
Text S1: The calculation equations of the 5 flux variables in the EXP-HYDRO model 

The EXP-HYDRO model is a conceptual and spatially lumped rainfall-runoff model developed by Patil and Stieglitz 

(2014). The physical equations and parameters are well introduced and organized by Text S1 in the Supporting Information of 

Jiang et al. (2020). For easy reading, the calculation equations of the 5 flux variables ( , , ,  and ) are briefly 

introduced here. 

 and  are respectively the daily snowfall (mm/day) and rainfall (mm/day), which are estimated by the daily 

precipitation ( , mm/day) and daily temperature ( , ℃) as follows: 

 (S1)  

 (S2)  

where  is a parameter representing the temperature threshold below which precipitation falls as snow. 

The snowmelt (  , mm/day) is simulated by a simple thermal degree-day model related to   and the snow 

accumulation bucket ( ) based on the following equation: 

 (S3)  

where  is a parameter denoting the thermal degree-day factor (mm/day/℃);  is another parameter representing the 

temperature threshold where the accumulated snow begins to melt. 

The evapotranspiration is denoted by  (mm/day), which is calculated as follows: 

 (S4)  

where catchment bucket ( ) denotes its current storage;   is a parameter representing the storage capacity of the 

catchment bucket;  is the potential evapotranspiration (mm/day) estimated by Hamon’s formulation: 

 (S5)  

 

(S6)  

where  is the day length (hour). 

The streamflow ( ) is estimated as the sum of the baseflow ( ) and the capacity-excess runoff ( ), which are 

respectively expressed as follows: 
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where  and  are two parameters representing the decline rate of runoff (mm-1) and the maximum subsurface runoff 

(mm/day), respectively. 

  



Text S2: Hyperparameters optimization 

There are two categories of hyperparameters to be optimized, including hyperparameters of model structure (such as 

hidden layer and hidden size) and training process (such as learning rate and batch size) (Li et al., 2024). To strike a balance 

between model performance and time cost, 50 catchments are selected randomly. For each catchment, the first 14 years (from 

1 October 1980 to 30 September 1994) of the entire training period is set as the training period and the last year (from 1 

October 1994 to 30 September 1995) is set as the validation period for hyperparameters optimization. Models are trained using 

the Adam optimizer and the early stopping strategy. For each hyperparameter setting, three repetitions with different random 

seeds are used to initialize the parameters. The mean Nash-Sutcliffe efficiency (NSE) on validation period over the 3 repetitions 

represents the validation performance. Hyperparameters setting with the highest median NSE scores on validation period over 

the 50 catchments is chosen as the optimal hyperparameters. 

Firstly, the hyperparameters of model structure are optimized. Based on the model structure of Kratzert et al. (2018) 

and the results that a one-layer LSTM network is qualified to capture rainfall-runoff responses of a catchment (Kratzert et al., 

2019, 2021), the number of hidden layers is set to 1; the range of the hidden size is set to [20，40，50，60, 80, 100]. The range 

of dropout rate is set to [0.2, 0.4, 0.6, 0.8]. Following other hyperparameters of Kratzert et al. (2018), the LSTM is developed 

with input sequence for the past T = 365 d, the mini-batch size of 512, the drop-out rate of 0.1 and the Adam optimizer with 

the learning rate of 0.0001. Secondly, the hyperparameters of training process is fine-tuned based on the optimal 

hyperparameters in the first step. The LSTM network is tuned with different batch sizes (128, 256, 512), different learning 

rates (0.1, 0.01, 0.001, 0.0001) and different learning rate decay (0.1, 0.3, 0.5, 0.7). 

The optimal hyperparameters of the LSTM are shown by Table 1 in the main text. In order to compromise between 

maximum reducing the uncertainty caused by different numbers of model parameters and achieving potentially more powerful 

predictions, the hidden size of the MC-LSTM network is set to 50. The numbers of parameters for the MC-LSTM and LSTM 

differ by less than 0.1%. As the EXP-HYDRO model is a process-based model, there is no need for the DL wrapped EXP-

HYDRO model to normalize their input variables or to set the hidden size and dropout rate. Excluding the hidden size and 

dropout rate, the MC-LSTM and EXP-HYDRO models have the same hyperparameters as the LSTM, as shown by Table 1. 

While optimizing the hyperparameters of the MC-LSTM can obtain better performance, the MC-LSTM uses some of the 

hyperparameters of the LSTM directly, instead of optimizing them separately. Furthermore, the sensitivity analysis of model 

hyperparameters is devised based on model hyperparameters from Frame et al. (2023, 2022). The hidden sizes of the LSTM 

and MC-LSTM are 256 and 64, respectively. The results of the sensitivity analysis are presented by Fig. S3 to S8 in the 

Supplement. 

  



 

Figure S1. The internal operation of a standard LSTM network. 

 

 

Figure S2. The internal operation of a MC-LSTM network. 

 

 

Figure S3. As for Fig. 2, but for the LSTM and MC-LSTM with hidden sizes of 256 and 64, respectively, in 50 randomly selected catchments. 

 



 

Figure S4. As for Fig. 3, but for the LSTM and MC-LSTM with hidden sizes of 256 and 64, respectively. 

 

 

Figure S5. As for Fig. 4, but for the LSTM and MC-LSTM with hidden sizes of 256 and 64, respectively, in 50 randomly selected catchments. 



