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Abstract. Atmospheric inverse modeling is the process of estimating emissions from atmospheric observations
by minimizing a cost function, which includes a term describing the difference between simulated and observed
concentrations. The minimization of this difference is typically limited by uncertainties in the atmospheric trans-
port model rather than by uncertainties in the observations. In this study, we showcase how a temporally varying,
flow-dependent atmospheric transport uncertainty can enhance the accuracy of emission estimation through ide-
alized experiments using an ensemble Kalman smoother system. We use the estimation of European CH4 emis-
sions from the in situ measurement network as an example, but we also demonstrate the additional benefits for
trace gases with more localized sources, such as SF6. The uncertainty in flow-dependent transport is determined
using meteorological ensemble simulations that are perturbed by physics and driven at the boundaries by an
analysis ensemble from a global meteorology and a CH4 simulation. The impact of direct representation of tem-
porally varying transport uncertainties in atmospheric inversions is then investigated in an observation system
simulation experiment framework in various setups and for different flux signals. We show that the uncertainty
in the transport model varies significantly in space and time and that it is generally highest during nighttime.
We apply inversions using only afternoon observations, as is common practice, but also explore the option of
assimilating hourly data irrespective of the hour of day using a filter based on transport uncertainty and taking
into account the temporal covariances. Our findings indicate that incorporating flow-dependent uncertainties in
inversion techniques leads to more accurate estimates of GHG emissions. Differences between estimated and
true emissions could be reduced more effectively by 9 % to 82 %, with generally larger improvements for the
SF6 inversion problem and for the more challenging setup with small flux signals.

1 Introduction

Atmospheric greenhouse gas (GHG) inversions use observed
atmospheric GHG concentrations to estimate surface fluxes.
This helps to verify emission reduction targets or the ful-
fillment of the Paris Agreement, monitor substances whose5

emissions are prohibited or regulated by the Montreal Proto-
col, and understand global and regional carbon cycles. The
independence of such top-down inversions could also sup-
port the development of future emission inventories. How-
ever, GHG inversions are subject to various uncertainties,10

which are expressed by discrepancies among inversion re-
sults (e.g., Brunner et al., 2017; Monteil et al., 2020; Petrescu
et al., 2023). Current inversion systems are mostly based on
Bayes’ theorem and solve the inversion problem by minimiz-
ing a cost function with two components: one component 15

penalizes deviations from the a priori state, while the other
penalizes differences between simulated and observed con-
centrations. The weighting of the two terms is determined
by corresponding error covariance matrices, which define the
magnitude and correlation structure of errors related to these 20

two components. Errors in the second term, commonly de-
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noted by R and referred to as the observation representa-
tion error or model–data mismatch error (MDM), include all
processes that contribute to discrepancies between observa-
tions and model, such as aggregation and representation er-
rors, measurement errors, and atmospheric transport errors5

(Kaminski et al., 2001; Engelen et al., 2002). A major source
of uncertainty arises from the transport uncertainty in the at-
mospheric transport model (Munassar et al., 2023). Errors
in the atmospheric transport lead to corresponding errors in
modeled tracer concentrations, which may ultimately lead to10

erroneous flux estimates if not properly accounted for. Con-
structing the MDM is therefore a crucial yet challenging task,
especially given the limited understanding of the errors as-
sociated with the representation of atmospheric transport in
numerical models. Although these errors are recognized as15

significant, a gap still remains in adequately addressing them
within inversion systems, mainly due to the fact that deter-
mining atmospheric transport uncertainties typically requires
expensive meteorological ensemble simulations.

The importance of transport errors in inverse emission es-20

timation was recognized already by Enting (1993), but sys-
tematic studies of their impacts and possible solutions were
published only much later. Lin and Gerbig (2005) tested the
effects of unaccounted wind errors, directly determined from
radiosonde data, on inversion results and demonstrated that25

these uncertainties can result in significantly biased flux es-
timates. In a subsequent study, the authors focused on po-
tential biases in inversion results associated with a misrep-
resentation of vertical mixing in the atmospheric boundary
layer (Gerbig et al., 2008). Lauvaux et al. (2009) investigated30

transport errors in the context of inversions, determining co-
variances between two stations in southwest France from a
meteorological ensemble simulation, and showed that the ef-
fective information content of the observations in an inver-
sion is significantly reduced when considering these covari-35

ances. Several subsequent studies investigated transport er-
rors and their characteristics for greenhouse gases, especially
CO2, without directly examining the impacts in an inver-
sion framework. Using global simulations, Liu et al. (2011)
demonstrated that the CO2 transport uncertainty is highest in40

the tropics and in regions with the highest emissions from
fossil fuels. Miller et al. (2015) examined the importance
of transport errors compared to emission signals, analyz-
ing monthly biases and associating them with meteorologi-
cal conditions. Further studies explored the predictability of45

CO2 (Polavarapu et al., 2016; Kim et al., 2021) or the signifi-
cance of errors in transport and boundary conditions for esti-
mating the terrestrial carbon sink in limited-area simulations
(LAM; Feng et al., 2019). Two recent studies provided more
detailed investigations of the transport error and its charac-50

teristics. Chen et al. (2019) focused on a sensitivity analysis
of transport errors to errors in emission fluxes and initial and
boundary data in LAM simulations, while McNorton et al.
(2020) focused on the biogenic feedback to transport errors
in global simulations. A comprehensive study on the impacts55

of transport uncertainties in inverse CO2 estimation in an ur-
ban context was recently presented by Ghosh et al. (2021).
They tested various transport uncertainties in synthetic CO2
flux inversions with pseudo-observations in an urban area
with a dense observation network. They compared conven- 60

tional parameterizations with transport uncertainties sampled
from an ensemble of simulations, both with and without spa-
tiotemporal covariances. They demonstrated the importance
of considering covariances in transport uncertainties when
using data from a dense network. A method to partially ac- 65

count for the effects of different meteorological situations on
the transport uncertainty was applied in Bergamaschi et al.
(2022). In their European CH4 inversions they parameterized
MDM as a function of wind speed. Their approach assigns
larger uncertainties to observations at low wind speeds, as- 70

suming that under such conditions, local emissions may have
a greater influence on the observed concentrations but are not
well-represented in the model.

