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Abstract. Reducing methane emissions from the oil and gas (oil/gas) sector has been identified as a critically 15 

important global strategy for reducing near-term climate warming. Recent measurements, especially by satellite and 

aerial remote sensing, underscore the importance of targeting the small number of facilities emitting methane at high 

rates (i.e., “super-emitters”) for measurement and mitigation. However, the contributions from individual oil/gas 

facilities emitting at low emission rates that are often undetected are poorly understood, especially in the context of 

total national- and regional-level estimates. In this work, we compile empirical measurements gathered using 20 

methods with low limits of detection to develop a facility-level model to quantify total methane emissions from the 

continental United States (CONUS) midstream and upstream oil/gas sector for 2021. We find that ~70% (95% 

confidence intervals: 63-82%) of total oil/gas methane emissions in the CONUS for the year 2021 (Total: 14.3 

Tg/yr) originate from facilities emitting <100 kg/hr. While there is variability among the emission distribution 

curves for different oil/gas production basins, facilities with low emissions are consistently found to account for the 25 

majority of total basin emissions (i.e., range across basins 63% - 90% of total basin emissions from facilities 

emitting <100 kg/hr). Production well sites were responsible for 70% of total regional oil/gas methane emissions, 

with the highest contributions from a large population of low-producing well sites. Our results are also in broad 

agreement with several independent aerial remote sensing campaigns (e.g., MethaneAIR, Bridger Gas Mapping 

LiDAR, AVIRIS-NG, and Global Airborne Observatory). Our findings highlight the importance of accounting for 30 

the significant contribution of small emission sources to total oil/gas methane emissions. While reducing emissions 

from high-emitting facilities is important, it is not sufficient for the overall mitigation of methane emissions from the 

oil and gas sector which according to this study is dominated by small emission sources across the US. Tracking 

changes in emissions over time and designing effective mitigation policies should consider the large contribution of 

small methane sources to total emissions.   35 
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1 Introduction 

 

Methane is a short-lived but powerful greenhouse gas with a global warming potential more than 80 times 40 

stronger than carbon dioxide (CO2) over 20 years (AR6 Synthesis Report: Climate Change 2023, 2024). Therefore, 

the reduction of methane emissions has become a key goal to achieve rapid climate mitigation in the short term 

(Ocko et al., 2021). In North America, one of the largest sources of methane emissions originates from the oil and 

gas (oil/gas) sector, with most emissions originating from the production (i.e., upstream) and transportation/storage 

(i.e., midstream) sectors (Alvarez et al., 2018). Multiple studies, especially over the past decade, have focused on the 45 

quantification of methane sources from the oil/gas sector, with particular emphasis on the continental United States 

(CONUS) (Alvarez et al., 2018; de Gouw et al., 2020; Omara et al., 2018; Lu et al., 2022; Zhang et al., 2020; Shen 

et al., 2022; Cusworth et al., 2022; Nesser et al., 2023; Brandt et al., 2016; Duren et al., 2019; Maasakkers et al., 

2021; Lu et al., 2023; Worden et al., 2022). Several studies have recognized the importance of a small percentage of 

high-emitting sites (i.e. “super-emitters”) and reported them as accounting for a large fraction of total methane 50 

emissions (Cusworth et al., 2022; Brandt et al., 2016; Duren et al., 2019; Sherwin et al., 2024). Emissions from 

oil/gas sites have been captured with greater frequency with advances in aerial and satellite remote sensing 

technologies that allow for mapping wide areas faster, further emphasizing the importance of the remote sensing 

approach. Despite the improved ability to locate and quantify emissions from high-emitting sites, there has been 

considerable lack of understanding about the characteristics of low methane emitting facilities, especially those 55 

emitting at rates below the limits of detection (LOD) of most point-source detection remote sensing platforms, and 

their contributions to total oil/gas methane emissions. 

While some studies offer important yet limited insights into the contributions of different lower-emitting 

infrastructure from the CONUS oil/gas sector, there is a lack of understanding about their overall contribution to the 

total sectoral regional and national scale emissions. A recent study by Xia et al. (2024) combined aerial remote 60 

sensing data from Bridger Gas Mapping LiDAR (Bridger GML) in four oil/gas basins supplemented with 

component-level modeling for facilities emitting below the Bridger GML LOD and found significantly more 

emission sources in the 1 – 10 kg/hr range when compared to the emission distribution used by the EPA (Xia et al., 

2024).  In a study focused on production well sites in the CONUS, the main source of methane emissions from the 

oil/gas sector (Alvarez et al., 2018; Omara et al., 2018; Rutherford et al., 2021), Omara et al. (2018) found that 90% 65 

of total methane emissions from producing well sites came from those emitting at rates <100 kg/hr. A follow-up 

study by Omara et al. (2022) highlights that the total methane emissions from low-producing well sites producing 

less than 15 barrels of oil equivalent per day (boed), which comprise 80% of all producing well sites in the CONUS, 

were responsible for nearly half of all methane emissions from the oil/gas production sector. Kunkel et al. (2023) 

observed that the use of Bridger GML combined with prior Carbon Mapper detections in a section of the Permian 70 

basin showed a significant contribution from sources below the listed LOD of Carbon Mapper of 10 kg/hr. Cusworth 

et al. (2022) found that 35% of total methane emissions (including non-oil/gas sources) from several major oil/gas 

producing basins (other than the Appalachian basin) in the CONUS come from facilities emitting >10 kg/hr, 

indicating that 65% of emissions come from facilities emitting <10 kg/hr. Although these studies using independent 
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measurement platforms provide new emerging insights about the importance of low methane emitting oil/gas 75 

facilities, there generally remains a lack of quantitative assessment of the relative fractions of emissions originating 

from different emission rate thresholds aggregated over individual oil/gas basins as well as at a national scale. 

There are a variety of different methane quantification methods that differ in terms of their spatial resolution of 

sources, logistical constraints, costs of implementation, and their LODs. Measurement method sensitivities and 

LODs have important policy implications. For example, the Environmental Protection Agency (EPA) recently 80 

finalized regulations that define a “super-emitter event” as an emission rate threshold of 100 kg/hr or greater (EPA’s 

Final Rule for Oil and Natural Gas Operations Will Sharply Reduce Methane and Other Harmful Pollution., 2024), 

albeit without clear information on what percentage of total regional emissions are captured within this definition. 

Satellite and aerial remote sensing methods have point source LODs that range anywhere from 1-3 kg/hr for 

Bridger’s airborne GML (Kunkel et al., 2023; Johnson et al., 2021; Thorpe et al., 2024; Xia et al., 2024) to ~200 85 

kg/hr for GHGSat (Sherwin et al., 2023). In contrast, ground-based measurement methods such as OTM-33a and 

tracer release have LODs <1 kg/hr (Fox et al., 2019). A study by Ravikumar et al. (2018) using the Fugitive 

Emissions Abatement Simulation Toolkit (FEAST) suggests that a method with a LOD of 0.1-1 kg/hr would 

sufficiently capture all emissions from the oil/gas sector, whereas the ability to quantify emissions below this 

threshold would not lead to any significant increases in mitigation. Ultimately, there is a need for clarification in the 90 

total percentage contribution of emissions originating from a given emission rate threshold, which requires 

characterizing entire emissions distributions, not only the high emitters. 

