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Abstract.

Atmospheric inverse modeling is the process of estimating emissions from atmospheric observations by minimizing a cost

function, which includes a term describing the difference between simulated and observed concentrations. The minimization

of this difference is typically limited by uncertainties in the atmospheric transport model rather than by uncertainties in the

observations. In this study, we showcase how a temporally varying, flow-dependent atmospheric transport uncertainty can5

enhance the accuracy of emission estimation through idealized experiments using the CTDAS-ICON-ART ensemble Kalman

smoother system. We use the estimation of European CH4 emissions from the in-situ measurement network as an example, but

we also demonstrate the additional benefits for trace gases with more localized sources, such as SF6. The uncertainty in flow-

dependent transport is determined using meteorological ensemble simulations that are perturbed by physics and driven at the

boundaries by an analysis ensemble from a global meteorology and CH4 simulation. The impact of a direct representation of10

temporally varying transport uncertainties in atmospheric inversions is then investigated in an observation system simulation

experiment framework in various setups and for different flux signals. We show that the uncertainty in the transport model

varies significantly in space and time, and it is generally highest during nighttime. We apply inversions using only afternoon

observations as is common practice, but also explore the option of assimilating hourly data irrespective of the hour of day using

a filter based on transport uncertainty and taking into account the temporal covariances. Our findings indicate that incorporating15

flow-dependent uncertainties in inversion techniques leads to more precise estimates of GHG emissions. Differences between

estimated and true emissions could be reduced by 9% to 82% more effectively, with generally larger improvements for the SF6

inversion problem and for the more challenging setup with small flux signals.

1 Introduction

Atmospheric greenhouse gas (GHG) inversions use observed atmospheric GHG concentrations to estimate surface fluxes. This20

helps to verify emission reduction targets or the fulfillment of the Paris Agreement, monitor substances whose emissions are

prohibited or regulated by the Montreal Protocol, and understand global and regional carbon cycles. The independence of such

top-down inversions could also support the development of future emission inventories. However, GHG inversions are subject

to various uncertainties, which are expressed in discrepancies among inversion results (e.g., Brunner et al., 2017; Monteil et al.,
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2020; Petrescu et al., 2023). Current inversion systems are mostly based on Bayes’ theorem and solve the inversion problem25

by minimizing a cost function with two components: one component penalizes deviations from the a priori state, while the

other penalizes differences between simulated and observed concentrations. The weighting of the two terms is determined by

corresponding error covariance matrices, which define the magnitude and correlation structure of errors related to these two

components. Errors in the second term, commonly referred to as model-data mismatch error (mdm), include all processes

that contribute to discrepancies between observations and model, such as aggregation and representation errors, measurement30

errors, and atmospheric transport errors (Kaminski et al., 2001; Engelen et al., 2002). A major source of uncertainty arises from

the transport uncertainty of the atmospheric transport model (Munassar et al., 2023). Errors in the atmospheric transport lead

to corresponding errors in modeled tracer concentrations, which may ultimately lead to erroneous flux estimates if not properly

accounted for. Constructing the mdm is therefore a crucial yet challenging task, especially given the limited understanding of

the errors associated with the representation of atmospheric transport in numerical models. Although these errors are recognized35

as significant, there still remains a gap in adequately addressing them within inversion systems, mainly due to the fact that

determining atmospheric transport uncertainties typically requires expensive meteorological ensemble simulations.

The importance of transport errors in inverse emission estimation was recognized already by Enting (1993) but system-

atic studies of their impacts and possible solutions were published only much later. Lin and Gerbig (2005) tested the effects

of unaccounted wind errors, directly determined from radiosonde data, on inversion results, and demonstrated that these un-40

certainties can result in significantly biased flux estimates. In a subsequent study, the authors focused on potential biases in

inversion results associated with a misrepresentation of vertical mixing in the atmospheric boundary layer (Gerbig et al., 2008).

Lauvaux et al. (2009) investigated transport errors in the context of inversions, determining covariances between two stations

in South-West France from a meteorological ensemble simulation, and showed that the effective information content of the ob-

servations in an inversion is significantly reduced when considering these covariances. Several subsequent studies investigated45

transport errors and their characteristics for greenhouse gases, especially CO2, without directly examining the impacts in an

inversion framework. Using global simulations, Liu et al. (2011) demonstrated that the CO2 transport uncertainty is highest in

the tropics and in regions with the highest emissions from fossil fuels. Miller et al. (2015) examined the importance of transport

error compared to emission signals, analyzing monthly biases and associating them with meteorological conditions. Further

studies explored the predictability of CO2 (Polavarapu et al., 2016; Kim et al., 2021) or the significance of errors in transport50

and boundary conditions for estimating the terrestrial carbon sink in limited area simulations (LAM) (Feng et al., 2019). Two

recent studies provided more detailed investigations of transport error and its characteristics. Chen et al. (2019) focused on a

sensitivity analysis of transport errors to errors in emission fluxes and initial and boundary data in LAM simulations, while

McNorton et al. (2020) focused on the biogenic feedback to transport error in global simulations. A comprehensive study on

the impacts of transport uncertainties on inverse CO2 estimation in an urban context was recently presented by Ghosh et al.55

(2021). They tested various transport uncertainties in synthetic CO2 flux inversions with pseudo-observations in an urban area

with a dense observation network. They compared conventional parameterizations with transport uncertainties sampled from

an ensemble of simulations, both with and without spatio-temporal covariances. They demonstrated the importance of con-

sidering covariances in transport uncertainties when using data from a dense network. A method to partially account for the
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effects of different meteorological situations on the transport uncertainty was applied in Bergamaschi et al. (2022). In their60

European CH4 inversions they parameterized the mdm as a function of wind speed. Their approach assigns larger uncertainties

to observations at low wind speeds, assuming that under such conditions, local emissions may have a greater influence on the

observed concentrations but are not well represented in the model.

