

1 Observations of methane net sinks in the upland Arctic tundra

2 Antonio Donateo^{1*}, Daniela Famulari², Donato Giovannelli^{3,4,5,6,7}, Arturo Mariani⁸, Mauro Mazzola⁹,
3 Stefano Decesari¹⁰, Gianluca Pappaccogli^{1,11}

4 ¹ National Research Council of Italy, Institute of Atmospheric Sciences and Climate (CNR-ISAC), 73100, Lecce - Italy

5 ² National Research Council of Italy, Institute of BioEconomy (CNR-IBE), 40129, Bologna – Italy

6 ³ University of Naples "Federico II", Department of Biology, 80126 Napoli - Italy

7 ⁴ Institute for Marine Biological and Biotechnological Resources, National Research Council of Italy (CNR-IRBIM), Ancona,
8 Italy

9 ⁵ Woods Hole Oceanographic Institution, Marine Chemistry and Geochemistry Department, MA, USA

10 ⁶ Tokyo Institute of Technology, Earth-Life Science Institute, ELSI, Tokyo, Japan

11 ⁷ Rutgers University, Department of Marine and Coastal Science, New Brunswick, NJ, USA

12 ⁸ GeoSystems s.r.l., 50122, Firenze - Italy

13 ⁹ National Research Council of Italy, Institute of Polar Sciences (CNR-ISP), 40129, Bologna

14 ¹⁰ National Research Council of Italy, Institute of Atmospheric Sciences and Climate (CNR-ISAC), 40129, Bologna

15 ¹¹ JRC - ENI-CNR Aldo Pontremoli, 73100, Lecce – Italy

17 *Correspondence to:* Antonio Donateo (a.donateo@isac.cnr.it)

18 **Abstract.** This study focuses on direct measurements of CO₂ and CH₄ turbulent eddy covariance fluxes in tundra ecosystems
19 in the Svalbard Islands over a two-year period. Our results reveal dynamic interactions between climatic conditions and
20 ecosystem activities such as photosynthesis and microbial activity. During summer, pronounced carbon uptake fluxes indicate
21 increased photosynthesis and microbial methane consumption, while during the freezing seasons very little exchange was
22 recorded, signifying reduced activity. The observed net summertime methane uptake is correlated with the activation and
23 aeration of soil microorganisms, and it declines in winter due to the presence of snow cover and because of the negative soil
24 temperature which triggers the freezing process of the active layer water content, but then rebounds during the melting period.
25 The CH₄ fluxes are not significantly correlated with soil and air temperature, but are instead associated with wind velocity,
26 which plays a role in the speed of soil drying. Nongrowing season emissions accounted for about 58% of the annual CH₄
27 budget, characterised by large pulse emissions. The analysis of the impact of thermal anomalies on CO₂ and CH₄ exchange
28 fluxes, underscores that high positive (> 5 °C) thermal anomalies may contribute to an increased positive flux both in summer
29 and winter periods, effectively reducing the net annual uptake. These findings contribute valuable insights to our understanding
30 of the dynamics of greenhouse gases in tundra ecosystems in the face of evolving climatic conditions. Further research is
31 required to constrain the sources and sinks of greenhouse gases in dry upland tundra ecosystems, to develop an effective
32 reference for models in response to climate change.

33

34 **1 Introduction**

35 The Arctic region is experiencing rapid climate change in response to the increase in greenhouse gases (GHGs), aerosols, and
36 other climate drivers, which leads to alterations in the biogeochemical cycles of carbon and other GHGs (Stjern et al., 2019)
37 and to the increase frequency and intensity of extreme events. This phenomenon is known as Arctic amplification (Serreze and
38 Barry, 2011; Schmale et al., 2021). Arctic warming is essentially driven by changes in anthropogenic GHGs and short-lived
39 climate forcers, such as methane, tropospheric ozone, and aerosols (Howarth et al., 2011; Arnold et al., 2016; Law et al., 2014;
40 Sand et al., 2015). Methane (CH_4) and carbon dioxide (CO_2) are two of the most significant greenhouse gases that contribute
41 to climate change, and their fluxes in the Arctic have been of great interest to researchers in recent years. Methane is a potent
42 greenhouse gas (global average ~ 1.8 ppm) with a global warming potential that is about 29.8 times greater than that of carbon
43 dioxide over a 100-year timescale (IPCC, 2023). Thus, quantifying the natural sources and sinks of CH_4 is critical for
44 understanding and predicting how climate change will impact its cycling in northern environments. Lara et al. (2018) estimated
45 that the Arctic tundra alone could become a net source of carbon by the mid- to late-21st century, due to the thawing of
46 permafrost. Arctic amplification has also been found to decrease the net uptake of GHGs, particularly CO_2 , in the Arctic region
47 (Zona et al., 2022), because reduced soil moisture during the peak summer can limit plant productivity, thus reducing the
48 ability of these ecosystems to capture carbon during growing season.

49 In the Arctic, methane and carbon dioxide fluxes are influenced by a variety of environmental factors, including permafrost
50 thawing, changes in vegetation cover (especially for uptake phenomena), and in soil hydrology (Treat et al., 2015). As
51 permafrost thaws, the organic matter it contains becomes more accessible for microbial decomposition, leading to increased
52 methane, carbon dioxide and other greenhouse gas emissions due to microbial mediated degradation activity (Knoblauch et
53 al., 2018). Tundra ecosystems are also known to produce methane (CH_4) as the final product of microbial metabolism through
54 an anaerobic biotic process known as methanogenesis (Cicerone and Oremland, 1988). Methanogenesis is common in a variety
55 of ecosystems, and it is generally found in strictly anoxic environments and in the deeper soil and sedimentary layers coupled
56 to the final steps of the decay of organic matter (Hodson et al., 2019). Methane uptake occurs in the atmosphere through
57 chemical and/or photochemical oxidation, or biologically in soil and in water, through methane-oxidising bacteria and archaea
58 (hereafter methanotrophs) that use methane as a source of energy and carbon (Serrano-Silva et al., 2014).

59 Historically, most studies on methane emissions in the Arctic have focused on wetlands and wet tundra ecosystems (Tan et al.,
60 2016), because they provide the most consistent data to evaluate total natural methane emissions in high latitudes (AMAP,
61 2021). The projections of future emissions in the Arctic are complicated by the multiple effects of changes in temperature and
62 precipitation regimes in the individual ecosystems (i.e. wetlands): while a wetter, warmer climate is generally associated with
63 an increase in natural methane emissions, drier summers can lead to increased respiration rates in soils and reduced releases
64 of methane. Wetland and organic carbon-rich ecosystems, however, cover a relatively small area in the Arctic region when
65 compared with well-aerated mineral soils (Hugelius et al., 2014; Jørgensen et al., 2015; Emmerton et al., 2016). Relatively
66 dry, well drained upland terrains and generally dry tundra ecosystems can act as significant methane sinks rather than sources

over large geographical sectors of the Arctic (Emmerton et al., 2014; Jørgensen et al., 2015; D'Imperio et al., 2017; Oh et al., 2020). Due to the uncertainties in regional climate projections and in the carbon cycle response, it remains unclear whether the Arctic will play a larger role in the global CH₄ budget with future climate change (AMAP, 2021; Treat et al., 2024). Several studies have investigated the sources and sinks of methane in dry tundra ecosystems, especially by means of chamber measurement systems. Lindroth et al. (2022) measured the methane emissions from different types of tundra in Svalbard. The study revealed that wet tundra with waterlogged soil was a notable methane emission source, while the vegetation in the tundra served as a carbon dioxide sink. Mastepanov et al. (2008) investigated CH₄ fluxes in a dry tundra ecosystem in north-eastern Siberia, finding that the ecosystem was a small net source of CH₄, with the highest emissions occurring during the summer. This study also found that CH₄ emissions were strongly influenced by soil moisture and temperature, with wetter and warmer soils leading to higher emissions. Wagner et al. (2019), with their measurements on the southern shore of Melville Island in the Canadian Arctic Archipelago, demonstrate that net CH₄ uptake may be largely underestimated across the Arctic due to sampling bias towards wetlands. Combining in situ flux data with laboratory investigations and a machine learning approach, Voigt et al. (2023) find biotic drivers to be highly important in absorption of atmospheric CH₄ on well-drained Arctic soils. These work conclusions imply that soil drying, and enhanced nutrient supply will promote CH₄ uptake by Arctic soils, providing negative feedback to global climate change. Juncher Jørgensen et al. (2015) combining chamber in situ measurements with satellite remote sensing observations, conclude that the ice-free area of northeast Greenland acts as a net sink of atmospheric methane, and suggest that this sink will probably be enhanced under future warmer climatic conditions. Further, research on dry tundra ecosystems has focused primarily on CO₂ and CH₄ emissions during snow-free periods. However, CH₄ emissions from tundra ecosystems were not limited to the growing season. Bao et al. (2021) found that high CH₄ efflux and emission pulses can occur during shoulder seasons, such as autumn and spring thaw. This study suggests that shoulder season CH₄ emissions should be considered when assessing the total annual CH₄ emissions from tundra ecosystems. However, there is a noticeable lack of studies investigating these emissions across various seasonal phases, with a specific focus on how thermal anomaly patterns affect GHGs fluxes (Bao et al., 2021; Ishizawa et al., 2023; Treat et al., 2024). Bridging the gap between the balance of CO₂ and CH₄ net flux, in dry tundra environments, with the increasing frequency and intensity of extreme events is essential for understanding the role of these ecosystems in the context of climate change. Long-term studies covering multiple seasonal cycles have been limited owing to logistical challenges, especially during cold, snow-covered seasons (Mastepanov et al., 2008, 2013; Pirk et al., 2015, 2016; Zona et al., 2016; Taylor et al., 2018; Arndt et al., 2019; Bao et al., 2021).

This work aims to quantify the exchange fluxes of carbon dioxide and methane, between the atmosphere and the ecosystem over a long multiyear period. In particular, the objective is to understand the duration and magnitude of the exchange mechanisms and environmental drivers for CO₂ and CH₄ for two year-rounds (including the shoulder seasons) and their relative importance. This study aims to evaluate how seasonal temperature anomalies (1990-2020) affect the GHG budget. These anomalies are used as key indicators to understand how changes in temperature trends influence the overall greenhouse gas balance in the studied ecosystem.

101 **2 Methods**

102 **2.1 Measurement Site**

103 Methane and carbon dioxide turbulent fluxes were measured on the “Amundsen-Nobile Climate Change Tower” (CCT)
104 (Mazzola et al., 2016), located northwest of the village of Ny Ålesund ($78^{\circ}55'N$, $11^{\circ}56'E$) in the Spitsbergen Island (Svalbard
105 archipelago - Norway). Measurement campaign ran from 9th April 2021 to 31st March 2023, for a total of two years. The site
106 is located on the top of a hill, and the land-cover during summer months is characterised by dry tundra or bare soil (Magnani
107 et al., 2022). The climate is typically subarctic with a warming effect by the West Spitsbergen Ocean Current, a branch of the
108 North Atlantic Current. The area is characterised by an average air temperature of about $-10^{\circ}C$ in March and $6^{\circ}C$ in July,
109 with about 400 mm of precipitation annually, falling mostly as snow between September and May (Lüers et al., 2014). Wind
110 velocity average is 4.15 m s^{-1} , with a maximum monthly average of 5.47 m s^{-1} in December and a minimum in August (2.9 m
111 s^{-1}). Wind direction is essentially from three directions, with air masses coming from south-east (42%), south-west (27%) and
112 north/north-west (20%) (see Fig. 1a, inset). A detailed description of the meteorological and micrometeorological conditions
113 for the measurement period was reported, respectively, in Appendix B and Appendix C. The CCT area is a semi-desert
114 ecosystem rather than wetland or heath tundra (Uchida et al., 2009). The vegetation cover at the measurement site (Fig. A1c)
115 was estimated to be approximately 60%, with the remainder being bare soil with a small proportion of stones (Lloyd et al.,
116 2001, Boike et al., 2018).

117 The vegetated portion around and within the system footprint area consists of tundra, a widespread ecosystem in Svalbard
118 (Magnani et al., 2022). Specifically, the vegetation is dominated by low-growing vascular plants. This includes various grass
119 and sedge species, such as *Carex* spp., *Deschampsia* spp., *Eriophorum* spp., *Festuca* spp., *Luzula* spp. Additionally, flowering
120 plants like catchfly and saxifrage, as well as woody species like willow, are present. Notably, some locally common species
121 like *Dryas octopetala*, *Oxyria digyna*, and *Polygonum viviparum* are also found (Fig. A1c). A moss and lichen layer are present,
122 though the specific composition remains unclassified (Ohtsuka et al., 2006; Uchida et al., 2009; Lüers et al., 2014). In Ny
123 Ålesund village, the thermal power plant for electricity production is the primary source of CO₂. On the other hand, there are
124 few combustion engine cars on the roads and some electric vehicles that might affect measurements occasionally. The village
125 lacks specific combustion sources, relying entirely on electric facilities. The airport has only two flights per week, and ship
126 arrivals are uncommon, occurring 1-2 times a month, however, cargo handling involves heavy-duty vehicles, and it is
127 moderately active. All these activities are out of the measurement system footprint.

128 **2.2 Instruments**

129 Standard meteorological data such as air temperature (T) and relative humidity (RH), atmospheric pressure, wind speed and
130 direction were measured at different levels of the CCT (Fig. A1a) by means of the setup described in Mazzola et al. (2016).
131 Snow depth at the foot at the CCT was measured with an ultrasonic range sensor (Campbell Scientific, mod. SR50A), while
132 soil temperature (Ts) was recorded continuously using two temperature probes (Campbell Scientific, mod. 107) positioned at

133 two different depths: 5 cm and 10 cm from the ground level. All sensors were connected to a data logger (Campbell Scientific,
134 mod. CR-3000). Precipitation data for Ny Ålesund were downloaded from the Norwegian Centre for Climate Services web
135 portal (<https://seklima.met.no/observations/>, last access on 18/03/2024). Radiation components (incoming and outgoing
136 shortwave and longwave) were measured by means of a radiometer CNR1 (Kipp and Zonen, Netherlands) positioned at 33 m
137 height above the ground with the sensor arm directed towards south.

138 To measure the eddy covariance (EC) fluxes, a three-dimensional sonic anemometer (WindMaster Pro, Gill) and two open-
139 path gas analysers (LI-7700 for methane and LI-7500A for water vapour and carbon dioxide, both from LI-COR
140 Biogeosciences) were used. All data were recorded at 20 Hz using a SMART Flux interface unit (LI-7550, LI-COR
141 Biogeosciences). The instruments were mounted at a height of 15 m on the CCT above the ground level. Figure A1b shows a
142 typical instrument mounting on the horizontal bar. Air temperature, relative humidity and pressure were also measured by the
143 LI-COR system. The total data coverage during this experiment was 83% for the anemometer, 78% for the Li7500 and 61%
144 for the Li7700, respectively. During this measurement period, a longer break between 8 February and 3 March 2022 was
145 registered in the dataset due to malfunctions in the eddy covariance system. Further, the measurements suffered a break period
146 of 15 days from 5th to 20th February 2023, and stopped for 11 days in December 2022 and March 2023, respectively. Another
147 break period in the dataset must also be included in June 2022 (from the 13th to the 23rd) for a total of 10 days. These periods
148 comprise about 10% of the whole dataset.