This paper presents a comprehensive examination of flow-
dependent transport uncertainties and proposes a simple 75

method for including them in atmospheric inversions. The
method is showcased for the estimation of European CH4
inversions using the ensemble Kalman smoother system
CTDAS-ICON-ART introduced by Steiner et al. (2024).
Making use of meteorological ensemble simulations, we in- 80

vestigate the spatial, vertical and temporal characteristics of
the transport error for CH4 and investigate the impact of re-
alistic transport uncertainties in inversion results in an obser-
vation system simulation experiment (OSSE). We use syn-
thetically generated CH4 observations (pseudo-observations) 85

mimicking the observations from the current network of Eu-
ropean in situ stations but also demonstrate the advantages
for trace gases characterized by a more irregular emission
distribution, such as SF6. We evaluate the new approach in
different setups and for various flux signals. Furthermore, 90

we demonstrate how information on flow-dependent uncer-
tainties may be used to assimilate hourly observations as op-
posed to afternoon observations only, as is frequently done.
For this we use a filter based on transport uncertainty and
take into account the temporal covariances. Finally, we also 95

demonstrate the impacts of the new transport uncertainty on
European CH4 emission estimates using real observations.
All inversions presented in this study are listed in Tables 1
and 2.

2 Model description and methodology 100

We conducted atmospheric transport simulations of CH4
using the Icosahedral Nonhydrostatic (ICON) atmospheric
modeling framework (Wan et al., 2013; Zängl et al., 2015;
Pham et al., 2021) with the ART extension for passive and
reactive tracers (Rieger et al., 2015; Weimer et al., 2017; 105

Schröter et al., 2018). Our simulations were configured fol-
lowing the setup described in Steiner et al. (2024), employ-
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ing an R3B6 limited-area grid (1x ≈ 26km) covering Eu-
rope with 60 vertical levels. In the simulations, we use a time
step of 120 s and nudge the simulation weakly towards the
driving reanalysis data. In the inversion step, the 21 344 emis-
sion regions (grid cells) in the state vector are optimized us-5

ing the fixed-lag ensemble Kalman smoother implemented in
CTDAS with an assimilation window length of 9 d and a lag
of 2 assimilation windows. The number of members in the
emissions ensemble is 192. Unlike our previous study with a
single forward simulation, we created a meteorological en-10

semble (see Sect. 2.1) with 10 ensemble members driven
by perturbed meteorological boundary conditions and model
physics, as well as by perturbed CH4 boundary conditions
from the same global ensemble simulation that provided the
meteorological boundary conditions. Each ensemble mem-15

ber contains two CH4 tracers: a background tracer (CHbg
4 )

representing the perturbed CH4 boundary conditions and an
emission tracer (CHemis

4 ) representing the additional CH4
emitted within our European model domain. These CHemis

4
tracers experienced the same (unperturbed) CH4 emissions,20

such that the ensemble of 10 CHtot
4 = CHbg

4 +CHemis
4 tracers

represents only the effect of transport uncertainty.

2.1 ICON-ART ensemble simulations

To generate a meteorological ensemble, we ran the model
with 10 members, each driven by the output of an exper-25

imental Ensemble of Data Assimilation (EDA) simulation
conducted at ECMWF (experiment ID hyfd), which included
the global surface emissions inversion and transport of CO2
and CH4 (McNorton et al., 2020). The experiment was con-
ducted for the month of July 2019 and was carried out us-30

ing the Integrated Forecasting System (IFS) cycle 48r1 with
10 ensemble members at a 25 km resolution (Tco399), in
which model physics (in the form of Stochastically Per-
turbed Parameterization Tendencies (SPPT; Leutbecher et
al., 2017)), observations (observations of both weather and35

GHG) and sea surface temperature were perturbed. Addi-
tionally, the GHG emissions were also perturbed, with the
perturbations sampled from a log-normal distribution with
an a priori uncertainty of 100 %. The perturbations were
not spatially correlated, but a correlation length of 100 km40

was assumed in the background covariance matrix for CH4
emissions. The background error covariance matrix for GHG
concentrations was static, that is, it was not updated during
the experiment and was based on differences between fore-
casts with different lead times obtained from a climatolog-45

ical sample (see NMC method Parrish and Derber, 1992).
The background error covariance matrix for the numerical
weather prediction (NWP) fields was based on the archived
IFS Ensemble of Data Assimilations (EDA) o-suite (experi-
ment 0001) for the same period. Greenhouse Gases Observ-50

ing Satellite (GOSAT), Infrared Atmospheric Sounding In-
terferometer (IASI) and TROPOspheric Monitoring Instru-
ment (TROPOMI) retrievals of CH4 were assimilated. The

emissions were optimized independently in each 12 h win-
dow. 55

In the ICON ensemble simulations, in addition to the per-
turbed driving data (meteorological variables and CH4 con-
centrations to drive the CHBG

4 tracer), we also applied pertur-
bations to model physics tuning parameters as implemented
in ICON for the ensemble data assimilation scheme of the 60

German weather service. Together, these perturbations are
expected to represent the typical level of uncertainties present
in state-of-the-art meteorological analysis products.

The perturbed CH4 concentration fields of the driving
data were used to initialize and drive the background trac- 65

ers, CHbg
4 , in our simulations. In this study, we did not op-

timize the background concentrations, but the perturbations
of the different background fields were part of the artificial
transport error. In addition to the CHbg

4 tracer, we also in-
corporated a CHemis

4 tracer into our ensemble simulations us- 70

ing ICON-ART, transporting the emitted signal with (unper-
turbed) emissions introduced via the online emission module
(OEM; Jähn et al., 2020; Steiner et al., 2024). The computa-
tional cost, measured in node-hours, for the 10-member en-
semble simulation was about 1.7 times the cost of regular 75

inversions. This means that the total computational cost (a
priori meteorological ensemble and inversion) was 2.7 times
the cost of a regular inversion, which is a considerable but
not prohibitive increase.

2.2 CTDAS inversion setup 80

The setup of the CTDAS-ICON-ART inversion system aligns
with Steiner et al. (2024). We optimize the emission scaling
factors in each grid cell of the R3B6 grid while applying ex-
ponential decaying correlations with a length scale of 200 km
in the a priori error covariance matrix. However, optimiza- 85

tion is restricted to a single emission category, namely the
total CH4 emissions, which is the sum of anthropogenic and
various natural emissions.

Since we compare different approaches in representing the
MDM uncertainty, the question of how these uncertainties 90

should be scaled to enable a fair comparison arises. Since the
innovation chi-squared statistics are a common diagnostic to
judge the validity of the uncertainty assumptions made in an
inversion (Berchet et al., 2015; Michalak et al., 2017), we
contend that comparability is best achieved when the uncer- 95

tainties in each inversion are scaled such that the innovation
chi-squared value is 1. The chi-squared metric delineates the
ratio of a priori residuals between observed and simulated
concentrations to the total a priori variance in the observation
space, accounting for the projected a priori variance from the 100

observation space alongside the model–data mismatch:

χ2
innov =

1
n

∑
(yo
−H(xb ) )T (HPbH+R)−1(yo

−H(xb )).
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(1)

Here, yo denotes observed data, H the observation operator,
xb the a priori (background) state, Pb the a priori error covari-
ance matrix, R the observation error covariance matrix (or
MDM) and n the number of observations. The requirement5

of a chi-squared value close to 1 results in some differences
in the magnitude of the MDM (indicated as α in Tables 1
and 2), but we believe this is a better approach than requir-
ing, for example, that the mean MDM be identical between
different inversions.10

2.3 Idealized experiments

In our idealized setup, one of these 10 ensemble members
was considered to represent the true meteorology and used
to generate the pseudo-observations of CH4. All inversions
were then performed using a different ensemble member in15

order to mimic the fact that the simulated meteorology (and
the corresponding transport of CH4) in general deviates from
the true meteorology within the range of uncertainty in state-
of-the-art meteorological analyses.