This paper presents a comprehensive examination of flow-dependent transport uncertainties and proposes a simple method for

including them in atmospheric inversions. The method is showcased for the estimation of European CH4 inversions using the65

ensemble Kalman smoother system CTDAS-ICON-ART introduced by Steiner et al. (2024). Making use of meteorological

ensemble simulations, we investigate the spatial, vertical, and temporal characteristics of the transport error for CH4 and in-

vestigate the impact of realistic transport uncertainties on inversion results in an observation system simulation experiment

(OSSE). We use synthetically generated CH4 observations (“pseudo-observations”) mimicking the observations from the cur-

rent network of European in-situ stations, but also demonstrate the advantages for trace gases characterized by a more irregular70

emission distribution, such as SF6. We evaluate the new approach in different setups and for various flux signals. Furthermore,

we demonstrate how information on flow-dependent uncertainties may be used to assimilate hourly observations as opposed

to afternoon observations only, as frequently done. For this we use a filter based on transport uncertainty and take into account

the temporal covariances. Finally we also demonstrate the impacts of the new transport uncertainty on European CH4 emission

estimates using real observations.75

2 Model description and methodology

We conducted atmospheric transport simulations of CH4 using the Icosahedral Nonhydrostatic (ICON) atmospheric modeling

framework (Wan et al., 2013; Zängl et al., 2015; Pham et al., 2021) with the ART extension for passive and reactive tracers

(Rieger et al., 2015; Weimer et al., 2017; Schröter et al., 2018). Our simulations were configured following the setup described

in Steiner et al. (2024), employing an R3B6 limited area grid (∆x ≈ 26 km) covering Europe with 60 vertical levels. In the80

simulations, we use a time step of 120 seconds and nudge the simulation weakly towards the driving reanalysis data. In the

inversion step, the 21344 emission regions (grid cells) in the state vector are optimized using the fixed-lag ensemble Kalman

smoother implemented in CTDAS with an assimilation window length of 9 days and a lag of 2. The number of members in the

emissions ensemble is 192.

2.1 Idealized Experiments85

Unlike our previous study with a single forward simulation, we created a meteorological ensemble (see Sect. 2.3) with 10

ensemble members driven by perturbed meteorological boundary conditions and model physics, as well as by perturbed CH4

boundary conditions from the same global ensemble simulation that provided the meteorological boundary conditions. Each

ensemble member contains two CH4 tracers, a background tracer (CHbg
4 ) representing the perturbed CH4 boundary conditions,

and an emission tracer (CHemis
4 ) representing the additional CH4 emitted within our European model domain . These CHemis

490
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tracers experienced the same (unperturbed) CH4 emissions such that the ensemble of 10 CHtot
4 = CHbg

4 +CHemis
4 tracers solely

represents the effect of transport uncertainty.

One of these 10 ensemble members was considered to represent the ”true” meteorology and used to generate the pseudo-

observations of CH4. All inversions were then performed using a different ensemble member in order to mimic the fact that

the simulated meteorology (and the corresponding transport of CH4) in general deviates from the true meteorology within the95

range of uncertainty of state-of-the-art meteorological analyses.

The ensemble spread of the CHtot
4 tracers was sampled at each station location and used to determine a temporally varying,

flow-dependent model-data mismatch (mdm) replacing the static mdm used in our previous inversion study (Steiner et al.,

2024). In contrast to our previous study, we optimized only the emissions, but not the background concentrations, since possible

errors in background CH4 concentrations are already accounted for through the perturbed background CHbg
4 concentrations100

in the driving data. However, this assumes random errors, while systematic biases in background CH4 would still justify

an optimization of background levels together with the emissions. The performance of these inversions was compared with

inversions using the static mdm as used in Steiner et al. (2024). To ensure a fair comparison, inversions were set up so that the

innovation chi-squared value in each inversion was 1.

In the reference setup, we utilized an a priori variance of 0.07 (unitless) at grid cell level, which corresponds to an emission105

uncertainty of 26%. With such a low emission signal it is easier to demonstrate the benefits of our new approach as the relative

importance of transport uncertainties is larger. Since the same variance of 0.07 was used for generating the pseudo-observations

(see Sect. 2.5), the reference setup corresponds to the optimal situation where the assumed a priori uncertainties are in perfect

agreement with the true emission errors.

