to others, statistical downscaling methods to our 
knowledge have not yet been evaluated beyond single variable comparisons to 
observations (which we provide references for). The use of daily temperature and 
precipitation to examine key mechanisms in statistical downscaling products is a 
novel aspect of our paper not currently employed in the broader literature.  

  



2. The definitions of convective and frontal precipitation are rather simplistic. Only one 
event per year is selected, so only 21 days of each year are used for the analysis. This 
leads to only a limited amount of data analyzed. There is no discussion of possible other 
definitions or examples from the literature. Further, it is not quite clear how the events 
are selected. If the convective precipitation is defined using the annual maximum of air 
temperature, is it really the case that in every grid point the annual maximum of air 
temperature is followed by convective precipitation? Moreover, it is not clear how the 
"peak day" is chosen; further, "peak day" is only analyzed for observed datasets; it is not 
discussed whether it differs for the downscaling products and model outputs. 

We are very limited with the data we have over our disposal, as statistical 
downscaled products only provide daily temperature and precipitation outputs. 
While not comprehensive, the simplistic definitions are a strength of the paper 
insofar as they are required for uniform analyses that we can apply across statistical 
and dynamical downscaling. For convective precipitation in particular, we note that 
our definition is identical to that used in Zhang et al. (2023). We now stress this 
point in our manuscript:  

“A central goal of our paper is to understand the representation of physical 
mechanisms in statistical downscaling products with only surface temperature 
and precipitation outputs (often the only two variables available with statistical 
downscaling). For this reason, we examine expected covariances between 
temperature and precipitation during convective and frontal precipitation 
events, including for the projection interval where the stationarity assumption 
may not hold.” 

We believe the co-evolution of temperature, precipitation, and moist static energy 
shown are strongly indicative of convective and frontal precipitation mechanisms, 
respectively. As the Reviewer mentions, it is true that only one event per year is 
selected (and thus only 21 days of each year are analyzed). However, these 21 days 
are the most likely of each year to capture convective precipitation (according to the 
intuition embedded in our definition), and we do this on a grid-by-grid basis to in 
reality analyze up to ~20 million+ (depending on resolution of climate products and 
though not necessarily independent) “convective precipitation events.” While we do 
not expect every grid point of annual maximum of air temperature to be followed by 
convective precipitation, we do demonstrate this to be overwhelming the case, as 
each grid for the composite time series is weighted equally. In ERA5, the minimum 
precipitation anomaly for over 90% of the available grid points examined in our 
convective precipitation analysis occurs in day -2 to day 0. Therefore, it really is the 
case that for most (but admittedly not all) grid points, the annual maximum of air 
temperature is followed by convective precipitation. That is, by selecting for a very 
large sample size of events heavily biased for convective precipitation, we expect 
“noise” (i.e., events not truly indicative of convective precipitation) to be negligible. 
Similar logic extends for frontal precipitation as well: in ERA5, the maximum 
precipitation anomaly for over 90% of the available grid points examined in our 
frontal precipitation analysis occurs in day +0 or day +1. 



We now clarify how “peak day” is chosen. For convective precipitation, we identify 
the day of highest daily maximum temperature (done grid-by-grid) for each year 
over 1980-2014. We then create a histogram of the number of times that the day of 
highest maximum temperature falls on a given day from 0 to 365 (thus days 0 – 365 
are effectively histogram bins). Finally, we fit a discrete Fourier transform onto the 
histogram to identify the dominant frequency (i.e., frequency corresponding to peak 
day) present in the data. We repeat similar steps but for day with the greatest drop 
in surface temperature for frontal precipitation. We now provide this clarification 
in the manuscript:  

“To evaluate our method of identifying precipitation events, we (i) identify grid-
by-grid the day of convective and frontal precipitation, respectively, for each 
year over 1980-2014; (ii) create histograms of the number of times that the day 
of convective or frontal precipitation falls between day 0 and day 365 of each 
calendar year (days 0 – 365 are thus effectively histogram bins); and (iii) fit a 
discrete Fourier transform onto the respective histogram to identify the 
dominant frequency (i.e., frequency corresponding to peak day) present in the 
data. 

