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Abstract. As anthropogenic climate change depletes Earth’s ice reservoirs, large amounts of freshwater are released into

the ocean. Since the ocean has a major influence on Earth’s climate, understanding how the ocean changes in response to

an increased freshwater input is crucial for understanding ongoing shifts in the climate system. Moreover, to comprehend

the evolution of ice-ocean interactions, it is important to investigate if and how changes in the ocean might affect marine-

terminating glaciers’ stability. Though most attention in this context has been on freshwater input from Greenland, the other5

northern hemisphere glacierized regions are losing ice mass at a combined rate roughly half that of Greenland, and should not

be neglected. In order to get a first estimate of how glacier mass loss around the Arctic affects the ocean and how potential

changes in the ocean circulation might affect marine-terminating glaciers, we conduct one-way coupled experiments with an

ocean general circulation model (NEMO-ANHA4) and a glacier evolution model (Open Global Glacier Model; OGGM) for

the years 2010 to 2019. We find an increase in heat content of Baffin Bay and
::

due
:::

to
::

an
::::::::

enhanced
::::

gyre
:::::::::

circulation
::::

that
:::::

leads10

::

to
::

an
::::::::

increased
::::

heat
:::::::

transport
:::::::

through
:::::

Davis
::::::

Strait.
:::

We
:::

also
::::

find
:

changes in the subpolar gyre’s structure
:

;
::

an
:::::::::::::::

increase/decrease

::

in
::::::::::

density/SSH
::

in
:::

the
::::::

eastern
::::

part
:::

and
::::

vice
:::::

versa
::

in
:::

the
:::::::

western
::::

part. Additionally, we find a decreased heat transport into the

Barents Sea due to increased freshwater input from Svalbard and the Russian Arctic. The rerouting of Atlantic water from the

Barents Sea Opening through Fram Strait leads to an increased heat transport into the Arctic Ocean and a decrease of sea ice

thickness in the Fram Strait area.15

1 Introduction

The recent accumulation of heat in Earth’s atmosphere and ocean due to anthropogenic climate change is diminishing the

frozen water reservoirs on the planet, causing the release of large amounts of freshwater (Slater et al., 2021). Melting of

Earth’s glaciers is impacting regional hydrology and increasing global mean sea-level (GMSL; Huss and Hock, 2018; Fred-

erikse et al., 2020). Moreover, such an additional freshwater input to the ocean changes its surface density and thus has the20

potential to change the ocean circulation on scales ranging from individual fjords (Bartholomaus et al., 2016) to the Atlantic

Meridional Overturning Circulation (AMOC; Hu et al., 2011; Frajka-Williams et al., 2016), which is an important component

of the global climate system. While there have been numerous studies on changes in the AMOC’s strength and a potential

influence of recently increased freshwater influx and ocean warming, it is disputed whether the AMOC has already been
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forced out of its natural variability envelope (Jackson et al., 2022; Latif et al., 2022; Caesar et al., 2021; Fu et al., 2020;25

Böning et al., 2016). Concerning the regional impact of enhanced Greenland ice sheet (GrIS) freshwater runoff on ocean cir-

culation, Castro de la Guardia et al. (2015) found significant changes in Baffin Bay in a numerical ocean circulation model.

These changes entailed an increasing heat content in Baffin Bay with increasing (idealized) freshwater input along Green-

land’s west coast. This is a potential positive feedback, which could lead to larger heat transports towards marine-terminating

glacier fronts. Anthropogenic climate change causes the ocean to take up vast amounts of heat (von Schuckmann et al., 2020).30

This increase in ocean temperature, in combination with potential changes in ocean circulation, increases submarine melt of

marine-terminating glaciers, destabilizing their fronts and inducing further retreat and mass loss (Wood et al., 2021, 2018).

Such interactions between changes in ice bodies and the ocean do not only bear importance for contemporary changes in the

Earth system, but on time scales encompassing glacial cycles as well (Alvarez-Solas et al., 2013; Rainsley et al., 2018). This

underscores the importance of knowledge about the coupled ice-ocean system for understanding past and ongoing changes of35

the Earth system, and for projecting future changes. While there has been previous research on the impact of Greenland melt

on modeled ocean propertiesand ,
::::::

mostly
::::::::

focusing
::

on
:

the AMOC, they have either added an idealized high (’worst-case sce-

nario’ )
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(∼0.1 Sv; e.g., Jackson et al., 2023; Weijer et al., 2012; Castro de la Guardia et al., 2015; Swingedouw et al., 2013)
::

or

::::::

realistic
::::::::

historical
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(∼0.01 Sv; e.g., Martin et al., 2022; Martin and Biastoch, 2023; Schiller-Weiss et al., 2024) freshwater flux

from Greenland only(e.g., Weijer et al., 2012; Castro de la Guardia et al., 2015), or did not disentangle the impact of the fresh-40

water flux from Greenland and from the glaciers in regions surrounding it (e.g., Devilliers et al., 2021)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(e.g., Devilliers et al., 2021; Swingedouw