Starting from the reference setup, two sets of sensitivity experiments were conducted. In the first set, different combinations110

of a priori variances ranging from 0.007 to 0.7 were tested in order to analyze the impact of a priori assumptions deviating

from the true emission error. In the second set, the true variances were varied betwen 0.07 and 1.0 in order to assess the

potential of improving the inversion results using our proposed method for different ratios between flux uncertainties and

transport uncertainties. All inversions were performed for two different emission fields. One emission field is the same as in

Steiner et al. (2024), which comprises the sum of anthropogenic emissions from EDGARv6 (Crippa et al., 2021) and various115

natural sources: peatlands and mineral soils from JSBACH-HIMMELI (Raivonen et al., 2017; Reick et al., 2013) (version 2),

inland water (provided by Université Libre de Bruxelles to the GCP-CH4 data set; Saunois et al., 2020), termites (Saunois

et al., 2020), ocean (Weber et al., 2019), and biofuels and biomass burning (GFED 4.1s; van der Werf et al., 2017) as well as

geological emissions (Etiope et al., 2019) (scaled to a global total of 15 Tg). The second emission field contains the same total

amount but is spatially distributed according the SF6 emission field of the categories "NFE" and "PRU" in EDGARv7 (Crippa120

et al., 2022). The latter shows a more irregular emission distribution than CH4 and, hence, serves as an additional test case

with expectedly larger gradients. Figure 1 shows the spatial distribution of the two emission fields in our model domain.

In another experiment, we compared the aforementioned inversions, where we assimilated only afternoon averages (night-

time averages for mountain stations), with inversions where we assimilated hourly observations filtered based on the ensemble

spread of CH4 concentrations. The filter excluded observations during times when the ensemble spread exceeded 5 ppb. This125
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Figure 1. Spatial distribution of CH4 emissions (a) as well as CH4 re-distriubted to follow EDGAR SF6 emissions (b) remapped onto the

simulation grid. The emissions are representative for the period of 02–11 July 2019.

resulted in the exclusion of ca. 22% of the 19.530 observations. For these inversions, however, the assumption of temporally

uncorrelated errors was no longer valid and were accounted for by introducing off-diagonal elements in the mdm error covari-

ance matrix. The temporal error correlations were computed from the ensemble spread. For each of the hourly observation, the

error correlation with the observations at the same station in the next 36 hours were considered.
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2.2 Experiment with real-data130

The setup for the application with real data closely followed the setup for the idealized experiment with the assimilation

of daily afternoon or nighttime means. The transport uncertainties for the mdm were also derived from the same ensemble

simulation. However, in order to stay closer to real meteorology and background CH4 concentrations, the forward simulations

of the inversion were driven at the domain boundaries by ERA5 reanalysis data for meteorology (Hersbach et al., 2020) and

by the CAMSv22r2 product (available via https://ads.atmosphere.copernicus.eu/, last access: 18 April 2024) for background135

CH4 concentrations. Using the CAMSv22r2 product was necessary as the CH4 mole fractions from the experimental ensemble

simulation had too large biases.

2.3 ICON-ART ensemble simulations

To generate a meteorological ensemble, we ran the model with 10 members, each driven by the output of an experimental En-

semble of Data Assimilation (EDA) simulation conducted at ECMWF (experiment ID "hyfd"), which included global surface140

emissions inversion and transport of CO2 and CH4 (McNorton et al., 2022). The experiment was conducted for the month of

July 2019 and was carried out using the IFS cycle 48r1 with 10 ensemble members at 25 km resolution (Tco399), in which

model physics (in the form of SPPT), observations, and SST were perturbed. Additionally, the GHG emissions were also per-

turbed, with the perturbations sampled from a log-normal distribution with an a priori uncertainty of 100 %. The perturbations

were not spatially correlated but a correlation length of 100 km was assumed in the background covariance matrix for CH4145

emissions. The background error covariance matrix for GHG concentrations was static, that is, it was not updated during the

experiment, and was based on differences between forecasts with different lead times obtained from a climatological sam-

ple (cf. NMC method Parrish and Derber, 1992). The background error covariance matrix for NWP fields was based on the

archived IFS EDA o-suite (experiment 0001) for the same period. GOSAT, IASI, and TROPOMI retrievals of CH4 were as-

similated. The emissions were optimized independently in each 12-hour window. Besides the perturbed driving data, we also150

applied perturbations to model physics tuning parameters as implemented in ICON for the ensemble data assimilation scheme

of the German weather service. Together, these perturbations are expected to represent the typical level of uncertainties present

in state-of-the-art meteorological analysis products. The perturbed CH4 concentration fields of the driving data was used to

initialize and drive the background tracers CHbg
4 in our simulations. In this study, we did not optimize the background con-

centrations, but the perturbations of the different background fields were part of the artificial transport error. In addition to the155

CHbg
4 tracer, we also incorporated a CHemis

4 tracer into our ensemble simulations using ICON-ART, transporting the emitted

signal with (unperturbed) emissions introduced via the online emission module (OEM) (Jähn et al., 2020; Steiner et al., 2024).

2.4 CTDAS inversion setup

The setup of the CTDAS-ICON-ART inversion system aligns with Steiner et al. (2024). We optimize the emission scaling

factors in each grid cell of the R3B6 grid while applying exponential decaying correlations with a length scale of 200 km in160
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the a priori error covariance matrix. However, optimization is restricted to a single emission category, namely the total CH4

emissions, which is the sum of anthropogenic and various natural emissions.

