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Abstract: Green water (terrestrial evapotranspirationy;—Hewing) flows from
source regions—and, precipitates downwind via moisture recycling, generates
surfacerecharges water resources, and sustains_the socio-economy in sink regions.
However, unlike blue water, there has been limited assessment of green water flows
and their tele-connected effects on socio-economy. This study used the-a climatology
mean moisture traekingtrajectory dataset efproduced by the Utrack model for 2008-

2017 to quantify interprovincial green water flows in China and their socio-economic

contributions. Results reveal a-eemplexan interconnected flow network where green

water of each province reciprocally exchanges with each other. Despite self-recycling;

(ranging from 0.6% to 35%), green water—frem—souree—provinees mainly forms

precipitation in neighboring provinces, with average interprovincial flow directions

from west to east and south to north. About 56% of total green water exported from 31
mainland source provinces retaisremains at home-and-centributes-, contributing to 43%
of precipitation in China. Our—assessments—show—thatThe green water from source
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provinces embodies substantial socio-economic values for downwind provinces-with

regionally-varying-tmpeortance—Western, accounting for about 40% of water resources,

45% of GDP, 46% of population, and 50% of food production of China. Green water

from western provinces areis the largest eentributerscontributor to surface—water
resources, while green water from southwestern and central provinces

embedyembodies the highest GDP, population, and food production. Abeut—40%

on—and 509

ewate esources—4594 NDP_469

the embodied socio-economic wataevalues of green water flow increase from source to

sink provinces, suggesting that green water from less developed provinces effectively

suppertsupports the higher socio-economic status of developed provinces—threugh
sreen-water supply—Theresults-emphasize. The assessment emphasizes the substantial

tele-connected socio-economic values of green water flows and the need to incorporate

itforthem toward a more comprehensive and effective water resources management.

1 Introduction
Terrestrial moisture recycling is a crucial process of the water cycle, whereby

water evaporates from land into the atmosphere, travels with prevailing winds, and

eventually falls back to the land as precipitation &eys—and-Wane—Erlandsson;2018;

O10- emp—e 014 erre a
% ar. . Cl vl

water(van der Ent et al.. 2010; Keys and Wang-Erlandsson, 2018: Zemp et al.. 2014).

Terrestrial evapotranspiration (i.e., green water) (Falkenmark and Rockstrom, 2006));.,

which includes evaporation and transpiration from land and vegetation, contributes to

over half of the global precipitation on land {Reckstrém-et-al—2023;Fheeuwen-etal;
2023:—Tuinenburg—et—al—2020)(van der Ent et al., 2010; Theeuwen et al., 2023;

Tuinenburg et al., 2020). Green water flows from upwind source regions to generate

precipitation and supply water resources for the social development of downwind sink
regions through moisture recycling (Schyns et al., 2019; Wang-Erlandsson et al., 2022).
Analogous to the upstream and downstream connection via blue water (referring to

surface water and groundwater flow within a watershed (Gleeson et al., 2020))}-flow

within-a—watershed;, the upwind source and downwind sink regions are connected via
green water flow within the evaporationshed (i.e., downwind regions receiving
precipitation from a specific location’s evaporation) (Ent and Savenije, 2013))..

Changes in both blue and green water flow directly impact water resources availability,
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thereby influencing regional water security and human societies (Keys et al., 2019).
The blue and green water flows provide a mechanism through which
upstream/upwind changes in ecohydrological and societal processes i1
upstream/upwind—regtons—may affect the downwind/downstream supply of water
resources; and, thus, ecological and societal systems eof-dewnwind/downstream

regionstherein. Due to upstream water withdrawal and dams, global total blue water

flow into oceans and internal sinks has-decreased by 3.5% in 2002_compared to 1961—

1990 (Dall et al., 2009). The decline in water availability exacerbated water stress in
downstream of transboundary river basins (Munia et al., 2016). Moreover, upstream
vegetation restoration, soil and water conservation practices reduced water yield—te
downstream, as already happened in the Yellow River (Wang et al., 2017; Zhou et al.,
2015b). Numerous studies have investigated the causal linkageconnection of blue water
flow betweenfrom upstream and downstream regions, yet research into the
hinkageconnection of green water flow from upwind teand downwind regions and their
impacts remains inadequate.

Unlike blue water flow primarily shaped by terrain with specific routes and

regulated by human activities (e.g., reservoir, transfer)-with-speettfiereutes;), green
water flow eriginatingis transported by atmospheric air movement in a pervasive

manner from evapotranspiration to precipitation in downwind sink regions—is
(Schyns et al., 2019).

This establishes a spatial linkage between source and sink regions for green water flow

through the moisture recycling process, similar asto blue water flow dees-through the
surface hydrological process. Therefore, evapotranspiration changes associated with
land cover changes in source regions are likely to impact not only downstream rivers
via blue water flow but also downwind precipitation via green water flow (Keys et al.,
2012), with further implications on socio-economic development (Wang-Erlandsson et
al., 2018). For example, vegetation greening reduced blue water but increased
downwind water availability globally through green water (Cui-et-al52022)(Cui et al.,
2022). Reduction in green water in Amazon decreased downwind precipitation in the
United States (Lawrence and Vandecar, 2015), and reduction in key-green water source
regions could decrease potential crop yields in fivekey global-key food-producing
regions (Bagley et al., 2012).

