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Abstract. Accurate representation of croplands is essential for simulating terrestrial water, energy, and carbon fluxes over 

India because croplands constitute more than 50% of the Indian land mass. Wheat and rice are the two major crops grown in 

India, covering more than 80% of the agricultural land. The Community Land Model version 5 (CLM5) has significant errors 

in simulating the crop phenology, yield, and growing season lengths due to errors in the parameterizations of the crop module, 

leading to errors in carbon, water, and energy fluxes over these croplands. Our study aimed to improve the representation of 15 

wheat and rice crops in CLM5. Unfortunately, the crop data necessary to calibrate and evaluate the models over the Indian 

region is not readily available. This study used comprehensive wheat and rice novel crop data for India created by digitizing 

historical observations. This dataset is the first of its kind, covering 50 years and over 20 sites of crop growth data across 

tropical regions, where data has traditionally been spatially and temporally sparse. We used eight wheat sites and eight rice 

sites from the recent decades. Many sites have multiple growing seasons, taking the tally up to nearly 20 growing seasons for 20 

each crop. We used this data to calibrate and improve the representation of the sowing dates, growing season, growth 

parameters, and base temperature in the CLM5 model. The modified CLM5 performed much better than the default model in 

simulating the crop phenology, yield, carbon, water, and energy fluxes compared to the site scale data and remote sensing 

observations. For instance, Pearson's r for monthly LAI improved from 0.35 to 0.92, and monthly GPP improved from -0.46 

to 0.79 compared to MODIS monthly data. The r value of the monthly sensible and latent heat fluxes improved from 0.76 and 25 

0.52 to 0.9 and 0.88, respectively. Moreover, because of the corrected representation of the growing seasons, the seasonality 

of the simulated irrigation now matched the observations. This study demonstrates that the global land models must use region-

specific parameters rather than global parameters for accurately simulating vegetation processes and corresponding land 

surface processes. The improved CLM5 model can be used to investigate the changes in growing season lengths, water use 

efficiency, and climate impacting crop growth of Indian crops in future scenarios. The model can also help in providing 30 

estimates of crop productivity and net carbon capture abilities of agroecosystems in future climate. 
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1 Introduction 

Land Surface Models (LSMs), the land components of Earth System Models (ESMs), represent a wide variety of processes, 

including energy partitioning, carbon and mass exchange, and interaction with the hydrological cycle, to name a few. LSMs 

provide boundary conditions and interact with various components of ESMs (Fisher and Koven, 2020; Strebel et al., 2022). 35 

LSMs have come a long way, from a very basic representation of energy budget at the surface level to a very complex state 

where each grid cell consists of multiple land units and unique interaction of the individual land unit with the atmospheric 

forcings (Blyth et al., 2021). LSMs use sophisticated parametrization and modules to represent the complex land surfaces and 

their interactions with other components of ESMs. One important component of LSMs that significantly impacts not only land 

processes but also atmospheric processes is agricultural land. LSMs strive towards a realistic depiction of agricultural land 40 

cover and its processes. Until the last decade, the depiction of crops was mainly constrained to rudimentary models that do not 

include agricultural practices such as irrigation and fertilization or simply depicted crops as natural grassland (Elliott et al., 

2015; McDermid et al., 2017). Enhancements to crop modules gave LSMs a greater capacity to investigate changes in water 

and energy cycles from croplands and crop yield in response to climate, environment, land use, and land management 

variations. Recent studies provide valuable insights for enhancing the accuracy of simulating biogeophysical and 45 

biogeochemical processes at both regional and global scales in LSMs (Lobell et al., 2011; Osborne et al., 2015; Sheng et al., 

2018; Lombardozzi et al., 2020; Boas et al., 2021; Ma et al., 2023). 

The Community Land Model (CLM) has, since version 4.0, included a prognostic crop module based on the Agroecosystem 

Integrated Biosphere Simulator (Agro-IBIS) (Levis et al., 2012; Lawrence et al., 2018; Lawrence et al., 2019). This module 

can simulate the soil-vegetation-atmosphere system, including crop yields. The most recent version of CLM, CLM5, is a 50 

leading land surface model with an interactive crop module representing crop management. The module comprises eight crop 

types that are actively managed: temperate soybean, tropical soybean, temperate corn, tropical corn, spring wheat, cotton, rice, 

and sugarcane. It also contains irrigated, non-irrigated, and unmanaged crops (Lombardozzi et al., 2020). Currently, CLM5 is 

the sole land surface model incorporating dynamic spatial patterns of significant crop varieties and their management 

(Lombardozzi et al., 2020). Although CLM5 showed advancements compared to its previous versions, limited research 55 

conducted at the point and regional scales indicates that it may provide poor phenology and yield predictions for specific crops 

(Chen et al., 2018; Sheng et al., 2018; Boas et al., 2021). The energy and carbon fluxes are highly affected by inaccuracies in 

crop phenology, particularly concerning the timing of planting and harvesting. 

The Indian subcontinent is a significant landmass that significantly affects the earth system energy, water, and carbon fluxes. 

Nearly 50% of the land cover is used for agriculture in India, and two major cereal crops, wheat and rice, occupy nearly 80% 60 

of the total agricultural land. However, CLM5 simulations of rice and wheat over the Indian subcontinent show large biases in 

simulating annual crop yield (Lombardozzi et al., 2020). The major growing seasons of wheat and rice are the rabi and kharif 

seasons, but CLM5 grows wheat and rice in the summer and rabi seasons, respectively. The irrigation patterns simulated by 

CLM have a bias in seasonality, which Mathur and AchuthaRao. (2019) highlighted. Irrigation is an essential feature of the 
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croplands in India, especially during the rabi season (Gahlot et al., 2020) for wheat and in dry regions for rice. Therefore, the 65 

bias in irrigation points to the lack of accurate representation of Indian crops. 

Gahlot et al. (2020) used an LSM (Integrated Science Assessment Model; ISAM) to investigate the wheat croplands of India. 

The major drawback of the study was the lack of enough site-scale observations to calibrate and validate the model while 

covering the broad growing conditions of India. Therefore, in this study, we aim to investigate and improve the representation 

of major Indian crops—wheat and rice—in the latest version of CLM (CLM5.0). We used site-scale observations from multiple 70 

sites to calibrate the parameters essential for the crop module in CLM5 and evaluate the model. The site-scale observations 

cover various climatic conditions experienced by crops in India, thus making this a robust calibration of an LSM. Further, we 

aimed to quantify the impacts of realistic representation of Indian crops on various land processes such as irrigation, gross 

primary production, latent heat, and sensible heat.  

The current paper is structured as follows: First, we briefly describe the CLM5 model and the site scale data used in this study. 75 

Then, we describe the shortcomings of CLM5 in simulating Indian crops, comparing them to the observations. Next, we dive 

into the need for modifications in CLM5 and the changes made to parameters and the source code of the CLM5. The results 

section compares our improved model at site and regional scales. We compare the CLM5 simulations against observed Leaf 

Area Index (LAI), yield, and growing season length at site scale. At the regional scale, we compare against yield, irrigation 

patterns, LAI, Gross Primary Production (GPP), Latent Heat flux (LH), and Sensible Heat flux (SH) observations. Finally, we 80 

discuss the impact of the study and the conclusions. 

2 Materials and Methods 

2.1 Community Land Model version 5 (CLM5.0) 

CLM5 is the latest version of the land component in the Community Earth System Model (CESM) (Lawrence et al., 2018, 

2019). The biogeochemistry mode of CLM5 (CLM5-BGC) is widely used to estimate the water, energy, and carbon fluxes in 85 

various climatic zones (Cheng et al., 2021; Denager et al., 2023; Song et al., 2020; Seo and Kim, 2023). The biogeochemistry 

and crop module of CLM5 (BGC-Crop) is modified in various studies to meet regional constraints, and the resulting impact 

on various fluxes is analyzed (Boas et al., 2021; Raczka et al., 2021; Boas et al., 2023; Yin et al., 2023). Studies show that 

incorporating agriculturally managed land cover can improve the general representation of biogeochemical processes (Boas et 

al., 2021). The CLM5 crop module includes new crop functional types, updated fertilization rates and irrigation triggers, a 90 

transient crop management option, and some adjustments to phenological parameters (Lombardozzi et al., 2020). 