Since we compare different approaches in representing the mdm uncertainty, the question arises, how these uncertainties

should be scaled to enable a fair comparison. Since the innovation chi-square statistics is a common diagnostic to judge the

validity of the uncertainty assumptions made in an inversion (Berchet et al., 2015; Michalak et al., 2017), we contend that165

comparability is best achieved when the uncertainties in each inversion are scaled such that the innovation chi-square value is

1. The chi-square metric delineates the ratio of a priori residuals between observed and simulated concentrations to the total a

priori variance in the observation space, accounting for the projected a priori variance to the observation space alongside the

model-data mismatch

χ2
innov =

1
n

∑ (yo−H(xb))2

HPbH+R
(1)170

Here, yo denotes observed data, H the observation operator, xb the a priori (background) state, Pb the a priori error covariance

matrix, R the observation error covariance matrix (or mdm), and n the number of observations. The requirement of a chi-square

value close to 1 results in some differences in the magnitude of the mdm, but we believe this is a better approach than requiring,

for example, that the mean mdm is identical between different inversions.

2.5 Pseudo-observations175

Pseudo-observations, following the methodology outlined in Steiner et al. (2024), are generated with a forward simulation of

ICON-ART, wherein the CHtot
4 tracer concentrations are sampled at the station locations. In this simulation, the emission field

is perturbed using a set of "true" scaling factors, which we aim to reproduce as accurately as possible through the inversions

starting from unscaled emissions. The "true" scaling factors are a field of spatially correlated random perturbations with a

correlation length of 200 km. In our standard configuration, a variance of 0.07 is applied to generate this perturbation field.180

We systematically explored different configurations, varying the true and a priori variances, with true variances ranging from

0.007 to 1.0. In addition, to mimic measurement noise, a 2 ppb noise was introduced. Pseudo-observations were generated at

the stations available in the dataset of the European Obspack 2022-1 L2 release (ICOS RI et al., 2022) for the year 2019.

2.6 Real observations

In the application with real observations, the Obspack dataset of quasi-continuous in-situ observations from 28 stations was185

used. Most of the stations are members of the atmosphere network of the Integrated Carbon Observation System (ICOS)

(Heiskanen et al., 2022). As in our previous study, we distinguish mountain sites from sites in flat terrain. Stations where the

model topography was more than 200 m lower than the actual topography (due to coarse grid representation) were classified as

mountain stations. For sites in flat terrain, only daytime (11:00 to 16:00 local time) mean values were assimilated, as usually

done in atmospheric inverse modeling to avoid difficulties in representing shallow nocturnal boundary layers. In contrast, only190

nighttime mean values between 23:00 and 06:00 local time were assimilated for mountain sites, as these are least influenced

by pollution from daytime up-slope valley winds, which are difficult to represent in a coarse resolution model. The height at
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which the model output was sampled was different for mountain sites than for sites in flat terrain to account for the fact that

the smooth model topography typically underestimates the real altitude of mountain sites. For sites in flat terrain, the (relative)

height of the observation above ground was preserved, whereas for mountain sites a height in between the relative height to the195

model topography and the absolute height of the station was chosen. For stations located on a hill but still within the daytime

boundary layer (e.g., Beromünster), only measurements in the afternoon were used as for stations in flat terrain, but the vertical

sampling of model fields was done in the same way as for mountain stations in order to maintain a realistic relative distance

from near-surface emissions.

2.7 Observation error200

For each pseudo-observation, we calculate the standard deviation of CHtot
4 in the ensemble. This standard deviation is then

incorporated into the flow-dependent model-data mismatch (mdm) and scaled to achieve an optimal innovation chi-squared

value (see Sect. 2.4). Specifically, the flow-dependent mdm is computed as x std(CHtot
4 )+2 [ppb], where the factor x varies

depending on the inversion (to keep an innovation chi-squared value of 1) but remains constant across all stations and time

steps within one inversion. The additional term of 2 ppb accounts for the 2 ppb noise introduced to the pseudo-observations205

(see Sect.2.5).

Inversions with the flow-dependent mdm are compared with inversions with the static mdm, which was implemented following

a similar principles as outlined in Steiner et al. (2024). The static mdm varies between stations but remains constant over time.

In this study, we calculated at each station the average of the flow-dependent mdm’s for the observations assimilated, adjusting

them with a factor to maintain an innovation chi-squared value of 1.210

The mdm’s for application with real observations was created in the same manner, with the only difference being that the

factor x was chosen to be station-dependent, which allows to achieve a chi-squared value of 1 for each station separately. This

became necessary because, unlike in the synthetic setup, some regions exhibited significantly larger biases in the background

concentrations than other regions. With this adjustment, stations where a large bias occurred had a lower weight than stations

with good a priori agreement.215

For constructing the R-matrix for inversions assimilating hourly observations, we calculated for each station and hour of the day

the mean temporal correlation with observations for the next 36 hours during the inversion period. We then fitted a function to

these data for each station and hour of the day. The function is a combination of exponential decay and a Gaussian distribution:

exp
−∆t

a
+ b exp

−(∆t + c)2

2 d2
(2)220

where the parameters a, b, c and d are fitted. We chose this fit because it is able to represent the decay in the first hours and

the correlated errors between two nights at lowland stations (see Fig. 6). The mean value of the decay time a over all stations

and hours is 7.8 hours, with a large variability indicated by a standard deviation of 4.0 hours. The inversion of the R-matrix,

which only considers the fitted covariances with the next 36 hours of observations, is very unstable due to poor conditioning.