Source regions supply water resources to support thesink regions’ socio-economic
development-efsinkregtons through both blue and green water flows. Existing research
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has extensively assessed the socio-economic walsevalues of blue water, e.g., the
population dependency on runoff (Green et al., 2015; Viviroli et al., 2020), while
seldom considering the tele-connected effects of green water on-the socio-economy. In
fact, green water is also closely tied to human society because green water traveling
from source regions precipitates, ferms—surfacerecharges water resources, and
ultimately sustains socio-economic activities, livelihoods, and ecosystems in sink
regions (Aragédp, 2012; Keys and Wang-Erlandsson, 2018; O’Connor et al., 2021).
These contributions should be quantified and recognized as the value of green water to
socio-economy, which expands the scope of water management and water security
maintenance (Keys et al., 2017; Rockstram et al., 2023). Emerging moisture tracking
technologies offer feasible ways to quantify green water flow across regions at large

scale (Keys et al., 2019; Li et al., 2023; Theeuwen et al., 2023) and pave the way for

assessing the socio-economic valaevalues of green water.

The general spatial and seasonal patterns of moisture flows in China are

determined by regional atmospheric circulation systems, including prevailing westerly

winds (from the west toward the east) in most of China between 30° and 60° (Bridges

et al., 2023). the East Asian monsoon in eastern China, and India monsoon in

southwestern China. In summer, the East Asian and Indian monsoons supply moisture

for precipitation in eastern and southwestern China (Tian and Fan, 2013). In winter, the

East Asian monsoon drives northwesterly moisture transport across much of China and

generates precipitation (Wu and Wang, 2002). Recent studies analyzed the large-spatial

pattern of moisture recycling in China at the grid (Zhang et al., 2023), river basin (Wang

et al., 2023b), and ecological regions scales (Xie et al., 2024), or for specific regions

(Pranindita et al., 2022: Zhang et al., 2024). However, green water flows from different

regions are interlinked and become sources and sinks of each other. Such green water
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transfer at a sub-national scale effectively forms an interconnected green water flow

network. It highlights the mutual dependency of green water and its socio-economic

contributions, especially for large countries like China. Few studies focus on green

water flows at the administrative district scale, which is important for water

management. Furthermore, the substantial regional disparities in socio-economic

development add complexity to understanding the socio-economic contributions of

oreen water among Chinese provinces. The western provinces with a weak economic

status and sparse populations are abundant in water resources (Ya-Feng et al.. 2020). In

contrast, the economically developed and densely populated eastern provinces suffer

from water scarcity (Varis and Vakkilainen, 2001). Therefore, quantifying

interprovincial green water flows and evaluating the embedded socio-economic values

offer new perspectives for optimizing water resource utilization and mitigating the

imbalance in regional socio-economic development.

In this study, we used a high-quality moisture trajectory dataset from the UTrack
model to quantify and visualize the interprovincial network of green water flows within

China. WenextNext, we combined socio-economic statistical data to evaluate socio-

economic values embodied in green water flow for economic production, population
and food production. Our study aims to reveal the transboundary green water flows
within China and their tele-connected effects on the socio-economy. By

ineerporatingThis study incorporates green water flow into water resources, this-stady

extendsextending water resources management beyond blue water toward a more
complete understanding of the water cycle and its socio-economic implications, which
is beneficial to assess and optimize regional water security.

2 Data and Methods

2.1 Data

This study used the moisture trajectory dataset generated by the Lagrangian

moisture tracking model “UTrack-atmospheric-moisture” driven by ERAS reanalysis

data. The model is the state-of-the-art moisture tracking model, producing more

detailed evaporation footprints due to the high spatial resolution and reduced

unnecessary complexity (Tuinenburg and Staal, 2020). The dataset provides monthly

mean moisture flows at the global scale with a spatial resolution of 0.5° for 2008-2017,

expressed as the fractions of evaporation from a source grid allocated to precipitation

at a sink grid (Tuinenburg et al., 2020). It has been widely used in moisture recycling

research with various spatial scales, such as precipitation source of the grid (Staal et al.,
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2023: Wei et al., 2024:; Zhang et al., 2023) and basin scale (Wang et al., 2023b), and
moisture transport between nations (Rockstrém et al., 2023). The moisture trajectory

dataset was used in conjunction with the multi-year monthly mean ET of 20082017

from the ERAS reanalysis dataset to estimate precipitation in a sink grid originating

from a source grid.

The socio-economic statistical data in 2008-2017 from the China Statistical

Yearbook were used to estimate the socio-economic values of green water in terms of

water resources volume, gross domestic product (GDP), population, and food

production for 31 provinces in mainland China, without Hong Kong, Macau, and

Taiwan due to the data limitation. GDP was adjusted to price in the year 2020 to

eliminate the effects of inflation.

2.2 Quantify green water flows in China

We quantified interprovincial moisture flows and their precipitation contribution

following the workflow described in Fig. Al. At each sink erid, the ET to precipitation

fractions from the moisture trajectory datasets were multiplied by ERAS

evapotranspiration (ET) to obtain monthly precipitation contribution by moisture from

its source grids. Repeating the calculation for all grids within a sink province and

summing them up vielded the precipitation in the sink province contributed by each

source grid (Fig. A1 Step 1). Next, we employed zonal statistics to sum up precipitation

in the sink province contributed by grids of each source province, and the precipitation

contribution was converted to relative values, i.e.. the fraction of precipitation in sink

province j originating from green water of a source province i (denoted as W) rather

than absolute contribution to reduce the uncertainty in the latter (Fig. A1 Step 2). The

fractions WW;; multiplied by the observed precipitation of the sink province restore the

absolute precipitation contribution. This practice ensures that provincial precipitation

is fully decomposed into different sources, avoiding the estimation bias of sink

precipitation due to unclosed water balance by ET and precipitation data (De Petrillo et

al.. 2024). Finally, the interprovincial green water flows in China were derived after

estimating each province individually.