 

 

Figure S6. As for Fig. 5, but for the LSTM and MC-LSTM with hidden sizes of 256 and 64, respectively, in 50 randomly selected catchments. 

 



 

Figure S7. As for Fig. 6, but for the LSTM and MC-LSTM with hidden sizes of 256 and 64, respectively, in 24 case study catchments with 

the highest KGE. 

 



 

Figure S8. As for Fig. 7, but for the LSTM and MC-LSTM with hidden sizes of 256 and 64, respectively. 

 

  



Table S1. Comparison of daily NSE statistics across the CAMELS catchments. 

Model Scale  
Count of 

catchments 
Dataset 

Daily NSE statistics 

Source 
median mean 

Proportion for 

NSE ≥0.55 

LSTM Local 531 CAMELS 0.67 0.63 76% This paper 

MC-LSTM Local 531 CAMELS 0.63 0.59 71% This paper 

EXP-HYDRO* Local 531  CAMELS 0.49 0.42 40% This paper 

LSTM Local 569 CAMELS 0.60 0.52 61.5% Jiang et al. (2020) 

EXP-HYDRO* Local 569 CAMELS 0.48 -0.16 38.3% Jiang et al. (2020) 

LSTM Local 241 CAMELS 0.65 0.63 NA Kratzert et al. (2018) 

EXP-HYDRO Local 756 HCDN NA NA ~43% (>0.6) Patil and Stieglitz (2014) 

VIC Local 531 CAMELS 0.57-0.59 NA ~56% Newman et al. (2017) 

LSTM Regional 447 CAMELS 0.737 NA NA Hoedt et al. (2021) 

MC-LSTM Regional 447 CAMELS 0.726 NA NA Hoedt et al. (2021) 

Local: Single model is trained for single catchment; Regional: Single model is trained for multiple catchments 

HCDN: Hydro-Climate Data Network; VIC: Variable Infiltration Capacity model 

EXP-HYDRO*: Deep learning wrapped EXP-HYDRO model; NA: not available 

 

  



References 

Frame, J. M., Kratzert, F., Klotz, D., Gauch, M., Shalev, G., Gilon, O., Qualls, L. M., Gupta, H. V., and Nearing, G. S.: Deep 

learning rainfall–runoff predictions of extreme events, Hydrol. Earth Syst. Sci., 26, 3377–3392, 

https://doi.org/10.5194/hess-26-3377-2022, 2022. 

Frame, J. M., Kratzert, F., Gupta, H. V., Ullrich, P., and Nearing, G. S.: On strictly enforced mass conservation constraints for 

modelling the rainfall‐runoff process, Hydrol. Process., 37, e14847, https://doi.org/10.1002/hyp.14847, 2023. 

Hoedt, P.-J., Kratzert, F., Klotz, D., Halmich, C., Holzleitner, M., Nearing, G. S., Hochreiter, S., and Klambauer, G.: MC-

LSTM: mass-conserving LSTM, in: Proceedings of the 38th International Conference on Machine Learning, International 

Conference on Machine Learning, 4275–4286, 2021. 

Jiang, S., Zheng, Y., and Solomatine, D.: Improving AI system awareness of geoscience knowledge: symbiotic integration of 

physical approaches and deep learning, Geophys. Res. Lett., 47, e2020GL088229, 

https://doi.org/10.1029/2020GL088229, 2020. 

Kratzert, F., Klotz, D., Brenner, C., Schulz, K., and Herrnegger, M.: Rainfall-runoff modelling using long short-term memory 

(LSTM) networks, Hydrol. Earth Syst. Sci., 22, 6005–6022, https://doi.org/10.5194/hess-22-6005-2018, 2018. 

Kratzert, F., Klotz, D., Herrnegger, M., Sampson, A. K., Hochreiter, S., and Nearing, G. S.: Toward improved predictions in 

ungauged basins: exploiting the power of machine learning, Water Resour. Res., 55, 11344–11354, 

https://doi.org/10.1029/2019WR026065, 2019. 

Kratzert, F., Klotz, D., Hochreiter, S., and Nearing, G. S.: A note on leveraging synergy in multiple meteorological data sets 

with deep learning for rainfall-runoff modeling, Hydrol. Earth Syst. Sci., 25, 2685–2703, https://doi.org/10.5194/hess-

25-2685-2021, 2021. 

Li, L., Dai, Y., Wei, Z., Shangguan, W., Zhang, Y., Wei, N., and Li, Q.: Enforcing Water Balance in Multitask Deep Learning 

Models for Hydrological Forecasting, J. Hydrometeorol., 25, 89–103, https://doi.org/10.1175/JHM-D-23-0073.1, 2024. 

Newman, A. J., Mizukami, N., Clark, M. P., Wood, A. W., Nijssen, B., and Nearing, G.: Benchmarking of a Physically Based 

Hydrologic Model, Journal of Hydrometeorology, 18, 2215–2225, https://doi.org/10.1175/JHM-D-16-0284.1, 2017. 

Patil, S. and Stieglitz, M.: Modelling daily streamflow at ungauged catchments: what information is necessary?, Hydrol. 

Process., 28, 1159–1169, https://doi.org/10.1002/hyp.9660, 2014. 

 