As a result, unrealistic results are produced when inverting HPbH+R. To address this issue, we conditioned the R-matrix225
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Figure 2. Time series of the ratio between emission signal and transport uncertainty at the stations Cabauw (a) and Monte Cimone (b) for

two different levels of emission signal.

by multiplying the fitted covariances with a factor that exponentially decreases with time (exp(-∆t/24h)) as proposed also by

Ghosh et al. (2021).

3 Results and discussion

3.1 Characteristics of the transport error

We start the analysis with illustrating examples of the ratio between flux and transport uncertainties, which can be interpreted230

as the signal-to-error ratio of the flux signal: Fluxes can only be retrieved reliably if this ratio is larger than one. The ratio was

computed as the ratio between the spread in CHemis
4 concentrations of the flux ensemble (used in the inversions) to the spread

in CHtot
4 concentrations of the meteorological ensemble. The time series of this ratio for Cabauw (lowland site) and Monte

Cimone (mountain site) at two different magnitudes of flux signals, once with a variance of 0.07 and once with a variance of

1.0, are depicted in Fig. 2. This illustration shows that even in the scenario with a small flux error variance of 0.07, the signal235

of flux uncertainties is often still stronger than the signal of the transport error (ratio above 1). The low values at the beginning

of the time series are due to a spin-up effect: While the emission signal is still extremely small (CHemis
4 has not yet reached the

stations), the spread in CHbg
4 is already fully developed due to the perturbed IC/BC.

A snapshot of the ensemble spread of CH4 at the lowest model levels at an arbitrary time step (Fig. 3) highlights the spatial

variability of the transport error. The spread in the tracer of emitted CHemis
4 reveals hotspots of large uncertainties, particularly240

downwind of strong CH4 sources, but also elongated features of high uncertainty likely associated with frontal zones. This
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Figure 3. Map of the standard deviations of CHemis
4 (a) and CHbg

4 (b) in the lowest model level at 2019-07-27 15:00 UTC. The arrows show

the ensemble mean wind in the lowest model level.

underscores the influence that atmospheric flow conditions have on the structure of the transport error. The spread in the

background tracer CHbg
4 is of similar magnitude but is much smoother.

Further insight into the structure of the transport uncertainty is obtained by plotting time series of vertical profiles of the

ensemble spread. Figure 4 shows such a time series for the Dutch station Cabauw. It shows distinct periodic increases in the245

ensemble spread near the surface during the nights. These increases reflect the uncertainties associated with the simulation

of boundary layer processes and their impact on boundary layer heights, which has a particularly strong impact on tracer

concentrations in shallow nocturnal boundary layers. The periodic increases in uncertainty are occasionally superimposed by

larger-scale events, such as the one from July 9-12. The higher uncertainties at night support the common practice in GHG

inversions to use only daytime observations such as afternoon averages. At the same time, it’s conceivable that the use of a250
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Figure 4. Time series of vertical profiles of the standard deviations of CHbg
4 (a-b) and CHemis

4 (c-d) at Cabauw. The dashed lines in (a and

c) indicate the upper boundary of the plots in (b and d). The black line in the right column plots indicates the inlet height at Cabauw.

meteorological ensemble also provides an opportunity to filter observations based on transport uncertainty rather than time of

day and thereby to use the information provided by the observations more efficiently.

The mean diurnal ensemble spread of CH4 concentrations is depicted in Fig. 5, distinguishing between lowland and mountain

stations. Each figure presents two scenarios: one with only perturbed initial and boundary conditions (gray), and the other one

with both, perturbed model physics and perturbed initial and boundary conditions (IC/BC, red). The spread attributed solely255

to perturbed IC/BC accounts for approximately 50% of the spread in the two tracers when both perturbed model physics and

IC/BC are considered. The higher spread in the nocturnal boundary layer at lowland sites and the peak during the early morning

hours is caused approximately equally by the perturbed model physics and by the perturbed IC/BC conditions. At mountain

stations, the spread is nearly constant over the day. This indicates that the ensemble is not fully capable of estimating the

uncertainty at mountain sites, since a fundamental problem, the misrepresentation of thermally induced flow in the afternoon, is260

inherent to all ensemble members. This supports the common practice of assimilating only nighttime observations at mountain

stations.