149 **2.3 Eddy Covariance data analysis**

150 Eddy Covariance (EC) vertical turbulent fluxes of GHGs were calculated on a 30 min average using the open-source software
151 EddyPro® package (version 7.0.3; Li-COR Biosciences, USA). The micrometeorological convention of assigning positive
152 values to upward fluxes (emissions) and negative values to downward fluxes (toward the surface) was followed in this work.
153 Spikes in the 20 Hz time series were removed from the dataset and replaced by linear interpolation of neighbouring values
154 using a procedure described by Mauder et al. (2013). Data were discarded when the instrument measurement path became
155 obstructed by water (rain, dew, or snow). Data corresponding to winds blowing from a 260° - 10° sector on the back of the EC
156 setup were excluded from the analysis as they were in the wake of the tower structure (about 18% on the whole dataset). In
157 addition, the diagnostic values of the LI-7700 and LI-7500 gas analysers were used for data quality screening. For the CH₄
158 analyser, LI-7700, the relative signal strength indication (RSSI) was also considered. Methane fluxes were discarded if the
159 mean RSSI of the respective averaging interval was < 20. Spectral corrections were applied to the fluxes using the method
160 described by Fratini et al. (2012). The high and low frequency spectral attenuations were both compensated. The low-frequency
161 loss due to finite averaging time and linear detrending was corrected following Moncrieff et al. (2004). The high-frequency
162 loss due to path averaging, signal attenuation and the finite time response of the instruments was taken into account following
163 (Massmann 2000, 2001). Spectral losses due to crosswind and vertical instrument separation were corrected following Horst
164 and Lenschow (2009). Data at 30 min marked by spikes, drop-outs, discontinuities, or inputs outside absolute limits were
165 discarded from the dataset. Specifically, all data out of the 1st - 99th percentile range was discarded from the subsequent

166 analysis (about 1% of data for each variable). The processing of the raw data included an angle-of-attack correction, i.e.
167 compensation for the flow distortion induced by the anemometer frame (Nakai et al., 2006). To minimise the anemometer tilt
168 error, a three-dimensional coordinate system transformation was applied to the data set, using the planar fit method proposed
169 by Wilczak et al. (2001). This method ideally results in a null vertical wind component over a long period. The planar fit
170 coefficients are calculated for the month of May (with snow) and August (with bare tundra) in the first and second year. The
171 fit coefficients were calculated over the whole direction sector around the measurement site, spanning 60° wind sector. A linear
172 detrending procedure (Gash and Culf, 1996) was applied to the time series before the calculation of the 30 min average fluxes
173 in order to remove the effects of low-frequency variations and instrument drifts. The Webb-Pearman-Leuning (WPL)
174 correction was applied to compensate for the air density fluctuations, due to thermal expansion or water dilution, to the
175 calculation of the fluxes (Webb et al., 1980; Burba et al., 2008). Further, a correction, considered in the so-called WPL+
176 module, was applied to consider the broadening of the spectroscopic line for CH₄ due to the contemporary presence of the
177 water vapour (McDermitt et al., 2011). An important source of errors is the heat generated by the sensor body of the LI-7500
178 open-path gas analyser, which may generate convection within the sampling volume (Lafleur and Humphreys, 2007) impacting
179 the calculations of the CO₂ fluxes measured by the LI-7500. The correction methods proposed by Burba et al. (2008) yield
180 unrealistic flux values (with a large positive bias) for this data set, especially during winter season, so that we chose not to
181 apply this correction (Lüers et al., 2014). Finally, a negative CO₂ flux in the cold season can result from errors propagated
182 through the density correction, because the CO₂ density (ρ_c) can be affected by systematic biases caused by dirt contamination
183 on the transducers and by ageing of the optical components (Fratini et al., 2014). The bias in the CO₂ flux scales linearly with
184 the sensible heat flux H if the CO₂ density is underestimated by a constant amount, causing the CO₂ flux to be too negative
185 (Serrano-Ortiz et al., 2008). In theory, these two fluxes (CO₂ and H) should be independent of each other in cold conditions
186 (Tair < 0° C) when photosynthesis is suppressed (Wang et al., 2017). Thus, the correction procedure reported in Wang et al.
187 (2017) was applied to the CO₂ flux (with a mean slope of -0.0084 $\mu\text{mol m}^{-2} \text{s}^{-1}$ per W m^{-2} , $R^2 = 0.92$). The detection limit
188 (LOD) of the system was obtained using the method proposed by Finkelstein and Sims (2001). For CO₂ the LOD value resulted
189 on average 0.3 $\mu\text{mol m}^{-2} \text{s}^{-1}$, while for CH₄ 0.9 $\text{nmol m}^{-2} \text{s}^{-1}$. In 16% of the cases, exchange fluxes were lower than the calculated
190 LOD, and by looking at the difference on the cumulated flux values, the contribution of these very low fluxes was of 13 g C
191 m^{-2} (3%) for CO₂, and 0.02 g C m^{-2} (5%) for CH₄: they were excluded from the final computation, however their inclusion
192 would not have overturned the outcome. The 30-min fluxes underwent quality control based on atmospheric stability and
193 developed turbulence as described by Mauder and Foken (2004). This method was applied to all flux values and classified the
194 dataset into three groups: high quality data (class 0), intermediate quality data (class 1) and low-quality data (class 2 -
195 discarded). Following this procedure, 6% for the momentum flux, about 10% for CO₂, H₂O, CH₄ flux, and 15% for sensible
196 heat flux H were rejected. Some quality indicators derived from the raw data statistics as described by Vickers and Mahrt
197 (1997) were also evaluated. Fluxes related to low turbulence development conditions, i.e. not sufficient to guarantee suitable
198 mixing, need to be identified and filtered out according to a friction velocity threshold (Aubinet et al., 2012). Such a value was
199 computed (online tool available at <https://www.bgc-jena.mpg.de/bgi/index.php/Services/REddyProcWeb> - last accessed on

200 24/11/2023) using the bootstrapping approach described by Reichstein et al. (2005) and Papale et al. (2006). In our case, it
201 provided $u^* = 0.0497 \text{ m s}^{-1}$ and it was used to filter the CO₂ and CH₄ fluxes dataset, discarding all data corresponding to friction
202 velocities lower than the threshold (0.8 % of the data).

203 The small gaps in the dataset, with duration less than 2 hours, were filled by a linear regression (Lüers et al., 2014). Finally,
204 the validated data (as a percentage of the total data point) used in this work adds up to 63% (21,845 points) for H, 48% (16,649
205 points) for CO₂ - H₂O flux and 42% (14,555) for CH₄ fluxes, respectively. Meteorological variables were gap-filled with ERA5
206 data. ERA5 is a reanalysis product from the European Centre for Medium-Range Weather Forecast that provides hourly
207 estimates for various meteorological and soil variables starting from 1959, at a spatial resolution of 25 km
208 (<https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5>, last accessed on 24/03/2023). Each variable was bias-
209 corrected using a linear fit between ERA5 and flux tower observations during periods when both were available. The CO₂ and
210 CH₄ fluxes time series, as said previously, showed some large gaps (up to 20 days for 2022 winter), thus a gap-filling procedure
211 has also been applied to these time series to avoid biases in the annual flux budgets. Gap filling for CO₂ fluxes was
212 implemented, firstly, through the R package REddyProc (<https://r-forge.r-project.org/projects/reddyproc/>; Reichstein et al.,
213 2005). This gap filling technique, based on Marginal Distribution Sampling (MDS), used as input drivers the incoming
214 shortwave radiation, air temperature, the soil temperature at 10 cm depth, relative humidity, and vapour pressure deficit.
215 However, to take in consideration a large range of meteorological interactions and some biogeochemical variables, a random
216 forest regression model of the fluxes was also developed (Kim et al., 2020, Knox et al., 2021) with 12 environmental drivers:
217 sensible and latent heat fluxes, air temperature, soil temperature at 10 cm depth, relative humidity, vapour pressure deficit, air
218 pressure, shortwave incoming and longwave outgoing radiation, the snow depth, the friction velocity and, finally, the
219 boundary layer height. Furthermore, the CO₂ flux (gap filled) was itself added as a driver for gap filling the CH₄ flux data.
220 Only the gaps in the flux time series were filled with the resulting flux estimates from the random forest regression model. The
221 implementation of the random forest model was developed with open-source python libraries such as Scikit-learn (Pedregosa
222 et al., 2011). After a process of model tuning the optimal values for various training parameters were found, such as the number
223 of estimators (decision trees) and the maximum depth of the model. Training of the model and model performance estimation
224 were conducted following common methodologies as reported in Dyukarev (2023), which resulted in a validation error
225 (Normalised Root Mean Squared Error) of 7.75% for CO₂ and 9.37% for CH₄ inference.

226 The ratio between wind velocity and the friction velocity in neutral atmosphere ($-0.05 < z/L < 0.005$, where z is the
227 measurement height and L is the Obukhov length) was used to evaluate the average roughness length z_0 , for the site analysed
228 using a parameterisation based on similarity theory (Stull, 1988). The results gave $z_0 = 0.005 \pm 0.001 \text{ m}$, with similar results
229 reported also by (Mazzola et al., 2021; Donato et al., 2023 in the same site). Separating the winter period (with snow coverage)
230 from the summer period (without snow), z_0 values were calculated as $z_0 = 0.002 \pm 0.001 \text{ m}$ (winter) and $z_0 = 0.004 \pm 0.001 \text{ m}$
231 (summer), respectively. A null displacement height d was considered for this site as obstacles of significant height are not
232 present around the site and in its footprint. Source area for scalar fluxes have been evaluated using a Lagrangian footprint
233 model proposed by Kljun et al. (2015). The results of flux footprint analysis are shown in Fig. 1 with the different influence

234 levels of the zones on the measurements. The gas fluxes measured represented a surface area of about 2.4 km^2 (considering
235 the 80% contour line) with a maximum distance of 1300 m and 1600 m in south-west and south-east direction, respectively. It
236 is worth remembering that the data in the wake of the tower structure at north-west and north-east were excluded from the
237 analysis. The flux peak contribution was in the wind direction sectors at about 130 m ($\pm 5 \text{ m}$) at south-east and south-west
238 (Fig. 1). However, the source land area was very similar for the considered wind direction sectors around the measurement
239 site, with 100% of snow coverage for the winter period. During the summer period the footprint area was over tundra coverage,
240 with about 2.4% covered by water surfaces (two arctic lakes) (Fig. 1).

242 **2.4 Seasonality**

243 In this work the calendar year was divided into a snow-cover season (winter), a snow-free season (summer), and a
244 thawing/freezing period, in late spring and autumn, respectively. Thawing period represents a transitional phase during which
245 the snow cover melts. Daily soil temperature and snow depth were used to define the different seasons. The start of the snow-
246 cover season was defined as the start of the freeze-up, i.e. the first day on which daily mean T_s at 5 cm depth is below -0.75
247 $^{\circ}\text{C}$ for 3 consecutive days (Oechel et al., 2014; Taylor et al., 2018; Arndt et al., 2019; Bao et al., 2021) and at the same time
248 daily snow depth is greater than 1 cm. The end of the snow-cover season was defined as the start of thaw, i.e. the first date on
249 which daily mean T_s at 5 cm depth rose above $0.75 \text{ }^{\circ}\text{C}$ for at least 3 consecutive days. Winter season was between the end of
250 the freezing period (being the total solar radiation $< 10 \text{ W m}^{-2}$) and the beginning of the thawing period. At the same time the
251 summer season was defined as the period between the end of thawing (being the snow depth lower than 1 cm) and the beginning
252 of the freezing period. Thawing and freezing periods are also called in the manuscript “shoulder seasons” as reported by Bao
253 et al., 2021. Further, the winter season was divided into a first period (dark winter) in absence of solar radiation (total radiation
254 $< 10 \text{ W m}^{-2}$) and a second one (light winter) with an increasing total radiation greater than 10 W m^{-2} . Thereby two complete
255 light winter (snow-covered) seasons during the study period could be defined: from 1st March 2022 to 19 May 2022 (80 days)
256 and from 5 to 31st March 2023 (27 days). Furthermore, an initial period from 9 April 2021 to 27 May 2021 (48 days) has also
257 been included as a snow-cover period. Two dark winter periods (snow-covered), as specified earlier without solar radiation,
258 have been identified: from 23 October 2021 to 28 February 2022 (128 days) and from 23 October 2022 to 4 March 2023 (132
259 days). Two complete summer seasons were also included in the dataset: from 29 June 2021 to 07 October 2021 (100 days) and
260 from 4 June 2022 to 13 October 2022 (131 days). Finally, two thawing and freezing periods in 2021 and 2022 were covered
261 in this work. Specifically thawing in the month of May/June and freezing in the month of October for a total of 45 days in
262 thawing and 22 days in freezing period.

264 **3 Results and Discussion**265 **3.1 CO₂ and CH₄ mixing ratio and surface fluxes**

266 Median CO₂ mixing ratio over the whole measurement period was 413.66 ppm (average 412.30 ppm) with an interquartile
267 range (IRQ 25th – 75th percentile) from 406.17 to 417.72 ppm (Fig. 2a). The CO₂ mixing ratio was greater during the winter
268 period with a median value of 418.46 ppm decreasing towards the summer season, when it measured a median of 403.81 ppm
269 with a minimum value of 396.61 ppm (Fig. 2b). The shoulder season was characterised by intermediate CO₂ concentration:
270 the thawing season showed a median mixing ratio of 415.14 ppm greater than the CO₂ concentration in the freezing season
271 (405.62 ppm) (Fig. 2b). The median CH₄ mixing ratio for the measurement period was 2.05 ppm (IRQ 2.04 - 2.07 ppm) (Fig.
272 2c). In this case, the greatest concentration was found during the dark winter season (2.06 ppm) with a decreasing trend going
273 towards the summer season down to a median value of 2.05 ppm. The thawing and freezing seasons presented very similar
274 values in CH₄ concentration; 2.044 and 2.043 ppm, respectively (Fig. 2d).

275 In Fig. 3a,c, the annual cycle of CO₂ and CH₄ turbulent fluxes was observed, with CO₂ and CH₄ fluxes exhibiting negative
276 intensity for the greater part of the year. The CO₂ flux had a median value for the whole period of -0.032 $\mu\text{mol m}^{-2} \text{s}^{-1}$ (detailed
277 statistics in Table 1). At the same time, the median value for the CH₄ flux was -0.39 $\text{nmol m}^{-2} \text{s}^{-1}$ (Table 1). Negative values
278 are particularly important in CO₂ and CH₄ fluxes during the summer season (growing season) indicating a sink behaviour for
279 the CCT site.

280 Seasonal analysis revealed negative median values for the fluxes of CO₂, peaking in summer with -0.37 $\mu\text{mol m}^{-2} \text{s}^{-1}$. The CO₂
281 fluxes showed a slightly positive median value during the dark winter (0.02 $\mu\text{mol m}^{-2} \text{s}^{-1}$), actually, due to respiration
282 phenomena from the snow covered surface due to microbial respiration (Hicks Pries et al., 2013). At a finer time scale (30 min
283 resolution), the CO₂ flux trend indicated the presence of positive fluxes (emissions) (Fig. 3a), especially during the dark/light
284 winter and the freezing period (Table 1). As snowmelt begins, accumulated carbon dioxide may be released and exposed
285 patches of ground with a lower albedo begin to warm, further enhancing respiration rates and CO₂. Further, during thawing
286 season, incoming radiation reaches levels adequate for photosynthesis: the combination of increasing light, along with
287 increases in soil temperatures can result in early photosynthesis. At the CCT site, the CO₂ flux decreased starting from the
288 light winter (-0.84 $\mu\text{mol m}^{-2} \text{s}^{-1}$) and it continues during the thawing season (-0.18 $\mu\text{mol m}^{-2} \text{s}^{-1}$). During the fall, soil
289 temperatures were still adequate for substantial microbial respiration. When the senescence of vascular plants advanced,
290 respiration became the dominant process affecting carbon exchange. In addition, as soils freeze, CO₂ may be forced out of the
291 soil towards the atmosphere. However, in the freezing period, at the CCT site, a median negative CO₂ flux has been measured
292 (-0.79 $\mu\text{mol m}^{-2} \text{s}^{-1}$).

293 A similar trend is reported for methane: during the dark and light winter periods, methane fluxes are negative, with a median
294 value of -0.17 and -0.36 $\text{nmol m}^{-2} \text{s}^{-1}$, respectively (Fig. 3d). Treat et al. (2018) investigated methane dynamics across Arctic
295 sites and reported negative methane fluxes during winter, attributed to cold temperatures, which inhibit methanogenesis while
296 promoting methane oxidation in dry tundra soils. However, they also highlight methane uptake in dry tundra during colder

297 periods. Zona et al. (2016) reported that methane emissions during the cold season (September to May) account for $\geq 50\%$ of
298 the annual CH_4 flux, with the highest emissions from upland tundra. In this study (Table 1), evidence of significant emission
299 events during winter temperature fluctuations can be observed at the site. In contrast, these events diminished in the shoulder
300 seasons, where notable net uptake events dominated, with $-0.83 \text{ nmol m}^{-2} \text{ s}^{-1}$ during thawing and $-0.69 \text{ nmol m}^{-2} \text{ s}^{-1}$ during
301 freezing period. Seasonal analysis revealed negative median CH_4 fluxes, peaking in summer at $-1.28 \text{ nmol m}^{-2} \text{ s}^{-1}$. Juncher
302 Jørgensen et al. (2015) field measurements, within the Zackenberg Valley in northeast Greenland over a full growing season,
303 showed methane uptake with a seasonal average of $-2.3 \text{ nmol CH}_4 \text{ m}^{-2} \text{ s}^{-1}$ in dry tundra. Wagner et al. (2019) measured a
304 negative peak during the growing season (2009) of $-4.41 \text{ ng C-CH}_4 \text{ m}^{-2} \text{ s}^{-1}$ in a polar desert area at the Cape Bounty Arctic
305 Watershed Observatory (CBAWO - Melville Island, Canada).