In this work, we create and analyze measurement-based methane emission rate distributions of US upstream and 

midstream oil/gas facilities to determine the percentage contributions of different emission rate thresholds to total 

methane emissions.  First, we use empirical measurements gathered from ground-based sampling platforms to 95 

develop a bottom-up facility-based model to estimate methane emissions for upstream and midstream facilities in 

the continental US (CONUS) for 2021. Next, we aggregate our facility-level, population-based data to determine the 

national- and basin-level contributions of methane emissions originating from facilities emitting at different 

emission rate thresholds, in addition to comparisons to aerial-remote sensing platforms. Finally, we break down the 

emission distribution curves by facility category to analyze how the percentage contributions of total emissions vary 100 

across facility types.  

 

2 Materials and methods  

 

2.1 Empirical measurements  105 
 

We compile 1,898 facility-level methane emission rate measurements from 13 studies (Caulton et al., 2019; 

Brantley et al., 2014; Deighton et al., 2020; Omara et al., 2016; Rella et al., 2015; Riddick et al., 2019; Robertson et 

al., 2017, 2020; Zhou et al., 2021; Zimmerle et al., 2020; Mitchell et al., 2015; Subramanian et al., 2015) that use 
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ground-based site/facility level and source/component level measurement methods with low LOD’s of ~0.1 kg/hr. 110 

85% of empirical measurements we use in this work were gathered using ground-based mobile laboratories that 

quantified methane emissions at the site/facility level using either tracer-based releases, the EPA Other Test Method 

(OTM-33a), or Gaussian plume transport modeling (Fox et al., 2019) (Table S1). From the remaining empirical 

measurements we use (i.e., 15%), measurements from three studies (Riddick et al., 2019; Deighton et al., 2020; 

Zimmerle et al., 2020) used ground-based methods that aggregated source/component-level HiFlow sampling or 115 

static/dynamic chamber measurements, which could mean that other on-site emission sources were not quantified 

during measurement and overall emission rate estimates are conservative.  

The compiled empirical measurements target a variety of production well sites and/or midstream facilities 

across at least nine oil/gas-producing basins in the CONUS (Table S2). For all facility categories (i.e., compressor 

stations, processing plants, production well sites), we prioritize datasets of randomly sampled sites that include 120 

measurements below the method’s LOD or reported as zero emissions, except for measurements from two studies 

(Brantley et al., 2014; Lan et al., 2015) which we discuss later in Section 2.3. Additionally, for production well site 

measurements, we focus only on data that provide facility-level gas production data for the date/month of 

measurement. Our compiled dataset of measurements includes both routine intentional (e.g., venting from pneumatic 

devices) and non-intentional (e.g., malfunctioning equipment) emissions, and while we remove any measurements 125 

attributed to high emitting intermittent events such as flowbacks and liquids unloadings if that information is 

present, we cannot fully discount that emissions from these high-emitting intermittent are included in our compiled 

dataset. Furthermore, we remove any empirical measurement data associated with flaring emissions, which are 

discussed below, if that information is provided in the empirical data. 

We categorize the empirical measurements by facility category as production well sites, gathering and boosting 130 

compressor stations (G&B compressors), transmission and storage compressor stations (T&S compressors), or 

processing plants. We group the empirical measurements from production well sites into six production bins based 

on gross average daily gas production as reported in individual studies. We use gross daily average gas production 

data instead of oil and gas production data for two reasons: 1) the limited availability of facility-level oil production 

data provided from empirical measurements; and 2) the established relationship between gas production and 135 

emission rates observed in previous work (Omara et al., 2018, 2022, 2024a). The gas production ranges of the 

production bins (Fig. 1) are chosen to evenly distribute empirical measurements above the method LOD to all six 

production bins. This categorization creates nine distinct facility categories: G&B compressors, T&S compressors, 

processing plants, and six groups of production well sites. We further classify the nine distinct facility categories 

into five primary facility categories: low-production well sites which produce combined oil and gas <15 boed, non-140 

low-producing well sites which produce ≥15 boed, processing plants, G&B compressors, and T&S compressors. In 

addition to these facility categorizations, we also include Visible Infrared Imaging Radiometer Suite (VIIRS) flare 

detections in our analysis, which are treated as an independent methane source since flares can be located on 

multiple facility categories across the upstream and midstream oil/gas sectors. 
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 145 

Figure 1: Facility-level empirical measurement data distributed by different distinct facility categories for production well sites 

(left) and midstream facilities (right). Individual measurements are shown for each box plot and colored according to their 

emission rate status for that facility category, where blue points are considered non-detectable emissions below an emission rate 

threshold of ≤0.1 kg/hr/facility which is the method LOD we use, black points are measurements above our method LOD but 

below the top 5% emitter category, and red points are the top 5% of empirical emission rates for that facility category. The 150 
number of empirical measurements available for each facility category is denoted at the top of each boxplot.  We show emission 

rates rather than loss rates for the lowest cohort of production well sites due to the reasoning presented in Section 2.3.  

Mcfd = thousands of cubic feet of gas per day, Proc. Plants = processing plants, G&B = gathering and boosting compressor station, T&S = 

transmission and storage compressor station, LOD = limit of detection. 

 155 
2.2 Activity data  

 

We use activity data (i.e., number of facilities and spatial locations) for actively producing wells in 2021 

provided by Enverus for the CONUS. We calculate both the annual averaged daily gross gas production, and oil and 

gas production for each producing well using the number of producing days and total annual oil and gas production 160 

data provided by Enverus. We convert production wells to production well sites by spatially aggregating individual 

wells within 25-meter (vertical wells) or 50-meter (horizontal wells) distances from each other and merging their 

combined oil and gas production in boed and gas production in thousand cubic feet per day (Mcfd), similar to 

previous approaches (Omara et al., 2018).  

We acquire activity data for operational transmission and storage (T&S) and gathering and boosting (G&B) 165 

compressor stations and processing plants from Enverus for 2021 for the CONUS, which was further supplemented 

by additional data from the Oil and Gas Infrastructure Mapping (OGIM) database published in Omara et al. (2023). 

We filter data for these midstream facilities to include only active facilities in the year 2021. For VIIRS flare 
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detections, we use the 2021 natural gas flared volume estimates (Elvidge et al., 2016) based on natural gas flaring 

detections provided by the VIIRS instruments installed aboard satellite platforms which have a 750x750 meter 170 

source resolution (NOAA-20 and Suomi National Polar-orbiting Partnership) (Elvidge et al., 2017). In terms of 

potential double-counting between the VIIRS flare detections and the empirical measurements we use in this work, 

the majority of VIIRS detections are in the Permian, Bakken, and Eagle Ford oil/gas basins (i.e., 86% of total VIIRS 

detections) which corresponds to a small number of our empirical measurement data (Table S2) (Plant et al., 2022). 