The temporal correlations, illustrated in Fig. 6 (in analogy to Fig. 4 in Lauvaux et al., 2009), provide information on the

temporal structure of the transport error. Two different periods of the day are examined separately (0 a.m. to 8 a.m., 12 p.m.

to 8 p.m) to emphasize the differences between day and nighttime conditions. Each line shows the error correlation (y-axis)265

of an hourly mean observation with the observations of the next 36 hours (x-axis), with separate analyzes conducted for the

lowland and mountain stations. At lowland stations, the nocturnal values exhibit significant error correlations with subsequent

night-time observations but lack correlation with daytime values. Similarly to Lauvaux et al. (2009), the correlations with
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Figure 5. Diurnal profiles of the spread in CHbg
4 (a and b) and CHemis

4 (b and c) concentrations in the ensemble for an ensemble simulation

with perturbed IC/BC only (gray) and an ensemble simulation with perturbed IC/BC and perturbed model physics (red).

observations from the following night show that, on the one hand, the nocturnal error structures are determined by static

parameters that cause similar errors in different nights, but, on the other hand, the system is also sensitive to disturbances, as270

the correlations remain below 0.5. It can also be seen that the decline in correlations for the 8 a.m. observation occurs earlier

than for the midnight observation, which is a result of the earlier breakdown of the nocturnal boundary layer for the 8 a.m.

observation. For mountain sites, this pattern of recurring error correlations is much less pronounced. The daytime observations

at both stations exhibit exponentially decaying correlations without a subsequent increase in the afternoon of the following

day, contrasting with the observed nocturnal correlations.275

3.2 Flow-dependent observation error in an idealized setup

Figure 7 shows the true scaling factors alongside the optimized factors obtained from inversions using both the the static mdm

and the flow-dependent mdm. Both inversions seem to be similarly successful in reproducing the large-scale patterns of the true

state, especially in central Europe where emission fluxes and observation density are high. To better compare the quality of the

results, Fig. 8 illustrates the improvement achieved by the flow-dependent mdm compared to the static mdm, both in terms of280

scaling factors (a) and emission fluxes (b). The predominance of green colors suggests a significant overall improvement with

the implementation of the new mdm. Since we perform these inversions in a synthetic setup where the ground truth is known,

we can compute the flux error reduction precisely. Summed over the entire domain, this reduction amounts to 20.12 kg s−1
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Figure 6. Mean temporal correlations at Cabauw (a and b) and Monte Cimone (c and d) for observations at 00 to 08 UTC (a and c) and 12

to 20 UTC (b and d) to observations in the next 36 hours.

Figure 7. True (a) and a posteriori scaling factors for the inversion with the the static mdm (b) and the flow-dependent mdm (c).

(or 8.7% of the a priori total error) with the static mdm and 36.57 kg s−1 (or 15.8% of the a priori total error) with the

flow-dependent mdm, which corresponds to an improvement by 82%.285

Figure 9 illustrates the relationship between error reduction and the ratio of the "true" to the a priori variance for both, the

inversions with a flow-dependent and static mdm. In this plot, the true variance remains constant at 0.07 while the a priori

variance varies, representing different levels of freedom to adjust the state in the inversion process. The analysis includes both

CH4 and SF6 emission patterns. In the left half of the figure, the a priori variance is larger than the true variance. As a result, the
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Figure 8. Improvement of the error reduction for inversions using the flow-dependent mdm vs the static mdm in terms of scaling factors (a)

and emission flux (b). Green color indicates that the inversion with the flow-dependent mdm performs better while red color indicates that

the inversion with the static mdm performs better.

system has too much freedom resulting in strong adjustments of the state. This tendency to overfit leads to poor performance,290

particularly evident with the static mdm, where the error may become even larger than the a priori error due to over-fitting

to biased observations. The right half of the figure shows situations where the a priori uncertainty is too low and the cost

of state adjustment is correspondingly high. In contrast to the previous situation with too high uncertainty, the degradation in

performance is comparatively slow, and, in some instances, there may even be a slight performance gain, notably with the static

mdm. This phenomenon can be attributed to the fact that decreasing the a priori uncertainty minimizes updates in all regions295

due to higher associated costs in the cost function. As a result, regions initially subject to incorrect updates remain closer to the

a priori state. This partially counteracts the performance degradation resulting from reduced updates in regions that initially

perform well. This effect becomes apparent as we used (correlated) random perturbation factors for the ground truth, which

are normally distributed around 1. In this case, the solution frequently benefits from maintaining proximity to the a priori state.

However, in scenarios featuring substantial biases within the a priori on a larger scale, this proximity would likely result in a300

more rapid decline in performance, as depicted on the right side of the plot.
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Figure 9. Error reduction (in kg s−1) for inversions using the flow-dependent mdm (circles) and the static mdm (crosses) as a function of the

ratio of true variance to a priori variance. Results are shown for inversions with CH4 emissions (a) and SF6 emissions (b).

In the reference setup with a true variance of 0.07, the transport error is relatively large compared to the emission signal.

While this makes optimization challenging for the inversion system overall, it presents a greater potential for improvement

with the flow-dependent mdm. To evaluate the improvement with the flow-dependent mdm across various magnitudes of the

emission signal, we illustrate the relationship between the relative reduction of errors (in percentage) and the true variance305

(σ2
true) in Fig. 10. In all these inversions, a perfect assumption is made for the a priori variance, resulting in σ2

prior being

equal to σ2
true. Moving to the right side of the figure towards larger σ2

true values, the ratio of emission signal to transport

error increases, making the system a simpler problem to optimize. This is reflected in larger error reductions. However, as the

flux signal increases, the distance between the lines representing the static and flow-dependent mdm reduces, i.e. the benefit of

applying a flow-dependent mdm becomes smaller. The error reduction of the inversions is generally better for the SF6 emission310

pattern compared to the CH4 emissions and the flow-dependent mdm has a larger effect. This is to be expected, as the transport

error translates into a larger tracer concentration error when the emission pattern is more heterogeneous, as in the case of SF6

emissions.
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Figure 10. Relative error reduction for inversions using the flow-dependent mdm (circles) and the static mdm (crosses) as a function of the

true variance. All inversions use the same a priori covariance as the true variance. Results are shown for inversions with CH4 emissions (a)

and SF6 emissions (b).