As mentioned by the Reviewer, we previously only examined peak day for the 
observed dataset. We now also examine peak day for the 8 raw CMIP6 models 
(reproduced below as Figure R2R1). The results for the model clearly show that, as 
with ERA5, convective precipitation is dominant in the summer and frontal 
precipitation is dominant in winter (notwithstanding orographic rain in the western 
US). Given this agreement with observations and the fact that the Fourier transform 
is only conducted on surface temperature (and thus do not examine the joint 
evolution of surface temperature and precipitation), it is well expected that our 
analyses are appropriate across observations, raw GCMs, statistical downscaling 
products, and dynamical downscaling products. Statistical downscaling products, 
for instance, will only enhance agreement between GCMs and observations when it 
comes to just a single field. Local meteorology simulated in dynamical downscaling 
is not expected to interfere with the seasonality inherent in GCMs.  

 



 

Figure R2R1: Same as Figure 3 of manuscript but for the 8 raw CMIP6 GCMs. 
  



3. The data choice is not explained—why are only 8 CMIP6 GCMs used? For dynamical 
downscaling, the CMIP5-driven regional climate models are used, whereas for statistical 
downscaling, the CMIP6 GCMs are incorporated. In my opinion, the comparison of the 
results would be more informative if the same GCMs for both approaches were used. 
Moreover, there is no discussion of the choice of two specific statistical downscaling 
methods. It is claimed that they are "widely used" (l. 73). However, no references or 
examples are provided 

While we agree with the Reviewer that the comparison of the results would be more 
informative if the same GCMs for both approaches were used, the need for (i) same 
GCMs across LOCA2 and STAR-ESDM; (ii) availability of only CMIP5 models in 
dynamical downscaling efforts (i.e., NA-CORDEX); and (iii) sufficient 
representation of a different regional climate models (we use five different RCMs) 
made this infeasible. The 8 CMIP6 models were chosen—admittedly somewhat 
arbitrarily—to balance the above-mentioned needs while also representing a 
sufficiently large ensemble size to show results that are robust across the CMIP6 
ensemble (i.e., any additional CMIP6 models would not appreciably change our 
results). We now note in the manuscript more clearly that the same 8 models are 
examined across the raw GCMs, LOCA2, and STAR-ESDM.  

We nevertheless believe that 8 different lineage models (considered a large ensemble 
by most standards) is sufficient to minimize model-dependency. However, we verify 
this to be the case by performing an analysis similar to that of Figure 4 with three 
other CMIP6 models (CNRM-CM6-1, MPI-ESM-1-2-HAM, GISS-E2-2-G; provided 
below at Figure R2R2). Our results are therefore robust across 10+ different 
models. As noted by the Reviewer, the dynamical downscaling in NA-CORDEX uses 
CMIP5-driven regional climate models. However, we show that the behavior across 
five GCM-RCM combinations are highly consistent to those shown in the raw 
CMIP6 models.  

Finally, we agree with the Reviewer that the specific choice of LOCA2 and STAR-
ESDM was not well explained. We now provide 6 references to justify that LOCA2 
and STAR-ESDM are widely-used. Equally importantly, we now state that the two 
techniques were “selected to accompany the Fifth National Climate Assessment 
(NCA5; the preeminent guidance on national climate risks)” to demonstrate that 
these two techniques are important operationally.  

 



 
Figure R2R2: 21-day composite time series (spatially averaged over CONUS domain) of 
(a) surface temperature anomalies (K) and (b) precipitation anomalies (mm/day) for 
(colored lines) CNRM-CM6-1, MPI-ESM-1-2-HAM, GISS-E2-2-G raw CMIP6 GCM 
and (solid black line) ERA5 data. Time series are centered around the day of convective 
precipitation and for the 1980-2014 period (d-f) Same as (a-c) but for frontal 
precipitation. 
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4. The covariance between air temperature and precipitation is discussed, but it is not 
calculated, or the values are not shown. The results are only shown in graphical form, 
which avoids quantitative evaluation. Moreover, the definitions of both convective 
precipitation and frontal precipitation, as used here, include the assumption of a 
temperature-precipitation relationship, making the results less informative. It would be 
very beneficial if the authors could come up with any quantitative evaluation of the 
covariances, enabling comparison of assessed methods in some overview figure/table. 

Covariance between temperature and precipitation during convective and frontal 
precipitation events are highly nonlinear. For instance, additional warm anomalies 
do not necessarily produce stronger convective precipitation; it is also the case that 
greater temperature gradients (i.e., steeper cold fronts) do not necessarily produce 
stronger frontal precipitation. More broadly, surface temperature exerts rather 
weak influences and non-linear influences on precipitation on daily timescales 
(Pearson’s correlation of daily 1979-2015 surface temperature and precipitation 
over 24 to 49°N and 125 to 67°W (approximating CONUS domain) is only 0.04.) We 
note that higher correlations are found at monthly or seasonal timescales (e.g., Zhao 
and Khalil, 1993, Trenberth and Shea, 2005) but such timescales are not suitable for 
the purposes of our study.   