306 Even though a similarity between the CO_2 and CH_4 flux patterns can be observed from the time series, the exchange processes
307 are probably led by different physical drivers. Significantly negative fluxes of CO_2 are driven by photosynthesis, while CH_4
308 uptake fluxes increase coinciding with a positive peak in ground temperatures (Mastepanov et al., 2013; Howard et al., 2020).
309 While prior research demonstrated the influence of soil temperature on methanotrophic activity (Reay et al., 2007), CH_4 fluxes
310 at CCT site showed limited response to soil temperature, as reported later.

311 **3.2 CO_2 and CH_4 mass budget**

312 The cumulative mass budgets over the two monitoring years at the CCT site ecosystem are shown in Fig. 4. Based on the
313 budget for the whole measurement period, the study area acts as a net sink for both CO_2 and CH_4 . During the study period, a
314 CO_2 balance of almost $-257 \text{ CO}_2 \text{ g m}^{-2}$ is found, while the contribution of CH_4 uptake was estimated at approximately -0.36 g
315 $\text{CH}_4 \text{ m}^{-2}$ (Fig. 4, dashed red line). Actually, for the evaluation of the cumulated carbon, the gap filled time series should be
316 considered (both with MDS and RF methodology, see Section 2.3). In this perspective, the total cumulative CO_2 budget over
317 the measurement campaign was $-472 \text{ g CO}_2 \text{ m}^{-2}$ with MDS and $-650 \text{ g CO}_2 \text{ m}^{-2}$ using the RF procedure, respectively (Fig. 4a).
318 On the other hand, CH_4 cumulative budget was about $-0.76 \text{ g CH}_4 \text{ m}^{-2}$ with the RF gap filling procedure (Fig. 4b). The mean
319 annual cumulative CO_2 budget was $-131 \text{ g CO}_2 \text{ m}^{-2}$ with MDS and $-164 \text{ g CO}_2 \text{ m}^{-2}$ with RF. Oechel et al. (2014) reported a net
320 CO_2 uptake during the summer season of -24.3 g C m^{-2} , while the no growing seasons released 37.9 g C m^{-2} , showing that
321 these periods comprise a significant source of carbon to the atmosphere. In Treat et al. (2024) is reported for 2002–2014, a
322 smaller CO_2 sink in Alaska, Canadian tundra, and Siberian tundra (medians: -5 to $-9 \text{ g C m}^{-2} \text{ year}^{-1}$). Euskirchen et al. (2012)
323 established eddy covariance flux towers in an Alaska heath tundra ecosystem to collect CO_2 flux data continuously for over
324 three years. They measured a peak CO_2 uptake, during July, with an accumulation of -51 – -95 g C m^{-2} during June–August. On
325 average, the mean annual cumulative budget for CH_4 was $-0.18 \text{ g CH}_4 \text{ m}^{-2} \text{ year}^{-1}$, calculated using gap-filled data (Table 2).
326 This outcome lies within the same order of magnitude estimated by Dutaur et al. (2007) at the global level, reporting a net CH_4
327 uptake for the non-forested arctic environments (defined as “boreal other”) of $-0.14 \text{ g CH}_4 \text{ m}^{-2} \text{ year}^{-1}$. Treat et al. (2018) found
328 that tundra upland varies from CH_4 sink to source with a median annual value of $0.0 \pm 0.20 \text{ g C m}^{-2} \text{ year}^{-1}$. Lau et al. (2015)
329 found that the CH_4 uptake rate was in the range between -0.1 to $-0.8 \text{ mg CH}_4\text{-C m}^{-2} \text{ day}^{-1}$ at AHI site (Nunavut, Canada). In

330 this work it was suggested that mineral cryosols act as a constant active atmospheric CH₄ sink (Emmerton et al., 2014) in part
331 because of their low soil organic carbon availability, low vegetation cover and low moisture content.
332 The annual budget can be further split into the five seasons considered in this study. Specifically, the CCT area acted as a CO₂
333 sink during the thawing and summer period with an average value of -0.79 and -1.1 g CO₂ m⁻² day⁻¹, respectively. During the
334 freezing period the quantity of absorbed CO₂ per day decreased down to almost null value (-0.01 g CO₂ m⁻² day⁻¹), and slightly
335 increased to a positive value during the dark winter period (0.04 g CO₂ m⁻² day⁻¹). With the increasing amount of the solar
336 radiation, the mass cumulative CO₂ per day decreased again (-0.25 g CO₂ m⁻² day⁻¹ for light winter). Ueyama et al. (2014)
337 analysed seasonal CO₂ budgets across several tundra ecosystems in Alaska, reporting peak CO₂ uptake during summer with
338 an average value of -46 g C m⁻² due to maximum photosynthesis rates. The same pattern was followed by the CH₄ absorbed
339 carbon mass: in this case during the thawing period was observed a value on average of -0.55 mg CH₄ m⁻² day⁻¹, peaking its
340 negative maximum during the summer period (-1.29 mg CH₄ m⁻² day⁻¹). Also, in this case the absorbed carbon mass decreased
341 in the freezing period down to -0.63 mg CH₄ m⁻² day⁻¹. It was reduced to very low values during the winter season with -0.26
342 mg CH₄ m⁻² day⁻¹ in dark winter and -0.40 mg CH₄ m⁻² day⁻¹ in light winter. Nongrowing season emissions accounted for 58%
343 of the annual CH₄ budget, characterised by large pulse emissions.

344 3.3 Physical drivers on GHGs surface fluxes

345 High temporal resolution measurements of CO₂ and CH₄ facilitate looking at the underlying causes of emissions, looking, for
346 example, at the relationship between meteorological/flux variables and CH₄ fluxes (Taylor et al., 2018). Further, the importance
347 of soil net CH₄ uptake is poorly constrained, but it is widely recognised that soil temperature, soil moisture, and substrate
348 availability (CH₄ and O₂) are the main drivers of the temporal variations of observed and predicted net CH₄ fluxes (D'Imperio
349 et al., 2024). Juncher Jørgensen et al. (2024) incubation studies revealed that subsurface CH₄ oxidation is the main driver of
350 net surface-atmosphere exchange, and it responds clearly to changes to soil moisture in these dry upland environments. The
351 production, consumption, and transport processes of CH₄ are primarily related to hydrology, vegetation, and microbial
352 activities (Vaughn et al., 2016; Wang et al., 2022). In this work any soil hydrology measurements were available for
353 understanding these processes, however the measured wind velocity and soil temperature have been used as proxies for soil
354 moisture and water table depth. Previous works have shown that advection, forced by wind pumping related to atmospheric
355 turbulence, can increase turbulent fluxes from/to the snowpack (Sievers et al., 2015). Typically, the wind pumping effect led
356 to increased emissions flux in CO₂ resulting from ebullition and/or ventilation. This correlation was analysed for the snow-
357 covered periods (dark/light winter) in our measurement site (Fig.5a). The scatter plot in Fig. 5a shows a quadratic relationship
358 (the equation of the fit is reported in the figure, R²=0.91) between wind speed and vertical turbulent CO₂ flux, with a clear
359 increasing trend indicating positive fluxes for wind speed above 3 m s⁻¹. From a similar analysis, but in this case for the whole
360 measurement period, for the CH₄ fluxes (Fig.5b), it can be observed, in this case too, a quadratic relationship with the wind
361 velocity (R² = 0.98). In the range of low wind velocity CH₄ exchange balance is on median values very close to zero but going
362 to greater wind speed (>10 m s⁻¹) the negative CH₄ flux (uptake) increases.

363 At the CCT site, where uptake seems to outweigh emission within the flux footprint, the soil layer would be relatively depleted
364 in methane compared to the atmospheric boundary layer. The coarse soils at CCT may therefore experience increased aeration,
365 which could in turn aid in the transportation of CH₄-rich air from the overlying atmosphere to the methanotrophs, and/or
366 enhance the movement of CH₄-depleted air from the soil into the atmosphere. In addition, increased aeration would provide
367 oxygen to the deeper soil layers during the dry season, stimulating the activity of aerobic methanotrophs. Analysis through a
368 scatter plot (Fig. 5c) depicting CH₄ flux alongside both soil and air temperature revealed a minimal correlation, indicating that
369 variations in temperature had minimal impact on CH₄ fluxes. The extent to which temperature fluctuations affect CH₄ fluxes
370 in the soil is heavily contingent on the depth of the microbial community responsible for these fluxes. Despite previous findings
371 indicating that methanotroph habitats are typically situated near the soil surface at depths ranging from 3 to 15 cm (Curry,
372 2007; Yun et al., 2023), there was no assessment of the vertical distribution of microbial populations in the soil at the CCT
373 site. Overall, the observed correlation in the ecosystem uptake of methane with wind velocity suggests that the methanotrophic
374 communities in the Svalbard soils might be stimulated by soil aeration, strongly related to its drying out during the summer.
375 Since the CCT is also a semi-desert surface, the CH₄ uptake regulation is most directly related to the porosity and soil hydrology
376 (not measured in this study), indirectly affected by the wind that can dry the soil and increase diffusivity for atmospheric
377 oxygen.

378 **3.4 GHGs fluxes response to seasonal temperature anomalies**

379 In this work the seasonal temperature anomalies were evaluated as possible drivers for the modifications in GHG exchange
380 turbulent fluxes on a daily basis. This approach allowed for a comprehensive understanding of the relationship between thermal
381 variations and corresponding flux dynamics over the considered period. In this study, the temperature anomalies were
382 calculated with respect to the day of the year average values taking the period 1991-2020 as a baseline. Figure 6 depicts the
383 dependence of the CO₂ and CH₄ turbulent fluxes on the temperature anomalies, on a daily basis, based on a 5-day running
384 window. As can be observed, net uptake fluxes for both gases are most noticeable in conditions of above-zero ground
385 temperatures, clearly indicating the summer period, but with thermal anomalies below 5°C (Fig.6c,d). The magnitude of uptake
386 gases flux decreases with increasing positive thermal anomalies during the summer (0.04 $\mu\text{mol m}^{-2} \text{s}^{-1} \text{ }^\circ\text{C}$ for the CO₂ and 0.07
387 $\text{nmol m}^{-2} \text{s}^{-1} \text{ }^\circ\text{C}$ for the CH₄) until it reverses to a positive (emissive) flux, with an attenuated net uptake, for marked positive
388 anomalies above 8°C (Fig 6a,b). This behaviour suggests that the trend is toward a null annual net uptake of CO₂, considering
389 the increasing frequency and intensity of positive temperature anomalies. During the winter season, dark and light winter
390 together, the gas fluxes did not show a particular trend against the thermal anomalies, with an average rate of about 0.006 μmol
391 $\text{m}^{-2} \text{s}^{-1} \text{ }^\circ\text{C}$ - for the CO₂ and 0.008 $\text{nmol m}^{-2} \text{s}^{-1} \text{ }^\circ\text{C}$ for the CH₄ (Fig. 6a,b). Shoulder seasons show a positive trend between
392 fluxes and thermal anomalies, albeit based on a tight range of thermal anomalies. Specifically, during the freezing season,
393 uptake and emission fluxes occur with negative and positive anomalies, respectively (not shown here), with no a specific trend.
394 Figure 6e,f shows the same type of analysis for CO₂ and CH₄ fluxes during the thawing season, which presents a consistent
395 uptake for both positive temperature anomalies (below 10°C) and also for negative anomalies (above -5 °C). In a context of

396 climate change, large positive anomalies could lead to positive (or at least null) fluxes in all seasons, while optimal situations
397 could occur during the summer, considering a lower temperature increase in this season (Bintanja and Linden, 2013). Overall,
398 the results suggest a transition of CO₂ and CH₄ flux regimes to an emissive scenario (reduced net uptake) for thermal anomalies
399 above 10°C for all the periods considered, especially for the winter, where the thermal anomalies have a greater relative
400 magnitude. The findings in this study align with the observed decrease in the net carbon reservoir in northern ecosystems as
401 air temperature rises (Cahoon et al., 2012; Zona et al., 2022). This suggests that future increases in temperature will weaken
402 the ecosystem CO₂ sink strength or even turn it into a CO₂ source, depending on possible changes in vegetation structure and
403 to growing season length extension as a response to a changing climate (Lund et al., 2012; Ueyama et al., 2014).

404 **4. Conclusions**

405 In this study, CO₂ and CH₄ turbulent fluxes on tundra ecosystems in the Svalbard Island (Norway) were investigated, using a
406 two year-rounds measurement campaign. The observed uptake/emission patterns in both CO₂ and CH₄ underscore the dynamic
407 interplay between climatic conditions and ecosystem activities (such as photosynthesis and microbial activity) at the
408 measurement site. During the summer season, the pronounced uptake flux (for both carbon dioxide and methane) suggests an
409 increase in mosses and lichens photosynthesis and/or microbial methane consumption, while the transition to neutral or null
410 fluxes in the freezing season and in winter indicates a decrease in these activities. The enhanced methane uptake during the
411 melting period aligns with the activation of soil microorganisms and correlates with the increasing aeration (wind effect) of
412 the topsoil and its decreasing albedo. The CO₂ uptake intensified in the summer season, while during October the decreasing
413 photosynthetic activity, together with the first occurrence of the snow, led to a sensible reduction of absorbing phenomena
414 giving way to the ecosystem respiration and relatively low positive (or almost null) CO₂ fluxes. During the winter period the
415 processes forcing CO₂ accumulation and CO₂ release counterbalance each other, resulting in very low positive fluxes. Given
416 the mineral-rich soils nature of the investigated area and of a large portion of the Arctic ecosystem, methane oxidation by
417 aerobic methanotrophs in this kind of soils plays an important role in reducing the methane net emission to the atmosphere.
418 The methane budget shows a sink behaviour for this site, especially for the summer season gradually approaching neutral
419 during the freezing season. The methane uptake decreases during the winter season due to the presence of the snow and the
420 methanotrophic activity is nearly stopped by negative soil temperature, which triggers the freezing process of the active layer
421 water content. Methane uptake rate rises again during the melting period started by the activation of soil methanotrophic
422 microorganisms. The CH₄ fluxes at CCT exhibited a limited association with both soil and ambient temperature in contrast to
423 other environmental factors, such as the soil moisture and water table depth. In this work any soil hydrology measurements
424 are available for understanding these processes, however the measured wind velocity and soil temperature have been used as
425 proxies for soil moisture and water table depth. Solar radiation and wind play a role in the speed of drying, but the soil material
426 and structure ultimately determine how much it dries under the given climatic conditions. Overall, the observed correlation in

427 the ecosystem uptake of methane with wind velocity suggests that the methanotrophic communities in the Svalbard soils are
428 stimulated by oxygen uptake, strongly related to its drying out during the summer.

429 The analysis of the impact of thermal anomalies on CO₂ and CH₄ exchange fluxes, underscores that high positive (> 5 °C)
430 thermal anomalies may contribute to an increased positive flux both in summer and winter periods, effectively reducing the
431 net annual uptake. Warming in permafrost ecosystems leads to increased plant and soil respiration that is initially compensated
432 by an increased net primary productivity. However, future increases in soil respiration will likely outpace productivity,
433 resulting in a positive feedback to climate change (Hicks Pries et al., 2013). In both cases, for methane and carbon dioxide, the
434 uptake fluxes are generally observed for moderate positive anomalies (< 5°C), especially during summertime. The implications
435 of these results contribute valuable insights to our understanding of ecosystem responses in the face of evolving climatic
436 conditions. If this trend is applicable also to other Arctic ecosystems, it will have implications for our current understanding
437 of Arctic ecosystems dynamics. Further research is needed to better understand the sources and sinks of these GHGs in the dry
438 upland tundra, to develop effective reference for models examining the dynamics of these ecosystems in response to climate
439 change, at local and global scale.