The direction of green water flows can be represented by a vector starting from a
source to sink province determined by their geometric centers and with its length
denoting flow magnitude. Since green water flows have multiple destinations, each
flow points to different sink provinces, and even outside of China. For each source
province, all of their domestic green water flow vectors can be averaged to a
composite to represent their net direction and magnitude, which are mainly

determined by atmospheric wind conditions, source location and green water volume
6
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2.3 Quantify socio-economic values embodied in green water
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Figure 1. Conceptual-figureA conceptual diagram depicts the teleconnection of green water flows
fromsoureetosinkresions-and their assoeitionwith-socio-econory:




processing-of the-moisture-trajectory-dataset-ean-be-foundeconomic contributions in et

f%L&GW%OﬂH‘—I-bHH-eH—(dOtted arrows) from source region i-e-thefractton-of preeipitationin
sﬂeprevn&ew—eﬂgﬁmtm—g—frem— flows downwind with prevalhng winds (green water-ofa-

and precipitates in sink region n, which recharges water sources and sustains socio-economic

activities in sink regions.

Green water from upwind source provinces flows and precipitates downwind aré

generates-preeipitationto sustainrecharge water resources, and therefore sustains socio-

economic activities in sink provinces, as depicted in Fig. 1. Consequently, precipitation,

surface—water resources, and socio-economic factors such as econemy;

pepulatieneconomic activities, human livelihood, and feedcrop production in sink

provinces rely on green water exported from source provinces. Changes in green water

may affect water resource volume, and then impact economic activities, livelithood, and

crop production through water supply. We chose water resources volume, economic

output (measured by GDP). population, and food production as the four socio-economic

indictors that are tightly related to water resources to evaluate the socio-economic

contributions of green water.

If we assume all socio-economic activities in sink province j are sustained by
precipitation which constitutes surface-water resources and recharges groundwater,
socio-economic statistics of sink province j can be partitioned to source provinces by
their share of precipitation contribution (7). Therefore, multiplying socio-economic
statistics from—China-Statistical Yearbook(2008-2047)-1n sink province j (S)) by W
yielded the socio-economic value of green water from source province iFig—H-. The
total socio-economic value of green water of source province i (GV;) can be obtained
by summing its contributions to all sink provinces; (Fig. 1), as equation (1):

GV = Xiy (Wy; xS, (1)
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Wherewhere S; is the average socio-economic value of 2008-2017 (i.e., surface
water resources; volume (km?), GDP; (in unit of CNY, 1 CNY = 0.14 USD), population;
(persons), and food production)_(ton)) at sink province j, n is the number of sink

provinces.
Due to the different socio-economic development statuses, the same amount of
green water may produce different socio-economic values between source and sink

provinces. This means green water flow also involves changes in embodied socio-

economic value from source to sink provinces. Sinee—Eg—showssocto-economie

water productivity in the source province (WP;) to guantifycalculate the socio-economic

values of its exported green water H#retained-in_the counterfactual scenario when it was

all consumed in the source province without interprovincial transfer (GV;) (Eq. 2). The

results were compared with the actual green water’s socio-economic values (Eq. 2)-1)

(namely socio-economic values of exported green water when it is consumed in sink

provinces) as:

GV = Yjo1 (Wi XxWU; x WP)), (2)

Wherewhere WUj is water use in sink province j, and WP; is water productivity in
source province i. (i.e., economic output, population, and food production per unit water
use).

The changes in the socio-economic value of green water flow (AGV;) from source
province i to its sink provinces can be estimated by Eq. 3.

AGV; = GV; — GV 3)

™1 AGV; is the net change in socio-economic values of all interprovincial

green water flows in China.
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Figure 2. Interprovincial green water flows in China. HeatThe heat map denotes precipitation in
sink province generated by green water from a source province (mm). The right bar shows

domestic precipitation (km?) formed by green water from each source province;-and-annotations—

The top bar shows precipitation in each sink province formed by green water from domestic

source provinces (km?

. . : oitation.),

Green water exported from a source province forms precipitation in different sink

provinces in China, and precipitation in a sink province originates from green water in
different source provinces. Therefore, different provinces in China, acting either as

sources or sinks, are interconnected through moisture recycling and established an

interprovincial network (Fig. 2). Eerinstance,—ereen—waterfrom—Xizangthe largest
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Fhe-A large fraction of green water ef-exported from each source province;-apart

from—being_is retained locally,—predominantly—flows—and—generates_to generate

precipitation (diagonal cells in netehbering—provinees:Fig. 2). The precipitation
recycling rateratio (PRR),-defined-as the ratio of precipitation generated by local green

water to total precipitation, reflects how much green water of each source province

contributes to its own precipitation-

B
Oarmed O oreaen fa ANaalWatdaVa atua . /a adada A. o
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&

impertant role-of self-reeyehneAmeong provinees; (Fig. A2¢). Xizang has the highest
PRR 0f34-5%:0.345, followed by Qinghai 34+%;(0.341) and Sichuan 29-7%(Fie-Ab-
Apartfrom(0.297). Besides local recycling, green water predominantly flows generate

stgnifieantand generates more precipitation in neighboring provinces_and less in distant

provinces. For example, green water from Sichuan forms high precipitation in
neighboring provinces such as Chongqing (138 mm), far surpassing other distant sink

provinces (< 88 mm).
Green

~» Abroad
=3 Domestic
=3 Domestic flow synthesis

Domestic precipitation ratio (DPR)

0.2 0.4 0.6 0.8

Figure 3. Direction of green water flows from each source province in China. Green arrows
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indicate the average direction of domestic green water flows, denoted as a vector starting from a

source (the geometric center in red points) to sink provinces and with its length representing the

amount of precipitation formed by green water. The face colors on the map represent fractions of

green water formed precipitation within China of each source province (DPR). The upper left

corner is a schematic diagram for green water flows from Xinjiang. The lower left corner is the
composite flow direction of interprovincial green water of all provinces.