3.3 Hourly observation with correlated errors in an idealized setup

To evaluate the effectiveness of assimilating hourly values versus only daily afternoon mean values (nighttime for mountain315

sites), we performed 5 different inversions, each using a different R-matrix. All 5 inversions are performed with the CH4 emis-

sion field and the true as well as the a priori variance being 0.07. The results are summarized in Fig. 11, which shows the total

error reduction across the domain for these inversions (positive y-axis), as well as the reduction in the a posteriori uncertainty

compared to the a priori uncertainty (negative y-axis). The first two boxes show the error reduction of the two inversions as-

similating daily afternoon and night averages, both with constant and flow-dependent mdm (Ra and Rb, respectively). These320

two inversions correspond to the two points on the far left in Fig. 10. The next box in Fig. 11 represents an inversion with

hourly instead of daily observations with a diagonal R matrix with constant values for each station, corresponding to the static

mdm (Rc). The next box represent an inversion with also a diagonal R matrix but with time-varying elements sampled from

the meteorological ensemble, which corresponds to the flow-dependent mdm (Rd). The last box represents an inversion, where
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Figure 11. Box plot of the domain-total error reduction (positive y-axis) and uncertainty reduction of the a posteriori P-matrix compared to

the a priori P-matrix (negative y-axis) of the 5 different inversions (Ra-Re).

temporal covariances are included in the R matrix as off-diagonal elements based on the sampled correlations between the325

hourly observations (Re) as described in Sec. 2.7. Compared to the error reductions of 9.0% and 15.6% for the simulations Ra

and Rb with daily observations, inversions assimilating hourly observations exhibit an improved error reduction of 15.8% (Rc),

17.7% (Rd), and 19.9% (Re). Thus, besides the overall improvement, the performance of inversions assimilating hourly obser-

vations also increases when a flow-dependent mdm is used, and it further significantly improves if temporal covariances are

considered. These results are consistent with those of Ghosh et al. (2021). In their synthetic study using a dense observational330

network in an urban area, they observed significant improvements in domain total emission estimates for inversions using a

diagonal R-matrix constructed using the ensemble spread (equivalent to Rc). They found that non-diagonal R-matrices that

account for covariances (such as Re) resulted in better estimation of the spatial emission structure, but this effect diminished

when fewer stations were assimilated, which more closely resembles our widely spaced station setup. The negative y-axis in

Fig. 11 shows the reduction in uncertainty in the a posteriori P-matrix compared to the a priori uncertainty. Assimilating hourly335

data results in a significantly larger reduction of the uncertainty in the P-matrix as a greater number of observations is used.

When comparing the two inversions that assimilate daily observations, it is evident that the one utilizing the flow-dependent

mdm (Rb) shows a slightly smaller reduction in uncertainty, despite its much better error reduction compared to the constant

mdm (Ra). This highlights that uncertainty reduction does not necessarily correlate with inversion performance. Instead, it is a

result of assumptions made about error characterizations and the amount of information provided by observations used in the340

inversion. The same observation also applies when comparing Rc, Rd, and Re. Here it can be argued that the state of inversions

that assimilate hourly data but lack temporal covariances (Rc and Rd) is adjusted too much to the observations, thus suffering

from over-fitting.
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Figure 12. A posteriori increments for the inversion with the static mdm (a) and the flow-dependent mdm (b). The difference between the a

posteriori emissions for inversions with the flow-dependent mdm and with the static mdm is shown in (c) while the same difference divided

by the a posteriori uncertainty is shown in (d).

3.4 Effect on real emission estimates

Figure 12 compares the results for the inversions with real data for the month of July 2019. The maps of the increments345

generally show a very similar pattern, with differences between the two a posteriori emissions shown in (c). The significant

downward correction over Italy obtained with the static mdm is attenuated with the flow-dependent mdm, as is the case for the

Moldavia/Romania region. Similarly, the upward correction over southern England is damped. In contrast, the strong upward

correction over the Benelux countries is further enhanced. While the spatial patterns of adjustments differ significantly, domain-

total emissions are very similar: The flow-dependent mdm results in total a posteriori emissions of 988 kg s−1, the static mdm350

in emissions of 981 kg s−1 (with an a priori of 1150 kg s−1 in both cases). In (d) we present these differences in relation to the

a posteriori uncertainty of the inversion using the static mdm. It is evident that there are only few regions where the differences

exceed the a posteriori uncertainty, but in many regions this ratio is close to 1. Since the true emissions are unknown in this

case, it is impossible to tell which one of the two results is closer to reality. However, based on the results from the synthetic

experiments, the results obtained with the flow-dependent mdm are to be preferred. The approach using a static mdm is more355

likely to assign too much weight to an observation collected during a meteorologically uncertain situation and, conversely, too

little weight during a situation when the meteorology is well predicted.