:

.
::::

Since
:::::::

climate
::::::

models
::::

used
:::

for
::::::

decadal
::

or
:::::::::

centennial
:::::::::

projections
::::::

mostly
::

do
:::

not
::::::

include
:::::

future
:::::

GrIS
::::

melt
:::::::::::::::::::::

(Swingedouw et al., 2022)

:

,
::

the
::::::::

influence
::

of
::::

GrIS
::::

melt
:::

on
:::::

future
::::::

climate
:::::

model
::::::::::

projections
:::

has
:::

also
:::::

been
::::::

studied
::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(Jungclaus et al., 2006; Swingedouw et al., 2015; Saenk

.

Although most attention in the context of ice-ocean interactions has been on the GrIS, as it is the largest land-ice reservoir in45

the northern hemisphere, there are also other places experiencing glacier mass loss and hence are releasing freshwater into the

ocean. Around the high-latitude (North Atlantic and Arctic) ocean, such places are the Canadian Arctic Archipelago, Svalbard,

Iceland, and the Russian Arctic. Since ice loss in these places combined is roughly half that of the GrIS (Hugonnet et al., 2021; Zemp et al., 2019;

:::

over
:::::

2010
:

-
::::

2019
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(∼125 Gt a−1, see e.g., Hugonnet et al., 2021; Zemp et al., 2019; Slater et al., 2021), it is worth investigating

whether increased freshwater input at the coasts of the aforementioned regions
:::

due
::

to
::::::

glacial
::::

melt does affect the high-latitude50

ocean’s circulation, as such changes might also impact marine ecosystems (Timmermans and Marshall, 2020; Hátún et al.,

2009; Wassmann et al., 2011; Greene et al., 2008).

Figure 1 charts the main features of the ocean surface currents in the Northern Atlantic and the gateways between the

Atlantic and Arctic Ocean. Atlantic water masses (red) are characterized as warmer and more saline compared to the Arctic

water (blue). Atlantic water is transported to the north, via the North Atlantic Current, by a complex interplay of the mainly55

wind-driven subtropical and subpolar gyres and the density-driven AMOC. The subpolar gyre (SPG) is the circulation pattern

around the Labrador Sea and the Irminger Sea, which transports Atlantic water branching off to the west in the Irminger Sea

to the Labrador Sea, and into Baffin Bay via the West Greenland Current. The Labrador Sea also is a location of importance

for the AMOC, as deep convection takes place there (Broecker, 1997; Yeager et al., 2021), although this view was recently
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challenged (Lozier et al., 2019). Warm Atlantic water mainly enters the Arctic Ocean through Fram Strait as well as through60

the Barents Sea, while Arctic water mainly enters the Atlantic Ocean through the Canadian Arctic Archipelago (CAA) and

Fram Strait (Lien et al., 2013; Myers et al., 2021; Rudels et al., 2005). Arctic water is transported further to the south mainly

by the Labrador Current.

The amount of ice that is removed from glaciers (outside the GrIS) by submarine melt is essentially unknown. Submarine

melt remains elusive, since it is intricate
:::::::

complex to measure directly and observations hence remain sparse
:::::::::::::::::::

(Sutherland et al., 2019)65

. Attempts to quantify it therefore mostly rely on high-resolution (∼1 m grid spacing close to the ice front) ocean circulation

models and employing a parameterization of ice-ocean heat transfer related to oceanic properties at the glacier front (Jenkins

et al., 2001; Holland et al., 2008; Xu et al., 2013). As this is computationally costly and can only be applied to individual

glaciers, a further step in trying to generalize such modeling results to different glaciers was to employ empirical power laws to

describe the relationship between submarine melt and ocean properties as well as subglacial discharge (Xu et al., 2013; Rignot70

et al., 2016; Wood et al., 2021). We make use of such a power law parameterization in our attempt to quantify submarine melt

of marine-terminating glaciers outside the GrIS.