The ensemble spread (corresponding to the standard de-20

viation) of the CHtot
4 tracers was sampled at each sta-

tion location and used to determine the temporally varying
flow-dependent model–data mismatch (MDM), replacing the
static mdm used in our previous inversion study (Steiner
et al., 2024). In contrast to our previous study, we opti-25

mized only the emissions in the idealized setup. We did not
optimize the background concentrations because the differ-
ences in background CH4 concentrations introduced by devi-
ating from true meteorology and using perturbed background
CHbg

4 concentrations in the driving data are part of the artifi-30

cially created transport error and contribute to the ensemble
spread that determines the MDM. However, if there were sys-
tematic biases in background CH4 in an application with real
data, it would still be necessary to optimize background con-
centrations together with the emissions. The performance of35

the inversions with the flow-dependent MDM was compared
with inversions using the static MDM as used in Steiner et
al. (2024). To ensure a fair comparison, the MDM was scaled
in each inversion so that the innovation chi-squared value in
each inversion was 1.40

In the reference setup (inversions fc01 and fc02), we uti-
lized an a priori variance of 0.07 (unitless) at the grid cell
level, which corresponds to an emission uncertainty of 26 %.
With such a low emission signal it is easier to demonstrate
the benefits of our new approach, as the relative importance45

of transport uncertainties is larger. Since the same variance
of 0.07 was used for generating the pseudo-observations (see
Sect. 2.5), the reference setup corresponds to the optimal sit-
uation where the assumed a priori uncertainties are in perfect
agreement with the true emission errors.50

Starting from the reference setup, two sets of sensitivity
experiments were conducted. In the first set, different combi-

nations of a priori variances ranging from 0.007 to 0.7 were
tested in order to analyze the impact of a priori assump-
tions deviating from the true emission error (inversions uc01 55

to uc16 and us01 to us16). In the second set, the true vari-
ances were varied between 0.07 and 1.0 in order to assess the
potential of improving the inversion results using our pro-
posed method for different ratios between flux uncertainties
and transport uncertainties. All inversions were performed 60

for two different emission fields. One emission field (used
in inversions fc01 to fc16 and uc01 to uc16) is consistent
Steiner et al. (2024) and comprises the sum of anthropogenic
emissions from EDGARv6 (Crippa et al., 2021) together
with various natural sources. These natural emissions include 65

peatlands and mineral soils from JSBACH-HIMMELI ver-
sion 2 (Jena Scheme for Biosphere–Atmosphere Coupling in
Hamburg coupled to HelsinkI Model for Methane build-up
and emission for peatlands; Raivonen et al., 2017; Reick et
al., 2013); inland water emissions from the Global Carbon 70

Project (GCP) CH4 dataset (Saunois et al., 2020); and addi-
tional sources including termites (Saunois et al., 2020), ocean
emissions (Weber et al., 2019), biofuel and biomass burning
from the Global Fire Emission Database 4.1 s (GFED; van
der Werf et al., 2017), and geological emissions (Etiope et 75

al., 2019) scaled to a global total of 15 Tg. The second emis-
sion field (in the inversions fs01 to fs16 and us01 to us16)
contains the same total amount but is spatially distributed ac-
cording to the SF6 emission field for the categories NFE and
PRU in EDGARv7 (Crippa et al., 2022). The latter shows 80

a more irregular emission distribution than CH4 and, hence,
serves as an additional test case with expectedly larger gradi-
ents. Figure 1 shows the spatial distribution of the two emis-
sion fields in our model domain.

In another experiment (inversions fc01 to fc12 and fs01 85

to fs12), we compared the aforementioned inversions where
we assimilated only afternoon averages (nighttime averages
for mountain stations) with inversions where we assimilated
hourly observations filtered based on the ensemble spread
of CH4 concentrations. The filter excluded observations dur- 90

ing times when the ensemble spread exceeded 5 ppb. This
resulted in the exclusion of ca. 22 % of the 19 530 observa-
tions. Figure 2 shows the fraction of excluded observations
as a function of the hour of the day. For these inversions,
however, the assumption of temporally uncorrelated errors 95

was no longer valid and was accounted for by introducing
off-diagonal elements in the MDM error covariance matrix.
The temporal error correlations were computed from the en-
semble spread. For each of the hourly observations, the error
correlation with the observations at the same station in the 100

next 36 h was considered.

2.4 Experiment with real-data

The setup for the application with real data (inversions real_c
and real_f) closely followed the setup for the idealized ex-
periment with the assimilation of daily afternoon or night- 105
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Table 1. Overview of all inversions used in this study. The column MDM indicates whether the flow-dependent MDM (FD) or the constant
(C) MDM is used. α is the scaling factor from Eq. (2). The column Emis. indicates whether the CH4 emissions or SF6 emissions are used.
ER stands for error reduction.

ID MDM Emis. σtrue σprio α ER ER ID MDM Emis. σtrue σprio α ER ER
kgs−1 % kgs−1 %