4 Conclusions

This paper presents a comprehensive examination of flow-dependent transport uncertainties in GHG inversions. Leveraging

meteorological ensemble simulations, we investigate the influence of realistic, temporally varying transport uncertainties on360

inversion results across various setups and flux strengths and compare it to the more traditional static approximation of the
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transport uncertainty. The spatial structure of transport uncertainty exhibits highly variable patterns, especially when consider-

ing the tracer of emitted CH4. This underscores that a static mdm is a poor approximation of the real transport uncertainty. In

contrast, the uncertainty in background signal shows a larger-scale, more homogeneous structure. Aside from isolated weather

situations, transport uncertainties are typically greatest during the night, reflecting the challenges models face in simulating365

low nocturnal boundary layer heights. This reaffirms the prevalent practice in current inversion systems of disregarding noc-

turnal observations or even assimilating only afternoon values at lowland stations. However, it is also apparent that such an

ensemble simulation provides the opportunity to filter observations based on the corresponding uncertainty in the model rather

than the time of day, and even enabling the assimilation of more observations. We compare the inversion results with a flow-

dependent mdm and the standard static mdm in an idealized setup with synthetically produced observations. Both inversions370

show the best performance in central Europe, where emission fluxes and observation density is large. However, inversions with

the flow-dependent mdm achieve a larger overall improvement. Depending on the flux signal and emission pattern, relative

improvements from 9% (for the largest flux signal of CH4 emissions) to 81% and 82% (for the smallest flux signal of SF6 and

CH4 emissions, respectively) are achieved. However, it is crucial to note that while our study achieved large improvements

with the new error description, these advancements were observed within an idealized, synthetic setup where the (artificial)375

transport error is internally consistent with the uncertainties derived from the ensemble spread. Furthermore, we present an

analysis where we depart from the assumption of perfect a priori uncertainty in inversions and highlight the importance of

making realistic assumptions about a priori uncertainty as well. In particular, overestimating the a priori uncertainty quickly

leads to over-fitting to the biased observations. Conversely, being too conservative in the assumptions of a priori uncertainties

results in a less pronounced decrease in performance, at least as long as the a priori assumptions do not have large-scale bi-380

ases. In this study, we also assessed the effectiveness of inversions assimilating hourly versus daily observations. For hourly

observations it was necessary to account for temporal correlations in the transport error and hence to include off-diagonal

elements in the R matrix. Our analysis showed that these correlations typically exhibit an exponential decay with time, with

nighttime observations showing more persistent correlations within the same night. However, we observed a notable exception

at lowland stations, where correlations increased again during the following night, peaking at values of 0.5. To incorporate385

these correlations into our R-matrix, we fit a function to the sampled correlations. This function had to be damped with an

exponentially decaying factor to facilitate robust results for the inverse of the otherwise ill-conditioned matrix HPbH+R.

The results demonstrate that hourly data assimilation leads to superior performance compared to daily assimilation of obser-

vations. Within the inversions with hourly observations, the performance improved when a flow-dependent mdm was used

instead of a constant mdm and it improved even more when in addition temporal covariances were considered. The results390

also indicate that uncertainty reduction in the P-matrix does not necessarily correlate with inversion performance. It is rather a

result of assumptions about error characterizations and the amount of information provided by observations used in the inver-

sion. The idea of incorporating transport uncertainty into the mdm without the need for expensive ensemble simulations was

discussed in Miller et al. (2015). They computed correlations between monthly CO2 biases in atmospheric transport (relative

to CO2 boundary layer enhancements) and individual meteorological variables in a global ensemble simulation. The strongest395

correlations were found with inverse temperature over terrestrial regions (0.45), and with zonal winds over the oceans (0.29).
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However, many errors could not be explained by a single explanatory variable. Following this idea, we examined the correla-

tions between the CH4 transport uncertainty in our ensemble simulation and the ensemble spread of wind speed and direction,

which could also be obtained from a re-analysis product without the need for an ensemble forward simulation. However, our

CH4 transport errors show only weak correlations with the ensemble spread of wind speed (0.15 on average, ranging from400

-0.19 to 0.47 at individual stations) and direction (0.10 on average, ranging from 0.14 to 0.42 at individual stations). This

supports the conclusion of Miller et al. (2015) that an ensemble simulation with appropriate tracers is necessary to realistically

describe transport uncertainty. We couldn’t find a clear correlation between transport uncertainties and wind speed that would

support the approach of Bergamaschi et al. (2022) of assigning larger uncertainties to observations under low wind conditions.

However, with our synthetic setup it was not possible to test their plausible hypothesis that local sources not represented by405

the model due to insufficient resolution have the largest influence when wind speeds are low. Examining the inversion results

with real observations for July 2019, we find that in certain regions, such as Italy and Moldavia/Romania or southern England,

the flow-dependent mdm attenuates either the downward or the upward correction, while in other regions, such as the Benelux

countries or Switzerland, the upward correction is amplified. However, it is noteworthy that these differences, although often

comparable in magnitude to the uncertainties, rarely reach significance relative to the a posteriori uncertainty. In conclusion,410

our findings demonstrate the advantages of integrating temporally varying, flow-dependent atmospheric transport uncertain-

ties in inversions to enhance the precision of GHG flux estimations. Incorporating these uncertainties yields more accurate

estimates of GHG emissions, with significant improvements across a wide range of setups.
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