CLM5 has a better representation of the land surface by using a tile representation. This allows the model to have various land 

types inside a grid cell. In its latest version, the model supports 79 plant functional types with 32 rainfed and 32 irrigated crop 

types. The complex representation of the land surface makes CLM5 a better model on various metrics tested by International 

Land Model Benchmarking (ILAMB) (Collier et al., 2018). 95 

The current study used the CLM5 model in the data atmosphere mode, i.e., not interacting with the atmosphere. The GSWP3 

atmospheric data is used for the simulations. We ran CLM5 at two different spatial resolutions from 2000 to 2014: site-scale 
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simulations to calibrate the crop module and regional simulations to evaluate the calibrated model against remote sensing data 

and derived surface flux data (Sect. 2.5). The plant functional type of the crops in CLM5 considered in this study are wheat 

(19: rainfed and 20: irrigated) and rice (61: rainfed and 62: irrigated). The default CLM5 model is referred to as CLM5_Def 100 

throughout this paper. CLM5_Mod1 and CLM5_Mod2 are the two setups of the model developed in this study, and they are 

described in detail in Section 2.3. The overall methodology and steps followed in this study are depicted as a flowchart (Figure 

S1) and explained in detail in the following sections. 

2.1.1 Site scale simulations 

For site scale simulations, we created domain, surface, and land use time series data for the respective sites (for details on sites, 105 

Section 2.2 and Figure 1). The resolution of the data is 0.1° and has one grid cell with the site at its center. The method used 

to generate the data is available in the documentation of Reddy et al. (2024). The domain file represents the spatial extent of 

our simulation. The surface data represents the local soil and surface properties. The land use time series reflects the varying 

land-use land cover change from 1850 to 2015 at sites. Spin-up at each site is carried out for 200 years in accelerated deposition 

mode (AD mode) and 400 years in normal mode. The GSWP3 atmospheric data is used for the site scale simulations. 110 

2.1.2 Regional-scale simulations 

For regional scale simulations, we fixed the domain between 60 °E to 100 °E and 0 °N to 40 °N (Figure S2), covering the 

Indian subcontinent. The domain, surface, and land use time series data are generated for the domain mentioned above with a 

spatial resolution of 0.5° (files available at Reddy et al., 2024). The spin-up for the regional case is carried out in two stages. 

Two hundred years of spin-up in AD mode and 400 years in normal mode. The simulation data at the end of 400 years is used 115 

as initial conditions for our regional simulations. The regional simulations are run from 1995 to 2014, and the data from 2000 

to 2014 is used for the analysis. The GSWP3 atmospheric data is used as atmospheric forcing for the regional scale simulations. 

2.2 Site scale crop data 

Site-scale data of the type and quality required for calibrating and validating crop models are not readily available in India. 

This is unfortunate because plenty of data has been collected, but they have never been properly archived. India has invested 120 

heavily in agricultural studies and has built nearly 70 agricultural institutes nationwide since the green revolution in the 1960s, 

with each state having at least one institute dedicated to studying regional crops. Master's and PhD student theses from these 

institutes, many containing site-scale observations, were recently consolidated and brought into the public domain in the 

KrishiKosh repository (Veeranjaneyulu, 2014). However, the data is complex to extract from these theses because of the data 

collection and reporting structure differences followed by various institutes. For this study, we assembled data on wheat and 125 

rice in a formatted, machine-readable format that can be downloaded and used for model development. The data is available 

on the PANGEA repository (Varma et al., 2024). We used the site scale data (years 2000 to 2014) generated by Varma et al. 

(2024) to evaluate our CLM5 model (Table S1 and Figure 1). 

2.3 Improvements in CLM5 

The parameters impacting planting and growing stages in CLM5 are minimum and maximum planting dates, minimum 130 

planting temperature, planting temperature, base temperature for Growing Degree-Day (GDD) calculations, minimum GDD 
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for crop emergence, and GDD threshold for crop grain fill. The minimum planting temperature and the average minimum 

planting temperature of the growing season govern the planting date of the crop in CLM5. The base temperature defines the 

crop growth rate and the accumulation of GDD. Crop growth has different phases: emergence, flowering, grain fill, and 

maturity. The CLM5 model simulates the crop growth phases using the accumulated GDD. Therefore, base temperature 135 

becomes a critical parameter that defines the crop growth in CLM5. The base temperature and maximum GDD control the 

longevity of each phase in crop growth. The allocation to the grain starts once the crop reaches the grain fill stage, which is 

controlled through the "grnfill" parameter in CLM5. The "grnfill" parameter defines the threshold for initiating the grain-filling 

stage as a fraction of the GDD required for maturity (hybgdd in Table 1). Growing season length in CLM5 is directly controlled 

through base temperature. The lower the base temperature, the faster the GDD accumulation and the shorter the growing season 140 

length. The planting window, base temperature, GDD required for maturity, and grain fill parameters have a significant impact 

on crop growth and are considered widely when calibrating the crop module in CLM5 (Fisher et al., 2019; Cheng et al., 2020; 

Boas et al., 2021). 

 
Figure 1: Location of sites used in the current study for calibrating and validating the major Indian crops (1) Wheat and (2) Rice. 145 
The contour map shows the percent of crop area in each 0.5° grid cell. 

The improvements to the wheat and rice crops in CLM5 are made in two steps. We first perform a literature survey and conduct 

sensitivity experiments to find the best-performing parameters shown in Table 1 (Section 2.3.1). The CLM5_Mod1 setup is 

the result of the new parameter values. Second, we calibrate the latitudinal variation in base temperature through sensitivity 

experiments (Section 2.3.2). The CLM5_Mod2 setup results from calibrating the latitudinal variation in base temperature. 150 

Changes in the source code of CLM5 were necessary to facilitate the incorporation of changes made to parameters (see Section 

2.3.1.1).   

2.3.1 Improvements in CLM5_Mod1 

2.3.1.1 Wheat 
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CLM5_Def simulated the wheat growth from April to August. This starkly contrasts with ground reality, where Indian farmers 155 

sow wheat in late October to early November and harvest in late March or April (rabi season) (Sacks et al., 2010; Gahlot et 

al., 2020). To implement a realistic growing season, we performed sensitivity simulations by varying the planting window of 

45 days, from mid-October to late November (see Table S2). The planting window shown in Table 1 produced the best results 

in lowering the bias in simulated LAI, yield, and growing season length and, therefore, is used in CLM5_Mod1. The 

CLM5_Def base temperature for wheat is 0 °C, but during our literature survey, we found the optimal base temperature for 160 

wheat in India is 5 °C (Mukherjee et al., 2019; Mehta and Dhaliwal, 2023). The planting temperature threshold in CLM5 for 

wheat is low compared to observations in India (Rao et al., 2015; Asseng et al., 2016; Mukherjee et al., 2019). The grain fill 

threshold of 0.6 for wheat performed well amongst tested values in our sensitivity studies (Table S2), and therefore, we did 

not change the parameter value. 

2.3.1.2 Rice 165 

CLM5_Def simulated rice growth from January to May. In contrast, rice is grown in India during the monsoon season due to 

the high-water requirements of the rice crop. Rice is sown in the last week of June to early July and harvested at the end of 

October and early November, also known as the Kharif season. Many regions in India grow rice during the summer and rabi 

seasons, which meet their water requirements mainly through irrigation. The rice crop area grown in summer and rabi is very 

low compared to the rice crop grown in the kharif season (Biemans et al., 2016). Therefore, we confined ourselves to the major 170 

rice growing season (kharif season) to calibrate the model. A sensitivity study is conducted with a planting window of 45 days, 

from early June to late July (Table S2). The planting window shown in Table 1 for rice gave the best results. The base 

temperature used for rice crop (10 °C) in CLM5_Def is the same as that observed in the literature for the Indian region (Thakur 

et al., 2022). However, we found that the planting temperature observed in India differs from those used in CLM5_Def (Jat et 

al., 2019; Kumar et al., 2023). The grain fill threshold used for rice in the CLM5_Def case resulted in very poor LAI and yield 175 

simulations, which was earlier recognized by Lu and Yang (2021) while studying rice in China using CLM. Through a 

sensitivity test, we found that the grain fill threshold of 0.65 performed the best in simulating LAI and yield for rice amongst 

the tested grain fill values in Table S2. 

The parameter of growing degree-days required for maturity (hybgdd) in both wheat and rice was performing well during our 

sensitivity simulations, and, therefore, its value is not altered. Table 1 shows all the parameters changed in the default CLM5 180 

to improve wheat and rice crop growth for the Indian region. 