fc01 FD CH4 0.07 0.07 1.28 36.57 15.8 fs01 FD SF6 0.07 0.07 1.66 55.56 24.9
fc02 C CH4 0.07 0.07 1.44 20.12 8.7 fs02 C SF6 0.07 0.07 2.08 30.77 13.8
fc03 FD CH4 0.25 0.25 1.91 88.69 20.3 fs03 FD SF6 0.25 0.25 2.52 123.69 29.3
fc04 C CH4 0.25 0.25 1.96 66.29 15.2 fs04 C SF6 0.25 0.25 2.55 91.69 21.7
fc05 FD CH4 0.56 0.56 3.04 142.29 21.8 fs05 FD SF6 0.56 0.56 3.63 196.20 31.0
fc06 C CH4 0.56 0.56 2.54 124.36 19.0 fs06 C SF6 0.56 0.56 3.25 159.54 25.2
fc07 FD CH4 0.71 0.71 3.46 160.97 21.9 fs07 FD SF6 0.71 0.71 3.99 220.78 31.0
fc08 C CH4 0.71 0.71 2.81 144.57 19.6 fs08 C SF6 0.71 0.71 3.52 186.86 26.3
fc09 FD CH4 0.87 0.87 1.90 181.19 22.2 fs09 FD SF6 0.87 0.87 4.30 251.67 31.9
fc10 C CH4 0.87 0.87 2.10 165.41 20.3 fs10 C SF6 0.87 0.87 3.70 211.05 26.8
fc11 FD CH4 1.00 1.00 3.95 194.12 22.2 fs11 FD SF6 1.00 1.00 4.60 267.32 31.7
fc12 C CH4 1.00 1.00 3.24 178.22 20.4 fs12 C SF6 1.00 1.00 3.99 229.92 27.2
uc01 FD CH4 0.07 0.70 1.14 −13.80 −6.0 us01 FD SF6 0.07 0.70 1.53 −9.19 −4.1
uc02 C CH4 0.07 0.70 1.28 −49.98 −21.6 us02 C SF6 0.07 0.70 1.854 −116.26 −52.0
uc03 FD CH4 0.07 0.40 1.22 13.94 6.0 us03 FD SF6 0.07 0.40 1.60 28.92 12.9
uc04 C CH4 0.07 0.40 1.27 −21.65 −9.4 us04 C SF6 0.07 0.40 1.93 −43.58 −19.5
uc05 FD CH4 0.07 0.12 1.20 34.43 14.9 us05 FD SF6 0.07 0.12 1.54 52.94 23.7
uc06 C CH4 0.07 0.12 1.40 13.71 5.9 us06 C SF6 0.07 0.12 2.02 22.45 10.0
uc07 FD CH4 0.07 0.07 1.28 36.57 15.8 us07 FD SF6 0.07 0.07 1.66 55.56 24.9
uc08 C CH4 0.07 0.07 1.44 20.12 8.7 us08 C SF6 0.07 0.07 2.08 30.77 13.9
uc09 FD CH4 0.07 0.05 1.26 36.38 15.7 us09 FD SF6 0.07 0.05 1.60 55.24 24.7
uc10 C CH4 0.07 0.05 1.41 22.31 9.6 us10 C SF6 0.07 0.05 2.73 31.71 14.2
uc11 FD CH4 0.07 0.037 1.20 35.75 15.5 us11 FD SF6 0.07 0.035 1.64 53.91 24.1
uc12 C CH4 0.07 0.037 1.40 23.86 10.3 us12 C SF6 0.07 0.035 2.13 31.11 13.9
uc13 FD CH4 0.07 0.0175 1.26 32.85 14.2 us13 FD SF6 0.07 0.0175 1.66 48.88 21.9
uc14 C CH4 0.07 0.0175 1.44 23.39 10.1 us14 C SF6 0.07 0.0175 2.20 26.84 120
uc15 FD CH4 0.07 0.007 1.28 27.27 11.8 us15 FD SF6 0.07 0.007 1.78 39.52 17.7
uc16 C CH4 0.07 0.007 1.41 21.08 9.1 us16 C SF6 0.07 0.007 2.24 20.10 9.0

Table 2. Continuation of Table 1 for inversions with the synthetic setup and hourly observations, as well as for inversions with real observa-
tions.

ID MDM emis σtrue σprio α ER ER Remark
kgs−1 %

Rc C CH4 0.07 0.07 0.73 36.63 15.8 Hourly obs., diagonal R
Rd FD CH4 0.07 0.07 0.80 40.89 17.7 Hourly obs., diagonal R
Re FD CH4 0.07 0.07 0.80 45.90 19.9 Hourly obs., including covariances
real_c C CH4 – 0.6 Station-dependent – – Real observations
real_f FD CH4 – 0.6 Station-dependent – – Real observations

time means (e.g., as in fc01). We used the same setup for
the ICON simulations with a grid over Europe and the same
state vector in the inversions. The transport uncertainties for
the MDM were also derived from the same ensemble simu-
lation. However, in order to stay closer to the real meteorol-5

ogy and background CH4 concentrations, the forward simu-
lations of the inversion were driven at the domain boundaries
by ERA5 reanalysis data for meteorology (Hersbach et al.,
2020) and by the CAMSv22r2 product (available via https:
//ads.atmosphere.copernicus.eu/, last access: 18 April 2024)10

for background CH4 concentrations. Using the CAMSv22r2

product was necessary, as the CH4 mole fractions from the
experimental ensemble simulation had biases that were too
large.

2.5 Pseudo-observations 15

Pseudo-observations, following the methodology outlined in
Steiner et al. (2024), are generated with a forward simula-
tion of ICON-ART, wherein the CHtot

4 tracer concentrations
are sampled at the station locations. In this simulation, the
emission field is perturbed using a set of true scaling fac- 20

https://ads.atmosphere.copernicus.eu/
https://ads.atmosphere.copernicus.eu/
https://ads.atmosphere.copernicus.eu/
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Figure 1. Spatial distribution of CH4 emissions (a), as well as CH4
redistributed to follow EDGAR SF6 emissions (b), remapped onto
the simulation grid. The emissions are representative of the period
of 2–11 July 2019.

Figure 2. The fraction of pseudo-observations that were excluded
from all available observations as a function of the hour of the day
(UTC) by applying a threshold of 5 ppb for the ensemble spread in
the ensemble of CH4 concentrations.

tors, which we aim to reproduce as accurately as possible
through the inversions starting from unscaled emissions. The
true scaling factors are a field of spatially correlated random
perturbations with a correlation length of 200 km. In our stan-
dard configuration, a variance of 0.07 is applied to gener-5

ate this perturbation field. We systematically explored differ-
ent configurations, varying the true and a priori variances,
with true variances ranging from 0.007 to 1.0. In addition,
to mimic measurement noise, a 2 ppb noise was introduced.
Pseudo-observations were generated at the stations available 10

in the dataset of the European Obspack 2022-1 L2 release
(ICOS RI et al., 2022) for the year 2019.

