Reviewer #1

Reviewer Comment	Author's response
GENEI	RAL
1) This study presents the results of using Spectral Induced Polarization (SIP) surveys for estimating hydrogeological parameters in an active rock glacier. In addition to SIP, the authors use tracer experiments and photogrammetry to compare various findings regarding rock glacier hydrology and movement. I believe this study is of strong interest to the community and provides an excellent field study to guide future improvements in understanding hydrological processes in such environments. The paper is very well organized and written, and I enjoyed reading it.	We thank the reviewer for the positive comment.
2) My only main concern is regarding the discussion on the estimation of hydraulic conductivity. While the electrical approach seems to provide interesting results for delineating features and tracking the plume during the tracer experiment, I believe the discussion on how SIP is used to estimate hydraulic conductivity (K) lacks depth. I would appreciate it if the authors included more discussion on the various assumptions and sources of uncertainty. I suggest improving the discussion and possibly adding some rough uncertainty bounds to the various parameters used to parameterize the equations and evaluating the impact of those (e.g., using ko on line 233) on the estimated values.	We agree with the reviewer's comment. The main challenge of giving an uncertainty to the parameters estimated (e.g., water content (θ) and hydraulic conductivity (K)) is the uncertainty of the inverse model parameters (complex conductivity) because of its non-uniqueness. Estimating the uncertainty of the geophysical parameters would require extensive analyses and would be beyond the scope of this manuscript. In the manuscript we will try to estimate the uncertainties of the parameters (e.g., fluid conductivity) used in the equation which describes θ and K and use Gauss's propagation of error to estimate the uncertainty of the final parameters (θ and K). However, we always need to keep in mind that the uncertainty of the inverse model parameters.

Specific			
1) L.65: "not suited". To my knowledge, drilling boreholes for monitoring temperature is still the most reliable approach to monitor thermal dynamics. Consider rephrasing this sentence.	We thank the reviewer for the comment. We agree that this sentence was not well formulated, and boreholes are still the most reliable approach to monitor thermal dynamics. The term "not suited for monitoring applications" was related to ice content estimation. When drilling a borehole, the ice content in the samples can be quantified but only once at the time of the drilling. We will reformulate the sentence.		
2) L.117: Including a philosophical tone in Latin is a nice touch, but it may be unclear for the reader and accidental.	We thank the reviewer for the comment. The sentence was accidentally added when		

	converting to the template of The Cryosphere.
	We will remove it.
3) L.185: Consider splitting this sentence into two.	We will split the sentence in two.
4) L.189: "improves" is vague. I suggest "showed	We agree with the comment of the reviewer.
some promise to estimate" and adding more	As the reviewer proposed, we will change the
details under specific conditions.	wording and add more details about the
	materials investigated in the cited studies.
5) L.225 to 242: There are many values used from	We agree with the reviewer's comment, which
the literature to parameterize these equations. A	partly overlaps with general comment #2. We
more thorough discussion of these choices would	will add one paragraph in the discussion
be appreciated. For example, on line 223, more	section where we discuss the uncertainty of
mornation on the ko value and the material it	α and α and α and α and α and α
has a significant impact on the k and K value and	K and where we use Gauss's propagation of
is a considerable source of uncertainty. Discussing	error to estimate the uncertainty of the
these limitations more thoroughly, either here or	parameters of interest (θ and K).
in the discussion section, would be fair. Another	
point is the hydraulic gradient, which assumes	
the groundwater hydraulic gradient but is taken	
as the topography gradient here. Same for the	
porosity (0.4, on L. 238) and the implication on	
the estimates.	
6) Figure 3: Consider showing the relationship	The DSLM uses the normalized chargeability
between chargeability and the real part of	(M_n) to account for surface conductivity in the
conductivity (supplementary material would be	estimation of water content. In this study, we
fine).	used IP measurements in the frequency-
	domain; thus, the parameter we get is the
	complex conductivity real (0) and imaginary part (σ''). To calculate M, we use the linear
	relationship between σ'' and M_{π} proposed by
	Revil et al. (2017). Fig. 3 is used to evaluate
	whether this linear relationship is also valid for
	the data from the Gran Sometta rock glacier
	and which range of frequencies can be used. A
	plot with the relation (or discrepancy)
	between σ' and M_n would only show the
	influence of the electrolytic conductivity on
	the total electrical conductivity. Such relation
	is not directly used in this study, and we think
	that such plot might confuse the reader.
7) L.437: Please provide an explanation for why	In the black lobe the maximum change in
you used >20% for the black lobe, or consider	conductivity was lower than in the white lobe.
stating the maximum increase in white vs. black	So, we used 20% to make the changes visible
lobe.	In the Figure. We will add an explanation in
8) Figure 6 and associated text: It is unclear if the	We agree with the reviewer's comment and
discussion is about the white lobe only or both	will clarify that in the figure cantion and the
lobes. Please clarify in the figure cantion and	associated text.
associated text.	
9) L.626: Please clarify your thoughts on the	We agree with the reviewer's comment. The
order of importance in parameter impact. The	topography might be an additional controlling
terrain slope (please provide an estimate and	parameter in the Gran Sometta rock glacier

discuss) seems much steeper in the black lobe	velocity, as suggested by Bearzot et al. (2022)
and would be expected to be a strong control.	(see Line 618). We will highlight the role of the
Does that not complicate and maybe compromise	slope in the last paragraph.
the interpretation of another control using the	
current data set ? Please consider adding some	
discussion of the impact of the slope gradient	
alone.	