Table 1: Parameter values for wheat and rice in the CLM5 crop module 

Parameter Description (units) Wheat Rice 
CLM5_Def CLM5_Mod1 CLM5_Def CLM5_Mod1 

min_NH_planting_date 
Minimum planting date for 
the Northern Hemisphere 
(MMDD) 

401 
1115 

(calibrated in this 
study) 

101 
701 

(calibrated in this 
study) 

max_NH_planting_date 
Maximum planting date 
for the Northern 
Hemisphere (MMDD) 

615 
1231 

(calibrated in this 
study) 

228 
815 

(calibrated in this 
study) 
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min_planting_temp 
Average 5-day daily 
minimum temperature 
needed for planting (K) 

272.15 283.15  
(Rao et al., 2015) 283.15 

294.15 
(Kumar et al., 

2023) 

planting_temp 
Average 10-day 
temperature needed for 
planting (K) 

280.15 
290.15 

(Asseng et al., 
2017; Mukherjee 

et al., 
2019) 

294.15 300.15  
(Jat et al., 2019) 

baset Base Temperature (°C) 0 
5  

(Mukherjee et al., 
2019; Mehta and 
Dhaliwal, 2023) 

10 
10 

(Thakur et al., 
2022) 

grnfill Grain fill parameter  0.6 0.6 0.4 
0.65 

(calibrated in this 
study) 

hybgdd Growing Degree Days for 
maturity (°C-days) 1700 1700 2100 2100 

baset_mapping 
Switch to turn on/off the 
latitudinal variation in 
baset in the tropics  

'constant' 'constant' 'constant' 'constant' 

 

2.3.1.4 Source code changes 

Along with the parameter changes, we had to change the model source code to fix a bug with northern-hemisphere crop seasons 185 

that start in one calendar year and finish in the next. The code added to the module CNPhenologyMod.F90 begins at line 2001 

(Supplementary text S1). The code changes are available at Reddy et al. (2024). 

This bug is fixed in more recent versions of CLM, starting with tag ctsm5.1.dev131. A bug was also fixed to make CLM use 

user-specified values of parameters latvary_intercept and latvary_slope, which allow latitudinal variation of base temperature. 

More recent versions of CLM, starting with tag ctsm5.1.dev155, include this fix. 190 

2.3.2 Mod2 case parameters: Varying base temperature by latitude 

CLM5 can vary CFT base temperature by latitude to account for cultivars bred for optimal performance in different climates. 

Currently, only wheat and sugarcane have these capabilities turned on. We extended this latitudinal variability to rice and 

improved the existing one for wheat in India. The latitudinal variation in base temperature is defined by two parameters: 

latvary_intercept and latvary_slope. The equation in the model that uses these parameters is: 195 

𝑇𝑏𝑎𝑠𝑒!"# = 𝑇𝑏𝑎𝑠𝑒 +	𝑙𝑎𝑡𝑣𝑎𝑟𝑦$%#&'(&)# −min	2𝑙𝑎𝑡𝑣𝑎𝑟𝑦$%#&'(&)#	, 𝑙𝑎𝑡𝑣𝑟𝑎𝑦*!+)& ∗ |𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒|9 ……(1) 

latvary_slope and latvary_intercept define the latitudinal extent of the base temperature variation. Tbase refers to the base 

temperature used for GDD calculation beyond the latitudinal limit. 

We conducted sensitivity studies to find the optimal latvary_intercept and latvary_slope values for wheat and rice. We ran the 

site scale simulations at experimental sites and compared the model estimates against the LAI, yield, and growing season-200 

length observational data. This resulted in 14 sites in total (Table S1), 7 for rice and 8 for wheat. Bias is considered to calibrate 

the model. The bias formula used in the study is: 

𝑀𝑒𝑎𝑛	𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒	𝐵𝑖𝑎𝑠	(𝑀𝐴𝐵) 	= 	 ∑|./0!"#123*!"#|∑(23*!"#)
	  ……..(2) 

where var is LAI, yield, or growing season length.   
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MAB is calculated for LAI, yield, and growing season length. The overall bias, used as our evaluation metric during calibration, 205 

is calculated as the equally weighted average of mean absolute bias in LAI, yield, and growing season length. 

We ran ten simulations at each site to test the sensitivity of base temperature on crop growth and evaluate optimal base 

temperatures. Two simulations, CLM5_Def and CLM5_Mod1, use the parameter values shown in Table 1. The other eight 

simulations at each site used the same parameter set as given in Table 1 but with a base temperature (based) changed relative 

to the CLM5_Mod1 values given thereby ± [1, 2, 3, 4] °C. The total number of site scale simulations conducted and used for 210 

this sensitivity analysis is 150 (15 sites, 10 simulations per site). These simulations helped us understand the bias in the 

CLM5_Def and CLM5_Mod1 simulations and the sensitivity of base temperature on crop growth and phenology at individual 

sites. 

Figure 2 represents the sensitivity of wheat and rice crop growth to base temperature in the site-scale sensitivity simulations. 

The y-axis depicts the overall bias in the model (sum of bias in LAI, yield, and the growing season length). In the case of 215 

wheat, the CLM5_Def parameterization has the highest bias at all sites in the range 0.45-0.8 (markers in dark green color in 

Figure 2(a)). The bias in CLM5_Mod1 is in the range of 0.1-0.3 (markers in light green in Figure 2(a)). The bias in sensitivity 

experiments with the base temperature at each site is shown in Figure 2 with grey markers, and the least biased simulation at 

each site is shown in black marker. The base temperature of 5 °C produced the least bias at three sites (Pantnagar, Meerut, and 

Jobner). The remaining four sites have the least bias at temperatures above 5 °C. Ludhiana site, which is above 30 °N, 220 

performed the best at 6 °C, while Parbhani, Cooch Behar, and Faizabad had the least bias at 7 °C. The three sites having the 

least bias at 7 °C are in the central and southern parts of the wheat-growing regions of India. The sites performing best at 5 °C 

are in the northern part of the wheat-growing region. 

In the case of rice, CLM5_Def has the highest bias, ranging from 0.5-0.95 (shown in dark green markers in Figure 2(b)). The 

difference between the CLM5_Def and CLM5_Mod1 cases is the grain fill parameter (Table 1). Using 0.65 as grain fill 225 

drastically improved the rice crop simulations. The bias in CLM5_Mod1 is in the range of 0.1-0.3 (markers in light green in 

Figure 2(b)). All the sensitivity experiments used the grain fill parameter of 0.65. The sensitivity of base temperature in rice 

showed that the sites in the southern rice growing regions (lower than the Tropic of Cancer, latitude < 23.5 °N) have the least 

bias at 11 or 12 °C. The sites in the central rice growing regions (23.5 °N < latitude < 29 °N) have the least bias while using 

base temperatures of 8 or 9 °C. Finally, the sites towards the country's northern parts (latitude > 29 °N) perform best at 9 °C 230 

as the base temperature. Therefore, not all sites perform optimally at a single base temperature, and a latitudinal variation in 

base temperature can improve the rice crop simulations.  

The base temperature at which the least bias is observed at each site and the corresponding latitude is noted for wheat and rice 

crops (Table S3). Using the ordinary least squares method, the values for latvary_intercept and latvary_slope are calculated, 

satisfying Eq. (1) for wheat and rice (Table 2 and Figure S3). Figure S3 shows the linear fit of the base temperature at which 235 

the lowest bias is observed (Table S3) and the latitude of the site. The linear fit has a high R2 of 0.64 for wheat and 0.68 for 

rice.  
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Figure 2: The overall bias in the site scale simulations during the sensitivity study of base temperature (x-axis) for (a) spring wheat 
and (b) rice. The y-axis shows the overall bias (mean of absolute bias in LAI, yield, and growing season length). The dark green 240 
markers show the bias in the Def case at a site, the light green marker shows the bias in the Mod1 case at a site, and the black marker 
shows the lowest bias simulated at a site. The grey markers show the bias simulated in the sensitivity study of base temperature at a 
site. The legend shows the name and latitude of the sites. 

The Mod2 version of the model used these parameters. In CLM5_Mod2, we used the baset_mapping equal "varytropicsbylat" 

in the CLM namelist to turn on the latitudinal variation in base temperature in the model. To incorporate the latitudinal variation 245 

for rice crops in CLM5, an addition to the code of CropType.F90 is made at line 602 (see supplementary material). 
Table 2: Latitudinal variation parameters for wheat and rice 

Parameter name 
Wheat Rice 

CLM5_Def CLM5_Mod2 CLM5_Def CLM5_Mod2 

baset 0 5.4* 10 9* 

latvary_intercept 12 6* NA 6.8* 

latvary_slope 0.4 0.19* NA 0.26* 
* significant at p<0.05 using the t-statistic of the two-sided hypothesis test. NA – Not Applicable 
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2.4 Evaluation metrics 

The comparison of CLM5 simulations with observations at site scale and regional scale used four evaluation parameters: mean 250 

absolute bias (MAB) (Eq. 2), root mean square error (RMSE), Pearson's r, and Kling-Gupta Efficiency (KGE, Gupta et al., 

2009). MAB is the normalized deviation from the observations, with values close to 0 indicating good performance. RMSE is 

the mean deviation of model simulations from observations. Pearson's r gives the correlation between the model estimates and 

observations. KGE (Eq. 3) offers a diagnostic insight into the model performance because it is a composite of correlation, bias, 

and variability.  255 

𝐾𝐺𝐸 = 1 −	F(𝑟 − 1)6 +	(𝛽 − 1)6 +	(𝛾 − 1)6     …. Eq. (3) 

𝛽 =	 7$%&
7'()

      

𝛾 = 	 8$%&
8'()

     

where KGE is the Kling-Gupta Efficiency, r is the Pearson's coefficient between CLM simulated variable and observations, b 

is the bias ratio (ratio of means-µ of the modeled and observation values) and 𝛾 is the variability ratio (ratio of standard 260 

deviations- 𝜎 of modeled and observation values). KGE, r, b, and g have their optimum at unity.  