The direction of interprovincial green water flow can be visualized as a composite

direction averaging all domestic ereen water flows from each source province, which

are mainly determined by atmospheric wind conditions, source location, and green

water volume (Fig. 3). Overall, the average direction of all interprovincial green water

flows is at 32° northeastward (32° north off the east direction), suggesting ereen water

within China is transported to the north and east directions owning to combined effects

of monsoons and westerly.

Green water exported by source provinces ef-China-contributes to precipitation

both within and outside 6
and-volume-of green-water-China. We defined the domestic precipitation ratio (shertfor
DPR-hereafter) as the ratio of green water that formed precipitation in China to the-each
province’s total green water export ef—each—previnee—to represent their relative
importance to China’s precipitation (rightbar-enFig 2y Xizang s-green-water produeces
the-larsest- domestie-precipitation(360-km>)-with-a-high DPR o£ 0.74 because Xizang
isloeated-in-the-Fig. A2a). Green water from provinces in western and central China

mainly flows eastward under the influence of prevailing westerlies, making—its

evaperationshedwhich extend their evaporationsheds eastward to cover a large territory

of China; and generate more precipitation within China- (Fig. 3). For instance, green

water from Xizang, the largest exporter in China, produces the largest domestic

precipitation (360 km?) (right bar on Fig 2) with a higch DPR of 0.74, contributing to

precipitation in other 30 provinces with varying extents (0.2 to 95 mm). Similarly, the

oreen water from southern provinces is affected by the Indian Ocean Monsoon

(southwest monsoon), which drives green water flowing northeastward. With a

substantial volume of green water, these southern provinces contribute significantly to

domestic precipitation. In contrast, green water from eastern coastal or northwest border

provinces with-mest-oftheirevaperationshedgoes to the northwest primarily attributed

to the East Asian Monsoon (southeast monsoon) (Cai et al., 2010). As a result, most

evaporationsheds laid outside China generatesgenerate less domestic precipitation but

more outside the country, resulting in a lower DPR, such as Fujian (DPR 0.31) and

13
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Heilongjiang (DPR 0.23). The northern provinces are influenced by westerly winds and
winter monsoon from Siberia (Sun et al., 2012), causing predominantly southeastward
flow of green water. However, evaporationsheds of these provinces mainly cover the
Pacific Ocean, resulting in a relatively low DPR despite their substantial volume of

exported green water.)}-nearthe-eoast-or-border- While some inland provinces have a
high DPR because their evaporationsheds overlap with mainland China, the low green

water volume (Fig. A4) limits their domestic precipitation contribution (e.g., Gansu and
Ningxia with DPR of 0.72 and 0.66, respectivel y}(Fig-A3).

Furthermore, precipitation in sink provinces originates from green—water-ef-both
domestic and foreign green water sources. Sichuan (337 km?), Xizang (298 km?), and
Qinghai (203 km?) are the top 3 provinces importing the largest volume of green water
from domestic sources due to the large ET from themselves and neighboring provinces-

(top bar of Fig 2). To quantify the relative importance of domestic sources, we defined

the domestic source ratio (DSR) in each province as the sum of precipitation
contribution from domestic sources divided by total precipitation (tep-barefFig2).. A2
(b)). DSR is related to_each province’s precipitationshed (i.e., upwind region

contributing evaporation to a specific location’s precipitation) (Keys et al., 2014 ))-ef
eachprevinee and the included domestic green water exporters. The highest DSR found
in Qinghai (0.86) and Ningxia (0.82) is because their precipitationsheds include large
domestic green water exporters like Xinjiang and Xizang, which supply considerable
green water traveling eastward. Conversely, Hainan (0.07) and Guangdong (0.14) in
coastal areas have lower DSR because their precipitationsheds are primarily located in
oceans and other countries due to the influence of the summer monsoon (Cai et al.,

2010).
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3.2 Direetion—of-Socio-economic values embodied in interprovincial
green water flows-in-China

~3» Abroad
=3 Domestic
=3 Domestic flow synthesis
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average-direetiond. The embodied socio-economic values of green water flow from each-seuree—
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Figure-4.-The tele-connceted-cffeets-of green-water flow-from-source provinces on-surfaccfor

water resources, GDP, population, and food production (average value of 2008-2017) irof sink

provinces efin China.
Source provinces export green water and bringcreate precipitation to sink
provinces through-the moisture recycling process, eentributing—to—surfacerecharging
water resources and suppertingsustaining the socio-economic development of

downwind sink provinces (Fig. 4). The reliance of socio-economic activities in sink

provinces on green water supply from source provinces—for-secio-economic-activities

implies that the green water and socio-economy are intertwined through the

interprovincial green water flow network-, indicating a teleconnection between source

and sink provinces.