To tackle the issue of ice-ocean interactions outside the GrIS, we one-way couple the Nucleus for European Modelling of the

Ocean (NEMO) model and the Open Global Glacier Model (OGGM) for the years 2010 - 2019. We run both models twice, in

order to investigate potential coupling effects. In one NEMO experiment, we use glacial surface mass loss and frontal ablation75

derived from OGGM as additional liquid freshwater and iceberg input to NEMO, while we omit this additional freshwater

forcing in the second NEMO run. Next, we use the two different NEMO runs’ output variables as forcing of the submarine

melt parameterization newly implemented in OGGM (see section 2.3.2). We then explore the differences in results obtained

from the two different NEMO and OGGM experiments
:

.
::

By
::::

this
:::

we
:::

aim
:

to obtain a first-order estimate of the magnitude of the

effect the
:::::

effect ice-ocean coupling outside Greenland has on ocean properties as well as on marine-terminating glacier mass80

loss. Finally, we discuss future avenues for research on this topic, as our rather simple approach warrants further work on more

closely examining the mechanisms proposed in this work.

3





2 Data and Methods

2.1 Ocean model

Our numerical experiments were conducted with NEMO v3.6 (Madec et al., 2016), which is coupled to a sea ice model85

(Louvain-la-Neuve Sea Ice Model 2; Bouillon et al., 2009). The configuration we use covers the Arctic and Northern Hemi-

sphere Atlantic and has open boundaries at 20◦S in the Atlantic Ocean as well as at the Bering Strait. The average horizontal

resolution of the model is 1/4◦, and it has 50 vertical levels (Arctic and Northern Hemisphere Atlantic (ANHA4) configu-

ration; see Fig. A1). For boundary and initial ocean conditions we use the Global Ocean ReanalYsis and Simulations data

(GLORYS2v3; Masina et al., 2017) and for atmospheric forcing the Canadian Meteorological Center’s reforecasts (CGRF;90

Smith et al., 2014). CGRF provides hourly fields of wind, air temperature and humidity, radiation fluxes, and total precipitation

with a horizontal resolution of 33 km, which are linearly interpolated onto the NEMO-ANHA4 grid. The Lagrangian iceberg

module implemented in NEMO is described by Marsh et al. (2015) and was further developed by Marson et al. (2018). The

baseline continental runoff data (outside Greenland) for our runs was obtained by linearly interpolating the data provided by

Dai et al. (2009) on a 1 × 1◦ grid to the NEMO-ANHA4 grid.95

The Dai et al. (2009) data do
:::

does
:

not cover our model period from 2010 to 2019.
::::

2019
:::

and
::::

does
::::

not
::::::::

explicitly
:::::::

account

::

for
::::::

runoff
::::::

caused
:::

by
:::::::::::::::::

(marine-terminating)
::::::

glacier
:::::

mass
::::

loss.
:

We therefore applied the 1997 to 2007 monthly average base-

line runoff. Freshwater input from Greenland is derived by remapping the data published by Bamber et al. (2018) to the

NEMO-ANHA4 grid. This data gives the total runoff, including from the ice sheet and peripheral glaciers, thus replacing the

::::::::::::::

Dai et al. (2009) baseline runoff in this region. As this data set only ranges to the end of 2016, we use the 2010 to 2016 average100

for the three missing years.
::::

Note
:::

that
::::

the
:::::::::::::::::

Bamber et al. (2018)
::::

data
:::

also
::::::::

provides
::::::

runoff,
:::

but
:::

no
:::::::

calving,
::::::::

estimates
:::

for
:::::

other

::::::::::

high-latitude
::::::::::

glacierized
::::::

regions
:::

in
:::

the
:::::::

northern
::::::::::

hemisphere
:::::

(e.g.,
:::::::::

Svalbard),
:::

but
:::

we
::::

only
::::

use
:::

the
::::::::

estimates
:::

for
::::::::::

Greenland.

:::

The
::::::::

handling
::

of
::::::::

additional
:::::::::

freshwater
:::::

from
::::

other
::::::::::

glacierized
::::::

regions
::

is
::::::::

described
::

in
::::::

section
:::::

2.3.1.
:

Runoff freshwater is added

to the first vertical model level with a temperature corresponding to the surface temperature of the ocean grid cell, for the

lack of a more accurate temperature estimate. The addition of runoff entails an increase in the vertical mixing (diffusivity)105

parameter for the grid cell’s upper 30 m in our setup (from the background value of 1 × 10−5 to 2 × 10−3 m2 s−1), follow-

ing Marson et al. (2021).
::::

This
::

is
::

to
::::::

mimic
:::::::

vertical
::::::

mixing
::::

due
::

to
::::::

inertial
:::::

shear
:::

at
:::::::

locations
::::::

where
::::::

runoff
:::::

enters
:::

the
::::::

ocean

:::::::::::::::::::::::

(Horner-Devine et al., 2015),
::::

and
::::

thus
::

to
::::::

prevent
::::

that
:::::::::

freshwater
:::::::::::

accumulates
:::

too
:::::::

strongly
::

in
:::

the
:::

top
::::

grid
::::

cell.
:

Bamber et al.