KGE is widely used in hydrological modeling because of its easy formulation and interpretation (Kling et al., 2012). KGE also 

makes sense from an agroecosystem point of view because we are interested in reproducing temporal dynamics, as well as 

preserving the spatial variation in crop growth caused by diverse climatic conditions in the Indian region, which are given by 

the first (β) and the second ( γ) moments, respectively. 265 

Taylor's diagram (Taylor, 2005) is used to assess the CLM5 model. The Taylor diagram summarizes the relative skill with 

which different models imitate the pattern in observations. The three versions of the CLM5 model from the study are 

represented by triangles on the Taylor diagram (Figure 10). The distance between each CLM5 setup and the point displayed 

as a black star (observation data) on the Taylor diagram indicates how accurately each model reproduces observations. Three 

statistics of the simulated fields are plotted on the Taylor diagram: a) the centered RMS error that is proportional to the distance 270 

from the point on the x-axis shown as a black star (dark green contours); b) the standard deviation that is proportional to the 

radial distance from the origin (grey semi-circular contours); and c) the Pearson correlation coefficient that is proportional to 

the azimuthal angle (light grey contours). Higher correlation, lower RMS error, and smaller standard deviation characterize 

the most accurate CLM5 configuration. 

2.5 Model evaluation at the site scale 275 

We compared the CLM5_Def, CLM5_Mod1, and CLM5_Mod2 simulations against the site-scale observations. We evaluated 

three crop variables: LAI, growing season length, and yield. We used four evaluation metrics: MAB, RMSE, Pearson's r, and 

KGE (described in Section 2.4). Because the count of observation data points is low, we used the bootstrapping method to 

estimate the significance of improvement from CLM5_Def to CLM5_Mod1 and CLM5_Mod1 to CLM5_Mod2. 

Bootstrapping is carried out with 10000 samples for each evaluation metric, and the Student's T-test is conducted to check if 280 
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each model improvement performs significantly better (p<.05) than its predecessor. Table 3 shows the above-mentioned 

evaluation metrics. Note that 64% of the observations are used for calibration, and the rest marked with "*" in Table S1 are 

used for validation.   

2.6 Model evaluation at the regional scale 

2.6.1 Yield 285 

We compared the yield simulated by CLM5 against the EarthStat yield data (Ray et al., 2012) retrieved from the "Harvested 

Area and Yield for 4 Crops (1995–2005)" dataset. EarthStat yield data is available at a spatial resolution of 0.1°x0.1° and is 

given as a five-year average. In this study, we used the 2005 EarthStat data (representing the average yield from 2003 to 2007) 

regridded to 0.5°x0.5° and compared it against the CLM5 simulated yield data averaged from 2003 to 2007.    

2.6.2 Irrigation 290 

An investigation on irrigation using a climate model in Indian croplands was carried out by Biemans et al. (2016). The study 

highlighted the necessity of improving the cropping patterns to improve the irrigation patterns. We compared the annual mean 

irrigation pattern simulated by three versions of CLM5 against the annual mean irrigation water demand for wheat and rice 

from Biemans et al. (2016). The irrigation pattern data from Biemans et al. (2016) was unavailable as a supplement. Therefore, 

we extracted data from the Figure 5 of Biemans et al. (2016).  295 

2.6.3 LAI and GPP 

We compared the regional scale model simulations against the Moderate Resolution Imaging Spectroradiometer (MODIS) 8-

day GPP (MOD17A2HV006) (Running and Zhao, 2015) and LAI (MOD15A2HV0061) (Myneni et al., 2021). GPP and LAI 

data was retrieved from the Integrated Climate Data Centre (ICDC) website (http://icdc.cen.uni-hamburg.de/las/). The MODIS 

GPP and LAI data mostly have four observations per month. We took the average of the observations in a month and compared 300 

them against the monthly averaged CLM5 data. We compared the MODIS monthly spatial observations with corresponding 

CLM5 simulations from 2001 to 2014. This exercise is to observe the spatial variation in LAI and GPP over the Indian region. 

We also compared the spatially averaged time series of monthly LAI and GPP over the Indian subcontinent from 2001 to 2014. 

This exercise is to compare the inter annual cycle in MODIS observations and CLM5 simulations. 

2.6.4 Latent and Sensible Heat Flux 305 

For the evaluation of changes in surface energy fluxes, we used the FLUXCOM data (Tramontana et al., 2016; Jung et al., 

2019). FLUXCOM data is generated using machine learning to merge the flux measurements in eddy covariance towers with 

remote sensing and meteorological data and estimate surface fluxes (Jung et al., 2019). We used the monthly 0.5° resolution 

RS_METEO version of the FLUXCOM data for comparison against the CLM5 simulations. We compared the monthly spatial 

average of heat fluxes against CLM5 simulations. We also compared the inter-annual time series of heat fluxes with the CLM5 310 

simulations. 

3 Results 

3.1 Outcomes of model improvements at site scale 

3.1.1 Wheat 
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3.1.1.1 LAI 315 

The Leaf Area Index (LAI) impacts biomass accumulation and transpiration process, while biomass distribution directly affects 

the yield. Furthermore, LAI is crucial in modeling multiple processes, including evapotranspiration and canopy photosynthesis. 

Additionally, the contact between the plant and the atmosphere is crucial in estimating the transfer of energy and matter 

between the canopy and the atmosphere (Su et al., 2022). Therefore, LAI is the most important of the three variables evaluated 

here. 320 

Figure 3 depicts the time series of LAI simulated by the three different versions of CLM5 for different sites. Results show that 

CLM5_Def simulated wheat growth during April-June while CLM_Mod1 and CLM_Mod2 simulated wheat growth in 

November-March. The CLM5_Def simulated the wheat growth in the wrong season compared to observations. Furthermore, 

CLM5_Def also underestimated LAI. The seasonality error is corrected in CLM5_Mod1 with the change in the sowing window 

(min_ and max_NH_planting_date in Table 1), but it still underestimated LAI. Including latitudinal variation in base 325 

temperature in the CLM5_Mod2 case improved the LAI simulation by reducing the underestimation in most sites except Cooch 

Behar (Figure 3(a) and 3(b)), Faizabad (Figure 3(c), 3(d) and 3(e)), and a few growing seasons in Naida (Figure 3(o)). Overall, 

CLM5_Mod2 provided the best estimates of LAI (Fig. 4). 

Table 3 shows the impact of improvements made to the CLM5 model. The observed mean maximum LAI is 4.22 m2/m2. 

CLM5_Mod2 is the closest to the observation with a value of 3.47 m2/m2, while CLM5_Def is the worst with a value of 2.36 330 

m2/m2. Figure 3 shows us that the crop in the CLM5_Def case grows in the wrong season compared to what is observed. 

Hence, all performance metrics for the LAI simulations in the CLM5_Def case will show very poor results because the 

simulated LAI values are all zero during the observed growing season. To ensure a fairer comparison between the CLM5_Def 

and CLM5_Mod cases, we used days from sowing instead of calendar dates in the LAI time series. Even after adjusting for 

the growing season, the LAI in the CLM5_Def case has a large MAB of 0.81. The CLM5_Mod1 and CLM5_Mod2 performed 335 

much better with MABs of  0.52 and 0.43. The negative r-value for LAI in the case of CLM5_Def is due to the simulation of 

smaller growing lengths and having zero LAI values when the observations reach their maximum values. The r-value improved 

in both the Mod cases, with a higher r-value of 0.3041 (significant at p<.01) in the CLM5_Mod2 case. KGE value is a good 

measure of how the model is performing both in seasonality and spatially. KGE for CLM5_Def is very low (-0.62). 

CLM5_Mod1 showed improvement with a value of -0.02, but it is still negative. CLM5_Mod2 has the highest value of 0.19.  340 

Figure 4 shows the CLM5 model performance in simulating crop growth at each site. The larger the marker size, the higher 

the bias simulated at that site. The three model versions are shown in three distinct colors, red representing CLM5_Def, cyan 

representing CLM5_Mod1, and blue representing CLM5_Mod2. The improvement in LAI simulations is evident from Figure 

4(a.1). The LAI simulations in Mod cases have a lower bias (smaller and the top marker) compared to the CLM5_Def case. 