However, the limited availability of spatial coordinates for our empirical measurements restricts our ability to 175 

perform a direct comparison to exclude overlapping/proximal VIIRS detections and our facility-level empirical 

measurements. Therefore, we do acknowledge that there is a possibility of double counting between our empirical 

measurement data and the VIIRS flare detections, but we expect the degree of overlap to be low.  

2.3 Facility-level methane emission inventory  

We calculate annual methane emissions from all facility categories (i.e., six production bins of production well 180 

sites, T&S compressor stations, G&B compressor stations, and processing plants) using a multi-step probabilistic 

modeling approach adapted from Omara et al. (2018) (Fig. 2). For the highest five gas production bins of producing 

well sites ranging from 27 – 3,864 Mcfd (or 4.5 - >644 boed), we use gross gas production normalized loss rates to 

model the distributions used to calculate methane emission rates from Eq. (1), where the: Loss rate is the fraction of 

emitted gas relative to gas production, CH4 is the methane composition of the emitted gas (i.e., which we assume to 185 

be 80%), and ρ(CH4) is the density of methane at 15oC and 101.325 kPa of 0.678 kg/m3. For the lowest well site 

production bin (i.e., 0 – 27 Mcfd) and midstream facilities, we use the empirical absolute methane emission rate data 

as is. This approach is partly based on the methods used by Omara et al. (2020) for the non-low production well site 

category, which exploits a weak relationship between gross gas production data (which is most accessible in 

empirical measurement studies) and emission rates to better extrapolate emissions to the entire population of 190 

production well sites in the CONUS. 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 [
𝑘𝑔

ℎ𝑟
] = 𝐿𝑜𝑠𝑠 𝑟𝑎𝑡𝑒 × 𝐺𝑎𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 [

𝑀𝑐𝑓

𝑑𝑎𝑦
] ×

1000 [𝑐𝑓3]

1 [𝑀𝑐𝑓]
×

1 [𝑑𝑎𝑦]

24 [ℎ𝑟]
× 𝐶𝐻4 ×

0.0283 [𝑚3]

1 [𝑐𝑓3]
× 𝜌(𝐶𝐻4)   (1) 

For our estimation of facility-level emission rates, we break down the modeling process into two separate steps: 

the first determines whether a randomly selected facility is emitting methane above our method LOD of ≤0.1 

kg/hr/facility, and the second determines the associated methane emission rate for that individual facility. To test the 195 

sensitivity of our method to the selection of the method LOD, we also perform an additional sensitivity analysis for 

other method LODs (Fig. S11-13). The processes outlined below are all specific to each of our nine facility 

categories. Measurements from Brantley et al. (2014) and Lan et al. (2015) are excluded from this first step since 

they do not include measurements below the method LOD but do include valuable data on well site emission rates 

with associated well site production data. To determine whether a facility is emitting methane above the method 200 

LOD threshold in our estimates, we first use bootstrapping with replacement (n=1,000) of our empirical 

measurement data to determine the chance of an individual facility emitting methane above the method LOD (i.e., 
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≤0.1 kg/hr/facility), which we call an “emitting facility” or “emitter” herein (Fig. 2). We model the results of the 

bootstrapping with replacement as a normal distribution and use the parameters of the modeled distribution to 

randomly determine whether a facility is emitting. Next, we remove the empirical measurements below the LOD 205 

and use bootstrapping with replacement (n=1,000) on the above LOD empirical measurements to determine the 

probability of an emitting facility being in the top 5% (i.e., 95th percentile or above of empirical measurement data) 

or bottom 95% (i.e., 95th percentile or below the empirical measurement data) of emitters, except for processing 

plants which had too few measurements (n=20) to distinguish between the top 5% and bottom 95% of emission or 

loss rates. We fit the results of the bootstrapping to two normal distributions: one for the top 5% of emitters and one 210 

for the bottom 95% of emitters. We use the associated parameters of each normal distribution to randomly determine 

whether a facility is emitting in the top 5% or bottom 95% of emitters. These steps are repeated for each facility for 

each facility category in the CONUS. 

At the end of the first step of this facility-level modeling process, all facilities in the CONUS are classified as 

either a: bottom 95% emitter, top 5% emitter, or below the method LOD. For facilities classified as the top 5% and 215 

bottom 95% of emitters, we estimate their methane emissions by first fitting a lognormal distribution to the 

empirical measurement data, including measurements from Brantley et al. (2014) and Lan et al. (2015), of either the 

gas production normalized loss rates or methane emission rates (Eq. 1), depending on the facility category. Next, we 

use the parameters of the modeled distributions to randomly assign either an emission or loss rate to a randomly 

selected facility (n=500), depending on its emitter status and facility category. We test each estimated methane 220 

emission distribution to the associated empirical measurements and find a good fit for all facility categories (Table 

S5). To account for facilities emitting below the method LOD, we randomly assign an emission rate from re-

sampling our dataset of empirical measurements below the method LOD for that facility category. Finally, once all 

facilities are assigned an emission rate, we compile the ensemble of emission distributions to develop facility-level 

emission distribution curves and total regional oil/gas methane emissions for the CONUS in 2021. 225 

For all VIIRS flares detections, we use the total reported volumes of gas flared for 2021 by Elvidge et al. (2016) 

multiplied by the flaring combustion efficiencies from Plant et al. (2022) to calculate annual methane emission rates 

from this source. As previously stated, our empirical measurements are largely located outside of oil/gas basins (i.e. 

Permian, Eagle Ford, and Bakken) where the majority of VIIRS flare detections are located, but we cannot discount 

the possibility that there are instances of double-counting flares measured via our ground-based empirical data and 230 

those detected by VIIRS. We model flaring combustion efficiencies as a normal distribution using the probability 

distribution parameters for the Bakken, Eagle Ford, and Permian basins (Plant et al., 2022). For areas outside of 

these basins, we used the total CONUS averaged flaring efficiencies as reported by Plant et al. (2022) of 91.1% 

(95% confidence interval: 90.2 – 91.8%).    
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 235 

Figure 2: Flowchart of the facility-level estimates, with steps colored according to the specific process and data 

being used. The methods used for estimating methane emissions from VIIRS flare detections are not shown here but 

are presented in the Methods section. 

 

2.4 Extrapolation to smaller spatial boundaries 240 
 

We perform several comparisons of our estimated emission distribution curves and total aggregated 

emissions to estimates from aerial and satellite remote-sensing studies. For comparisons to satellite remote-sensing 

studies, we prioritize national-level satellite inversions that estimate methane emissions from the CONUS that 

include spatially explicit maps of methane emission inversions specifically for oil/gas sources. We join the spatially 245 

explicit satellite inversions of methane emissions to the top twelve producing oil/gas basin boundaries in the 

CONUS, in addition to their national-level inversions which we also use for national comparisons. Since our 

facility-level model includes geo-located activity data (i.e., facility coordinates), we can estimate facility-level 

methane emissions distributions and estimate total methane emissions for any spatial boundary in the CONUS by 

spatially joining facilities within a target boundary. Spatial variability in our facility-level estimates is driven by two 250 

main factors: counts of facilities and facility types, and averaged annual production characteristics. Due to 

constraints on data availability, we do not constrain our available empirical measurement data to the specific regions 

where they were gathered (Table S2). We do note that basin-to-basin comparisons of the empirical measurement 
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data for production well sites that we use in this work generally do not show significant variations throughout the 

well site production bins, with some exceptions (Fig. S3-S8). Due to a lack of data availability, we do not have 255 

sufficient spatial information from empirical measurements of G&B compressors, T&S compressors, and processing 

plants to test for basin-level differences in empirical measurement data.  