Our assessment of contribution of green water to sarface-water resources indicates
that green water from western provinces generatesrecharges the highest volume of
surface-water resources. Xizang (200 km?), Sichuan (422124 km?), and Yunnan (9596

km?) are the top 3 contributors of sarface-water resources, makinewhose green water
17
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export makes up t6-46%, 5851%, and 5+52% of their own total surfaee-water resources,
respectively (Table. Al). FheyThese regions also correspond to the top contributors to
domestic precipitation, owing to the close linkage between precipitation and surface
water resources. Although southern and eastern provinces are rich in surface—water
resources due to the wet climate, most of their green water contributes to-surface water
resources outside of China or to the ocean since they are situated downwind of
prevailing westerlies and proximate to the coast (e.g., Guangdong). In total, green water
exported from 31 provinces tegether—contributes 43% and 40% of precipitation and
surface water resources in China (Table. A1).

The GDP, population, and food production embodied in green water export from
source provinces are shown in Fig Sb-d, which reflects how much the socio-economy
of downwind sink provinces is supported by green water of source provinces. Overall,
the contribution of green water to selected socio-economic statistics shows similar
rankings because food production and agriculture GDP (R = 0.79), population and total
GDP (R = 0.85) are spatially correlated (Fig. ASAO6).

Sectoral GDP embodied in green water from source provinces is highly related to
the industrial structure in sink provinces. The embodied industry and service sector
GDP values embedied—in—green—water—across provinces are relatively comparable,
whereas embodied agricultural GDP values are lower due to the small
eontributionpercentage of agricultural output to total GDP (Fig. A2A3).

Green water from southwest and central provinces (e.g., Sichuan, Hubei, Henan)
embodies the most GDP, population, and food production; because of the large
economic volume of these provinces and neighboring regions, as well as the high DPR.
Specifically, green water from Sichuan supports the highest GDP (2342—bihon
RMB2.31 trillion CNY), population (58 million peeplepersons), and food production
(24 million tons) (Table. A2);) because Sichuan has a high GDP, population, and food

production (Fig. A2)}—AlseA3). Moreover, green water from Sichuan contributes
significantly to its own precipitation in-Stehuan-(30%)%). and 87% of its green water
generatedgenerates domestic precipitation. These factors together make green water in
provinces like Sichuan embody the highest socio-economic values.

Provinces expertedthat export large velumevolumes of green water and withhave
high DPR do not necessarily embody more socio-economic values if sink provinces
impertingthat import their green water are less developed. Xizang is the highest green
water exporter and the largest contributor of suface-water resources (200 km?) but

18



68

69

70
471
472
473
474
AT75
A76
477
A78
A79
A80
A81
A82
A83
A84
A85
186
A87
A88
A89
490

ranks low in embodied GDP (56+-bilienRMB0.56 trillion CNY, 23™), population (15

million, 20%), and food production (5.97 million teatons, 23™) because previnees

imperting-mestthe primary importer of its green water, such as Xizang and Qinghai,
have low rankings in GDP (31%, 30", population (31*' and 30"), and food production
(30" and 29™).

Green water from highly developed provinces (e.g., southeastern China) may not
necessarily embody high socio-economic value if they have low DPR. For example,
Guangdong ranks 1 in GDP and population and 17" in food production; but withonly
has a small fraction of green water eentributedcontributing to domestic precipitation
(DPR 0.4). The limited domestic precipitation contribution results in low rankings of

embodied socio-economic valuevalues (14" for GDP, 17" for population, and 21 for

food production) embedied-in-green-water-offor Guangdong.
LD .
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Figure 5. Changes in socio-economic activities-of-downwindvalues embodied in green water

flow from source to sink provinces ineluding-econemysfor GDP (a), populations (b), and food
production arc¢ tele-connected to source provinces. This highlights the critical role of
gfeen—wa%er—}ﬂ—ws%ammg( c). Thin arrows of different colors represent the socio-economy—

and-tmplieseconomic value increase (in red) or decrease (in blue) from source to sink provinces.

Green bars represent the sum socio-economic value in China's 31 provinces.

The substantial socio-economic values embodied in interprovincial green water
flows—When— highlight the teleconnection of green water travels-from source and-sink

provinces with—differentlevels—of socio-economic—development—and the socio-
economic—values—embedied—n—cconomy in sink provinces, including economy,

population, and food production. Due to different socio-economic statuses, the same

amount of green-water-wil-change-
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resources, which are recharged by green water, would sustain different socio-

economic values between source and sink provinces. Therefore, the socio-economic
values embodied in green water flow and-theirehangeswould change when traveling
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from source to sink provinces. Thin-arrows-of different-colorsrepresent-the socio-economic—

&aﬁ&feﬁmg—fre&kseafe%te—smlepwrees—\&l%feaﬂd—tha{—m%As shown in Fig. 5, the
socio-economic values embodied eeeﬁem*%e&tp&t—va%&%pepa%aﬁeﬂ—aﬂd—feed

3979 billlen RMBin green water flow increase from source to sink provinces by 4

trillion CNY for GDP, 6 million pep-for population, and 25 million tentons for food

production, respectively. The increase in the embodied GDP, population, and food

production fresnis observed in 20, 16, and 22 source te-sink—provinces (Eig—5)-among

a total of 31. This indicates that green water tends to flow from less to more developed
provinces, with—per—unit—of—green—water—suppeorting—sustaining more economic
production-and, population-, and food production per unit of green water. The largest
economic output value increases ef-green—water-are—found in Guangxi (+826-billien
RMBO0.83 trillion CNY, 54%). Xinjiang has the most added value in population (+13

million peppersons, 59%) and food production (+7 million tertons, 60%) because their

green water flows to more developed provinces (Fig. A5). In contrast, decreased socio-

economic values of green water flow are also observed. A43-
i i —Shandong, Shaanxi, and

Henan have the largest reduetiondepreciation in green water values for the-econemy—{(-
659-billhen RMBGDP (-0.66 trillion CNY, 48%), population (-13 million peppersons,
42%3)%). and food production (-12 million tertons, 72%) (Fig. A4AS5) because their

green water flows to provinces with lower socio-economic values.