The improvement in model simulation is not uniform across the wheat-growing region. A more significant improvement is 345 

seen in Ludhiana, Meerut, and Pantnagar, which belong to the most fertile and well-irrigated regions of India. Jobner and 

Parbhani also saw considerable improvement from CLM5_Def to CLM5_Mod2. These two sites belong to regions with limited 

water supply. The introduction of latitudinal variation has drastically improved the simulation at Ludhiana, Meerut, Pantnagar, 
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Jobner, Nadia, and Parbhani, all belonging to distinct agro-climatic regions, proving the robustness of the model and the 

importance of varying base temperatures for better crop simulation.  350 

Overall, the modified models significantly improved over the default model, with CLM5_Mod2 performing the best (Table 3 

and Figure S4). 

 
Figure 3: Site scale LAI simulated by three versions of CLM5 against observations for wheat. 

3.1.1.2 Yield 355 

The observed mean yield is 3.88 t/ha (Table 3). The default model underestimated the mean yield with a value of 3.05 t/ha. 

The modified models performed better, simulating a mean yield of 3.68 t/ha across all sites. All metrics in Table 3 show that 

the default model is the worst performer with high MAB and RMSE and low correlation and KGE values. The CLM5_Mod1 

is the best performer in all metrics (bold text). It is important to note that CLM5_Mod2 performs quite well. The mean yields 

of CLM5_Mod1 and CLM5_Mod2 are identical, and the correlation values of 0.38 in CLM5_Mod1 and 0.30 for CLM5_Mod2  360 

are not statistically different (significance level, p<.05). 

Site scale comparison of wheat yield (Figure 4(b.1)) highlights that the yield simulated in CLM5_Def has high bias at all sites. 

The high bias in most regions is reduced by improved growing season (CLM5_Mod1) and Tbase (CLM5_Mod2). Cooch 
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Behar, Faizabad, and Naida all saw improvement in wheat yield simulation from CLM5_Def to CLM5_Mod1 to CLM5_Mod2 

(Figure 4(b.1) and Figure S5). However, sites in southern (Parbhani) and northern regions (Ludhiana, Meerut, and Pantnagar) 365 

improved from CLM5_Def to CLM5_Mod1 but did not improve from CLM5_Mod1 to CLM5_Mod2 (Figure 4 (b.1) and 

Figure S5). The latitudinal variation in base temperature showed improvements at the sites in central wheat growing regions, 

while the sites in southern and northern regions did not improve over CLM5_Mod1 (Figure 4(b.1)). 

 
Figure 4: Site-scale CLM performance against observations (1) Wheat; (2) Rice. Crop variables compared are (a) max. LAI during 370 
the growing season, (b) yield, and (c) growing season length. The three markers at each site location show the MAB of CLM5_Def 
(red color), CLM5_Mod1 (cyan color), and CLM5_Mod2 (blue color). The MAB ranges from 0 to 1. The contour on the map is the 
crop area per 0.5° grid cell. 

3.1.1.3 Growing Season Length 

The growing season length simulated by CLM5_Def is very low, with a mean growing season of just 69 days, compared to 375 

129 days in observations (Table 3). The growing season length considerably increased to 126 days in CLM5_Mod1 and 136 
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days in CLM5_Mod2. The MAB in the growing season length in CLM5_Mod1 and CLM5_Mod2 are 0.11 and 0.10, 

respectively, much lower than the 0.47 in the CLM5_Def case. Incorrect growing season and a lower Tbase for wheat have led 

to a very low growing season length simulation in the CLM5_Def. The modified models performed significantly better than 

the default in terms of all the evaluation metrics (Table 3). Their performances are comparable, with no statistically significant 380 

difference (p<0.05) between the metrics.  

Figure 4(c.1) shows the MAB in growing season length simulation by three CLM5 models across the sites in various climatic 

conditions. CLM5_Def has the largest bias, performing poorly at all sites (large red markers in Figure 4(c.1)). With the 

improvements made in CLM5_Mod1, the growing season length simulation has considerably improved at all sites. The 

changes made in CLM5_Mod2 showed mixed results. Growing season length simulation in CLM5_Mod2 improved over 385 

CLM5_Mod1 at Parbhani, Nadia, Pantnagar, and Ludhiana (Figure 4(c.1)). Ludhiana and Pantnagar belong to very fertile 

regions with very low water stress. Nadia belongs to the delta region, and Parbhani belongs to an arid region. CLM5_Mod2 

simulations did not show a considerable improvement over CLM5_Mod1 at Cooch Behar, Jobner, and Meerut. 

The results in wheat showed that both the LAI and growing season length significantly improved CLM5_Mod2 over 

CLM5_Mod1. Table S4 expands on the results discussed above to show the improvements observed during the calibration and 390 

validation stages separately. Based on the overall bias in Table 3, Table S3 and Figure S4, we find that wheat simulation 

improved largely from default to Mod2. 

3.1.2 Rice 

3.1.2.1 LAI 

A significant improvement in LAI rice simulations can be seen in Figure 4(b.2), Figure 5, and Table 3, especially after 395 

introducing the latitudinal variation in base temperature. CLM5_Def underestimated the mean maximum LAI with a value of 

1.65 m2/m2, much lower than the observed 5.29 m2/m2 (Table 3). The modified models perform much better, simulating 

maximum LAI in the range of 4.45-4.5 m2/m2. We compared the CLM5 simulated LAI against the observations after correcting 

the difference in the growing season in CLM5_Def, as discussed in Section 3.1.1.1. The MAB reduced from 0.66 in the 

CLM5_Def case to 0.387 in the CLM5_Mod1 case to 0.343 in the CLM5_Mod2 case. CLM5_Mod2 LAI performed better 400 

than CLM5_Mod1 in other metrics- RMSE, r-value, and KGE (Table 3), and the improvement is significant at p<.05.  

Figure 4(a.2) shows the LAI simulation of rice by three versions of the model. The bias markers at each site clearly show that 

the changes made to the model in CLM5_Mod1 and CLM5_Mod2 significantly reduced the bias in maximum LAI simulated 

during a growing season. CLM5_Mod2 simulations performed better in sites in southern (Figures 5(a), 5(b), and 5(c)) and the 

northern parts of India (Figures 5(g), 5(i), and 5(j)). The observed model improvements strongly suggest that latitudinal 405 

variation in base temperature implemented in the CLM5_Mod2 is essential to capture the growth variation in LAI observed 

across Indian rice growing regions (Figure 4(a.2) and Figure S4). 
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Table 3: Evaluation of wheat and rice across three CLM5 setups at site scale 

Parameter Evaluation 
Metrics 

Wheat Rice 

Obs CLM5_Def CLM5_Mod1 CLM5_Mod2 Obs CLM5_Def CLM5_Mod1 CLM5_Mod2 

LAI  (m2/m2) 

Mean of  
max. LAI  4.22 2.36 2.69 3.47 5.29 1.65 4.48 4.45 

MAB -- 0.81 0.52 0.43 -- 0.66 0.39 0.34 

RMSE -- 2.61 1.76 1.41 -- 3.00 1.94 1.68 

r -- -0.45* 0.11 0.30* -- 0.34* 0.34* 0.43* 

KGE -- -0.62 -0.02 0.19 -- -0.06 0.33 0.42 

Yield (t/ha) 

Mean  3.88 3.05 3.68 3.68 4.56 2.62 3.51 3.43 

MAB -- 0.25 0.15 0.19 -- 0.70 0.30 0.29 

RMSE -- 1.19 0.77 0.93 -- 3.82 1.70 1.64 

r -- 0.27 0.38 0.30 -- -0.76* -0.04 0.16 

KGE -- 0.12 0.26 0.10 -- -1.06 -0.17 -0.04 

Growing 
season 
length 
(days) 

Mean  129 69 126 136 117 114 123 121 

MAB -- 0.47 0.11 0.10 -- 0.07 0.08 0.10 

RMSE -- 62.84 15.62 15.44 -- 11.3 12.02 15.24 

r -- 0.37 0.66* 0.62* -- 0.25 0.40 -0.07 

KGE -- -0.21 0.57 0.52 -- 0.21 0.39 -0.07 

  Overall 
bias -- 0.51 0.26 0.24 -- 0.48 0.26 0.25 

* significant at p<.05 using the students t-test. The bold font indicates the best performer in each category; if multiple models are marked in bold font, that indicates a lack of 
statistically significant difference between them.  410 

3.1.2.2 Yield 

The CLM5_Def yield of 2.62 t/ha is much lower than the observed 4.56 t/ha (Table 3). The mean yield improved by nearly 1 

t/ha in the CLM5_Mod runs but is still lower than observations. The MAB improved from 0.699 in the CLM5_Def case to 

0.297 in the CLM5_Mod1 case and 0.291 in the CLM5_Mod2 case. The most significant improvement from CLM5_Def to 

CLM5_Mod cases is in rice yield predictions (Table 3). RMSE improved from 1.63 t/ha in CLM5_Def to 0.65 t/ha in 415 

CLM5_Mod1 and 0.53 t/ha in CLM5_Mod2. Similarly, r-value improved from -0.76 in CLM5_Def to -0.04 in CLM5_Mod1 

and 0.16 in CLM5_Mod2. KGE has the best value of -0.04 in CLM5_Mod2, which is far from perfect but is much better than 

-1.06 in CLM5_Def and -0.17 in CLM5_Mod1. The improvement from CLM5_Mod1 to CLM5_Mod2 is significant (p<.01), 

especially in terms of r-value and KGE. 