We nevertheless address the Reviewer’s greater concern regarding the lack of 
quantitative evaluation of the relationship between temperature and precipitation. 
We now provide kernel density estimates (KDE) of precipitation anomalies before 
convection (day -2) and after convection (day +2) for the 35-year composite of 
convective precipitation events. If there is no skill in our selection of convective 
precipitation (i.e., events are randomly selected), precipitation anomalies before and 
after day +0 should be approximately equal. However, our analyses show that 97% 
of the CONUS grid points show higher precipitation anomalies at day +2 relative to 
day -2, showing a 97/3 split rather than a 50/50 split. Our KDE analyses show that 
the distribution of anomalies are significantly different (p<0.01) with a Kolmogorov-
Smirnov test.  

We perform similar analyses for our frontal precipitation analyses: 93% of the 
maximum precipitation during the 21-days analyzed in our 35-year composite of 
events occur on day +0 or day +1 (randomly selected events would see about 2/21 
odds of this). Precipitation anomalies during day +0 and day +1 are significantly 
different (p<0.01) from the rest of the (randomly selected) 21-day window with a 
Kolmogorov-Smirnov test. We now include the below Figure R2R3 in our 
manuscript.  

 

 

 



 

 

 

Figure R2R3: (left) Kernel density estimates (KDE) of convective precipitation 
anomalies before convection (orange; day -2) and after convection (blue; day +2) for the 
35-year composite of convective precipitation events. 97% of grid points during the 21-
days analyzed show higher precipitation anomalies after convection. The two KDEs are 
significantly different (p<0.01) as determined by a Kolmogorov-Smirnov test. (right) 
Kernel density estimates of frontal precipitation anomalies on day +0 and day +1 (blue) 
and all other days of the 21-day window analyzed (orange; randomly sampled). 93% of 
the maximum precipitation occur on day +0 or day +1. The two KDEs are significantly 
different (p<0.01) as determined by a Kolmogorov-Smirnov test. 
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5. It is not explained why the authors concentrate specifically on frontal and convective 
precipitation. There are plenty of ways how to analyze the temperature-precipitation 
relationship, and the arguments for this specific choice should be provided. 

A central goal of our paper is to understand the representation of physical 
mechanisms in statistical downscaling products with only daily surface temperature 
and precipitation outputs. The limited availability of variables we have at our 
disposal (combined with the need to represent physical mechanisms) made frontal 
and convective precipitation suitable mechanisms for our evaluation. We 
nevertheless agree with the Reviewer’s larger comment that argument for this 
specific choice was not provided in the manuscript and have addressed this 
shortcoming:  
 

“A central goal of our paper is to understand the representation of physical 
mechanisms in statistical downscaling products with only surface temperature 
and precipitation outputs (often the only two variables available with statistical 
downscaling). For this reason, we examine expected covariances between 
temperature and precipitation during convective and frontal precipitation 
events, including for the projection interval where the stationarity assumption 
may not hold.” 

 

6. The conclusions summarized in the last section are very vague. For example, "statistical 
downscaling may not capture structural change to meteorological phenomena under non-
stationarity" or "the dampening to be a spurious feature ... presumably from historical 
functional relationship and/or the non-stationarity assumption". One of the goals of the 
study formulated in the introduction was to study these issues in more detail, so, the 
conclusions of the study should be much stronger and more concrete. 

We thank the Reviewer for the feedback. We have made concerted efforts to remove 
vague conclusions and, in their stead, provide more concrete ones more consistent 
with the stated goals of the paper. We now provide a substantially revamped 
Conclusion section, including a new paragraph dedicated to stronger conclusions: 

“Our results are, to some extent, qualitatively intuitive: common statistical 
downscaling methods apply historical functional relationships to the future 
under the assumption that they will be preserved despite climate change. It is 
therefore somewhat expected that such techniques will provide lower skill for 
projections of non-stationary phenomena….Evaluation frameworks clearly 
demonstrating this to be the case has nevertheless proved elusive. Our work 
addresses this important gap by demonstrating that statistical downscaling 
methods diverge from estimated enhancement of frontal precipitation (an 
example of non-stationary process testable with just daily surface temperature 
and precipitation) where dynamical methods (e.g., raw GCMs and dynamical 
downscaling methods across 5 different regional climate models) do not…” 
 



7. ERA5 downscaled using dynamical downscaling - the references to NA-CORDEX (i.e., 
Mearns et al., 2017) nor the link to the NA-CORDEX data archive does not show any 
information about ERA5-driven simulations. From which source did the authors get the 
ERA5-driven simulations? The referred NA-CORDEX data include only ERA-Interim 
driven simulations. 
We meant ERA-Interim driven simulations (and not ERA5). We have corrected for 
this error.  