For comparisons to aerial remote sensing studies/results, we prioritize studies that include both measured 

point sources (i.e., oil/gas methane sources that are above the LOD of the aerial remote sensing measurement 

platform), estimates of total regional oil/gas emissions, and descriptions/outlines of the surveyed spatial domains 260 

which are required for these comparisons. Based on these criteria, we compare our estimated emissions to those 

from three peer-reviewed studies (Kunkel et al., 2023; Xia et al., 2024; Cusworth et al., 2022) and the results of 

research flights from MethaneAIR in the Permian and Uinta oil/gas basins (Omara et al., 2024; Chan Miller et al., 

2023; Chulakadabba et al., 2023; MethaneAIR, 2024). In all cases, we estimate facility-level methane emissions 

within the spatial domains outlined by the aerial remote sensing studies to estimate region-specific methane 265 

emission distribution curves. We compare our spatially-joined facility-level emission distributions to the percentage 

of emissions contributed from facilities emitting below discrete methane emission rate thresholds for all four aerial 

remote sensing studies, and to the continuous cumulative methane emissions distribution curves from Bridger GML 

surveys (Xia et al., 2024; Kunkel et al., 2023).  

Each aerial remote sensing campaign utilizes independent methods to estimate their percentage 270 

contributions from small methane sources, which in some cases requires additional analysis of the aerial remote 

sensing results. For our analysis of continuous methane emissions distribution curves from the Bridger GML 

campaigns (Xia et al., 2024; Kunkel et al., 2023), we restrict our analysis to estimated emission rates  >3 kg/hr, 

which is the approximate LOD of the Bridger GML remote sensing platform. For MethaneAIR, we use the 

percentage of area emissions (i.e., diffuse area methane sources) relative to the total methane emissions for the 275 

spatial boundary, which roughly corresponds to all emissions <200 kg/hr (i.e. effectively those emissions below the 

point source detection limit of MethaneAIR that flew in multiple campaigns in the US at 40,000ft above ground 

level (Chulakadabba et al., 2023)). MethaneAIR characterizes the total regional emissions including the spatial area 

emissions at high resolution using a geostatistical inverse modeling framework (Miller et al., 2013) while ingesting 

high-emitting point source information in the inversion (Chulakadabba et al., 2023; Omara et al., 2024).  For 280 

Cusworth et al. (2022) we limit our analysis to the six campaigns where 100% of measured point sources were 

attributed to oil/gas sources to avoid non-oil/gas sources being included within their denominator (i.e., total area 

methane estimates from TROPOMI inversions). We account for the intermittency of detected methane sources with 

<3 overpasses in Cusworth et al. (2022) by resampling with replacement (n=1,000) the source persistence of 

methane sources with ≥3 overpasses for the same campaign, which is consistent with their methodology. We 285 

calculate the percentage contributions of low emitting sources in Cusworth et al. (2022) using Eq. 2: where %E[<x] is 

the percentage of total oil/gas methane emissions below an emission rate threshold x (kg/hr), %E[>10] is the 

percentage of total emissions contributed from point sources emitting >10 kg/hr, T is the total area emissions 
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measured via TROPOMI inversions (kg/hr), and P[<x] is the sum of point source emissions below the emission rate 

threshold x (kg/hr). 290 

%𝑬[<𝒙] = (𝟏𝟎𝟎 − %𝑬[>𝟏𝟎]) + (
𝑷[<𝒙]

𝑻
× 𝟏𝟎𝟎)                                                                                                (2) 

 

2.5 Uncertainty calculations 

 

Our emission distributions based on facility-level estimates incorporate uncertainty through several steps, such 295 

as the: probabilistic distributions of a select facility being a top 5%, bottom 95% emitter, or facility emitting below 

the LOD; emission rate and loss rate distributions produced from facility-level empirical measurements; and flaring 

combustion efficiencies. In addition, we incorporate uncertainties from the empirical measurements into our facility-

level model by simulating new empirical emission rates based on the associated method uncertainties. At the 

beginning of each of the 500 model iterations, we use the reported empirical methane emission rate data and 300 

estimate a new emission rate using a normal distribution with the mean as the initial reported emission rate and the 

standard deviation as a percentage of the mean value. These measurement uncertainties are chosen based on the 

measurement methodology using the lower percentage uncertainty ranges provided by Fox et al. (2019) for facilities 

measured via the OTM-33a (±25%), Gaussian plume dispersion (±50%), and tracer release (±20%) methods. For 

HiFlow sampler measurements, we use an uncertainty range of ±16% (Riddick et al., 2022), and for chamber-based 305 

measurements, we use ±14% (Williams et al., 2023). Therefore, each model iteration incorporates a unique suite of 

empirical measurement data based on the initially reported emissions and their associated uncertainties, which in 

turn impacts the probabilistic modeling of the chance of a facility emitting below the method LOD, the empirical 

data is used to determine the parameters of the lognormal distributions of loss rates and emission rates, and the 

ranges of the production bins (SI – Section 1). To calculate the cumulative uncertainty of our facility-level model 310 

estimates, we estimate 500 methane emission distributions and aggregate the 2.5th and 97.5th percentiles of our five 

primary facility categories (i.e., low and non-low producing well sites, G&B compressors, T&S compressors, and 

processing plants), including VIIRS flare detection emissions, to determine our 95% confidence intervals. This 

process is repeated for all simulations at the national-, basin-, and aerial remote sensing boundary levels. For 

uncertainty calculations in satellite- and aerial-remote sensing studies we use for comparisons, we present the 315 

reported 95% confidence intervals if available.  

We calculate the 95% confidence intervals for data from MethaneAIR and Cusworth et al. (2022) using the ratio 

of measured point sources to the upper and lower uncertainty bounds of the total area estimates in the calculations of 

the percentage contributions of low-emitting methane sources to the total. In cases where multiple aerial campaigns 

were conducted in the same oil/gas basin by the same study, we average the percentage contributions for all surveys 320 

including the upper and lower uncertainty bounds. For Cusworth et al. (2022), we do not use the reported 

uncertainty intervals of their point source detections in our uncertainty calculations since we employ various 

emission rate thresholds in our comparisons without a clear understanding of how the point source uncertainties 
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would change depending on the different thresholds, meaning that our uncertainty bounds for the Cusworth et al. 