Figure 4(b.2) highlights the significant improvement made through CLM5_Mod1 and CLM5_Mod2 in reducing the bias at all 420 

sites. The bias in CLM5_Mod1 overlaps the bias in CLM5_Mod2 at Raipur, Kuthulia, Jabalpur, Faizabad, Pantnagar, and 

Kaul. The bias in CLM5_Mod1 and CLM5_Mod2 are identical at all the above-mentioned sites. Therefore, introducing 

latitudinal variation in CLM5_Mod2 has a significant impact on improving LAI simulation at all sites (Figure 4(a.2)) and has 

simulated yield better than the CLM5_Mod1, especially in the southern region (Anantapur and Hyderabad) (Figure 4(b.2) and 

Figure S6). 425 



17 
 

 
Figure 5: Site scale LAI simulated by three versions of CLM5 against observations for rice. 

3.1.2.3 Growing Season Length 

The CLM5_Def model performed exceptionally well in simulating the growing season length with a value of 114 days, which 

is closest to the observed value of 117 days (Table 3). The MAB and the RMSE in the default case are the lowest, even though 430 

the MAB shows no significant difference among the three CLM5 versions. During our bootstrap exercise with 10000 samples, 

no significant difference between MAB among the three setups was observed. RMSE in CLM5_Mod1 is lower than 

CLM5_Mod2. The r-value in CLM5_Mod2 (-0.07) shows no variation in growing season length among the sites. However, 

Figure 5 shows that the longer or shorter growing season lengths observed at the site scale are simulated in CLM5_Mod2. 

Figure 4(c.2) shows that no version of the CLM5 model is outperforming the others in simulating the growing season length 435 

of rice. Additionally, bias in all models is very low, less than 0.2 in most sites. 

 

The overall bias in Table 3 and Figure S4 for rice shows that the CLM5_Mod2 is performing significantly better than the other 

CLM5 versions. Using latitudinal variation in base temperature for rice improved the LAI and yield at all sites (Figure 4, 

Figure 5, Figure S4, and Figure S6). This suggests that latitudinal variation in base temperature implemented in the 440 

CLM5_Mod2 is necessary to capture the growth variation observed across Indian rice growing regions. 

3.2 Outcome of model improvements at the regional scale 

3.2.1 Yield 



18 
 

Figure 6 compared regional-scale yield simulations by CLM5 against the EarthStat data (Ray et al., 2012). CLM5_Def 

simulations underestimated the wheat yield in central and south-central regions of the wheat growing regions, which is also 445 

identified by Lombardozzi et al. (2020). In the CLM5_Mod1 case, the underestimation found by Lombardozzi et al. (2020) 

reduced, but at the same time, an overestimation of yield is observed in the eastern parts of the wheat-growing regions. The 

overestimation is reduced by introducing latitudinal variation in the CLM5_Mod2 case. Large parts of the wheat-growing 

regions have a low bias between -1 and 1 ton per hectare compared to the EarthStat data. One important region where 

CLM5_Mod2 is underestimating is the Punjab and Haryana regions (the northwest region in the map). In Figure S7, we 450 

compare the total annual yield from wheat-growing regions simulated by CLM5 with the FAO data. CLM5_Mod1 replicates 

the trend observed in FAO data. CLM5_Def underestimated the total yield owing to the lower growing season simulated in 

the default case.  

 
Figure 6: Yield estimates of (a) wheat and (b) rice by (1) EarthStat 2005, and (2-4) difference in yield between CLM5 (mean 2003-455 
2007) versions and EarthStat data. 

The CLM5_Def rice simulations underestimated the yield across large parts of the rice-growing regions and overestimated it 

in the Indo-Gangetic Plains (IGP) and northeast regions. CLM5 simulated a higher yield in IGP, which has a comparatively 

lower rice growing area than in the central and eastern parts of India (Figure S8). Improved yield simulation is observed in the 

CLM5_Mod1 case due to changes in the growing season and grain fill threshold. The overestimation in IGP and the 460 

underestimation in southern parts of India decreased (Figure 6(b.3)). However, changes made in the CLM5_Mod2 case showed 

slight improvement in most regions over the CLM5_Mod1 case (Figure 6(b.3) and 6(b.4)). In CLM5, rice is grown only during 

the Kharif season; however, in the southern regions of India, where water is available throughout the year, rice is grown in two 

or three seasons (Wang et al., 2022). Therefore, the annual yield observations in EarthStat are higher in this region and are not 

reflected in the CLM5 simulations. In Figure S7(b), we compared the annual rice yield over rice-growing regions of India from 465 

CML5 simulations and FAO data. CLM5_Def overestimated the yield, considering the fact that rice is growing in only one 

season in CLM5. With the improvements made in CLM5, the trend in FAO is matched by the modified simulations, however, 
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yield in modified cases is lower compared to FAO data across the fifteen years. The underestimation in yield is expected 

because rice grows in only one season in CLM5. 

The improvement in rice crop growth and yield is twofold in this study. One is changing the growing season, and the other is 470 

the grainfill parameter. A study by Rabin et al. (2023) used the CLM5 model to simulate crop yields of major crops across the 

globe. The important point to note here is that they used a prescribed calendar; therefore, the growing season is accurate for 

crops in all regions, but they did not change the grain fill parameter and used the default value of 0.4. The results for rice yield 

were poor compared to the FAO data (Rabin et al., 2023). Therefore, changing the growing season would not improve the 

yield of rice crops. Our sensitivity studies with the grain fill parameter showed that the value 0.65 produced better crop growth 475 

and yields after changing the growing season. The underestimation of yield for wheat and rice pointed out by Lombardozzi et 

al. (2020) is reduced to some extent with the modifications in this study. In the default case, bias in yield, especially in rice, is 

around ±3 t/ha, which is reduced in CLM5_Mod2 to ±1.5 t/ha. However, more research is required to understand the reason 

for the bias in CLM5_Mod cases in the range of ±1.5 t/ha in both rice and wheat.  

3.2.2 Irrigation 480 

We compared our simulated irrigation across wheat and rice-growing regions of India against the annual irrigation patterns 

from Biemans et al. (2016). In Figure 7, the blue line shows the annual irrigation pattern simulated by Biemans et al. (2016), 

the black line depicts irrigation simulated by the CLM-Def case, and the green and orange lines show the CLM5_Mod1 and 

CLM5_Mod2 simulations, respectively. CLM5_Def has anomalous peaks in the pre-monsoon summer season for wheat and 

rice. These are also found in Mathur and AchuthaRao. (2019). This error in irrigation seasonality resulted from wrong cropping 485 

patterns of wheat and rice in India in the CLM5_Def case. The modified CLM5 simulations matched the patterns from Biemans 

et al. (2016). One significant difference between the current study and Biemans et al. (2016) is that the rice is grown in the 

rabi and kharif seasons in Biemans et al. (2016), while in our study, rice is sown in only the Kharif season. CLM5 is not 

currently equipped to simulate multiple crop sowings in a year, and the rainfed and irrigated rice crop maps of CLM5 (Figure 

S8) do not reflect the kharif and rabi rice crop maps. Another important point to note is that Biemans et al. (2016) reported the 490 

total irrigation water demand of the crop during the growing season, and we are comparing it with water added through 

irrigation to the crops.  