The changing socio-economic values of green water flow reflect the regional

disparity in socio-economic statuses between source and sink provinces. The exported

oreen water for more than half of the source provinces in China (> 15) has increased

socio-economic values when reaching sink provinces. This shows that green water from

less developed provinces effectively supports the higher socio-economic status of

developed provinces through the interprovincial flow network. Therefore, these

provinces are vitally important green water providers to developed areas. This

teleconnection of green water and socio-economy substantiates that changing land use

in the source provinces that affect evapotranspiration is likely to influence water
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resources availability and socio-economic development in the sink provinces (Dias et

al., 2015; Weng et al., 2018). Hence, it is imperative to account for “invisible” green
water flow and its cascade effect in large-scale water resources management.

4 Discussion

This study quantified the interprovincial green water flows in China using the
moisture recycling framework and a moisture tracking model. The green water flow is
established by transporting evaporated moisture by atmospheric winds from a source
province to precipitate in a sink province. The transferred green water exchanges among
multiple provinces and creates an interprovincial flow network. The location of the
source province and its flow direction largely determine to what extent green water
formed precipitation retains within China. In our estimation, roughly 43% of green

water forms precipitation in China, similar to 44% of PRR identified by Rockstr&m et
al. (2023). The average direction of all interprovincial green water flows in China is

from southwest to northeast, consistent with findings by Xie et al. (2024).

Green water flow can fill the gap in land-atmosphere feedback in the traditional
water resources management framework (Keys et al., 2017). Typically, water resources
management only considers blue water changes while neglecting green water flow,
even though the latter may compensate for the former (Hoek van Dijke et al., 2022).
Human activities such as irrigation (Su et al., 2021), afforestation (Li et al., 2018), and
reservoir construction (Biemans et al., 2011; Veldkamp et al., 2017) in upstream regions
may markedly change blue water accessibility in downstream regions. Meanwhile, the

resulting changes of ET in upstream regions (McDermid et al., 2023; Qin, 2021; Shao
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et al., 2019) might offset the decline of water resources in downstream by moisture
recycling. Similarly, increased vegetation coverage intercepts more rainfall, reducing
runoff and consequently diminishing water resources availability (Sun et al., 2006;
Zhou et al., 2015a), but the rise of ET may compensate local-and-downwind-water
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mnteractionsfor local and downwind water availability through increased green water

flows (Wang et al., 2023a: Zhang et al., 2021). Therefore, green water is an essential

path of climatic and hydrological interaction among different regions, providing a new

angle for integrated regional resources management (Keys et al., 2018; te Wierik et al.,

2021). ComprehensiveA comprehensive impact assessment of regional water security

and optimization would benefit from combining both blue and green water flows
(Schyns et al., 2019) by which upstream/upwind regions affect regional water
reseureesresource availability (Creed et al., 2019).

With the recognition of the tele-connected effects of green water flows,
maintaining regional water security requires both rational utilization of local water
resources and appropriate land management in the upwind source regions. However,

similar to blue water, reseureeswater resource management across administrative

boundaries has always been challenging due to conflicting interests among different
regions (Rockstram et al., 2023). The diverse strategies developed to enhance regional
coordination of blue water management serve as_a reference for green water
management, such as the inter-basin water transfer or downstream beneficiaries paying
upstream providers for clean water services (Farley and Costanza, 2010; Pissarra et al.,
2021; Sheng and Webber, 2021). However, unlike blue water resources with well-
established accounting and valuation methods, green water monitoring and valuation
are challenging. Green water from a specific region flows to multiple regions, and the
received green water can subsequently reevaporate and flow to other regions- (Zemp et
al., 2014). This interconnected network and cascade complicate the quantification of
how much green water from a source region contributes to human activities in sink
regions. More importantly, it is difficult to measure green water flow through
observations as those measurements made by hydrologic stations for blue water (Hu et
al., 2023; Sheng and Webber, 2021). This study utilized a dataset from a moisture
tracking model to construct an interprovincial green water flow within China, which

offers valuable insights for understanding the quantity of green water flow.—Our
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Due to_the complex dynamics of the green water flow and limitations of the

moisture tracking model, there are still major uncertainties in data and methods of this

study. First, ET and precipitation datasets driving the UTrack model affect the tracked

trajectories and magnitude of moisture flow. The resulting moisture trajectory is

expressed as the fraction of ET to precipitation, and the exact amount of moisture is

restored by the ET and precipitation datasets chosen by users. Different ET and

precipitation datasets could lead to different precipitation contributions and PRR (Li et

al.. 2023). We used the ERAS dataset to keep consistent with the original UTrack model.

It is noted that the non-closure of the moisture balance from ERAS (De Petrillo et al.,

2024) and simplifications and assumptions introduced in the moisture tracking model

also add uncertainty in the moisture tracking (Tuinenburg and Staal, 2020). First EF

water—flow—TheMoreover, the resulting moisture trajectory data only represent the

climatologically average moisture trajectories and ET (Li et al., 2023), neglecting the

inter-annvalinterannual variability in green—watermoisture flow_trajectory, e.g., those

induced by the influence of extreme weather events or ENSO (Zhao and Zhou, 2021).

alse-adduneertaintyThe interannual variations in green water flow may affect DPR and

DSR in some provinces. Human adaptation tends to buffer the impacts of interannual

variations on the socio-economy through water resource management such as reservoirs,

dams, and other infrastructure. Accounting for interannual variations in green water

flows and their socio-economic contribution is worth further investigation. Secondly,

the socio-economic value assessment of green water in this study only considers green

water flows within China, excluding flows moving abroad and to the ocean that may

embody socio-economic value beyond the territory of mainland China. We mainly

attribute socio-economic values to green water and generated precipitation because

precipitation is the ultimate water source for recharging surface and groundwater of a

region. Strictly speaking. such attribution needs to be more precise because socio-

economy also utilizes streamflow from upstream areas, which deserve separate

attention.