440

441 **Appendix A: Climate Change Tower (CCT)**

442

443 **Appendix B: Meteorology at CCT for the measurement period**

444 The mean air temperature was of -1.3 °C (+/- 7 std. dev) during the measurement period. March records the lowest T, with a
445 daily average of -20.3 °C (see Fig. B1a), while from April onwards, T gradually rises, peaking at 13.5 °C daily in July. At the
446 same time, RH reached its maximum value of 93%, maintaining high levels throughout August (Fig. B1c). The minimum RH
447 value of 31% (on a daily basis) was recorded in April. Solar radiation (both global and net radiation) takes on positive values
448 greater than 10 W m⁻² from the month of February (starting halfway through) until the month of October (to about the 15th)
449 (Fig. B1e). The total precipitation in the area for the two-year period was distributed as 235 mm in 2021 (from April to
450 December), 573 mm in 2022 and 160 mm in 2023 (January-March only). Total solar radiation (downward shortwave radiation),
451 which is one of the main drivers for the photosynthesis processes, showed relatively high median values for thawing and winter
452 season (510 W m⁻² and 332 W m⁻², respectively), and decreasing values for summer (392 W m⁻²) and freezing (240 W m⁻²)
453 (Fig. B1e). Note that during dark winter the global radiation is very low, actually null, as this period has been defined.
454 Snowpack in the first period until 27th of May 2021 had an average depth of 0.41 m with a maximum peak at 0.56 m in 2021.
455 In 2022 and 2023 the depth of the snowpack was lower, with an average depth of 0.24 m and 0.14 m, respectively (Fig. 1b).
456 The maximum snowpack depth in the last two years was 0.35 m. The snow is largely spread by wind, as is typical for such
457 areas on Svalbard (Winther et al., 2003). Overall, the ground was covered by snow for 62% of the measurement period. The
458 average difference between Ts at 5 cm and Ts at 10 cm was 0.006 °C, with an absolute average gradient over the whole period

459 of $0.12^{\circ}\text{C m}^{-1}$ (Fig. 1b). The maximum T_s was 15°C (in July), the minimum -16°C (in December 2022). In this work a
460 particular focus was placed on both the study of shoulder seasons as well as on winter and summer seasons. The temperature
461 differences between the selected seasons were significant. Specifically, the winter period T (Fig. B1b) was sharply below zero
462 (median -6.51°C). The lowest cumulative precipitation (only rain) was observed in the freezing period (20 mm), while during
463 the dark winter the total rainfall accounted for 522 mm, up to 53 mm on a daily basis, with four rain days for a total of 136
464 mm, corresponding to 26% of the dark winter total. Thawing period T was in milder conditions, with a median value of 2.92°C ($0.41\text{--}8.81^{\circ}\text{C}$, min-max), while the warmest temperatures were observed during the summer season, even exceeding 5°C
465 on median values (with a maximum of 13.47°C) (Fig. B1b). Simple Daily Intensity Index (SDII) was calculated to provide
466 information about the intensity of precipitation on days with rainfall. SDII computes the average amount of rainfall (mm) per
467 day, offering a perspective on the strength of precipitation and indicating its intensity. Analysing the SDII index (Lucas et al.,
468 2021), the thawing period recorded the highest value (7.4 mm day^{-1}) with an absolute rainfall of 37 mm, followed by the dark
469 winter period (6.6 mm day^{-1}), while the lowest value (2.9 mm d^{-1}) was observed during the freezing period, suggesting lighter
470 rainfall on rainy days (Fig. B1h). High RH conditions (up to a median of 72 %) were prevailing during the summer season
471 (Fig. B1d) with a cumulative precipitation of 230 mm (SDII 5.6 mm d^{-1}). The freezing period was generally characterised by
472 temperatures that can reach a median of -4.35°C in October, with RH reaching a minimum of 46 %.
473

474 **Appendix C: Micrometeorology at CCT for the measurement period**

475 In the measurement period, sensible heat flux was on average negative (-6 W m^{-2}), on a daily basis (Fig. C1a). The results
476 show the presence of a long period with negative energy fluxes from freezing to thawing season and a minimum around -77
477 W m^{-2} until snow cover was present and during the melting snow phase, when the atmosphere was warmer than the surface.
478 Sensible heat flux values had a positive magnitude (directed toward the atmosphere) for 32.7% of cases and for 67.3% of
479 events it was directed toward the snowpack. Upon thawing, a positive sensible heat flux became evident (see Fig. C1b),
480 exhibiting median values of 4.2 W m^{-2} (max 47 W m^{-2}) in July, corresponding to the peak net solar radiation (253 W m^{-2})
481 observed throughout the year. This behaviour had previously been observed in the Arctic (Kral et al., 2014; Donato et al.,
482 2023) where the snowpack acts as a sink of heat during the winter and spring months. In the freezing period, sensible heat
483 fluxes were negative (median -6.04 W m^{-2}), down to -26 W m^{-2} on daily averages, indicating energy moving toward the surface
484 (Fig. C1b). Latent heat flux (Fig. C1c,d) had its minimum median value during the winter (light winter with a median of 1.19
485 W m^{-2}), while its maximum median on season basis was reached during the summer (14.32 W m^{-2}). Intermediate values were
486 registered during the shoulder seasons, with 1.19 W m^{-2} and 2.4 W m^{-2} during thawing and freezing, respectively. In general,
487 in this dataset no significant correlation between methane and latent heat fluxes has been observed (not shown here). Latent
488 heat flux was positive for 76.2% of the cases, while it was directed toward the soil in 23.7% of cases. The median measured
489 latent heat flux was 2.93 W m^{-2} (8.48 W m^{-2} on average) during the observation campaign. In Fig. C1e the time series of
490 friction velocity shows a mean value of 0.19 m s^{-1} on the whole measurement period. No specific differences can be noted in

491 the friction velocity behaviour due to the changing in snowpack characteristics or through the selected seasons. During winter,
492 the friction velocity oscillated around a median value of 0.16 m s^{-1} . Thawing median value was slightly lower (about 0.13 m s^{-1}), while during summer the maximum values reached 0.15 m s^{-1} (Fig. C1f). In particular, the frequency of stable and highly
493 stable atmospheric conditions is 54% and 13%, respectively, of the total cases; while unstable and highly unstable conditions
494 occur for 20% and 12%, respectively. Finally, neutral conditions were rare, showing a frequency below 1%. Atmospheric
495 stable conditions prevailed for the whole year, especially during the Arctic night (with a maximum stability parameter of 1.8).
496 During dark and winter seasons, stable and very stable conditions were predominant (65% and 16%, respectively). Unstable
497 atmospheric conditions arose only during the summer period with a median stability parameter of 0.47. In summer, there was
498 a prevalence of unstable (33%) and very unstable (20%) conditions, with very stable cases below 10%. The thawing season
499 also exhibited a predominant stable situation (with 69% of stable and very stable cases) with a median stability parameter of
500 0.22. The freezing season showed a stability frequency distribution like the previous shoulder season, with a higher prevalence
501 of stable cases (60%).
502

503
504
505 *Data availability:* The data that support the findings of this study are openly available in the Italian Arctic Data Center (IADC)
506 at <https://doi.org/10.48230/DSET.2024.0001> (Donateo et al., 2024).

507
508 *Author contributions:* **AD:** Conceptualization; instrumental setup, data collection and post-processing, data curation; formal
509 analysis; investigation; methodology; visualisation; writing – original draft, funding acquisition; project administration;
510 supervision. **DF:** data curation; formal analysis; investigation; methodology; writing – review and editing. **DG:** Investigation;
511 methodology; writing – review and editing. **AM:** Data curation; formal analysis; investigation; methodology; writing – review
512 and editing. **MM:** Instrumental setup, data collection and post-processing, data curation; writing – review and editing. **SD:**
513 investigation; methodology; writing – review and editing, funding acquisition; project administration; **GP:** Conceptualization;
514 instrumental setup, data collection and post-processing, data curation; formal analysis; investigation; methodology;
515 visualisation; writing – original draft.

516
517 *Competing interests:* The authors declare that they have no conflict of interest.

518
519 *Acknowledgements:* This work has been conducted in the framework of the Joint Research Agreement ENI-CNR, WP1
520 “Impatto delle emissioni in atmosfera sulla criosfera e sul cambiamento climatico nell’Artico”. The Authors wish to thank the
521 staff of CNR-ISP for the logistical support at Arctic Station “Dirigibile Italia” in Ny Ålesund. Further, the Authors wish to
522 thank the two anonymous Reviewers whose comments helped to improve this paper.

525 AMAP, 2021. AMAP Assessment 2021: Impacts of Short-lived Climate Forcers on Arctic Climate, Air Quality, and Human
 526 Health. Arctic Monitoring and Assessment Programme (AMAP), Tromsø, Norway. x + 375pp. ISBN – 978-82-7971-202-2.
 527

528 Arndt, K. A., Oechel, W. C., Goodrich, J. P., Bailey, B. A., Kalhori, A., Hashemi, J., Sweeney, C., and Zona, D.: Sensitivity
 529 of methane emissions to later soil freezing in Arctic tundra ecosystems, *J. Geoph. Res.: Biogeosciences*, 124 (8), 2595–2609,
 530 <https://doi.org/10.1029/2019JG005242>, 2019.

531

532 Arnold, S. R., Law, K. S., Brock, C. A., Thomas, J. L., Starkweather, S. M., von Salzen, K., Stohl, A., Sharma, S., Lund, M.
 533 T., Flanner, M.G., Petäjä, T., Tanimoto, H., Gamble, J., Dibb, J. E., Melamed, M., Johnson, N., Fidel, M., Tynkkynen, V. -P.,
 534 Baklanov, A., Eckhardt, S., Monks, S. A., Browse, J., Bozem, H.: Arctic air pollution: Challenges and opportunities for the
 535 next decade, *Elementa: Science of the Anthropocene*, 4, 104, <https://doi.org/10.12952/journal.elementa.000104>, 2016.

536

537 Aubinet, M., Vesala, T., Papale, D., et al.: Eddy Covariance. A Practical Guide to Measurement and Data Analysis, Springer
 538 Atmospheric Sciences, <https://doi.org/10.1007/978-94-007-2351-1>, 2012.

539

540 Bao, T., Xu, X., Jia, G., Billesbach, D. P., and Sullivan, R. C.: Much stronger tundra methane emissions during autumn freeze
 541 than spring thaw, *Global Change Biol.*, 27, 376–387, <https://doi.org/10.1111/gcb.15421>, 2021.

542

543 Bintanja, R., and Van der Linden, E. C.: The changing seasonal climate in the Arctic, *Sci Rep-UK*, 3, 1556,
 544 <https://doi.org/10.1038/srep01556>, 2013.

545

546 Boike, J., Juszak, I., Lange, S., Chadburn, S., Burke, E., Overduin, P.P., Roth, K., Ippisch, O., Bornemann, N., Stern, L.,
 547 Gouttevin, I., Hauber, E., and Westermann, S.: A 20-year record (1998–2017) of permafrost, active layer and meteorological
 548 conditions at a high Arctic permafrost research site (Bayelva, Spitsbergen). *Earth Syst. Sci. Data*, 10, 355–390,
 549 <https://doi.org/10.5194/essd-10-355-2018>, 2018.

550

551 Burba, G., McDermitt, D. K., Grelle, A., Anderson, D., and Xu, L.: Addressing the influence of instrument surface heat
 552 exchange on the measurements of CO₂ flux from open-path gas analyzers, *Global Change Biol.*, 14, 1854–1876,
 553 <https://doi.org/10.1111/j.1365-2486.2008.01606.x>, 2008.

554

555 Cahoon, S. M. P., Sullivan, P. F., Post, E., and Welker, J. M.: Large herbivores limit CO₂ uptake and suppress carbon cycle
 556 responses to warming in West Greenland, *Global Change Biol.*, 2, 469–479, <https://doi.org/10.1111/j.1365-2486.2011.02528.x>, 2012.

558

559 Christiansen, J. R., Romero, A. J. B., Jørgensen, N. O. G., Glaring, M. A., Jørgensen, C. J., Berg, L. K., and Elberling, B.:
 560 Methane fluxes and the functional groups of methanotrophs and methanogens in a young Arctic landscape on Disko Island,
 561 West Greenland, *Biogeochemistry* 122, 15–33, <https://doi.org/10.1007/s10533-014-0026-7>, 2015.

562

563 Cicerone, R. J., and Oremland, R. S.: Biogeochemical aspects of atmospheric methane, *Global Biogeochem. Cy.* 2, 299–327,
 564 <https://doi.org/10.1029/GB002i004p00299>, 1988.

565

566 Curry, C.: Modelling the soil consumption of atmospheric methane at the global scale, *Global Biogeochem. Cy.*, 21, GB4012,
 567 <https://doi.org/10.1029/2006GB002818>, 2007.

568

569 D'Imperio, L., Li, B.-B., Tiedje, J. M., Oh, Y., Christiansen, J. R., Kepfer-Rojas, S., Westergaard-Nielsen, A., Brandt, K. K.,
 570 Holm, P. E., Wang, P., Ambus, P., and Elberling, B.: Spatial controls of methane uptake in upland soils across climatic and
 571 geological regions in Greenland. *Communications Earth & Environment*, 4(1), 461. <https://doi.org/10.1038/s43247-023-01143-3>, 2023

573 D'Imperio, L., Nielsen, C. S., Westergaard-Nielsen, A., Michelsen, A., and Elberling, B.: Methane oxidation in contrasting
574 soil types: responses to experimental warming with implication for landscape-integrated CH₄ budget, *Global Change Biol.*
575 23, 966–976, <https://doi.org/10.1111/gcb.13400>, 2017.

576

577

578 Donateo, A., Famulari, D., Giovannelli, D., Mariani, A., Mazzola, M., Decesari, S., Pappaccogli, G.: Observations of methane
579 net sinks in the Arctic tundra – Data, Italian Arctic Data Center (IADC), <https://doi.org/10.48230/DSET.2024.0001>, 2024.

580

581 Donateo, A., Pappaccogli, G., Famulari, D., Mazzola, M., Scoto, F., and Decesari, S.: Characterization of size-segregated
582 particles turbulent flux and deposition velocity by eddy correlation method at an Arctic site, *Atmos. Chem. Phys.*, 23, 7425–
583 7445, <https://doi.org/10.5194/acp-23-7425-2023>, 2023.

584

585 Dutaur, L., and Verchot, L.V.: A global inventory of the soil CH₄ sink. *Global Biogeochem. Cycles*, 21, 4013.
586 <https://doi.org/10.1029/2006GB002734>, 2007.

587

588 Dyukarev, E.: Comparison of Artificial Neural Network and Regression Models for Filling Temporal Gaps of Meteorological
589 Variables Time Series, *Appl. Sci.* 13, 2646, <https://doi.org/10.3390/app13042646>, 2023.

590

591 Emmerton, C. A., St Louis, V. L., Lehnher, I., Graydon, J. A., Kirk, J. L., and Rondeau, K. J.: The importance of freshwater
592 systems to the net atmospheric exchange of carbon dioxide and methane with a rapidly changing high Arctic watershed,
593 *Biogeosciences*, 13, 5849–5863, <https://doi.org/10.5194/bg-13-5849-2016>, 2016.

594

595 Emmerton, C. A., St Louis, V. L., Lehnher, I., Humphreys, E. R., Rydz, E., and Kosolofski, H. R.: The net exchange of
596 methane with high Arctic landscapes during the summer growing season, *Biogeosciences*, 11, 3095–3106,
597 <https://doi.org/10.5194/bg-11-3095-2014>, 2014.

598

599 Euskirchen, E. S., Bret-Harte, M. S., Scott, G. J., Edgar, C., and Shaver, G. R.: Seasonal patterns of carbon dioxide and water
600 fluxes in three representative tundra ecosystems in northern Alaska, *Ecosphere*, 3(1):4, <http://dx.doi.org/10.1890/ES11-00202.1>, 2012.

601

602 Finkelstein, P. L., and Sims, P. F.: Sampling error in eddy correlation flux measurements, *J. Geophys. Res-Atmos.*, 106, 3503–
603 3509, <https://doi.org/10.1029/2000JD900731>, 2001.

604

605 Fratini, G., McDermitt, D. K., and Papale, D.: Eddy-covariance flux errors due to biases in gas concentration measurements:
606 origins, quantification and correction, *Biogeosciences*, 11, 1037–1051, <https://doi.org/10.5194/bg-11-1037-2014>, 2014.

607

608 Gash, J. H. C., and Culf, A. D.: Applying a linear detrend to eddy correlation data in real time, *Bound-Lay. Meteorol.*, 79(3),
609 301 – 306, <https://doi.org/10.1007/BF00119443>, 1996.

610

611 Hicks Pries, C.E., Schuur, E.A.G. and Crummer, K.G.: Thawing permafrost increases old soil and autotrophic respiration in
612 tundra: Partitioning ecosystem respiration using d13C and Δ14C. *Glob. Change Biol.*, 19, 649–661, doi: 10.1111/gcb.12058,
613 2013

614

615 Hodson, A. J., Nowak, A., Redeker, K. R., Holmlund, E. S., Christiansen, H. H., and Turchyn, A. V.: Seasonal dynamics of
616 methane and carbon dioxide evasion from an open system pingo: Lagoon Pingo, Svalbard, *Front. Earth Sci.* 7:30,
617 <https://doi.org/10.3389/feart.2019.00030>, 2019.

618

619 Horst, T. W., and Lenschow, D. H.: Attenuation of scalar fluxes measured with spatially-displaced sensors, *Bound-Lay.
620 Meteorol.*, 130, 275–300, <https://doi.org/10.1007/s10546-008-9348-0>, 2009.

621

622

623 Howard, D., Agnan, Y., Helmig, D., Yang, Y., and Obrist, D.: Environmental controls on ecosystem-scale cold-season methane
624 and carbon dioxide fluxes in an Arctic tundra ecosystem. *Biogeosciences*, 17, 4025–4042, <https://doi.org/10.5194/bg-17-4025-2020>, 2020.