(2022) results may be conservative. 325 

 

3 Results 

 

3.1 Distribution of emission rates at the national scale 

 330 

Based on the results from our facility-level model simulations, we estimate that 72% (95% confidence 

interval: 63-82%) of total methane emissions from the upstream/midstream sector in the CONUS for 2021 originate 

from facilities emitting methane at rates <100 kg/hr (Fig. 3). For other emission rate thresholds, we find that 30% 

(26-34%) of total emissions come from facilities emitting <10 kg/hr, which corresponds to the lower thresholds of 

aircraft-based aerial remote sensing studies (Kunkel et al., 2023; Thorpe et al., 2024; Johnson et al., 2021; Xia et al., 335 

2024; Cusworth et al., 2022), and 80% (70-91%) of total emissions come from facilities emitting <200 kg/hr. This 

result suggests that a large majority of oil/gas emissions in the CONUS are not detectable by existing satellite 

remote-sensing point source imagers (Sherwin et al., 2023). We find that the emission rate threshold corresponding 

to 50% of cumulative methane emissions from upstream/midstream facilities in the CONUS for 2021 is 25 (19-33) 

kg/hr.  340 
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Figure 3:  Results from 500 estimated facility-level emission distributions showing the cumulative percentages of 

total methane emissions contributed from facilities emitting below methane emission rate thresholds. For example, 

facilities emitting <100 kg/hr account for 72% (63-82%) of total methane emissions. The inset table in the upper left 345 
displays the total percentage of methane emissions contributed from discrete emission rate thresholds with 95% 

confidence intervals.  

 

The distribution for our national-level methane emissions follows an S-shaped curve, noting that the x-axis 

(i.e., facility-level methane emission rates) is presented in the log10 scale. From 0.1 to 1 kg/hr, we observe a plateau 350 

in the distribution curve indicating that increasing emission rates within this range do not significantly increase the 

percentage contribution to total regional emissions (Fig. 3), similar to the findings in Ravikumar et al. (2019) From 1 

to 100 kg/hr, we see a sharper rise in the emission distribution, indicating that increasing emission rates at this range 

lead to a more substantial contribution to total methane emissions, and account for 68% (60 – 75%) of total methane 

emissions (Fig. 3, Table S4). Above an emission rate threshold of 100 kg/hr, we see an exponential decline in the 355 

percentage contributions of total emission with increasing emission rates, with total methane emissions in this range 

amounting to 28% (18 – 37%) of the total oil/gas emissions. Facilities emitting at the 1-10 kg/hr and 100-1,000 kg/hr 
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ranges contribute a similar cumulative percentage at 26% (23 - 29%) and 22% (18 - 26%) respectively. Similar 

percentage contributions are also observed between the 0.1-1 kg/hr and >1,000 kg/hr ranges at 4.5% (4.0 - 5.1%) and 

6.1% (2.6 - 13%) respectively. Overall, we find that the highest contribution to total national CONUS methane 360 

emissions occurs from facilities emitting in the 10-100 kg/hr range at 42% (37 - 46%). In terms of facility counts, 

from the 673,940 total active oil/gas facilities we estimate in the CONUS for 2021, we estimate that essentially all 

(i.e., ~99.9%) of these facilities emit methane below 100 kg/hr.  

Our facility-level model estimates total methane emissions from US upstream/midstream oil/gas emissions 

for 2021 to be 14.3 (12.6 - 16.3) Tg/yr, or 1,634,000 (1,438,000 – 1,857,000) kg/hr (Fig. 4), which corresponds to a 365 

gross gas production normalized loss rate of 2.4%, assuming a uniform 80% methane content in natural gas across 

oil/gas producing regions in the CONUS. This national emission total of 14.3 Tg/yr is more than double the EPA 

Greenhouse Gas Inventory Report for natural gas and petroleum systems in 2021, excluding post-meter and 

distribution methane emissions (Inventory of U.S. Greenhouse Gas Emissions and Sinks, 2024). We compare our 

total national estimates to those made by seven studies that predominantly utilize satellite-based remote-sensing 370 

platforms such as GOSAT and TROPOMI inversions (Lu et al., 2022, 2023; Shen et al., 2022; Maasakkers et al., 

2021; Worden et al., 2022) except for Alvarez et al. (2018) and Omara et al. (2024) who developed unique facility-

based modeling approaches using empirical measurement data collected from multiple oil/gas basins in the CONUS 

(Fig. 4). Our estimate of national methane emissions overlaps with six out of seven other national estimates of 

oil/gas methane emissions for the US, with a combined average of 13.1 (ranging from 11.1 - 15.7) Tg/yr. We do not 375 

estimate methane emissions from gathering/transmission/distribution pipelines, post-meter emissions, abandoned oil 

and gas wells, and refineries due to the scarcity of measurement-based data for these sources. Total methane 

emissions from these sources emit ~2 Tg/year of methane emissions based on other studies (Williams et al., 2021; 

Alvarez et al., 2018; Omara et al., 2024; Weller et al., 2020; Inventory of U.S. Greenhouse Gas Emissions and 

Sinks, 2024). Overall, our total national estimate of CONUS methane emissions for 2021 shows good agreement 380 

with multiple independent and recent measurement-based estimates.  
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Figure 4: Comparison of total CONUS oil/gas emissions for 2021 from this facility-level measurement-based 

inventory compared to empirical estimates from other studies. Bars are colored according to the methodology used 385 
to derive the total national estimates, and the years within the bars represent the corresponding time periods for the 

estimates. Our total estimates for “This work” do not include emissions from other oil/gas methane sources such as 

abandoned oil and gas wells, transmission/gathering/distribution pipelines, post-meter emissions, and refineries. 

Emission estimates from Omara et al. (2024) do not include methane emissions from abandoned oil and gas wells. 

We assume that the remote sensing estimates (i.e., GOSAT and TROPOMI) include all oil/gas methane sources, 390 
including downstream emissions. 

 

3.2 Distribution of emission rates at the basin-level scale 

 

Among the top twelve emitting oil/gas basins in the CONUS, we observe variations among the different 395 

basins in terms of the methane emission distributions, especially at higher emission rate thresholds (Fig. 5). The 

majority of the top twelve emitting oil/gas basins in Fig. 5 show higher percentage contributions from facilities 

emitting <100 kg/hr when compared to our national estimate of 72% (63 – 82%) (Fig. 3). These percentage 

contributions vary from ~80% in the Permian, Appalachian, and Eagle Ford basins, up to ~90% in the oil-dominant 

San Joaquin basin. Only the Anadarko and Denver basins have notably lower contributions to total emissions at the 400 

100 kg/hr threshold at ~65% compared to the national level, which is still a significant majority of total methane 

emissions. Despite these variations, our facility-level model estimates that the majority of total national oil/gas 

emissions are consistently contributed from facilities emitting <100 kg/hr for the top 12 emitting basins.  