Moreover, the interactions between blue and green water increase the complexity

to evaluating green water’s socio-economic contribution. For example, the blue water
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extracted by irrigation increases ET in the source region, providing more moisture for

downwind regions (Yang et al., 2019). Simultaneously, most of the blue water for local

irrigation comes from the green water of upwind regions (McDermid et al., 2023). In

addition, not all water resources replenished by green water-induced precipitation are

accessible for human activities since part of them is used by the natural ecosystem

(Keys et al., 2019). Therefore, it is necessary to distinguish water sources and

consumption to account green water values more accurately. Despite the selected socio-

economic indicators closely linked to water resources, green water flows’ socio-

economic contribution can manifest in other aspects such as livestock production and

irrigated agriculture. In future studies, the dynamic linkage between green water, water

resources and economic development can be assessed annually by using a long-term

moisture tracking dataset with a separation of water sources consumed by socio-

economy (surface and groundwater).

upstream-areas—which-deserve-separate-attention- Nevertheless, our assessment serves

as a useful first step to demonstrate the importance of the tele-connected green water

flow in addition to blue water. Our attempts to quantify the socio-economy embodied

in green water flow fill the gap in green water value assessment and provide a

methodological reference for green water management.

5 Conclusion

This study quantified the interprovincial green water flows in China and its tele-
connected effects on the socio-economy. The green water exchanges among different
regions effectively form a complex flow network and embody socio-economic values.
The interprovincial green water in China flows primarily from west to east and to a
lesslesser extent from south to north, influenced by the co-control of westerlies and
menseenmonsoons. Western provinces have significant contributions to precipitation
and surfaee—water resources in China, while southwestern and central provinces
embedyhave the most socio-economic values #terms—efregarding GDP, population,

and food production. Green water flowing from less developed regions supports
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substantial socio-economic values in more affluent regions; due to disparity in socio-
economic development between source and sink regions. Given the embodied socio-
economic benefits of green water, regional water resources management should
consider water flow beyond blue water to integrate green water for a more
comprehensive and effective management of resources and security. Our study provides
a reference for understanding the “invisible” green water flow and its tele-connected
benefits.
Data and code availability

The moisture trajectory dataset is available at

https://doi.pangaea.de/10.1594/PANGAEA.912710 (Tuinenburg et al., 2020). The

evapotranspiration data from ERAS5 reanalysis dataset is available at

https://cds.climate.copernicus.eu/#!/search?text=ERAS5. The socio-economic statistics

data is available from China Statistical Yearbook (https://data.stats.gov.cn/index.htm).

The Python codes and data used in this study are available at GitHub
(https://github.com/sangshan-ss/GW-China).
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Figure Al. GreerWorkflow of estimating green water flow-frema-seuree-provineeto-. Step 1:
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originating from ET in source grids. Step 2: calculate the fraction of precipitation in sink
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and (c) precipitation recycling ratio (PRR) in each province.

Figure A2. (a) Domestic precipitation i-eertain-sinkratio (DPR), (b) domestic source ratio (DSR)
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Figure A4AS. Net economic output (a), population (b), food production (c) value of green water

flow in each province. Negative values represent these socio-economic values of water resource

formed by green water increase by flowing from source to sink provinces. Positive values

represent these socio-economic values of water resource formed by green water decrease by

flowing.
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Figure AS5-PearsenA6. Spatial pearson correlation coefficient between agricultural GDP and food

production (a), population and total GDP (b)) across provinces in China.

Table A1. SurfaeePrecipitation, water resenree-compareresources, and the contribution from

green water in provinces of China.