625

626

627 Howarth, R. W., Santoro, R., and Ingraffea, A.: Methane and the greenhouse gas footprint of natural gas from shale formations,
628 *Climatic Change*, <https://doi.org/10.1007/s10584-011-0061-5>, 2011.

629

630 Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson,
631 G. J., Koven, C. D., O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., and Kuhry, P.: Estimated stocks
632 of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, *Biogeosciences*, 11, 6573–6593,
633 <https://doi.org/10.5194/bg-11-6573-2014>, 2014.

634

635 Kim, Y., Johnson, M. S., Knox, S. H., Black, T. A., Dalmagro, H. J., Kang, M., Kim, J., and Baldocchi, D.: Gap-filling
636 Approaches for Eddy Covariance Methane Fluxes: A Comparison of Three Machine Learning Algorithms and a Traditional
637 Method with Principal Component Analysis, *Global Change Biol.*, 26, 1499–1518, <https://doi.org/10.1111/gcb.14845>, 2020.

638

639 Kljun, N., Calanca, P., Rotach, M. W., and Schmid, H. P.: A simple two-dimensional parameterisation for Flux Footprint
640 Prediction (FFP), *Geosci. Model Dev.*, 8, 3695–3713, <https://doi.org/10.5194/gmd-8-3695-2015>, 2015.

641

642 Knoblauch, C., Beer, C., Liebner, S., Grigoriev, M. N., and Pfeiffer, E.: Methane production as key to the greenhouse gas
643 budget of thawing permafrost, *Nature Clim. Change*, 8, 309–312, <https://doi.org/10.1038/s41558-018-0095-z>, 2018.

644

645 Knox, S. H., Bansal, S., McNicol, G., Schafer, K., Sturtevant, C., Ueyama, M., Valach, A. C., Baldocchi, D., Delwiche, K.,
646 Desai, A. R., Euskirchen, E., Liu, J., Lohila, A., Malhotra, A., Melling, L., Riley, W., Runkle, B. R. K., Turner, J., Vargas,
647 R., Zhu, Q., Alto, T., Chouinard, E., Goeckede, M., Melton, J. R., Sonnentag, O., Vesala, T., Ward, E., Zhang, Z., Feron, S.,
648 Ouyang, Z., Alekseychik, P., Aurela, M., Bohrer, G., Campbell, D. I., Chen, J., Chu, H., Dalmagro, H. J., Goodrich, J. P.,
649 Gottschalk, P., Hirano, T., Iwata, K., Jurasiczki, G., Kang, M., Koebisch, F., Mammarella, I., Nilsson, M. B., Ono, K., Peichl,
650 M., Peltola, O., Ryu, Y., Sachs, T., Sakabe, A., Sparks, J. P., Tuittila, E., Vourlitis, G. L., Wong, G. X., Windham-Myers, L.,
651 Poultier, B., and Jackson, R. B.: Identifying dominant environmental predictors of freshwater wetland methane fluxes across
652 diurnal to seasonal time scales, *Global Change Biol.*, 27, 3582–3604, <https://doi.org/10.1111/gcb.15661>, 2021.

653

654 Kral, S. T., Sjöblom, A., and Nygård, T.: Observations of summer turbulent surface fluxes in a High Arctic fjord, *Q. J. Roy. Meteorol. Soc.*, 140: 666–675, <https://doi.org/10.1002/qj.2167>, 2014.

655

656

657 Juncher Jørgensen, C., Schlaikjær Mariager, T., and Riis Christiansen, J.: Spatial variation of net methane uptake in Arctic and
658 subarctic drylands of Canada and Greenland. *Geoderma*, 443, 116815. <https://doi.org/10.1016/j.geoderma.2024.116815>, 2024

659

660 Juncher Jørgensen, C., Lund Johansen, K. M., Westergaard-Nielsen, A., and Elberling, B.: Net regional methane sink in High
661 Arctic soils of northeast Greenland, *Nat. Geosci.*, 8, 20–23, <https://doi.org/10.1038/ngeo2305>, 2015.

662

663 Intergovernmental Panel on Climate Change (IPCC) (2023) Climate Change 2021 – The Physical Science Basis: Working
664 Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge:
665 Cambridge University Press.

666

667 Ishizawa, M., Chan, D., Worthy, D., Chan, E., Vogel, F., and Maksyutov, S.: Analysis of atmospheric CH₄ in Canadian Arctic
668 and estimation of the regional CH₄ fluxes, *Atmos. Chem. Phys.*, 19, 4637–4658, <https://doi.org/10.5194/acp-19-4637-2019>,
669 2023.

670

671 Yun, J., Yang, Y., Zhou, X., Lee, J., Choi, J., Kim, M., Gyeong, H., Laffly, D., and Kang, D.: Effects of deglaciation on the
672 succession of methanotrophic communities in inland and tidewater glaciers in the high Arctic, Svalbard, *Catena*, 231.107267,
673 <https://doi.org/10.1016/j.catena.2023.107267>, 2023.

674

675 Lafleur, P. M., and Humphreys, E. R.: Spring warming and carbon dioxide exchange over low Arctic tundra in central Canada,
676 *Global Change Biol.*, 14, 740–756, <https://doi.org/10.1111/j.1365-2486.2007.01529.x>, 2007.

677

678 Lara, M. J., Nitze, I., Grosse, G., Martin, P., and McGuire, A. D.: Reduced arctic tundra productivity linked with landform and
679 climate change interactions, *Sci. Rep.* 8, 2345, <https://doi.org/10.1038/s41598-018-20692-8>, 2018.

680

681 Lau, M. C. Y., Stackhouse, B. T., Layton, A. C., Chauhan, A., Vishnivetskaya, T. A., Chourey, K., Ronholm, J., Mykytczuk,
682 N. C. S., Bennett, P. C., Lamarche-Gagnon, G., Burton, N., Pollard, W. H., Omelon, C. R., Medvигy, D. M., Hettich, R. L.,
683 Pfiffner, S. M., Whyte, L. G., and Onstott, T. C.: An active atmospheric methane sink in high Arctic mineral cryosols, *ISME J.*, 9, 1880-1891, 2015.

684

685

686 Law, K. S., Stohl, A., Quinn, P. K., Brock, C. A., Burkhardt, J. F., Paris, J.-D., Aucellet, G., Singh, H. B., Roiger, A., Schlager,
687 H., Dibb, J., Jacob, D. J., Arnold, S. R., Pelon, J., and Thomas, J. L.: Arctic air pollution: New insights from POLARCAT-
688 IPY, *B. Am. Meteorol. Soc.*, 95(12), 1873–1895, <https://doi.org/10.1175/bams-d-13-00017.1>, 2014.

689

690 Lindroth, A., Pirk, N., Jónsdóttir, I. S., Stiegler, C., Klemedtsson, L., and Nilsson, M. B.: CO₂ and CH₄ exchanges between
691 moist moss tundra and atmosphere on Kapp Linné, Svalbard, *Biogeosciences*, 19, 3921–3934, <https://doi.org/10.5194/bg-19-3921-2022>, 2022.

692

693

694 Lloyd, C. R., Harding, R. J., Friberg, T., and Aurela, R.: Surface fluxes of heat and water vapour from sites in the European
695 Arctic, *Theor. Appl. Climatol.*, 70, 19–33, <https://doi.org/10.1007/s007040170003>, 2001.

696

697 Lüers, J., Westermann, S., Piel, K., and Boike, J.: Annual CO₂ budget and seasonal CO₂ exchange signals at a high Arctic
698 permafrost site on Spitsbergen, Svalbard archipelago, *Biogeosciences*, 11, 6307–6322, <https://doi.org/10.5194/bg-11-6307-2014>, 2014.

699

700

701 Lucas, E. W. M., de Sousa, F. de A. S., dos Santos Silva, F. D., Lins da Rocha Jr, R., Cavalcante Pinto, D. D., and de Paulo
702 Rodrigues da Silva, V.: Trends in climate extreme indices assessed in the Xingu river basin - Brazilian Amazon, *Weather and
703 Climate Extremes*, 31, 100306, <https://doi.org/10.1016/j.wace.2021.100306>, 2021.

704

705 Magnani, M., Baneschi, I., Giamberini, M., Raco, M., and Provenzale, A.: Microscale drivers of summer CO₂ fluxes in the
706 Svalbard High Arctic tundra, *Sci. Rep.*, 12:763, <https://doi.org/10.1038/s41598-021-04728-0>, 2022.

707

708 Massmann, W. J.: Reply to comment by Rannik on “A simple method for estimating frequency response corrections for eddy
709 covariance systems”, *Agr. For. Meteor.*, 107, 247–251, [https://doi.org/10.1016/S0168-1923\(00\)00237-9](https://doi.org/10.1016/S0168-1923(00)00237-9), 2001.

710

711 Massmann, W. J.: A simple method for estimating frequency response corrections for eddy covariance systems, *Agr. For.
712 Meteor.*, 104, 3, 185-198, [https://doi.org/10.1016/S0168-1923\(00\)00164-7](https://doi.org/10.1016/S0168-1923(00)00164-7), 2000.

713

714 Mastepanov, M., Sigsgaard, C., Tagesson, T., Ström, L., Tamstorf, M. P., Lund, M., and Christensen, T. R.: Revisiting factors
715 controlling methane emissions from high-Arctic tundra, *Biogeosciences*, 10, 5139–5158, <https://doi.org/10.5194/bg-10-5139-2013>, 2013.

716

717 Mastepanov, M., Sigsgaard, C., Dlugokencky, E. J., Houweling, S., Strom L., Tamstorf, M. P., and Christensen, T. R.: Large
718 tundra methane burst during onset of freezing, *Nature*, 456, 628–631, <https://doi.org/10.1038/nature07464>, 2008.

719

720

721 Mauder, M., Cuntz, M., Drüe, C., Graf, A., Rebmann, C., Schmid, H. P., Schmidt, M., and Steinbrecher, R.: A strategy for
722 quality and uncertainty assessment of long-term eddy-covariance measurements, *Agr. For. Meteor.*, 169, 122–135,
723 <https://doi.org/10.1016/j.agrformet.2012.09.006>, 2013.

724

725 Mauder, M., and Foken, T.: Documentation and instruction manual of the eddy covariance software package TK2,
726 *Arbeitsergebnisse, Universitat at Bayreuth, Abt. Mikrometeorologie* 26, 45, 2004.

727

728 Mazzola, M., Viola, A. P., Choi, T., and Tampieri, F.: Characterization of Turbulence in the Neutral and Stable Surface Layer
729 at Jang Bogo Station, Antarctica, *Atmosphere*, 12, 1095, <https://doi.org/10.3390/atmos12091095>, 2021.

730

731 Mazzola, M., Tampieri, F., Viola, A. P., Lanconelli, C., and Choi, T.: Stable boundary layer vertical scales in the Arctic:
732 observations and analyses at Ny-Ålesund, Svalbard, *Q. J. Roy. Meteor. Soc.*, 142: 1250–1258, <https://doi.org/10.1002/qj.2727>,
733 2016.

734

735 McDermitt, D., Burba, G., Xu, L., Anderson, T., Komissarov, A., Riensche, B., Schedlbauer, J., Starr, G., Zona, D., Oechel,
736 W., Oberbauer, S., and Hastings, S.: A new low-power, open-path instrument for measuring methane flux by eddy covariance,
737 *Appl. Phys. B* 102, 391–405, <https://doi.org/10.1007/s00340-010-4307-0>, 2011.

738

739 Moncrieff, J., Clement, R., Finnigan, J., and Meyers, T.: Averaging, detrending, and filtering of eddy covariance time series,
740 *Handbook of Micrometeorology*. pp. 7 – 31, https://doi.org/10.1007/1-4020-2265-4_2, 2004.

741

742 Nakai, T., Van der Molen, M., Gash, J., and Kodama, Y.: Correction of sonic anemometer angle of attack errors, *Agr. For. Meteor.*,
743 136(1), 19–30, <https://doi.org/10.1016/j.agrformet.2006.01.006>, 2006.

744

745 Oechel, W. C., Laskowski, C. A., Burba, G., Gioli, B., and Kalhorn, A. A. M.: Annual patterns and budget of CO₂ flux
746 in an Arctic tussock tundra ecosystem. *J. Geophys. Res. Biogeosci.*, 119, 323–339, doi:10.1002/2013JG002431, 2014.

747

748 Oh, Y., Zhuang, Q., Liu, L., Welp, L. R., Lau, M. C. Y., Onstott, T. C., Medvige, D., Bruhwiler, L., Dlugokencky, E. J.,
749 Hugelius, G., D'Imperio, L., and Elberling, B.: Reduced net methane emissions due to microbial methane oxidation in a
750 warmer Arctic, *Nature Clim. Change*, vol. 10, 317–321, <https://doi.org/10.1038/s41558-020-0734-z>, 2020.

751

752 Ohtsuka, T., Adachi, M., Uchida, M., and Nakatsubo, T.: Relationships between vegetation types and soil properties along a
753 topographical gradient on the northern coast of the Brøgger Peninsula, Svalbard, *Polar Biosci.*, 19, 63–72,
754 [oai:nipr.repo.nii.ac.jp:000006240](https://doi.org/10.100006240), 2006.

755

756 Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B., Rambal, S., Valentini, R.,
757 Vesala, T., and Yakir, D.: Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance
758 technique: algorithms and uncertainty estimation, *Biogeosciences*, 3(4), 571–583, <https://doi.org/10.5194/bg-3-571-2006>,
759 2006.

760

761 Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R.,
762 Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-learn: Machine
763 Learning in Python, *J. Mach. Learn. Res.*, 12, 2825–2830, <https://doi.org/10.5555/1953048.2078195>, 2011.

764

765 Pirk, N., Tamstorf, M. P., Lund, M., Masteponov, M., Pedersen, S. H., Mylius, M. R., Parmentier, F.-J., Christiansen, H. H.,
766 and Christensen, T. R.: Snowpack fluxes of methane and carbon dioxide from high Arctic tundra, *J. Geophys. Res.-Biogeo.*,
767 121(11), 2886–2900, <https://doi.org/10.1002/2016jg003486>, 2016.

768

769 Pirk, N., Santos, T., Gustafson, C., Johansson, A. J., Tufvesson, F., Parmentier, F.-J., Mastepanov, M., and Christensen, T. R.:
770 Methane emission bursts from permafrost environments during autumn freeze-in: New insights from ground-penetrating radar,
771 *Geophys. Res. Lett.*, 42(16), 6732–6738, <https://doi.org/10.1002/2015GL065034>, 2015.

772

773 Reay, D., Hewitt, C. N., Smith, K., and Grace, J.: *Greenhouse Gas Sinks*, CABI, Oxfordshire, ISBN 978-1-84593-189-6, 2007.

774

775 Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T.,
776 Granier, A., Grünwald, T., Havráneková, K., Ilvesniemi, H., Janous, D., Knöhl, A., Laurila, T., Lohila, A., Loustau, D.,
777 Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J.-M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J.,
778 Seufert, G., Vaccari, F., Vesala, T., Yakir, D., and Valentini, R.: On the separation of net ecosystem exchange into assimilation
779 and ecosystem respiration: review and improved algorithm, *Global Change Biol.*, 11, 1424–1439,
780 <https://doi.org/10.1111/j.1365-2486.2005.001002.x>, 2005.

781

782 Sand, M., Berntsen, T. K., von Salzen, K., Flanner, M. G., Langner, J., and Victor, D. G.: Response of Arctic temperature to
783 changes in emissions of short-lived climate forcers, *Nature Clim. Change*, 6(3), 286–289,
784 <https://doi.org/10.1038/nclimate2880>, 2015.

785

786 Schmale, J., Zieger, P., and Ekman, A. M. L.: Aerosols in current and future Arctic climate, *Nat. Clim. Change*, 11, 95–105,
787 <https://doi.org/10.1038/s41558-020-00969-5>, 2021.

788

789 Serrano-Ortiz, P., Kowalski, A. S., Domingo, F., Ruiz, B. and Alados-Arboledas, L.: 2008: Consequences of uncertainties in
790 CO₂ density for estimating net ecosystem CO₂ exchange by open-path eddy covariance. *Bound.-Layer Meteor.*, 126, 209–218,
791 <https://doi.org/10.1007/s10546-007-9234-1>.

792

793 Serrano-Silva, N., Sarria-Guzman, Y., Dendooven, L., and Luna-Guido, M.: Methanogenesis and methanotrophy in soil: a
794 review, *Pedosphere* 24, 291–307, [https://doi.org/10.1016/S1002-0160\(14\)60016-3](https://doi.org/10.1016/S1002-0160(14)60016-3), 2014.

795

796 Serreze, M. C., and Barry, R. G.: Processes and impacts of Arctic amplification: A research synthesis, *Global Planet. Change*,
797 77, 85–96, <https://doi.org/10.1016/j.gloplacha.2011.03.004>, 2011.