Our modeled facility-level emission distributions for the top 12 emitting oil/gas basins all follow an S-

shaped curve (Fig. 5) like the national distribution (Fig. 3), albeit with certain variations. For all basins, the initial 405 
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plateau in the emissions distribution curves ends at around 1 kg/hr before beginning to rise more steeply. For the 

Appalachian and San Joaquin basins, the second plateau is at the 20-50 kg/hr emission rate threshold (Fig. 5). For 

the remaining basins, the rise in the emission distribution curves plateaus gradually, indicating a more consistent 

relationship of emission rate thresholds to their contribution to total emissions. The variability displayed among the 

500 basin-level simulations differs among the oil/gas basins, with less spread in the 500 estimated methane 410 

emissions distributions for the Appalachian, Anadarko, and Permian basins compared to the Uinta, Denver-

Julesburg, and San Joaquin basins (Fig. 5). These variations are likely caused in part by the overall total basin-level 

methane emissions, where an extremely high estimated methane emission rate would have a greater impact on the 

percentage contribution to the total for basins with lower overall emissions (e.g., the apparent outlier distributions 

present in the San Joaquin basin in Fig. 5). We discuss below other plausible causes for basin-to-basin variability in 415 

the estimated methane emission distributions.   

 In terms of total methane emissions, the top two emitting oil/gas basins are the Permian and Appalachian, 

which collectively account for 5.3 (4.1 – 7.2) Tg/year (Fig. S1) or 37% of total upstream and midstream oil/gas 

methane emissions. This exceeds the cumulative contribution from the other seven highest emitting oil/gas basins 

which collectively account for 3.4 (2.5 – 6.1) Tg/yr. Notably, we find that the highest emissions in the CONUS 420 

occur from regions outside of any basin boundary 3.9 (3.3 – 5.1) Tg/year. Our estimates for basin-level total 

emissions also show good agreement with remote-sensing satellite-based observations (Fig. S1), except for the 

Appalachian, Bakken, Greater Green River, and Denver-Julesburg basins where our results are consistently more 

than double those from the remote-sensing studies that used a prior-emission based inversion result (Shen et al., 

2022; Lu et al., 2023). These four basins are located in regions with relatively low TROPOMI observation counts 425 

and densities compared to other regions in the CONUS (Shen et al., 2022), in addition to other factors that could 

influence satellite-based inversions such as the presence of many non-oil/gas sources such as coal, livestock, and 

landfills. Overall, our estimates of total basin-level emissions are consistent with satellite-based observations. 

  

  430 
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Figure 5: A) Results from 500 model simulations showing the cumulative methane emissions distribution curves for 

total upstream/midstream oil/gas methane emissions for the top nine emitting oil/gas basins in the CONUS for 2021. 

The model averages for each basin are shown in solid black lines. Inset dashed lines represent the percentage 

contributions of total emission from sources emitting <100 kg/hr. Emission distribution curves for the remaining 435 
eleven oil/gas basins in the CONUS are shown in Fig. S15, and a map of the spatial boundaries used for the different 

oil/gas basins is shown in Fig. S16.  

 

3.3 Distribution of emission rates by facility category 

 440 

 We find significant variations in the methane emission rate distribution curves among the different facility 

categories (Fig. 6A). Over 50% of total methane emissions from low and non-low production well sites, flares, and 

G&B compressor stations occur from facilities emitting <100 kg/hr (Fig. 6A). In contrast, only 17% (8-24%) of 

emissions from processing plants and 22% (16-27%) of emissions from T&S compressor stations are contributed 

from facilities emitting <100 kg/hr. Similar variability is also observed at other emission rate thresholds, such as 445 

only 1% (0-2%) of total emissions for T&S compressor stations and processing plants originating from facilities 

emitting at rates <10 kg/hr, compared to 50% (43-58%) from low producing well sites and 30% (24-35%) from non-

low producing well sites (Fig. 6A). At higher emission rate thresholds, we find that 33% (20-45%) of total emissions 

from T&S compressors and processing plants are emitted from facilities <200 kg/hr, compared to 84% (68-93%) 
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from non-low producing well sites (>15 boed), 86% (83-88%) from VIIRS flare detections, 78% (70-86%) from 450 

G&B compressor stations, and essentially 100% of emissions from low producing well sites.  

A breakdown of the 673,940 total facilities in our model has 541,970 as low-producing well sites, followed 

by 121,824 non-low-production well sites, 4,181 G&B compressor stations 2,033 T&S compressor stations, 919 

processing plants, and 3,153 VIIRS flare detections. Overall, we estimate that roughly 70% of total CONUS oil/gas 

methane emissions for 2021 come from production well sites, of which 44% are from low-production well sites with 455 

combined oil/gas production <15 boed, and the remaining 26% from non-low production well sites (>15 boed) (Fig. 

6B). 26% of total methane emissions are from midstream facilities, with 11% from T&S compressors, 8% from 

processing plants, 7% from G&B compressor stations, and the remaining 4% from VIIRS flare detections. Based on 

the population counts for each facility category and their corresponding total methane emissions, the average 

methane emission rate per facility category is highest for processing plants at 145 (109 – 277) kg/hr, followed by 92 460 

(72 – 118) kg/hr for T&S compressor stations, 28 (26 - 32) kg/hr for G&B compressor stations, 3.3 (2.8 – 4.9) kg/hr 

for non-low producing well sites, and 1.3 (1.1 – 1.5) kg/hr for low producing well sites.  

 

 

Figure 6: A) Results from an ensemble of 500 estimated methane emission distributions showing the percentage of 465 
total methane emissions among facility categories contributed from facilities emitting at rates below an emission rate 

threshold. The inset table on the bottom right displays the discrete percentage contributions to total methane 

emissions contributed from facilities emitting <100 kg/hr. B) Breakdown of total annual methane emissions 

contributed from all emitting facility categories and those emitting at rates <100 kg/hr.   

*Only single percentiles are used for the y-axis in A) due to the large volume of data (i.e., ~2 million data points) available for the figure. The use 470 
of single percentiles causes instances of duplicated emission rates for ascending percentiles at upper emission rate thresholds for different facility 

categories, leading to the appearance of segmented methane emissions distribution curves for some facility categories.  
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**Note that the emission distributions for flares represent VIIRS flare detections which could include multiple   

 

3.4 Comparisons to aerial remote sensing studies 475 
 

 We perform comparisons of the percentage contributions of methane emissions from facilities emitting 

below discrete emission rate thresholds between seven aerial remote sensing campaigns across four distinct regions 

and our estimated facility-level results (Fig. 7). The aerial remote sensing technologies include data from Bridger 

GML measurements (Kunkel et al., 2023; Xia et al., 2024), MethaneAIR (Omara et al. 2024; Miller et al. 2023), and 480 

the results from Global Airborne Observatory and next-generation Airborne Visible/Infrared Imaging Spectrometer 

campaigns (Cusworth et al., 2022) which are also included in the aerial detections used by Sherwin et al. (2024).  