The improvements made in our study improved the seasonality of the irrigation in wheat and rice croplands. The improved 

models simulate less water added through irrigation for the wheat and rice crops. Water added through irrigation over the 

wheat growing region is reduced from 4.32 billion cubic meters/day (BCM/day) in CLM5_Def to 3.08 BCM/day in 495 

CLM5_Mod1 and 3.53 BCM/day in CLM5_Mod2. The drastic difference in irrigation water added is because wheat is now 

growing in the rabi season in the Mod cases compared to the summer season in CLM5_Def. A more significant reduction in 

irrigation water added to crops is observed in the case of rice. CLM5_Def simulates 8.09 BCM/day of water added through 

irrigation, while CLM5_Mod1 and CLM5_Mod2 simulates only 2.97 and 3.09 BCM/day, respectively. Such drastic 

differences in water added through irrigation will significantly impact the hydrological cycle. 500 
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Figure 7: Comparison of water added through irrigation simulated by CLM5 and water demand data from Biemans et al. (2016). 

3.2.3 GPP and LAI 

3.2.3.1 Spatiotemporal variation 

The monthly spatial patterns of simulated GPP and LAI are shown in Figures 8 and 9. The primary crop-growing months are 505 

June till March. This is evident in the MODIS GPP and LAI observations. However, the CLM5_Def simulated low GPP and 

LAI during this period. This is due to the error in the crop calendar in the default model. CLM5_Def simulated maximum 

carbon uptake (GPP) and LAI in April and May (Figure 8: Apr and May) when very little vegetation activity is observed across 

India, which is also evident from MODIS GPP and LAI data (Figure 9: Apr and May). In contrast, the modified models 

simulated the GPP and LAI cycle as observed in the MODIS data with high GPP and LAI during June-March and low values 510 

during the rest of the year.  

The maximum observed GPP in the MODIS data is in the northeast and peninsular regions of India. In contrast, the maximum 

GPP simulated by CLM5_Def is in the IGP region. The CLM5_Mod1 and CLM5_Mod2 simulations are similar to the MODIS 

observations with maximum LAI in central and eastern parts of the country from July to February months of the year. Even 

though the modified models captured the observed spatial patterns, they tend to overestimate the magnitudes.   515 
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Figure 8: Spatial variation of GPP simulated by CLM5 against MODIS data. The data shows the monthly GPP averaged over 2000-
2014. 520 

3.2.3.2 Monthly time series 

We evaluated the monthly time series of GPP and LAI from 2000 to 2014 (Table 4; Figure S9). The simulated GPP performed 

better in the modified versions of CLM5 than the default one. The monthly mean GPP has an MAB of 0.51 in CLM5_Def, 

0.241 in CLM5_Mod1, and 0.235 in CLM5_Mod2. The RMSE decreased from 6.95 kgC/m2/mon in CLM5_Def to 3.48 

kgC/m2/mon in Mod1 and 3.56 kgC/m2/mon in Mod2. The most significant improvement in the model simulations is seen in 525 

the correlation of CLM5 simulated GPP against the MODIS observations. The r-value is negative in the case of CLM5_Def (-

0.47) because the seasonality of vegetation growth in the Indian region is incorrect. The r-value improved to 0.76 in 

CLM5_Mod1 and CLM5_Mod2. Similarly, KGE has a negative value (-0.48) in CLM5-Def and improved to 0.72 in 

CLM5_Mod1 and 0.71 in CLM5_Mod2. 
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 530 
Figure 9: Spatial variation of LAI simulated by CLM5 against MODIS data. The data shows the monthly LAI averaged over 2000-
2014. 

The peaks in annual GPP from 2001 to 2014 (in Figure S9(a)) in the case of CLM5_Def are off by at least three months 

compared to MODIS GPP, while the peaks in CLM5_Mod1 and CLM5_Mod2 are consistent with the observations. Figure 

10(b) shows the monthly GPP comparison of CLM5 simulations against MODIS data in a Taylor Diagram. Higher correlation, 535 

lower RMS error, and smaller standard deviation characterize the most accurate CLM5 configuration, as seen in the closer 

proximity of CLM5_Mod2 markers to the observational reference point. A drastic improvement is observed from default to 

modified cases; the correlation improved along with standard deviation, which got very close to observations (black star on 

Taylor Diagram) in the modified cases. CLM5_Mod2 is the best-performing setup in Figure 10(b), with high correlation and 

low standard deviation. 540 

Interestingly, not all evaluation metrics for LAI improved with changes made to CLM5 in this study. The monthly mean LAI 

had an MAB of 0.19 in the CLM5_Def case, 0.24 in the CLM5_Mod1 case, and 0.3 in the CLM5_Mod2 case. RMSE in 
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CLM5_Def is 0.27 m2/m2, which increased to 0.29 m2/m2 in the CLM5_Mod1 case and 0.35 m2/m2 in the CLM5_Mod2 case. 

The overestimation of LAI is consistent across all CLM5 simulations (Figure S9(b)). The overestimation of LAI by process-

based vegetation models compared to MODIS LAI data is widely reported (Fang et al., 2019). The reasons are processes like 545 

carbon fixation and allocation of biomass to leaves in the models (Gibelin et al., 2006; Richardson et al., 2012), differences in 

defining the LAI by various models and MODIS (Fang et al., 2019), and due to inherent bias in LAI estimation in MODIS in 

the equatorial region (20 °S to 15 °N) (Fang et al., 2019; Lin et al., 2023). Figure S9(b) illustrates that although the bias is 

higher in Mod cases, the peaks in annual LAI in MODIS data are captured accurately by the Mod cases. The CLM5_Def peak 

in LAI is off by two to three months. 550 
Table 4: Evaluation of CLM5 simulations at the regional scale against MODIS (LAI and GPP) and FLUXCOM (LH and SH) data. 
The bold text states that the version of CLM5 is performing the best. 

Parameter Evaluation 
Metrics CLM5_Def CLM5_Mod1 CLM5_Mod2 

GPP  

MAB 0.51 0.24 0.24 
RMSE 6.95 3.48 3.56 
r -0.47* 0.76* 0.76* 
KGE -0.48 0.72 0.71 

LAI 

MAB  0.19 0.24 0.31 
RMSE 0.27 0.29 0.35 
r 0.35* 0.92* 0.93* 
KGE 0.34 0.40 0.41 

LH 

MAB 0.22 0.17 0.16 
RMSE 14.78 11.91 11.28 
r 0.69* 0.93* 0.93* 
KGE 0.60 0.77 0.77 

SH 

MAB 0.22 0.19 0.20 
RMSE 14.34 11.16 11.56 
r 0.85* 0.94* 0.95* 
KGE 0.52 0.73 0.73 

* significant at p<.01 using the students t-test 

Other evaluation metrics of LAI showed that the modified models are performing much better than the default case. The r-

value in CLM5_Def is 0.35, which increased to 0.92 in the CLM5_Mod1 case and 0.93 in the CLM5_Mod2 case. Higher r 555 

values in modified runs imply that the seasonality of LAI simulated by CLM5 considerably improved due to the improvements 

made in the model. KGE metric showed improvement from 0.35 in the CLM5_Def case to 0.4 in the CLM5_Mod1 case and 

to 0.41 in the CLM5_Mod2 case (Table 4). The Taylor diagram of LAI (Figure 10(a)) showed improvement in correlation, but 

the error and standard deviation are higher than the observations. 

3.3 Heat fluxes 560 

3.3.1 Latent Heat flux 

3.3.1.1 Spatial variation 
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The spatial and monthly variation in the CLM5 simulation of LH is illustrated in Figure S10. Most of the spatial pattern in 

observed LH is captured by all setups of the CLM5 model. However, one error in the case of CLM5_Def is observed in March, 

April, and May, where the IGP region shows high LH values absent in FLUXCOM observations. This erroneous high LH in 565 

this region is due to the wheat growth evident from Figure 9. The least LH is observed during the winter months, November 

to February, across all CLM5 simulations. 

3.3.1.2 Monthly time series 

Comparing the latent heat flux (LH) simulated by CLM5 with FLUXCOM data, we observe MAB of the LH reduced from 

0.22 in CLM5_Def to 0.27 in CLM5_Mod1 and 0.16 in CLM5_Mod2. The RMSE reduced from 14.74 W/m2 in the CLM5_Def 570 

to 11.91 W/m2 in CLM5_Mod1 and 11.28 W/m2 in CLM5_Mod2. The correlation improved from 0.69 in CLM5_Def to 0.93 

in CLM5_Mod1 and CLM5_Mod2 cases. KGE metric improved from 0.70 in CLM5_Def to 0.77 in CLM5_Mod cases. The 

improvement is evident in the Taylor diagram (Figure 10(c)). CLM5_Mod simulations are much closer to the observations 

than the CLM5_Def case. CLM5_Mod1 and CLM5_Mod2 have similar performance, even though LAI improved in 

CLM5_Mod2 over CLM5_Mod1. Figure S12(a) depicts that the CLM5 simulations underestimate the LH compared to 575 

FLUXCOM data. 

 
Figure 10: Comparing CLM5 simulated (a) LAI, (b) GPP, (c) LH, and (d) SH against observations. The data used here is the monthly 
mean from 2000 to 2014. 