798

799 Sievers, J., Sørensen, L. L., Papakyriakou, T., Else, B., Sejr, M. K., Haubjerg Søgaard, D., Barber, D., and Rysgaard, S.: Winter
800 observations of CO₂ exchange between sea ice and the atmosphere in a coastal fjord environment, *Cryosphere*, 9, 1701–1713,
801 <https://doi.org/10.5194/tc-9-1701-2015>, 2015.

802

803 Stjern, C. W., Lund, M. T., Samset, B. H., Myhre, G., Forster, P. M., Andrews, T., et al.: Arctic amplification response to
804 individual climate drivers, *J. Geophys. Res.-Atmos.*, 124, 6698–6717, <https://doi.org/10.1029/2018JD029726>, 2019.

805

806 Stull, R. B.: An introduction to boundary layer meteorology, Kluwer Academic Publishers, Dordrecht, ISBN 978-90-277-
807 2769-5, 1998.

808

809 Tan, Z., Zhuang, Q., Henze, D. K., Frankenberg, C., Dlugokencky, E., Sweeney, C., Turner, A. J., Sasakawa, M., and Machida,
810 T.: Inverse modeling of pan-Arctic methane emissions at high spatial resolution: what can we learn from assimilating satellite
811 retrievals and using different process-based wetland and lake biogeochemical models?, *Atmos. Chem. Phys.*, 16, 12649–
812 12666, <https://doi.org/10.5194/acp-16-12649-2016>, 2016.

813

814 Taylor, M. A., Celis, G., Ledman, J. D., Bracho, R., and Schuur, E. A. G.: Methane efflux measured by eddy covariance in
815 Alaskan upland tundra undergoing permafrost degradation, *J. Geophys. Res.-Biogeo.*, 123(9), 2695–2710,
816 <https://doi.org/10.1029/2018JG004444>, 2018.

817

818 Treat, C. C., Virkkala, A.-M., Burke, E., Bruhwiler, L., Chatterjee, A., Fisher, J. B., et al.: Permafrost carbon: Progress on
819 understanding stocks and fluxes across northern terrestrial ecosystems, *J. Geophys. Res.-Biogeosci.*, 129, e2023JG007638,
820 <https://doi.org/10.1029/2023JG007638>, 2024.

821

822 Treat, C.C, Bloom, A.A, Marushchak, M.E.: Nongrowing season methane emissions—a significant component of annual
823 emissions across northern ecosystems. *Glob. Change Biol.*, 24:3331–3343, <https://doi.org/10.1111/gcb.14137>, 2018

824

825 Treat, C.C., Natali, S.M., Ernakovich, J., Iversen, C.M., Lupascu, M., McGuire, A.D., Norby, R.J., Chowdhury, T.R., Richter,
826 A., Ruckov, H.S., Schade, C., Schuur, E.A.G., Sloan, V.L., Turetsky, M.R., and Waldrop, M.P.: A pan-Arctic synthesis of
827 CH₄ and CO₂ production from anoxic soil incubations. *Glob. Change Biol.*, 21, 2787–2803, <https://doi.org/10.1111/gcb.12875>,
828 2015

829

830 Uchida, M., Kishimoto, A., Muraoka, H., Nakatsubo, T., Kanda, H., and Koizumi, H.: Seasonal shift in factors controlling net
831 ecosystem production in a high Arctic terrestrial ecosystem, *J. Plant Res.*, 123, 79–85, 2009.

832

833 Ueyama, M., Iwata, H., Harazono, Y., Euskirchen, E. S., Oechel, W. C., & Zona, D. (2014). *Growing season and spatial
834 variations of carbon fluxes of Arctic and boreal ecosystems in Alaska (USA)*. *Ecological Applications*, 24(8), 1798–1816.
835 doi:10.1890/13-0725.1

836

837 Vaughn, L. J. S., Conrad, M. E., Bill, M., and Torn, M. S. (2016). Isotopic Insights into Methane Production, Oxidation, and
838 Emissions in Arctic Polygon Tundra. *Glob. Change Biol.* 22 (10), 3487–3502. doi:10.1111/gcb.13281

839

840 Vickers, D., and Mahrt, L.: Quality control and flux sampling problems for tower and aircraft data, *J. Atmos. Ocean. Tech.*,
841 14(3), 512–526, [https://doi.org/10.1175/1520-0426\(1997\)014,1997](https://doi.org/10.1175/1520-0426(1997)014,1997).

842

843 Voigt, C., Virkkala, A.-M., Gosselin, J. H., Bennett, K. A., Black, T. A., Dett, M., Chevrier-Dion, C., Guggenberger, G.,
844 Hashmi, W., Kohl, L., Kou, D., Marquis, C., Marsh, P., Marushchak, M. E., Nesic, Z., Nykänen, H., Saarela, T., Sauheitl, L.,
845 Walker, B., Weiss, N., Wilcox, E. J., and Sonnentag, O.: Arctic soil methane sink increases with drier conditions and higher
846 ecosystem respiration, *Nature Clim. Change*, 13, 1095–1104, <https://doi.org/10.1038/s41558-023-01785-3>, 2023.

847

848 Wagner, I., Hung, J. K. Y., Neil, A., and Scott, N. A.: Net greenhouse gas fluxes from three High Arctic plant communities
849 along a moisture gradient, *Arct. Sci.*, 5, 185–201, <https://doi.org/10.1139/as-2018-0018>, 2019.

850

851 Wang, L., Lee, X., Wang, W., Wang, X., Wei, Z., W., C., Fu, C., Gao, Y., Lu, L., Song, W., Su, P. and Lin, G.: 2017. A Meta-
852 Analysis of open-path eddy covariance observations of apparent CO₂ flux in cold conditions in FLUXNET. *J. Atmos. Oceanic
853 Technol.*, 34, 2475–2487, <https://doi.org/10.1175/JTECH-D-17-0085.1>, 2017

854

855 Wang, Y., Yuan, F., Arndt, K.A., Liu, J., He, L., Zuo, Y., Zona, D., Lipson, D.A., Oechel, W.C., Ricciuto, D.M., Wullschleger,
856 S.D., Thornton, P.E. and Xu, X.: Upscaling Methane Flux From Plot Level to Eddy Covariance Tower Domains in Five
857 Alaskan Tundra Ecosystems. *Front. Environ. Sci.* 10:939238, doi: 10.3389/fenvs.2022.939238, 2022.

858

859 Webb, E. K., Pearman, G. I., and Leuning, R.: Correction of the flux measurements for density effects due to heat and water
860 vapour transfer, *Q. J. Roy. Meteor. Soc.*, 106, 85–100, <https://doi.org/10.1002/qj.49710644707>, 1980.

861

862 Wilczak, J. M., Oncley, S. P., and Stage, S. A.: Sonic anemometer tilt correction algorithms, *Bound-Lay. Meteorol.*, 99, 127–
863 150, <https://doi.org/10.1023/A:1018966204465>, 2001.

864

865 Winther, J.-G., Bruland, O., Sand, K., Gerland, S., Marechal, D., Ivanov, B., Glowacki, P., and König, M.: Snow research in
866 Svalbard - an overview, *Polar Research*, 22, 125–144, <https://doi.org/10.1111/j.1751-8369.2003.tb00103.x>, 2003.

867

868 Zona, D., Lafleur, P. M., Hufkens, K., Gioli, B., Bailey, B., Burba, G., Euskirchen, E. S., Watts, J. D., Arndt, K. A., Farina, M., Kimball, J. S., Heimann, M., Göckede, M., Pallandt, M., Christensen, T. R., Mastepanov, M., López-Blanco, E., Dolman, A. J., Commane, R. ... Oechel, W. C.: Pan-Arctic soil moisture control on tundra carbon sequestration and plant productivity, Global Change Biol., 29, 1267–1281, <https://doi.org/10.1111/gcb.16487>, 2022.

872

873 Zona, D., Gioli, B., Commane, R., Lindaas, J., Wofsy, S. C., Miller, C. E., Dinardo, S. J., Dengel, S., Sweeney, C., Karion, A., Chang, R.-W., Henderson, J. M., Murphy, P. C., Goodrich, J. P., Moreaux, V., Liljedahl, A., Watts, J. D., Kimball, J. S., Lipson, D. A., and Oechel, W. C.: Cold season emissions dominate the Arctic tundra methane budget, P. Natl. Acad. Sci. USA, 113(1), 40–45, <https://doi.org/10.1073/pnas.1516017113>, 2016.

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

Table 1 Statistical analysis for the CO₂ and CH₄ fluxes in the measurement site separated into five different seasons defined
919 in this work.

920

	CO ₂ flux (μmol m ⁻² s ⁻¹)				
	Dark W.	Light W.	Thawing	Summer	Freezing
mean	0.007	-0.157	-0.346	-0.458	-0.026
median	0.020	-0.839	-0.178	-0.368	-0.794
25 th percentile	-0.127	-0.311	-0.500	-0.776	-0.140
75 th percentile	0.155	-0.067	-0.080	-0.133	0.058
min	-0.724	-3.044	-1.519	-1.951	-0.236
max	0.966	0.638	0.106	0.515	0.323

	CH ₄ flux (nmol m ⁻² s ⁻¹)				
	Dark W.	Light W.	Thawing	Summer	Freezing
mean	-0.368	-0.665	-0.972	-1.375	-0.498
median	-0.175	-0.359	-0.83	-1.284	-0.688
25 th percentile	-0.958	-1.018	-1.512	-2.292	-1.424
75 th percentile	0.302	0.043	-0.055	-0.467	0.137
min	-4.599	-7.271	-5.594	-5.319	-3.202
max	6.993	1.779	1.207	2.673	1.842

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

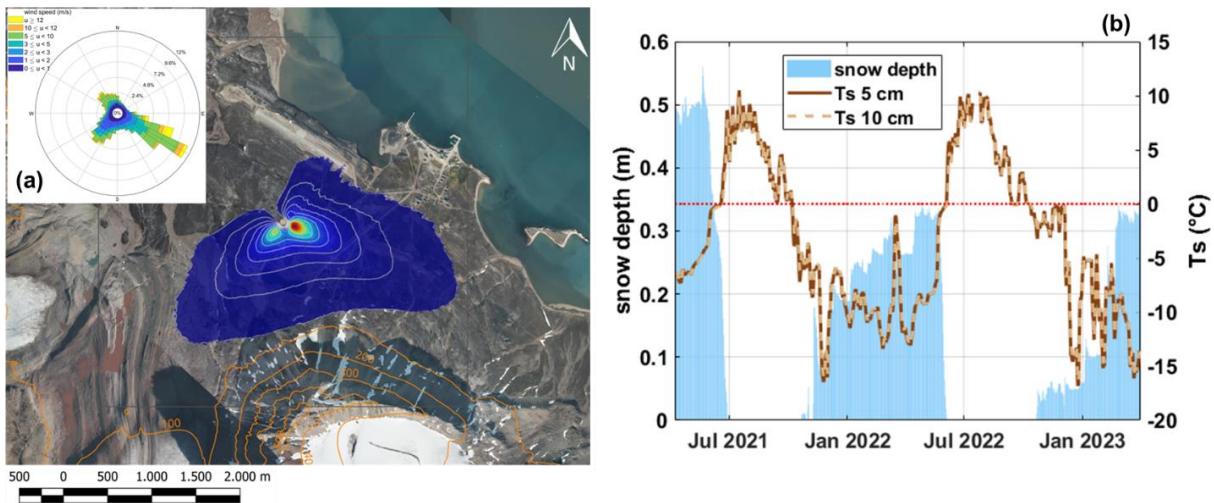
939

940

941

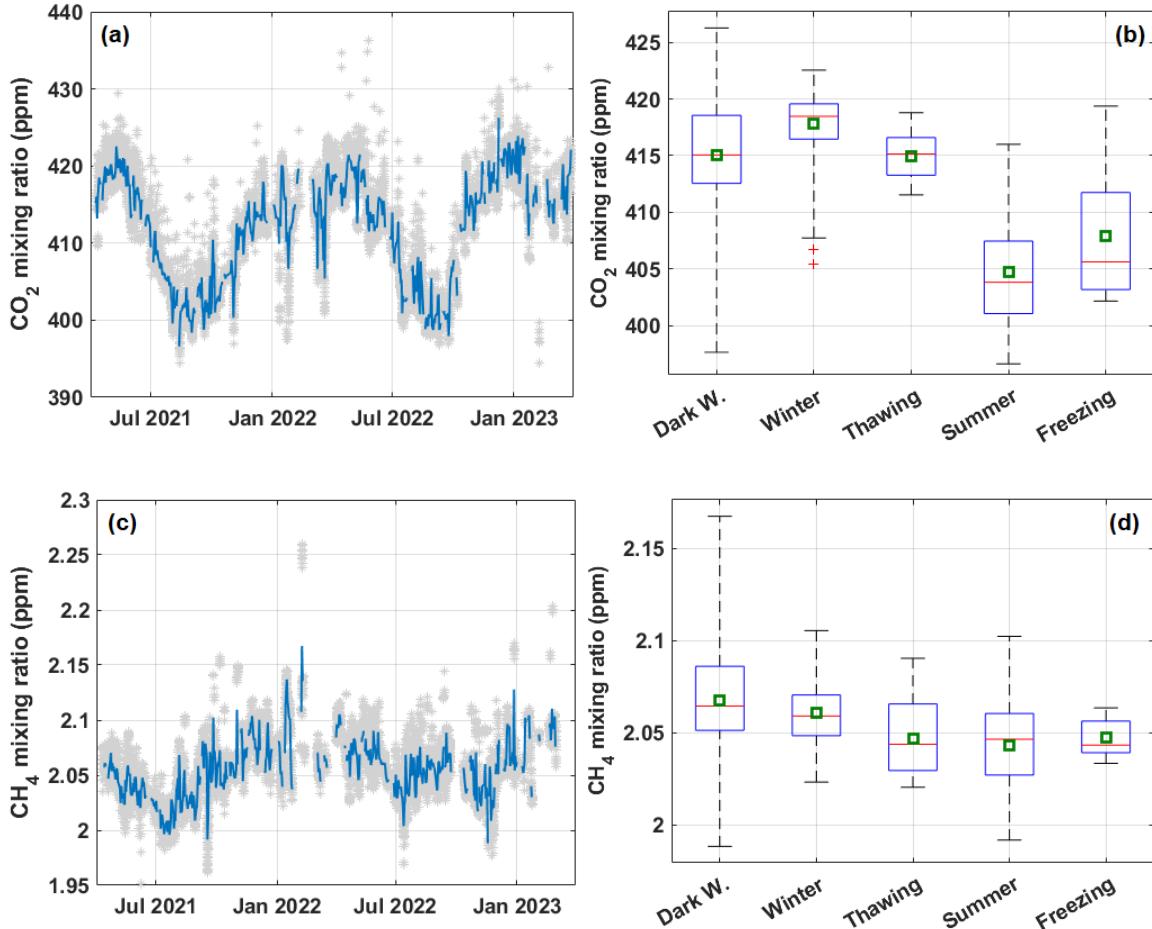
942

943


944
945
946
947
Table 2 Mean mass cumulative g CO₂ and mg CH₄ for each season defined in this work and the mean cumulated g CO₂ and
mg CH₄ yearly in the measurement site. The values are reported for the original gap time series (RAW), the gap-filled dataset
with MDS and RF procedure.