In a comparison of the percentage contributions to total emissions from low-emitting sources between our 

facility-level model estimates and the aerial remote sensing campaigns presented in Fig. 7, we find that point source 

contributions are comparable across the aerial remote sensing campaigns. Our comparisons to the available flight 485 

results from MethaneAIR, which quantifies both total regional methane emissions and high-emitting point sources 

>200 kg/hr from the same aerial platform (Chulakadabba et al., 2023), show close agreement between our facility-

level estimates and the only available MethaneAIR campaigns in the Uinta and Permian basins for facilities emitting 

<200 kg/hr (Fig. 7A). For the MethaneAIR flight in the Uinta basin, we estimate that 92% (58 - 100%) of total 

oil/gas methane emissions are from sources emitting <200 kg/hr compared to 88% (85 – 92%) from MethaneAIR 490 

(Fig. 7A). For the two available flights in the Permian basin from MethaneAIR, we estimate total contributions from 

<200 kg/hr sources at 82% (63 – 93%) compared to the 72% estimated by MethaneAIR (Fig. 7A).  

For the multiple aerial remote sensing campaigns performed by Cusworth et al. (2022), our estimates 

statistically overlap for discrete emissions rate thresholds of <200 kg/hr and <100 kg/hr (Fig. 7A, Fig. 7B). For the 

Bridger GML remote sensing campaigns (Xia et al., 2024; Kunkel et al., 2023), we find good agreement in the 495 

percentage of total emissions contributed from facilities emitting <200 kg/hr and <100 kg/hr compared to our 

facility-level model estimates (Fig. 7A, Fig. 7B). A comparison of continuous emissions distribution curves between 

our facility-level emission distributions and two Bridger GML aerial remote sensing campaigns (Xia et al., 2024; 

Kunkel et al., 2023) targeting four oil/gas basins is shown in Fig. S14. The Bridger GML aerial sampling platform 

has the lowest LOD among the aerial campaigns we analyze in this work and a similar source resolution (i.e., 30 500 

meters) to our facility-level model (i.e., 50 meters), allowing for a more detailed comparison of continuous emission 

distribution curves due to the higher number of detected methane sources at low emission rates provided by Bridger 

GML surveys. We see close agreement between our facility-level methane emission distribution curves and the 

observed emissions by Bridger GML in the four-basin aggregate provided by Xia et al. (2024) (Fig. S14A) and the 

Permian remote sampling campaign (Fig. S14B) by Kunkel et al. (2023), with the measured emissions from the 505 

Bridger GML surveys overlapping with our facility-level model simulations throughout the continuous distribution 
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of methane emission rates. Overall, our findings show that our facility-level estimates closely agree with the results 

from multiple aerial remote sensing campaigns from different regions and using various measurement methods. 

 

 510 

  

 

Figure 7: Comparisons of the cumulative percentage of oil/gas methane emissions from all oil/gas facilities emitting 

<200 kg/hr (A) and <100 kg/hr (B) between our facility-level empirical emissions estimates and aerial remote 

sensing campaigns. Bars are colored according to the study and grouped according to the target oil/gas basin(s). All 515 
results from the facility-level simulations (i.e., this work) are constrained to the spatial boundaries of the aerial 

campaigns for direct comparisons (note that for a given basin, spatial boundaries might be slightly different). 

Uncertainty bars for the facility-level simulations are the 2.5th and 97.5th percentiles of 500 simulations. Maps of all 

spatial boundaries used for comparisons are provided in Fig. S2. 
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*The surveyed oil/gas basins in Xia et al. (2024) are the Anadarko, Bakken, Eagle Ford, and Permian basins. The exact surveyed boundaries are 520 
not available from Xia et al. (2024), therefore the comparisons between this work are for the entire four oil/gas basins.  

**Results presented by Cusworth et al. (2022) in the Permian oil/gas basin are the average of four Permian aerial remote sensing campaigns. 

 

 

4 Discussion 525 
 

Understanding how facilities with different magnitudes of emissions contribute to total regional emissions 

has direct policy implications for methane quantification and mitigation, such as the selection of 

measurement/screening methods with the appropriate detection sensitivities (Ravikumar et al., 2018). We find that 

roughly three-quarters of total oil/gas methane emissions from the upstream/midstream sectors come from facilities 530 

emitting at rates <100 kg/hr, which is the threshold used to define a “super-emitting” oil/gas source by the EPA 

(EPA’s Final Rule for Oil and Natural Gas Operations Will Sharply Reduce Methane and Other Harmful Pollution., 

2024). While mitigating emissions from sites emitting above this threshold is important, our results also show the 

essentiality of expanding beyond solely on super-emitter mitigation - as the cumulative contribution of lower-

emitting sites accounts for a large majority of emissions across US oil/gas basins. Facility-level, measurement-based 535 

data collected in some other countries present a similar story. From a sample of sites measured via Bridger GML 

remote sensing platform in British Columbia, Canada (Tyner and Johnson, 2021), roughly 60% of the total 

quantified oil/gas site-level emissions originate from sites emitting <32 kg/hr. In Romania, a site-level 

measurement-based inventory (Stavropoulou et al., 2023) find that oil production facilities emitting <100 kg/hr 

contribute 78% of total oil/gas methane emissions in the studied region. In short, the high percentage contribution 540 

from lower-emitting (<100 kg/hr) oil/gas facilities that account for a large majority of total emissions is not unique 

to the US and is likely present in other countries as well. A combination of approaches that characterize entire 

emission distributions across populations of sites (i.e., not just focusing on measuring super-emitters) and 

quantification of regional-level emissions is needed in other countries to quantify the relative contributions of low-

emitting sources that in aggregate can be significant sources of overall oil/gas methane emissions. 545 

While most of the focus in this work centers around quantifying the percentage contributions of oil/gas 

methane sources emitting below one discrete emission rate threshold (i.e., <100 kg/hr, per EPA’s definition of a 

super-emitter) our assessment illustrates the importance of a complete characterization of emissions which gains 

importance as newer methane monitoring technologies have different LODs. For example, the effective LOD at high 

probabilities of detection for available point source imaging satellites of ~200 kg/hr (Jacob et al., 2022) would only 550 

be able to quantify 20% (9-30%) of all oil/gas point sources in the CONUS, if the full oil/gas sector was mapped in 

its entirety, based on our facility-level results.  

Point source-focused remote sensing platforms offer the advantage of rapidly surveying large areas (i.e., 

100’s-1,000’s km2) which facilitates the detection and quantification of the small number of high emitting point 
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sources, which is a finding repeated in multiple studies (Cusworth et al., 2022; Brandt et al., 2016; Duren et al., 555 

2019; Sherwin et al., 2024). In contrast, logistical constraints often limit the sample sizes for ground-based vehicle 

sampling platforms, however, these limitations can be overcome with stratified random, representative sampling and 

statistical analysis approaches like this work. Ground-based measurement platforms provide much lower LODs (i.e., 

<1 kg/hr) when compared to remote sensing platforms, which are necessary to quantify emissions from the large 

number of small methane sources we find that contribute roughly three-quarters of total regional oil/gas emissions in 560 

the CONUS, and will only improve as additional ground-based measurements are gathered. Overall, our main 

findings highlight the importance of methods that can rapidly locate the small number of high-emitting point sources 

we estimate, but our findings emphasize the need to account for the disproportionately large majority percentage of 

total regional oil/gas emissions that are emitted from smaller diffuse methane sources.  