2.6 Real observations

In the application with real observations, the Obspack dataset
of quasi-continuous in situ observations from 28 stations 15

was used. Most of the stations are members of the atmo-
sphere network of the Integrated Carbon Observation System
(ICOS; Heiskanen et al., 2022). As in our previous study, we
distinguish mountain sites from sites in flat terrain. Stations
where the model topography was more than 200 m lower 20

than the actual topography (due to coarse grid representa-
tion) were classified as mountain stations. For sites in flat
terrain, only daytime (11:00 to 16:00 LT, local time) mean
values were assimilated, as is usually done in atmospheric
inverse modeling to avoid difficulties in representing shal- 25

low nocturnal boundary layers. In contrast, only nighttime
mean values between 23:00 and 06:00 LT were assimilated
for mountain sites, as these are least influenced by pollution
from daytime upslope valley winds, which are difficult to
represent in a coarse-resolution model. The height at which 30

the model output was sampled was different for mountain
sites than for sites in flat terrain to account for the fact that the
smooth model topography typically underestimates the real
altitude of mountain sites. For sites in flat terrain, the (rela-
tive) height of the observation above ground was preserved, 35

whereas for mountain sites a height in between the height
relative to the model topography and the absolute height of
the station was chosen. Mountain stations are indicated in
Fig. 8 with triangles and lowland stations with circles. For
stations located on a hill but still within the daytime bound- 40

ary layer (e.g., Beromünster), only measurements in the af-
ternoon were used as for stations in flat terrain, but the ver-
tical sampling of model fields was done in the same way as
for mountain stations in order to maintain a realistic relative
distance from near-surface emissions. 45

2.7 Observation error

For each pseudo-observation, we calculate the ensemble
spread of CHtot

4 in the ensemble. This ensemble spread is
then incorporated into the flow-dependent model–data mis-
match (MDM) and scaled to achieve an optimal innova- 50

tion chi-squared value (see Sect. 2.2). Specifically, the flow-
dependent MDM is computed as

MDM= α ·SD
(
CHtot

4
)
+ 2 (ppb), (2)

where the factor α varies depending on the inversion (to keep
an innovation chi-squared value of 1) but remains constant 55
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across all stations and time steps within one inversion. The
additional term of 2 ppb accounts for the 2 ppb noise intro-
duced into the pseudo-observations (see Sect. 2.5).

Inversions with the flow-dependent MDM are compared
to inversions with the static MDM, which was implemented5

following a similar principle as that outlined in Steiner et al.
(2024). The static MDM varies between stations but remains
constant over time. In this study, we calculated the average of
the flow-dependent MDMs for the observations assimilated
at each station, adjusting them with a factor to maintain an10

innovation chi-squared value of 1.
The MDMs for application to real observations were cre-

ated in the same manner, with the only difference being that
the factor x was chosen to be station-dependent, which al-
lows us to achieve a chi-squared value of 1 for each sta-15

tion separately. This became necessary because, unlike in the
synthetic setup, some regions exhibited significantly larger
biases in the background concentrations than other regions.
With this adjustment, stations where a large bias occurred
had a lower weight than stations with good a priori agree-20

ment.
To construct the R matrix for inversions assimilating

hourly observations, we calculated, for each station and hour
of the day, the mean temporal correlation with observations
for the next 36 h during the inversion period. We then fitted25

a function to these data for each station and hour of the day.
The function is a combination of exponential decay and a
Gaussian distribution:

exp
−1t

a
+ bexp

−(1t + c)2

2d2 , (3)

where the parameters a, b, c and d are fitted. We chose this30

fit because it is able to represent the decay in the first hours
and the correlated errors between two nights at lowland sta-
tions (see Fig. 7). The mean value of the decay time a over
all stations and hours is 7.8 h, with large variability indicated
by a standard deviation of 4.0 h. The inversion of the R ma-35

trix, which only considers the covariances fitted to the next
36 h of observations, is very unstable due to poor condition-
ing. As a result, unrealistic results are produced when invert-
ing HPbH+R. To address this issue, we conditioned the R
matrix by multiplying the fitted covariances by a factor that40

exponentially decreases with time (exp(−1t/24 h)), as pro-
posed also by Ghosh et al. (2021).

3 Results and discussion

3.1 Characteristics of the transport error

We start the analysis by illustrating examples of the ratio be-45

tween flux and transport uncertainties, which can be inter-
preted as the signal-to-error ratio of the flux signal: fluxes can
only be retrieved reliably if this ratio is larger than one. The
ratio was computed as the ratio between the spread in CHemis

4
concentrations of the flux ensemble (used in the inversions)50

Figure 3. Time series of the ratio between the emission signal
and transport uncertainty at the stations Cabauw (a) and Monte Ci-
mone (b) for two different levels of emission signal.

to the spread in CHtot
4 concentrations of the meteorological

ensemble. The time series of this ratio for Cabauw (lowland
site) and Monte Cimone (mountain site) at two different mag-
nitudes of flux signals, one with a variance of 0.07 and one
with a variance of 1.0, are depicted in Fig. 3. This illustra- 55

tion shows that even in the scenario with a small flux error
variance of 0.07, the signal of flux uncertainties is often still
stronger than the signal of the transport error (ratio above 1).
The low values at the beginning of the time series are due to
a spinup effect: while the emission signal is still extremely 60

small (CHemis
4 has not yet reached the stations), the spread in

CHbg
4 is already fully developed due to the perturbed initial

and boundary conditions (ICBC).
A snapshot of the ensemble spread of CH4 at the low-

est model levels at an arbitrary time step (Fig. 4) highlights 65

the spatial variability in the transport error. The spread in
the tracer of emitted CHemis

4 reveals hotspots of large uncer-
tainties, particularly downwind of strong CH4 sources, but
also elongated features of high uncertainty likely associated
with frontal zones. This underscores the influence that atmo- 70

spheric flow conditions have on the structure of the transport
error. The spread in the background tracer CHbg

4 is of similar
magnitude but is much smoother.

Further insight into the structure of the transport uncer-
tainty is obtained by plotting time series of vertical profiles 75

of the ensemble spread. Figure 5 shows such a time series
for the Dutch station Cabauw. It shows distinct periodic in-
creases in the ensemble spread near the surface during the
nights. These increases reflect the uncertainties associated
with the simulation of boundary layer processes and their 80

impact on boundary layer heights, which has a particularly
strong impact on tracer concentrations in shallow nocturnal
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Figure 4. Map of the ensemble spread of CHemis
4 (a) and CHbg

4 (b)
in the lowest model level on 27 July 2019, 15:00 UTC. The arrows
show the ensemble mean wind in the lowest model level.

boundary layers. The periodic increases in uncertainty are
occasionally superimposed by larger-scale events, such as the
one from 9 to 12 July. The higher uncertainties at night sup-
port the common practice in GHG inversions to use only day-
time observations, such as afternoon averages. At the same5

time, it is conceivable that the use of a meteorological ensem-
ble also provides an opportunity to filter observations based
on transport uncertainty rather than time of day and thereby
use the information provided by the observations more effi-
ciently.10