 

More specific/technical comments:   

Figures, Figure captions: the term "composite" is not defined; precipitation anomalies shown in 
absolute values - this is not common, and the negative precipitation anomalies seem very 
strange; "MAE" and "SD" are not defined and explained; CONUS domain not defined; Fig. 4 - 
the parentheses are confusing, the caption needs to be reformulated to be more clear. Fig. 3 - for 
which dataset is it? 

We now define the term “composite” to refer to spatial averages over the CONUS domain. 
We also clarify in the figure captions that precipitation anomalies are shown relative to the 
21-day window analyzed, resulting in both positive and negative values. We thank the 
Reviewer for the comment on not defining MAE. We now define MAE as mean absolute 
error in the figures. Upon re-reading the manuscript, we felt that the MAE and standard 
deviation (SD) provide somewhat repetitive information, so have opted to remove the 
standard deviation statistics from our paper. We have revised captions for Figure 3 and 4 
to address the Reviewer’s comments.  

Tables: the list of models should be accompanied by more information, e.g., horizontal 
resolution of the models, modeling centers, etc. 

We have edited the two tables to now include the names of modeling centers and the 
horizontal resolution of the models. 

l. 50-51: extremes are not physical processes 

We have removed “extremes” from the sentence.  

l. 58-62: the credibility of methods and relevancy of outputs are presented here to argue for the 
importance of physical consistency of climate change projections, even though the relevancy is 
not really important. The credibility based on physical consistency would be enough to introduce 
the covariance issue.  

We have removed relevancy as motivation in our sentence.  

Section 2: the observed datasets are referred to in a strange manner (e.g., "Livneh-unsplit" is not 
explained"); The explanation of the STAR-ESDM algorithm is not clear, mainly the term 



"dynamic climatology"; The length of the studied periods - 35 years - seems rather strange, is not 
really common. Further, the fact that the reference period of 1980-2014 includes the years 2006-
2014, which belong to the scenario simulation in the case of NA-CORDEX simulations. This 
should be at least mentioned, even though it presumably does not influence the results much. 

We have improved our description of the observed datasets, including for STAR-ESDM: 
“The STAR-ESDM algorithm first disaggregates observations and GCM outputs into four 
separate components: the long-term trend, climatological annual cycle, annually-varying 
annual cycle, and high frequency daily anomalies.” Though somewhat arbitrary (and 
admittedly uncommon), we chose the 1980-2014 period to be roughly comparable to the 
1979-2021 analyses conducted by Zhang et al. (2023) (note 2014 is the last day of LOCA2 
historical). We nevertheless do not expect our results to be sensitive to the period chosen, 
given the large sample size of events analyzed. As suggested, we now mention that the years 
2006-2014 belong to the scenario simulation for NA-CORDEX: “note that the years 2006-
2014 fall under the RCP8.5 scenario for NA-CORDEX).” We also now mentioned this in the 
caption of Figure 10.  

l. 105: The spatial resolution of LOCA2 outputs is related to the spatial resolution of the 
underlying observed dataset, isn't it? 

Yes – we now note this in our manuscript: “The LOCA2 North American product uses an 
updated version of Livneh et al. 2015 with 6-km grid spacing as the training dataset (Pierce et 
al. 2021). Outputs from LOCA2 are also available at 6-km grid resolution.” 

l. 119: "Ground truth" is a strange and inappropriate term. The uncertainties related to reference 
datasets should be discussed. 

We agree with the Review and now state: “Although observational climate datasets 
themselves have inherent uncertainties (such as from generation, sampling, or resolution; 
Zumwald et al. 2020), strong consistency across ERA5 and the two observation-based products 
reinforce the credibility of ERA5.” We have moreover removed all other instances of the 
phrase “ground truth.” 

l. 130: it is not clear how the information in the sentence "We therefore follow..." is implied from 
the previous sentence. 

We agree and have removed “therefore.” 

Section 3: some of the terms used are confusing and uncommon, not well defined, e.g., "parallel 
time series", "post dynamical downscaling", "ensemble-mean differences" etc. 

We have made careful edits throughout Section 3 to clarify confusing and uncommon 
terms.  