CO ₂ cumulated (g CO ₂ m ⁻²)						
	Dark W.	Light W.	Thawing	Summer	Freezing	Year
RAW	-1.27	-7.19	-4.87	-65.97	-0.43	-65.01
MDS	-0.38	-14.25	-18.69	-126.38	-0.66	-131.37
RF	-8.04	-14.49	-19.58	-157.41	-1.04	-164.55

CH ₄ cumulated (mg CH ₄ m ⁻²)						
	Dark W.	Light W.	Thawing	Summer	Freezing	Year
RAW	-13.78	-7.47	-3.99	-73.69	-7.15	-77.52
RF	-21.35	-28.32	-29.81	-135.74	-9.88	-182.78


948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979

980

981 **Figure 1** (a) Location map of the observation site: Ny Ålesund (Svalbard, Norway). Yellow point indicates the Amundsen-Nobile Climate
 982 Change Tower (CCT). © Norwegian Polar Institute, www.npolar.no (accessed on 12/03/2024). In the figure it was also reported foreground
 983 the flux footprint for the measurement setup (Section 2.3) at 80% contour line. In the inset the wind rose is reported for the period 2010-
 984 2023. (b) Soil temperature at two depths (5 cm and 10 cm) on the right axis and snow height (on the left axis) at the CCT site.
 985

986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017

1018
1019 **Figure 2** Time series on a daily basis (left) and whiskers-box plots (right) of (a,b) CO₂ and (c,d) CH₄ mixing ratio. In the left panels, in light
1020 grey the time series for CO₂ and CH₄ mixing ratio at 30 min resolution. In the right panels, whiskers represent max and min values, the box
1021 limits are the 25th and 75th percentiles. The red line represents the median value on a 30 min basis.
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038

1039

1040

1041
1042
1043
1044

1045

1046

1047

1048

1049

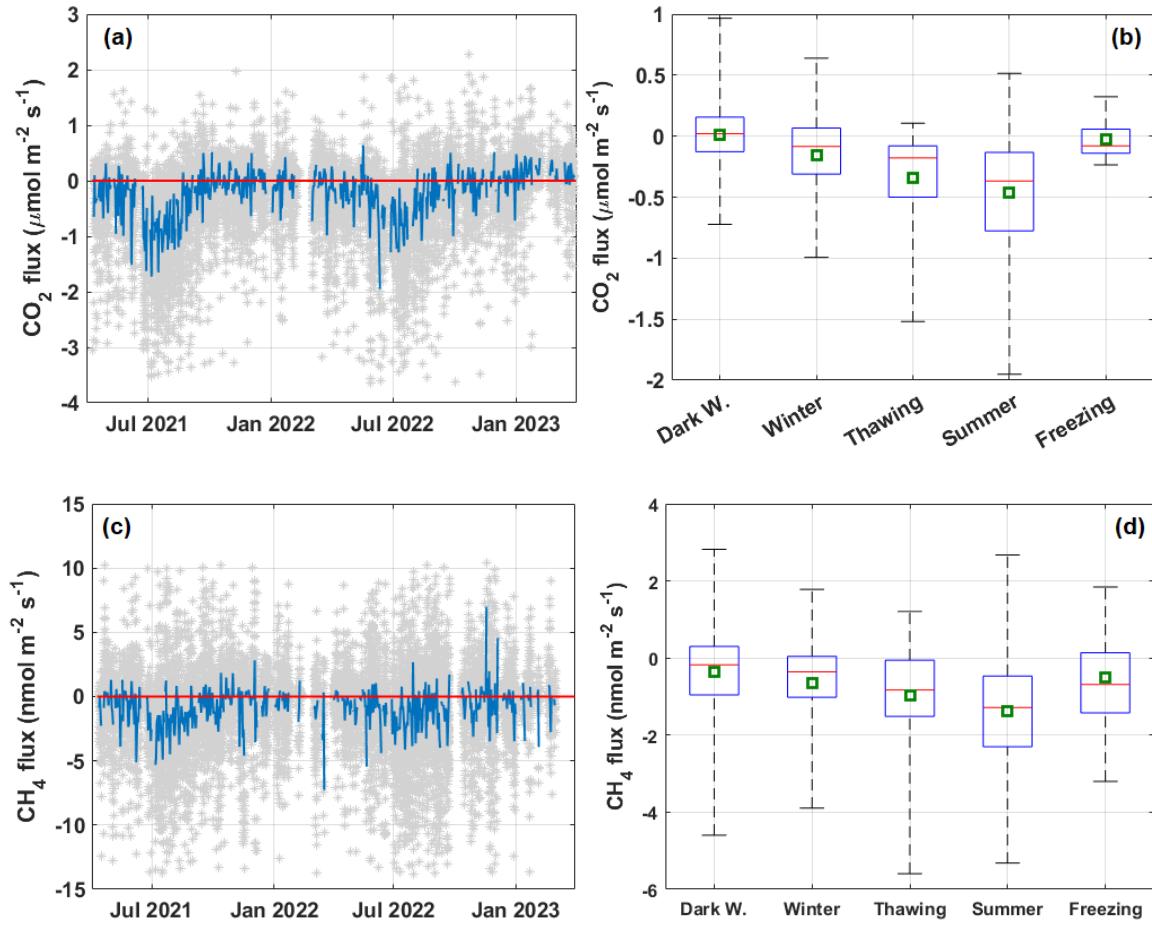
1050

1051

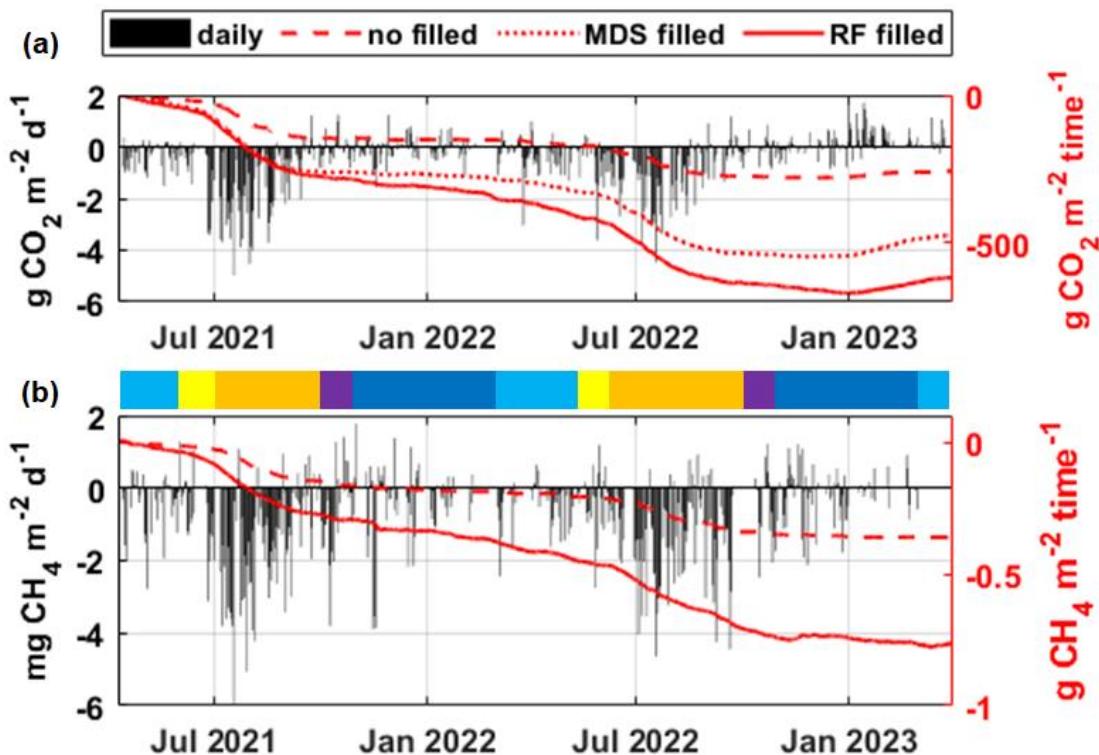
1052

1053

1054


1055

1056


1057

1058

1059

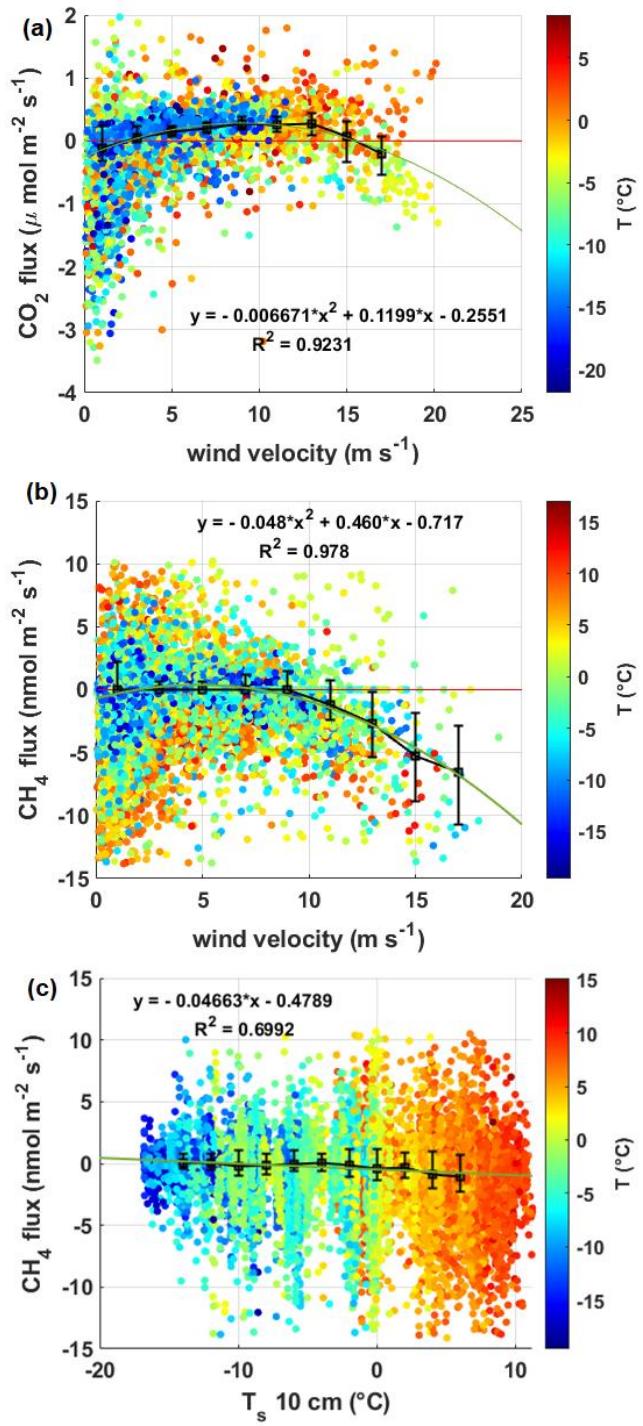
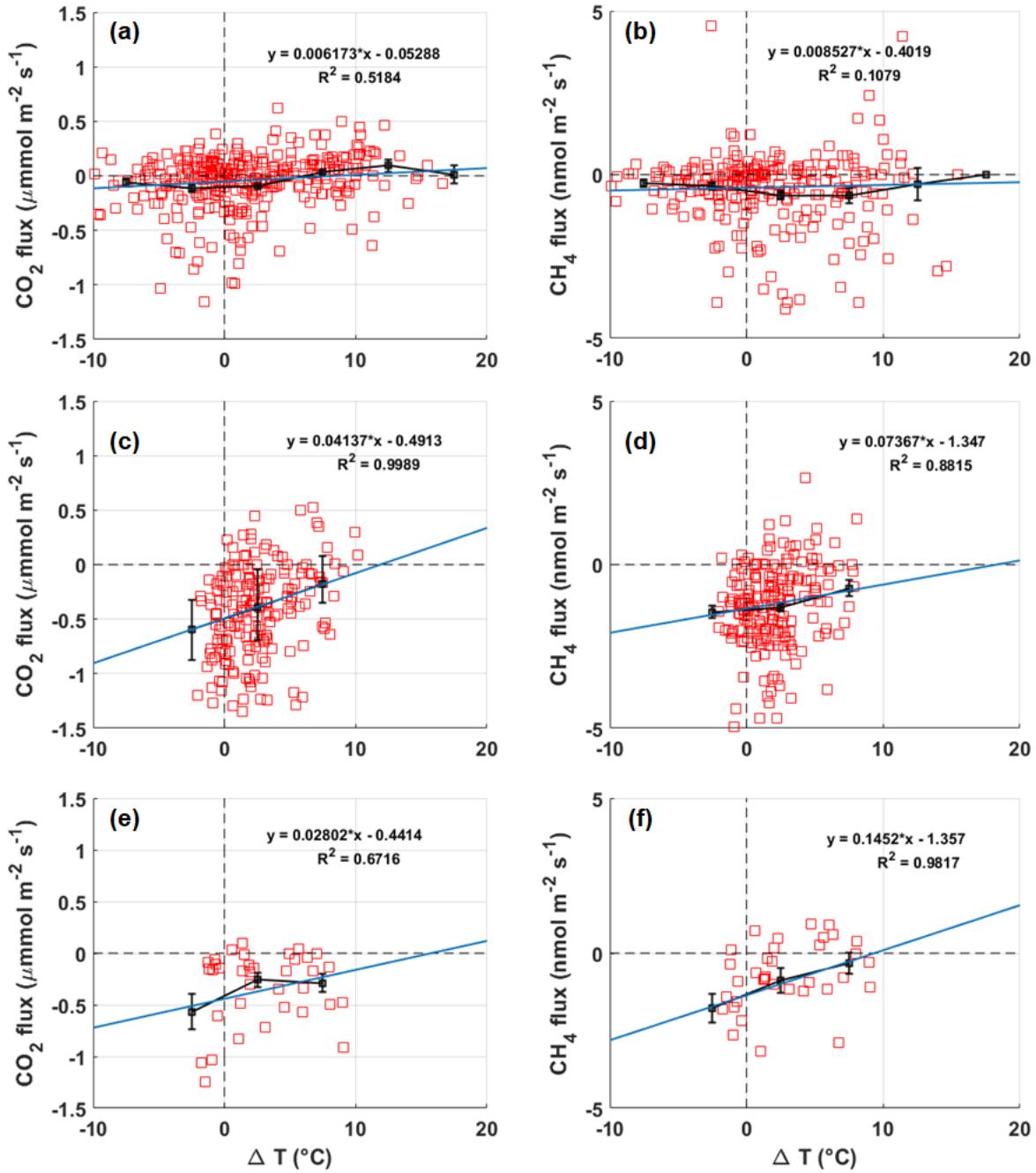


Figure 3 Time series on a daily basis (left) and whiskers-box plots (right) of turbulent vertical flux (a,b) CO₂ and (c,d) CH₄ measured at CCT. In the left panels, in light grey the time series for CO₂ and CH₄ mole fraction at 30 min resolution and the red line represent the zero level for fluxes. In the right panels, whiskers represent max and min values, the box limits are the 25th and 75th percentiles. The red line represents the median value and the green square the average value.

1060
1061 **Figure 4** Daily (black bars - left axis) and mass cumulative (red - right axis) ecosystem exchange for (a) CO₂ and (b) CH₄ measured at CCT
1062 site. Mass cumulative exchange for CO₂ and CH₄ was reported: dashed line for no gap filled time series, dotted line for MDS and continuous
1063 line for RF. Central multicoloured bar separates the time series into five different seasons: blue for light winter, yellow for thawing, orange
1064 for summer, purple for freezing and navy for dark winter.

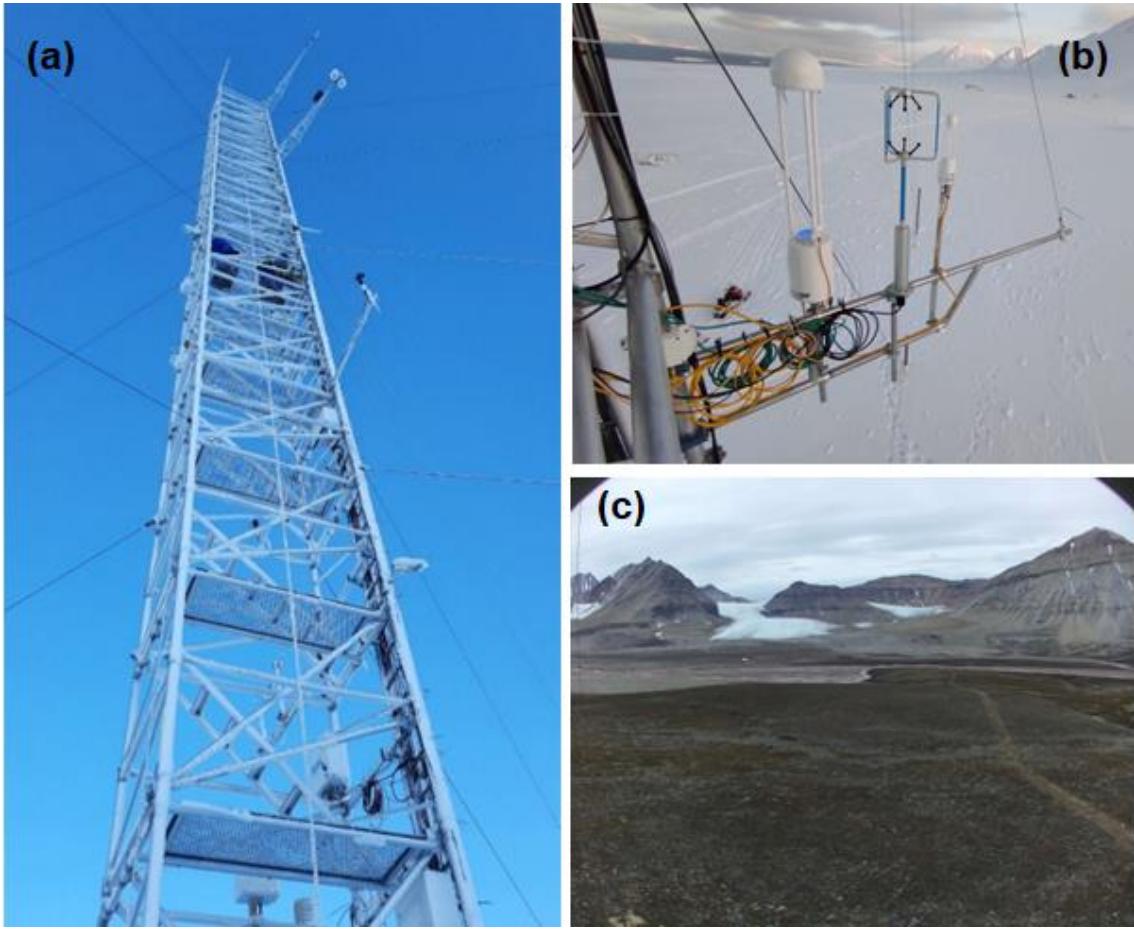
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083