Proyince Local Precipitation | Percentage of Local Water resource | SurfacePercent
T precipitation | formed by precipitation surfaece— formed by age of water
(km?) green water | contribution to water green water resource
(km?) local resource (km?) formed by
precipitation (%) (km?) greencontributi
on to local
water
@em®yresource
%
Beijing +059.47 0864.53 48 2.82-H 1.14 40
Tiapjin 7.12 2.66 37 1.4862 0.5470 457443
Hebei 6:95100.50 9-3848.35 135148 15.98 12.26 77
Shgnxi 6-7182.88 9-5851.69 +42.7962 10.91 12.38 113
Neitmheng 354531711 | 25:62131.57 T29011 48.79 31.80 65
Liagning 28145104.53 | #6727.80 25-H27 31.92 8.40 26
Jilin 36:20124.15 | #5429.55 208324 42.21 8.98 21
Heilongjiang | 72-24258.88 +753.75 21 85.40 15.44 18
Shanghai 3.388.02 2.83 35 4.04 1.8619 313329
Jiangsu 34149108.09 | H-5635.93 3382 44.27 13.43 30
Zhejiang 10917184.7 27.98 15 110.66 13.46 12-62
2
Anhui 172.36 7356.84 20-8033 28-1679.67 23.19 29
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Fujian 226.74 32.96 15 126.2639 +6-8517.33 133514
Jiangxi 292.56 16777.52 376626 22.48169.44 39.25 23
Shandong | +634105.99 | 10-8745.49 665143 25.99 13.56 52
Hehan 22.97118.83 | 20-5073.87 62 33.73 €9:24.08 71
Hubei 98-63214.46 | 41-98108.13 425750 101.66 45.27 45
Hupan 173-62308.8 | 56-20107.25 35 174.33 52.28-9+ 30
7
Guangdong | 193-81344.0 | 376673.31 194321 194.77 38.54 20
S
Guangxi 379.82 131.63 35 200.6876 66.32:30 33
Hainan 72.47 13.50 19 41.4086 6:997.13 169017
Chonigging 90.61 50.45 56 53.23 20-9921.87 394341
Sicluan 458.97 272.93 59 2457386 | 12216124.43 49151
Guizhou 191.84 97.05 51 98.49 46.4254 47
Yurinan 444.68 199.06 45 185.99 9596.34 542652
Xizang 689.68 360.21 52 438.59 199:51200.33 454946
Shapnxi 3743141.21 | 23-6689.70 614464 39.82 26.14 66
Gahsu 208311545 | 28-16102.36 134.9489 21.60 30.31 140
Qinghai H-55236.12 | 6+:96170.62 72 8673.50 63.57 86
Nin|gxia 14.95 12.94 87 0.7698 2:923.34 38455342
Xinfiang 874H300.10 | 6+45191.37 705464 91.95 64.92 71
Tqtal 268916225 | 1067762683 3971443 2.82 1.14 40
19 .84
986
87 Table A2. The tele-conneeted-effeetembodied socio-economic values of green water
88 flow enfrom source provinces for water resources, GDP by industry, population, and
89 food production. Socio-economic indictors are the average value of 2008-2017.
Province Total GDP | Agriculture | Industry Service Population Food
(BHhen— GDP GDP GDP (Million | production
RMBTrilli (BHhon— (Bteon— (Btthen— | peppersons | (Million
on CNY) | RMBTrilli | RMBTrilli | RMBTrilli ) ton)
on CNY) on CNY) on CNY)
Beijing 128:920.13 | 8#090.01 | 5+760.05 | 69430.07 2.05— 0.97-
Tianjin 86-790.09 | 5460.01 | 37H0.04 | 44:530.04 1.33— 0.61-
Hebei 1274161.2 | 94690.09 | 5621430.56 | 620:340.62 22:00— 10.82—
7
Shanxi H30401.1 | 88:420.09 | 542-780.54 | 548:910.55 22.36- 10.35-
8
Neimeng 1669:221.6 | 146:900.15 | 768:350.77 | #53:970.75 30.77- 21.78-
7
Liaoning 397.020.40 | 38:000.04 | +8%780.19 | +H-240.17 7.23— 5.92-




Jilin 266-650.27 | 36:920.03 | +23-630.12 | H2:090.11 5.34— 6.37—
Heilongjiang 389730.39 | 48850.05 1730.17 +677140.17 8.04— 10.45—-
Shanghai 90-330.09 5730.01 41:930.04 | 42-670.04 1.41- 0.57-
Jiangsu 1056-161.0 | 80-800.08 | 506:930.51 | 468-430.47 18.13— 8.50-5
Zhejiang 685-000.69 | 44-540.04 | 323-180.32 | 347290.32 11.08— 4.11-
Anhui 1365-581.3 | HH590.11 | 659:270.66 | 594-720.59 25.42— 11.85—-
Fujian 38:980.04 | 268:580.27 | 255:0640.26 9.46— 2.93—
Jiangxi 102180.10 | 637820.64 | 594840.59 24.34— 9.43—
Shandong 106370.11 | 645:660.65 | 621230.62 23.85—- 11.72—-
Henan 1753.291.7 | 150-860.15 | 848-590.85 | #53-840.75 34.94— 16.74—
Hubei 1975711.9 | 180310.18 | 958260.96 | 837130.84 40.57- 18.56—
Hunan 1630.741.6 | 147890.15 | 786-740.78 | 702-110.70 33202 14.13—
Guangdong 1099.021.1 | 82-040.08 | 522-650.52 | 494360.49 20.09— 6.38—
Guangxi 1537.631.5 | 144550.14 | 727-780.73 | 665300.67 33.06— 12.76-7
Hainan 179270.18 | 14-560.01 83.860.08 | 80-850.08 3.42— 1.05-

Chongging 660-080.66 | 64180.06 | 319-490.32 | 276410.28 14.92— 6.404
Sichuan 2312.682.3 | 250-830.25 | 1098371.1 | 963-490.96 58.39— 24.16—

0

Guizhou 108:050.11 | 540:340.51 | 45%780.46 25.05—- 10.25-
Yunnan 164390.16 | 685-760.69 | 627-880.63 38.21- 14.98—
Xizang 65-740.07 | 262-500.26 | 232-670.23 15.32— 5.97-
Shaanxi 126340.13 | H4260.71 | 640:650.64 30.87- 14-.00—
Gansu 98160.10 | 499:480.50 | 456-870.46 24.22— 10.96—
Qinghai 724980.72 | 74470.07 | 344-490.34 | 306:020.31 18.36-3 7.56—
Ningxia 183 810.18 | 15-820.02 | 87140.09 | 80-860.08 3.88— 1.85—
Xinjiang 995821.00 | 106:220.11 | 456:230.46 | 433-370.43 22.03— 11.60-6
Tothl (percentage of total 2.74 (46%) 14.43 13.39 629.28 293.67

contribution to local (45%) (44%) (46%) (50%)
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