(2018) give data for liquid runoff and solid ice discharge around Greenland. Here, we add half of the solid discharge estimates

to the liquid freshwater input and the other half to the iceberg module, following the observation by Enderlin et al. (2016)110

that roughly
::

up
:::

to half of the icebergs’ volume may melt before they exit fjords. The handling of additional freshwater from

other glacierized regions is described insection 2.3.1.
::

No
:::::::

salinity
:::::::

restoring
::::

was
:::::::::

employed,
::

as
::::

that
::::::

would
::::

tend
::

to
:::::::

dampen
:::

the

::::::::

freshwater
::::::

signal
:::

and
:::::

hence
::::::::

suppress
:::

the
:::::::

response
::

to
:::

the
::::::::::

perturbation
::

in
:::

the
:::::::

forcing
::

we
:::

are
:::::::::

interested
::

in.
:

Apart from our newly added freshwater flux, NEMO-ANHA4 setups akin to the one described here have been used before to

study ocean circulation processes in the northern high-latitudes (Castro de la Guardia et al., 2015; Garcia-Quintana et al., 2019; Gillard et al.,115

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(Marson et al., 2021; Hu et al., 2019; Castro de la Guardia et al., 2015).
:::::::::::

Furthermore,
::::::::::::::

NEMO-ANHA4
::::

has
::::

been
::::::::

evaluated
:::

in
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2.4 NEMO to OGGM

2.3.1
::::::

NEMO
::

to
:::::::

OGGM

We use the outputs of the two NEMO experiments described above to calculate the thermal forcing of the ocean in the vicinity190

of marine-terminating glacier termini, which is then fed to the submarine melt parameterization of OGGM described below.

Thermal forcing is defined as the (positive) difference between the potential temperature of a water mass and its freezing point.

Here, we use the pressure- and salinity-dependent formulation of the freezing point given in Fofonoff and Millard Jr (1983).

2.3.2 Submarine melt parameterization in OGGM

:::::::::

Submarine
:::::

melt
:::::::::::::::

parameterization
::

in
:::::::

OGGM195

While there has been previous work on incorporating frontal ablation into OGGM (Malles et al., 2023), it did not yet explicitly

account for submarine melt. In this work we build on the previous work and add a parameterization of submarine melt rates (in

m d−1) following Rignot et al. (2016):

qsm = (Ad qα
sg +B) T

β
f (2)

where A is the subglacial discharge scaling parameter (in dα−1 m−α K−β), d the water depth at the glacier front (in m),200

qsg the subglacial discharge normalized by submerged cross-section area at the glacier terminus (in m d−1), α the subglacial

discharge scaling exponent (dimensionless), B the ocean heat transfer scaling parameter (in m d−1 K−β), Tf the oceanic

thermal forcing in the vicinity of the glacier terminus (in K), and β the ocean heat transfer scaling exponent (dimensionless).

Equation 2 comprises two nested empirical power laws relating subglacial discharge and ocean potential temperature as well

as salinity to submarine melt rates. The first power law (first term in the brackets) describes the increase in thermal erosion205

of marine-terminating glacier fronts due to subglacial discharge (qsg). It is based on a statistical fit to modeling results that

applied a parameterization, which was developed to represent heat and freshwater exchange across the ice-ocean interface in

relation to ice temperature and ocean properties (Jenkins et al., 2001). This approach to computing freezing and melting at an

ice-ocean interface, in combination with the injection of subglacial discharge, was used to model the circulation in front of a

vertical ice cliff in a high-resolution ocean model and the resulting submarine melt (Xu et al., 2013). In essence, this power210

law expresses the increase in turbulence close to the glacier front in the presence of subglacial discharge, which increases the

entrainment of warmer and saltier water from the ocean into the buoyant plume of freshwater. Suitable values for the exponent

α were found to be below 1, since there is a saturation of the melt intensity caused by subglacial discharge. This is because

the plume-ice contact area can no longer significantly increase at some point (Slater et al., 2016), while increasing subglacial

discharge causes a freshening, and thus lower thermal forcing, of the water close to the glacier terminus. Values for the scaling215

parameter (A) are related to the vertical temperature gradient in front of the glacier and to the distribution and morphology of

the subglacial discharge plumes along the glacier front. The second power law (BT
β
f ) parameterizes the heat transport from the

10
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