The mean diurnal ensemble spread of CH4 concentrations
is depicted in Fig. 6, distinguishing between lowland and
mountain stations. Each figure presents two scenarios: one
where the ensemble is generated with perturbed initial and
boundary conditions only (IC/BC, gray) and one where in ad-15

dition to IC/BC the model physics is also perturbed (IC/BC
and STTP, red). The spread attributed solely to perturbed
IC/BC accounts for approximately 50 % of the spread in the
two tracers when both perturbed model physics and IC/BC
are considered. The higher spread in the nocturnal boundary20

layer at lowland sites and the peak during the early morn-

ing hours are caused approximately equally by the perturbed
model physics and by the perturbed IC/BC conditions. At
mountain stations, the spread is nearly constant over the day.
This indicates that the ensemble is not fully capable of esti- 25

mating the uncertainty at mountain sites, since a fundamen-
tal problem, the misrepresentation of thermally induced flow
in the afternoon, is inherent to all ensemble members. This
supports the common practice of assimilating only nighttime
observations at mountain stations. 30

The temporal correlations illustrated in Fig. 7 (in analogy
to Fig. 4 in Lauvaux et al., 2009) provide information on the
temporal structure of the transport error. Two different peri-
ods of the day are examined separately (00:00 to 08:00 UTC
and 12:00 to 20:00 UTC) to emphasize the differences be- 35

tween daytime and nighttime conditions. Each line shows
the error correlation (y axis) of an hourly mean observation
with the observations of the next 36 h (x axis), with sepa-
rate analyses conducted for the lowland and mountain sta-
tions. At lowland stations, the nocturnal values exhibit sig- 40

nificant error correlations with subsequent night-time obser-
vations but lack correlations with daytime values. Similarly
to Lauvaux et al. (2009), the correlations with observations
from the following night show that on the one hand, the noc-
turnal error structures are determined by static parameters 45

that cause similar errors in different nights, but, on the other
hand, the system is also sensitive to disturbances, as the cor-
relations remain below 0.5. It can also be seen that the de-
cline in correlations for the 08:00 UTC observation occurs
earlier than for the midnight observation, which is a result 50

of the earlier breakdown of the nocturnal boundary layer for
the 08:00 UTC observation. For mountain sites, this pattern
of recurring error correlations is much less pronounced. The
daytime observations at both stations exhibit exponentially
decaying correlations without a subsequent increase in the 55

afternoon of the following day, contrasting with the observed
nocturnal correlations.

We finally examined the correlations between the CH4
transport uncertainty in our ensemble simulation and the en-
semble spread of wind speed and direction, which could also 60

be obtained from a reanalysis product without the need for
an ensemble forward simulation. However, our CH4 trans-
port errors show only weak correlations with the ensemble
spread of wind speed (0.15 on average, ranging from −0.19
to 0.47 at individual stations) and direction (0.10 on average, 65

ranging from 0.14 to 0.42 at individual stations). This result
supports the conclusions of Miller et al. (2015), who dis-
cussed and tested the incorporation of transport uncertainty
into the MDM without the need for expensive ensemble sim-
ulations. They computed correlations between monthly CO2 70

biases in atmospheric transport (relative to CO2 boundary
layer enhancements) and individual meteorological variables
in a global ensemble simulation. The strongest correlations
were found with inverse temperature over terrestrial regions
(0.45) and with zonal winds over the oceans (0.29). However, 75
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Figure 5. Time series of vertical profiles of the standard deviation of CHbg
4 (a, b) and CHemis

4 (c, d) at Cabauw. The dashed lines in panels (a)
and (c) indicate the upper boundaries of the plots in panels (b) and (d). The black line in the right-column plots indicates the inlet height at
Cabauw.

Figure 6. Diurnal profiles of the standard deviation of CHbg
4 (a, b)

and CHemis
4 (b, c) concentrations in the ensemble for an ensemble

simulation with perturbed IC/BC only (gray) and an ensemble sim-
ulation with perturbed IC/BC and perturbed model physics (red).

many errors could not be explained by a single explanatory
variable.

3.2 Flow-dependent observation error in an idealized
setup

Figure 8 shows the true scaling factors alongside the opti-5

mized factors obtained from inversions using both the static
(fc02) and flow-dependent MDM (fc01). Both inversions

Figure 7. Mean temporal correlations at Cabauw (a, b) and Monte
Cimone (c, d) for observations at 00:00 to 08:00 UTC (a, c) and
12:00 to 20:00 UTC (b, d) with observations for the next 36 h. The
error correlations over time (x axis) are indicated by one line for
each observation.

seem to be similarly successful at reproducing the large-scale
patterns of the true state, especially in central Europe where
emission fluxes and observation density are high. To better 10

compare the quality of the results, Fig. 9 illustrates the im-
provement achieved by the flow-dependent MDM compared
to the static MDM, both in terms of scaling factors (panel
a) and emission fluxes (panel b). The predominance of green
colors suggests a significant overall improvement when us- 15

ing the implementation of the new MDM. Since we perform
these inversions in a synthetic setup where the ground truth
is known, we can compute the flux error reduction precisely.
Summed over the entire domain, this reduction amounts to
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20.12 kgs−1 (or 8.7 % of the a priori total error) with the
static MDM and 36.57 kgs−1 (or 15.8 % of the a priori to-
tal error) with the flow-dependent MDM, which corresponds
to an improvement by 82 %.

Figure 10 illustrates the relationship between error reduc-5

tion and the ratio of the true to the a priori variance for the in-
versions with flow-dependent and static MDMs. In this plot,
the true variance remains constant at 0.07 while the a pri-
ori variance varies, representing different levels of freedom
to adjust the state in the inversion process. The analysis in-10

cludes both CH4 (uc01 to uc16) and SF6 (us01 to us16) emis-
sion patterns. In the left half of the figure, the a priori vari-
ance is larger than the true variance. As a result, the system
has too much freedom, resulting in strong adjustments of the
state. This tendency to overfit leads to poor performance, par-15

ticularly evident with the static MDM, where the error may
become even larger than the a priori error due to over-fitting
to biased observations. The right half of the figure shows sit-
uations where the a priori uncertainty is too low and the cost
of the state adjustment is correspondingly high. In contrast to20

the previous situation with too high uncertainty, the degrada-
tion in performance is comparatively slow, and, in some in-
stances, there may even be a slight performance gain, notably
with the static MDM. This phenomenon can be attributed to
the fact that decreasing the a priori uncertainty minimizes up-25

dates in all regions, due to higher associated costs in the cost
function. As a result, regions initially subject to incorrect up-
dates remain closer to the a priori state. This partially coun-
teracts the performance degradation resulting from reduced
updates in regions that initially perform well. This effect be-30

comes apparent as we used (correlated) random perturbation
factors for the ground truth, which are normally distributed
around 1. In this case, the solution frequently benefits from
maintaining proximity to the a priori state. However, in sce-
narios featuring substantial biases within the a priori on a35

larger scale, this proximity would likely result in a more rapid
decline in performance, as depicted on the right side of the
figure.