3.3.2 Sensible Heat flux 580 

3.3.1.1 Spatial variation 
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The spatial and monthly variation in the CLM5 simulation of SH is illustrated in Figure S11. Most of the spatial pattern in 

observed SH is captured by all setups of the CLM5 model. However, CLM5_Def simulated slightly lower SH than the modified 

model simulations, especially from March to June. Low SH is observed from August to December across all CLM5 

simulations. 585 

3.3.2.2 Monthly time series 

Comparing the sensible heat flux (SH) simulated by CLM5, we observed the MAB of SH reduced from 0.22 in CLM5_Def to 

0.19 in CLM5_Mod1 and 0.20 in CLM5_Mod2. The RMSE reduced from 14.34 W/m2 in CLM5_Def to 11.16 W/m2 in 

CLM5_Mod1. The RMSE in CLM5_Mod2 is 11.56 W/m2, slightly higher than in the CLM5_Mod1 case. The correlation 

improved from 0.85 in CLM5_Def to 0.94 in CLM5_Mod1 and 0.95 in CLM5_Mod2. KGE metric improved from 0.52 in 590 

CLM5_Def to 0.73 in CLM5_Mod cases. The SH in CLM5 is affected by vegetation temperature and ground temperatures. 

The results suggest that a difference in vegetation temperatures is observed between CLM5_Def and CLM5_Mod1, and very 

little to no difference is observed between CLM5_Mod1 and CLM5_Mod2. The difference in vegetation temperature is likely 

caused by the accurate representation of the growing season in CLM5_Mod cases compared to CLM5_Def. This is also evident 

from the Taylor diagram (Figure 10(d)), where we see improvement from CLM5_Def to CLM5_Mod1, but CLM5_Mod1 and 595 

CLM5_Mod2 markers overlap. Figure S12(b) depicts that the CLM5 simulations underestimated the highs and lows of SH in 

FLUXCOM data. The peak of SH in all CLM5 simulations is in line with the FLUXCOM data. However, CLM5_Def has a 

larger bias in estimating the maximum SH during a year. 

Overall, the improvements in the representation of the two major Indian crops drastically improved the surface energy flux 

simulations by CLM5 (Figure 10b, c, and d). 600 

4 Discussions 

In this study, we improved the representation of wheat and rice, the two major crops grown in India, in the CLM5 land model. 

One major strength of the current study is using multiple site-scale observations for calibrating and validating the crop modules 

in CLM5. Studies such as those by Gahlot et al. (2020), who looked at Indian crops, used only one site for calibrating and 

evaluating their model. Even studies carried out for winter wheat across the globe (Lokupitiya et al., 2009; Lu et al., 2017; 605 

Boas et al., 2021) used two or three sites for calibrating the model. In contrast, we used 33 growing seasons from 14 sites, 

resulting in a rigorous calibration and evaluation exercise. The improved model in our study not only simulated crop phenology 

better but also improved the simulation of energy and water fluxes. The results demonstrate the importance of accurate 

representation of crops in land surface models, especially in a country like India, where more than 50% of land is used for 

agriculture.  610 

This study looked at the variability in yield simulations at a regional scale for two major Indian crops. When compared against 

the EarthStat 2005 yield data, few regions showed improvement from the default CLM5 version to the modified version. 

Nevertheless, the yield simulated by CLM5 for wheat and rice needs improvement. Yield is now calculated as the available 

dry matter allocated to the grain after the allocation to root, leaf, and stem. Global studies like Rabin et al. (2023) highlighted 
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the issue of inconsistent improvement in yield estimates at different scales while analyzing the inter-annual and spatial variation 615 

in yield estimates. A recent study by Yin et al. (2024), which looked at the yield estimates by various models, concluded that 

the CLM5 simulated the temporal variability well but failed to simulate the spatial variability across China's wheat and rice-

growing regions. Similarly, in our study, we found an improvement in site-scale yield estimates over different growing seasons 

but found mixed results in regional yield estimates. The yield should perform better since the CLM5 simulates the GPP with 

lower bias and improved seasonality. However, that is not the case here. Therefore, an investigation into the yield estimation, 620 

especially wheat in CLM5, is necessary. 

A region with significant agricultural coverage and practices is misrepresented in the most widely used land surface model. 

Our study improved the model representation of the two major Indian crops. Our future goal is to study the feedback in the 

land-atmosphere system using the improved land model. The enhanced crop representation and management practices will 

impact the water cycle and local and global temperature and precipitation (Mathur and Rao, 2020). Rice and wheat constitute 625 

80% of India's harvested land area, followed by maize, sugarcane, and cotton. Improving parameterizations for all these Indian 

crops (seasonal and cash crops) would be an ideal next step. 

While our study made progress in correcting shortcomings, it is critical to recognize that the CLM5 model, like any 

sophisticated climate model, is still a work in progress. Future improvements should address broader model deficiencies 

highlighted in ours and various other studies. The deficiencies range from the inclusion of sophisticated plant and soil 630 

hydraulics (Boas et al., 2021; Raczka et al., 2021), improvement in yield predictions, improved or new management practices 

like tillage (Graham et al., 2021), post-harvest crop residual management. Furthermore, our research contributes to continuing 

attempts to improve the CLM5 model by addressing shortcomings in Indian crop representation. The enhancements are a step 

forward, emphasizing the iterative nature of model development and the importance of constant refinement to ensure the 

accuracy of the model in replicating complex earth system processes. Future studies should build on these findings, including 635 

additional enhancements to address broader shortcomings in the model.  

The major drawback of this study is that it does not consider the multiple croppings of rice followed in major parts of India. 

Although the harvested area of rice grown in rabi and summer seasons is very low (Biemans et al., 2016), it is important to 

include the rice growth in these seasons in LSMs. This will significantly impact the terrestrial fluxes at the local scale (Oo et 

al., 2023). The lower LH simulated by the CLM5 models during the rabi and summer season (November to June) compared 640 

to FLUXCOM data (Figure S12(a)) might be due to growing rice in kharif season only. However, because of the small areal 

coverage of rabi and summer rice, their impact on large scale fluxes and weather/climate is likely to be small. This study did 

not consider other major crops, such as maize, soybean, and pulses, which cover substantial harvesting areas. Future studies 

should focus on improving the representation of these crops in CLM5 for a comprehensive study of climate impacts on Indian 

agroecosystems. 645 

5 Conclusion 
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Two major modifications were made to CLM5 in this study. First, the representation of wheat and rice growing seasons in 

India was improved to align better with the observations. Second, a latitudinal variation in base temperature was implemented 

to capture the crop varieties grown across diverse Indian agro-climatic conditions. These modifications resulted in the 

following improvements in the CLM5 simulations: 650 

• The crop phenology is realistic in the modified models. The models simulate rice and wheat growth in the seasons 

they are grown in the field. 

• The LAI simulations are significantly better in wheat and rice at the site scale—the bias in the simulations reduced 

by nearly 50% compared to the default model. 

• The simulated growing season length for wheat is significantly better at the site scale. The rmse improved from over 655 

60 days in the default model to just over 15 days. 

• The simulations of rice yield are significantly better at both site and regional scales. 

• The carbon uptake (GPP) simulations over the Indian region are significantly better, improving from a negative 

correlation in the default model to a high positive correlation. 

• The seasonality of simulated irrigation patterns across crop regimes in India is realistic. 660 

Irrigation is a significant part of agriculture in India. With the improvements made to the model, irrigation patterns improved 

drastically and are now in line with a study by Biemans et al. (2016). The amount of water taken up by the crops through 

irrigation during their respective growing seasons decreased, and at the same time, the latent heat simulations improved from 

the default case.  

CLM5 defines its crop parameters globally and, therefore, has a significant bias in regions such as India, where crop practices 665 

are unlike those in Europe or North America. This study demonstrated that the global land models must use region-specific 

parameters rather than global ones for accurately simulating vegetation and land surface processes. Such improved land models 

will be a great asset in investigating the global and regional scale land-atmosphere interactions and developing improved future 

climate scenarios. Models that can simulate regional crop and land processes accurately will be able to predict the future water 

demand of the crops and if enough water sources are available to meet the needs. They can also help in providing estimates of 670 

productivity and net carbon capture abilities of agroecosystems in future climate. 

Code and data availability: The site scale data used in the study is available at Varma et al. (2024). The code changes made 

in CLM5, domain, surface, and land use time series data used for the site scale and regional simulations are available at 

https://doi.org/10.5281/zenodo.14040383 Reddy et al. (2024). The Python codes and the data used to generate the figures are 

available at https://doi.org/10.5281/zenodo.14040383 Reddy et al. (2024). 675 
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