1084

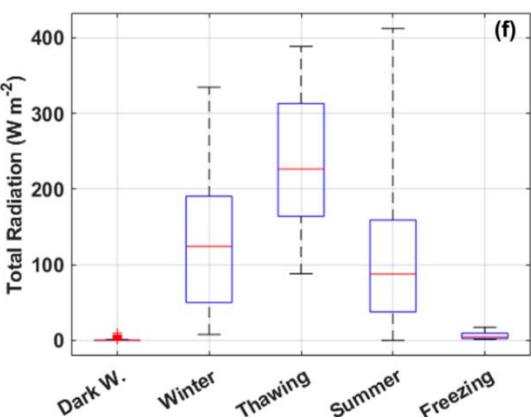
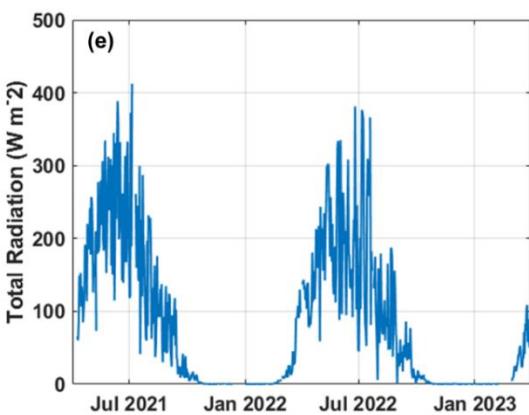
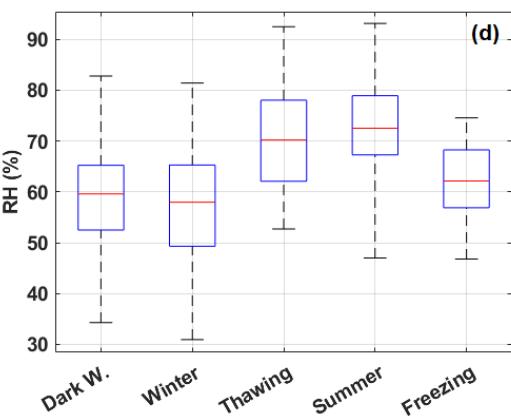
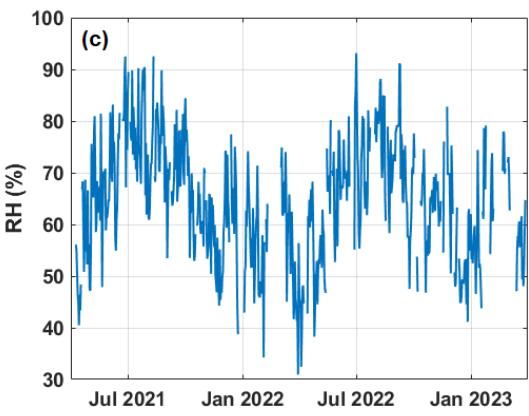
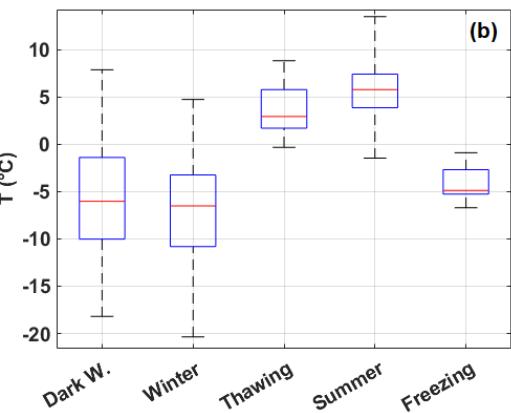
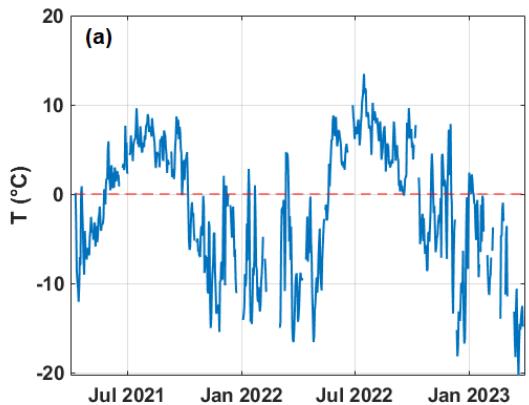
1085

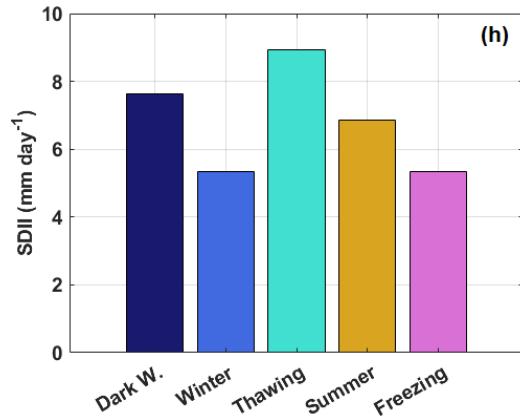
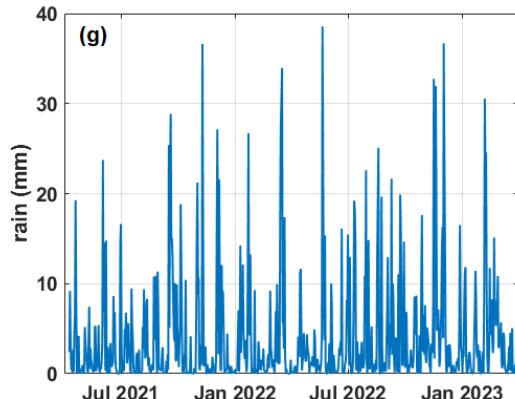
1086

1087


Figure 5 Scatter plot of turbulent vertical (a) CO₂ and (b) flux against wind speed. In (a) data was selected for the snow covered period (dark and light winter). (c) Scatter plot of the vertical CH₄ flux as a function of the soil temperature T_s . Data in the panels is colour-coded according to air temperature T.

1088







1089
1090
1091
1092
1093
1094



Figure 6 CO₂ vertical fluxes against temperature anomalies for (a) the whole winter (dark + light winter), (c) the summer and (e) the thawing season. CH₄ vertical fluxes against temperature anomalies for (b) the whole winter, (d) the summer and (f) the thawing season. A linear fit of the data is reported with a green line. Black squares represent the flux data binned for ΔT bins (5°C large). Error bars represent the standard errors.

1095

1096 **Figure A1** (a) Climate Change Tower (CCT) picture with several instrumentations installed at different heights. (b) A picture of the EC
1097 installation setup with Li7700 (left), sonic anemometer (middle) and Li7500A (right) on the steel horizontal bar. c) A bird's-eye view of the
1098 tundra in the CCT site. Photo courtesy of Roberto Salzano (CNR-IIA).
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115

Figure B1 Time series and box plot with whiskers on daily and seasonal basis respectively of (a-b) temperature ($^{\circ}\text{C}$); (c-d) relative humidity (%); (e) total radiation (downward shortwave radiation) (W m^{-2}) and (f) SDII (mm d^{-1}) at CCT site. In the right panels, whiskers represent max and min values, the box limits are the 25th and 75th percentiles. The red line represents the median value on a 30 min basis.

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

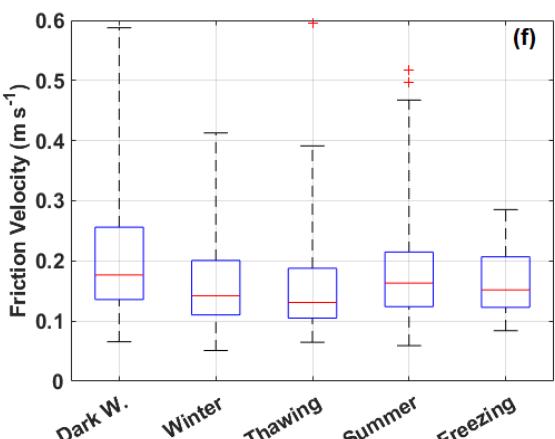
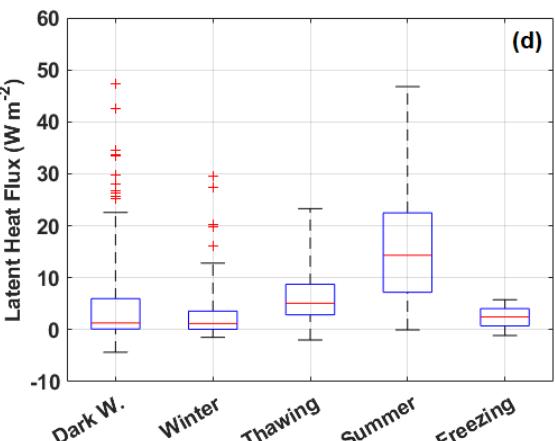
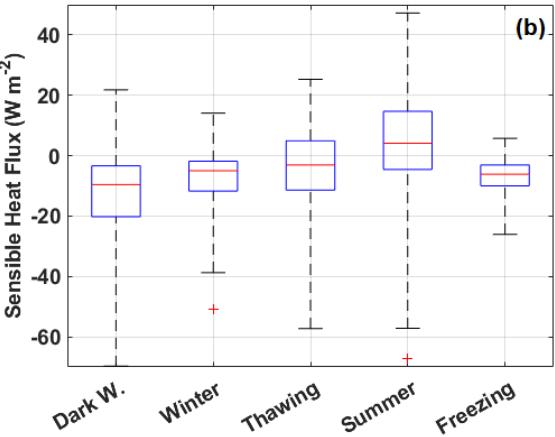
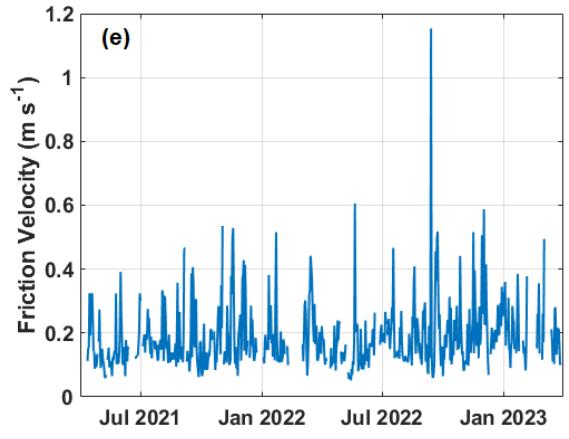
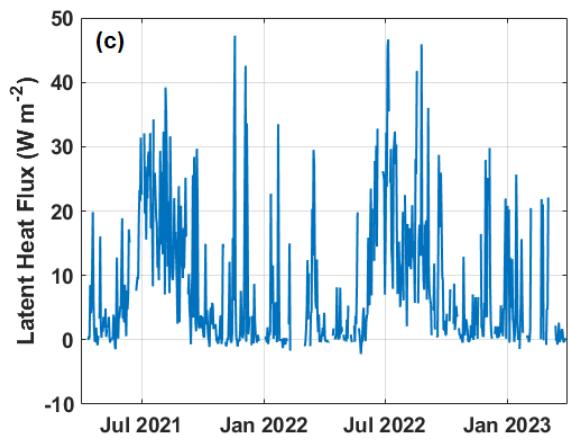
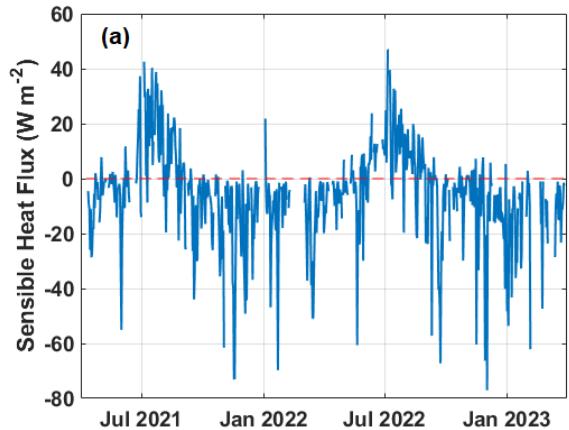
1147

1148

1149

1150

1151







1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

Figure C1 Time series on a daily basis (left) and whiskers-box plots (right) of the principal micrometeorological variables measured during the campaign. (a,b) Sensible heat flux (W m^{-2}); (c,d) latent heat flux (W m^{-2}) and (e,f) friction velocity (m s^{-1}). In the right panels, whiskers represent max and min values, the box limits are the 25th and 75th percentiles. The red line represents the median value on a 30 min basis.

FIGURE CAPTIONS

Figure 1 (a) Location map of the observation site: Ny Ålesund (Svalbard, Norway). Yellow point indicates the Amundsen-Nobile Climate Change Tower (CCT). © Norwegian Polar Institute, www.npolar.no (accessed on 12/03/2024). In the figure it was also reported foreground the flux footprint for the measurement setup (Section 2.3) at 80% contour line. In the inset the wind rose is reported for the period 2010-2023. (b) Soil temperature at two depths (5 cm and 10 cm) on the right axis and snow height (on the left axis) at the CCT site.

Figure 2 Time series on a daily basis (left) and whiskers-box plots (right) of (a,b) CO₂ and (c,d) CH₄ mixing ratio. In the left panels, in light grey the time series for CO₂ and CH₄ mixing ratio at 30 min resolution. In the right panels, whiskers represent max and min values, the box limits are the 25th and 75th percentiles. The red line represents the median value on a 30 min basis.

Figure 3 Time series on a daily basis (left) and whiskers-box plots (right) of turbulent vertical flux (a,b) CO₂ and (c,d) CH₄ measured at CCT. In the left panels, in light grey the time series for CO₂ and CH₄ mole fraction at 30 min resolution and the red line represent the zero level for fluxes. In the right panels, whiskers represent max and min values, the box limits are the 25th and 75th percentiles. The red line represents the median value and the green square the average value.

Figure 4 Daily (black bars - left axis) and mass cumulative (red - right axis) ecosystem exchange for (a) CO₂ and (b) CH₄ measured at CCT site. Mass cumulative exchange for CO₂ and CH₄ was reported: dashed line for no gap filled time series, dotted line for MDS and continuous line for RF. Central multicoloured bar separates the time series into five different seasons: blue for light winter, yellow for thawing, orange for summer, purple for freezing and navy for dark winter.

Figure 5 Scatter plot of turbulent vertical (a) CO₂ and (b) flux against wind speed. In (a) data was selected for the snow covered period (dark and light winter). (c) Scatter plot of the vertical CH₄ flux as a function of the soil temperature Ts. Data in the panels is colour-coded according to air temperature T.

Figure 6 CO₂ vertical fluxes against temperature anomalies for (a) the whole winter (dark + light winter), (c) the summer and (e) the thawing season. CH₄ vertical fluxes against temperature anomalies for (b) the whole winter, (d) the summer and (f) the thawing season. A linear fit of the data is reported with a green line. Black squares represent the flux data binned for ΔT bins (5 °C large). Error bars represent the standard errors.

Figure A1 (a) Climate Change Tower (CCT) picture with several instrumentations installed at different heights. (b) A picture of the EC installation setup with Li7700 (left), sonic anemometer (middle) and Li7500A (right) on the steel horizontal bar. c) A bird's-eye view of the tundra in the CCT site. Photo courtesy of Roberto Salzano (CNR-IIA).

Figure B1 Time series and box plot with whiskers on daily and seasonal basis respectively of (a-b) temperature (°C); (c-d) relative humidity (%); (e) total radiation (downward shortwave radiation) (W m⁻²) and (f) SDII (mm d⁻¹) at CCT site. In the right panels, whiskers represent max and min values, the box limits are the 25th and 75th percentiles. The red line represents the median value on a 30 min basis.

Figure C1 Time series on a daily basis (left) and whiskers-box plots (right) of the principal micrometeorological variables measured during the campaign. (a,b) Sensible heat flux (W m⁻²); (c,d) latent heat flux (W m⁻²) and (e,f) friction velocity (m s⁻¹). In the right panels, whiskers represent max and min values, the box limits are the 25th and 75th percentiles. The red line represents the median value on a 30 min basis.