In the reference setup with a true variance of 0.07, the
transport error is relatively large compared to the emission40

signal. While this makes optimization challenging for the in-
version system overall, it presents greater potential for im-
provement with the flow-dependent MDM. To evaluate the
improvement with the flow-dependent MDM across various
magnitudes of the emission signal, we illustrate the relation-45

ship between the relative reduction in errors (in percentage)
and the true variance (σ 2

true) in Fig. 11. In all these inver-
sions (fc01 to fc12 and fs01 to fs12), a perfect assumption
is made for the a priori variance, resulting in σ 2

prior being
equal to σ 2

true. Moving the right side of the figure towards50

larger σ 2
true values, the ratio of the emission signal to trans-

port error increases, making the system a simpler problem
to optimize. This is reflected in the larger error reductions.
However, as the flux signal increases, the distance between

the lines representing the static and flow-dependent MDM 55

reduces; i.e., the benefit of applying a flow-dependent MDM
becomes smaller. The error reduction in the inversions is gen-
erally better for the SF6 emission pattern compared to the
CH4 emissions, and the flow-dependent MDM has a larger
effect. This is to be expected, as the transport error translates 60

into a larger tracer concentration error when the emission pat-
tern is more heterogeneous, as in the case of SF6 emissions.

3.3 Hourly observations with correlated errors in an
idealized setup

To evaluate the effectiveness of assimilating hourly values 65

vs. only daily afternoon mean values (nighttime for moun-
tain sites), we performed five different inversions, each using
a different R matrix. All five inversions are performed with
the CH4 emission field with the true as well as the a priori
variance being 0.07. The results are summarized in Fig. 12, 70

which shows the total error reduction across the domain for
these inversions (positive y axis), as well as the reduction in
the a posteriori uncertainty compared to the a priori uncer-
tainty (negative y axis). The first two boxes show the error
reduction in the two inversions assimilating daily afternoon 75

and night averages, with both constant and flow-dependent
MDM (Ra and Rb, respectively). These two inversions cor-
respond to the two points on the far left in Fig. 11. The next
box in Fig. 12 represents an inversion with hourly instead of
daily observations with a diagonal R matrix with constant 80

values for each station, corresponding to the static MDM
(Rc). The next box represents an inversion also with a diag-
onal R matrix but with time-varying elements sampled from
the meteorological ensemble, which corresponds to the flow-
dependent MDM (Rd ). The last box represents an inversion 85

where temporal covariances are included in the R matrix as
off-diagonal elements based on the sampled correlations be-
tween the hourly observations (Re) as described in Sect. 2.7.
Compared to the error reductions of 9.0 % and 15.6 % for the
simulationsRa andRb with daily observations, inversions as- 90

similating hourly observations exhibit an improved error re-
duction of 15.8 % (Rc), 17.7 % (Rd ) and 19.9 % (Re). Thus,
besides the overall improvement, the performance of inver-
sions at assimilating hourly observations also increases when
a flow-dependent MDM is used, and it further significantly 95

improves if temporal covariances are considered. These re-
sults are consistent with those of Ghosh et al. (2021). In their
synthetic study using a dense observational network in an ur-
ban area, they observed significant improvements in domain-
total emission estimates for inversions using a diagonal R 100

matrix constructed using the ensemble spread (equivalent to
Rc). They found that non-diagonal R matrices that account
for covariances (such as Re) resulted in better estimation of
the spatial emission structure but that this effect diminished
when fewer stations were assimilated, which more closely re- 105

sembles our widely spaced station setup. The negative y axis
in Fig. 12 shows the reduction in uncertainty in the a poste-
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Figure 8. True (a) and a posteriori scaling factors for the inversions with the static MDM (b) and the flow-dependent MDM (c).

Figure 9. Improvement in the error reduction for inversions using
the flow-dependent MDM vs. the static MDM in terms of scaling
factors (a) and emission flux (b). Green color indicates that the in-
version with the flow-dependent MDM performs better, while red
color indicates that the inversion with the static MDM performs bet-
ter.

riori P matrix compared to the a priori uncertainty. Assimi-
lating hourly data results in a significantly larger reduction
in the uncertainty in the P matrix as a greater number of ob-
servations is used. When comparing the two inversions that
assimilate daily observations, it is evident that the one utiliz-5

ing the flow-dependent MDM (Rb) shows a slightly smaller
reduction in uncertainty despite its much better error reduc-

Figure 10. Error reduction (in kgs−1) for inversions using the
flow-dependent MDM (circles) and the static MDM (crosses) as a
function of the ratio of true variance to a priori variance. Results
are shown for inversions with CH4 emissions (a) and SF6 emis-
sions (b).

tion compared to the constant MDM (Ra). This highlights
that uncertainty reduction does not necessarily correlate with
inversion performance. Instead, it is a result of assumptions 10

made about error characterizations and the amount of infor-
mation provided by observations used in the inversion. The
same observation also applies when comparing Rc, Rd and
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Figure 11. Relative error reduction for inversions using the flow-
dependent MDM (circles) and the static MDM (crosses) as a func-
tion of the true variance. All inversions use the same a priori co-
variance as the true variance. Results are shown for inversions with
CH4 emissions (a) and SF6 emissions (b).

Figure 12. Boxplot of the domain-total error reduction (positive
y axis) and uncertainty reduction in the a posteriori P matrix com-
pared to the a priori P matrix (negative y axis) of the five different
inversions (Ra–Re).

Re. Here it can be argued that the state of the inversions that
assimilate hourly data but lack temporal covariances (Rc and
Rd ) is adjusted too much to the observations, thus suffering
from overfitting.

3.4 Effect on real emission estimates 5

Figure 13 compares the results for the inversions (real_f and
real_c) with real data for the month of July 2019. The maps
of the increments generally show a very similar pattern, with
differences between the two a posteriori emissions shown
in Fig. 13c. The significant downward correction over Italy 10

obtained with the static MDM is attenuated with the flow-
dependent MDM, as is the case for the Moldova/Romania
region. Similarly, the upward correction over southern Eng-
land is damped. In contrast, the strong upward correction
over the Benelux countries is further enhanced. While the 15

spatial patterns of adjustments differ significantly, domain-
total emissions are very similar: the flow-dependent MDM
results in total a posteriori emissions of 988 kgs−1, while the
static MDM results in emissions of 981 kgs−1 (with an a pri-
ori of 1150 kgs−1 in both cases). In Fig. 13d we present these 20

differences in relation to the a posteriori uncertainty in the in-
version using the static MDM. It is evident that there are only
a few regions where the differences exceed the a posteriori
uncertainty, but in many regions this ratio is close to 1. Since
the true emissions are unknown in this case, it is impossible 25

to tell which of the two results is closer to reality. However,
based on the results from the synthetic experiments, the re-
sults obtained with the flow-dependent MDM are to be pre-
ferred. The approach using a static MDM is more likely to
assign too much weight to an observation collected during 30

a meteorologically uncertain situation and, conversely, too
little weight during a situation when the meteorology is pre-
dicted well.

4 Conclusions

This paper presents a comprehensive examination of flow- 35

dependent transport uncertainties in GHG inversions. Lever-
aging meteorological ensemble simulations, we investigate
the influence of realistic, temporally varying transport un-
certainties in inversion results across various setups and flux
strengths and compare it to the more traditional static approx- 40

imation of the transport uncertainty.

4.1 Error structure characteristics

The spatial structure of the transport uncertainty exhibits
highly variable patterns, especially when considering the
tracer of emitted CH4. This underscores that static MDM 45

is a poor approximation of the real transport uncertainty. In
contrast, the uncertainty in the background signal shows a
larger-scale, more homogeneous structure. Aside from iso-
lated weather situations, transport uncertainties are typically
greatest during the night, reflecting the challenges models 50

face in simulating low nocturnal boundary layer heights. This
reaffirms the prevalent practice in current inversion systems
of disregarding nocturnal observations or even assimilating
only afternoon values at lowland stations. However, it is also
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Figure 13. A posteriori increments for the inversions with the static MDM (a) and the flow-dependent MDM (b). The difference between
the a posteriori emissions for inversions with the flow-dependent MDM and with the static MDM is shown in (c), while the same difference
divided by the a posteriori uncertainty is shown in (d).

apparent that such an ensemble simulation provides the op-
portunity to filter observations based on the corresponding
uncertainty in the model rather than the time of day and
even enables the assimilation of more observations. Similar
to Miller et al. (2015), we could not find a clear correlation5

between transport uncertainties and wind speed that would
support the approach of Bergamaschi et al. (2022) of assign-
ing larger uncertainties to observations under low-wind con-
ditions. However, with our synthetic setup, it was not pos-
sible to test their plausible hypothesis that local sources not10

represented by the model due to insufficient resolution have
the largest influence when wind speeds are low.

4.2 Flow-dependent MDM in inversions

We compare the inversion results with a flow-dependent
MDM and the standard static MDM in an idealized setup15

with synthetically produced observations. Both inversions
show the best performance in central Europe, where emis-
sion fluxes and observation density are large. However, inver-
sions with the flow-dependent MDM achieve a larger over-
all improvement. Depending on the flux signal and emission20

pattern, relative improvements from 9 % (for the largest flux
signal of CH4 emissions) to 81 % and 82 % (for the small-
est flux signal of SF6 and CH4 emissions, respectively) are
achieved. However, it is crucial to note that while our study
achieved large improvements with the new error description,25

these advancements were observed within an idealized, syn-
thetic setup where the (artificial) transport error is internally
consistent with the uncertainties derived from the ensemble
spread. Furthermore, we present an analysis where we de-
part from the assumption of perfect a priori uncertainty in30

inversions and highlight the importance of making realistic
assumptions about a priori uncertainty as well. In particu-
lar, overestimating the a priori uncertainty quickly leads to
overfitting to the biased observations. Conversely, being too
conservative in the assumptions of a priori uncertainties re-35

sults in a less pronounced decrease in performance, at least

as long as the a priori assumptions do not have large-scale
biases.

4.3 Assimilation of hourly observations

In this study, we also assessed the effectiveness of inversions 40

assimilating hourly vs. daily observations. For hourly obser-
vations it was necessary to account for temporal correlations
in the transport error and hence to include off-diagonal ele-
ments in the R matrix. Our analysis showed that these cor-
relations typically exhibit an exponential decay with time, 45

with nighttime observations showing more-persistent corre-
lations within the same night. However, we observed a no-
table exception at lowland stations, where correlations in-
creased again during the following night, peaking at values
of 0.5. To incorporate these correlations into our R matrix, 50

we fit a function to the sampled correlations. This function
had to be damped with an exponentially decaying factor to
facilitate robust results for the inverse of the otherwise ill-
conditioned matrix HPbH+R. The results demonstrate that
hourly data assimilation leads to superior performance com- 55

pared to daily assimilation of observations. Within the inver-
sions with hourly observations, the performance improved
when a flow-dependent MDM was used instead of a con-
stant MDM, and it improved even more when temporal co-
variances were also considered. The results also indicate that 60

uncertainty reduction in the P matrix does not necessarily
correlate with inversion performance. It is rather a result of
assumptions about error characterizations and the amount of
information provided by observations used in the inversion.

4.4 Inversion with real observations and its limitations 65

Examining the inversion results together with real observa-
tions for July 2019, we find that in certain regions, such as
Italy and Moldova/Romania or southern England, the flow-
dependent MDM attenuates either the downward or the up-
ward correction, while in other regions, such as the Benelux 70
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countries or Switzerland, the upward correction is ampli-
fied. However, it is noteworthy that these differences, al-
though often comparable in magnitude to the uncertainties,
rarely reach significance relative to the a posteriori uncer-
tainty. We have applied the flow-dependent MDM to real5

observations assuming that the results are improved com-
pared to the static MDM in a similar way as in the ideal-
ized setup. However, while the ensemble spread in the ideal-
ized setup accurately captures all transport uncertainties, this
is not guaranteed in a setup with real data. Further analysis10

would be needed to verify whether the ensemble spread pro-
vided by the ECMWF EDA NWP system adequately reflects
the differences between the measurements and the simula-
tions. Furthermore, in the idealized setup only random un-
certainties are accounted for, whereas in reality there may15

also be systematic transport errors. Systematic errors could
result, for example, from a misrepresentation of vertical mix-
ing in stable nocturnal boundary layers, which is known to
be particularly difficult to simulate and, at the same time, to
have a large impact on near-surface concentrations. While20

the assimilation of hourly data provided improved results in
the idealized experiment, the preliminary result for real mea-
surements revealed unexpectedly large differences from the
results obtained with the assimilation of daytime data only.
These real-world tests with hourly data raised concerns about25

the inclusion of nighttime observations in particular, which
are very challenging for the model to represent correctly.
Accurate inversion depends on the ensemble spread reliably
capturing uncertainties and the model being free of signif-
icant nighttime biases. Given the need for further investiga-30

tion of these issues, we have limited our demonstration to the
afternoon/nighttime averages to ensure more-robust conclu-
sions.

In conclusion, our findings demonstrate the advantages of
integrating temporally varying, flow-dependent atmospheric35

transport uncertainties into inversions to enhance the accu-
racy of GHG flux estimations. Incorporating these uncertain-
ties yields more-accurate estimates of GHG emissions, with
significant improvements across a wide range of setups.
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