 When extrapolating our facility-level model results to the basin-level we see variations among the emission 565 

distribution curves for different oil/gas basins, but still find that most methane emissions come from facilities 

emitting <100 kg/hr. The variations in the emission distribution curves for different basins are driven by many 

factors, such as the: production characteristics, number and density of facilities, different types and relative counts of 

facility categories, the availability of empirical measurement data used to model emissions, and the total oil/gas 

methane emissions (i.e., the denominator). For example, the Appalachian basin is dominated by a high number of 570 

older low-production well sites (Deighton et al., 2020; Riddick et al., 2019; Enverus, 2024) with fewer midstream 

facilities such as processing plants and G&B compressors, which contrasts with the Bakken basin where we find a 

high number of midstream facilities, high-producing well sites, and VIIRS flare detections (Elvidge et al., 2016; 

Enverus, 2024). When comparing the emissions distribution curves for the Bakken and Appalachian basins (Fig. 5), 

we observe higher contributions from lower-emitting facilities for the Appalachian compared to the Bakken. An 575 

example of differences in basin-level production is shown in Fig. S9 and Fig. S10, where we see variable profiles 

among the different oil and gas-producing basins in terms of well site production characteristics, which are the main 

source of total methane emissions in this work (Fig. 6). We also observe the influence of total basin-level emissions 

on the variability among our emission distribution curves, where large emitting sources in the San Joaquin basin can 

lead to high variability among the estimated emission distribution curves compared to the Permian basin which has 580 

roughly ten times the total emissions compared to the San Joaquin (Fig. 5). We note that a direct comparison of our 

model results with aerial remote sensing methods may be limited, in part, by methodological differences in methane 

quantification approaches (and underlying uncertainties). The remote sensing observations assessed here as 

snapshots may capture facility-level emission distributions that are not well represented in annually averaged 

methane emissions distributions, as we estimate here. Nevertheless, we find broad agreement with these independent 585 

aerial remote sensing estimates at the basin scale and across smaller spatial domains, as discussed. Ultimately, as 

many characteristics will influence methane emissions distribution curves among different oil/gas producing regions 

in the CONUS, mitigation strategies will need to be structured accordingly to the region they are targeting. 

 Our results find that over half of cumulative methane emissions from three different facility categories 

come from facilities emitting <100 kg/hr, including methane emissions from VIIRS flare detections. We show how 590 
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the large contributions from small methane sources to total regional emissions are not unique to any one facility 

category, but it is important to contextualize our emission distribution curves with the corresponding total regional 

emissions. Our facility-level estimates find that the main source of oil/gas methane emissions in the CONUS are 

oil/gas production well sites, of which the low production category is responsible for 44% (39 – 49%) of the total 

estimated oil/gas methane emissions in the CONUS in 2021. Low-producing well sites, also known as “marginal 595 

wells”, have been shown in previous work to be a significant source of methane emissions, especially relative to 

their contribution to overall oil/gas production (Omara et al., 2022; Deighton et al., 2020). Omara et al. (2022) found 

that marginal wells contributed anywhere from 37%-75% of total methane emissions from production well sites, 

which is similar to our estimates (i.e., 64%). Despite low production well sites having a lower mean emission rate 

compared to other facility categories, the large facility counts result in significant aggregate total emissions of 600 

methane. This implies that detection and mitigation strategies to reduce methane emissions from these and other 

low-emitting oil and gas infrastructure (e.g., abandoned oil/gas wells) would require alternative mitigation and 

detection approaches compared to those for the small number of super-emitting emission sources. For detection, 

measurement methods that can measure emission rates between 0.1-100 kg/hr are required, since this range makes 

up 72% of total methane emissions (Fig. 3) as modeled herein. In terms of methane mitigation policy, financial 605 

incentives, like the USD 4.7 billion from the Biden Bipartisan Infrastructure Law for abandoned wells, could be 

used to prioritize the repair of old and leak-prone production well sites, as these low-producing well sites only 

account for a small fraction (i.e., 5.6% in 2019) of total oil/gas production (Omara et al., 2022). 

 Although the empirical data used in our analysis includes a smaller sample of super-emitting facilities 

relative to those captured by remote sensing platforms (Sherwin et al., 2024; Duren et al., 2019), our use of 610 

production-normalized loss rates and lognormal distributions to estimate facility-level methane emission rates 

anticipates and accounts for the possibility of finding low-probability, high-magnitude emissions that occur at rates 

beyond those that appear in our dataset of empirical observations. Our highest empirical emission rate is 1,360 kg/hr 

for a T&S compressor station, whereas our maximum estimated facility-level emission rate across all 500 facility-

level emission distribution curves averages 7,500 kg/hr (3,000 - 21,000 kg/hr).  615 

We see good agreement between our facility-level model results and a majority of aerial remote sensing studies, 

which are expected to capture a wide range of high-emitting facilities in a survey region. For example, when 

comparing our model results to Kunkel et al. (2023) and Xia et al. (2024) we find that our estimated methane 

emissions closely match the distribution of methane emissions measured in Bridger GML surveys (Fig. S14). In the 

same analysis, we estimate nearly identical total emissions from facilities emitting >100 kg/hr when compared to the 620 

results of Kunkel et al. (2023). We also find good agreement to satellite remote sensing estimates of emissions, such 

as our basin-level (Fig. S1) and national-level comparison to satellite inversions (Fig. 3), and other aerial remote 

sensing study regions (Table S2). Our comparisons of the contributions of low-emitting sources below discrete 

emission rate thresholds also agree closely with recent MethaneAIR, Kairos Aerospace, GAO, and AVIRIS-NG 

aerial surveys, whose results also highlight the importance of small methane sources to overall oil/gas methane 625 

emissions. This broad agreement across multiple studies differs from those of Sherwin et al. (2024) who suggest 
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majority of total emissions from a small fraction of high-emitting sites. Notably, many of the same aerial 

measurements that are used in Sherwin et al. (2024) are used for comparisons in this work (i.e., Cusworth et al. 

(2022)) (Fig. 7) that appear to indicate that the estimation of the overall methane emissions from small-emitting 

sources in Sherwin et al. (2024), in particular those below aerial detection limits used in their study, may be an 630 

underestimate. 

The percentage contribution of facilities emitting below an emission rate threshold is a ratio where the 

numerator is the sum of the total point source emissions (i.e., emissions above an emission rate threshold) and the 

denominator is the total regional oil/gas emissions. Our comparisons of the percentage contributions of point sources 

to regional emissions for various aerial remote sensing studies and our facility-level estimates agree. It is worth 635 

noting that our calculations of the point source percentage contributions from the aerial remote sensing studies 

assume that the regional estimate (i.e., the denominator) is entirely from oil/gas sources, which may be reasonable 

for the Permian basin but is likely not the case for the San Joaquin basin which contains multiple significant non-

oil/gas methane sources (Duren et al., 2019). MethaneAIR provides a novel remote sensing approach where high-

emitting point sources, distributed area sources and total regional emissions are quantified using the same aerial 640 

platform, providing the ability to directly measure high-emitting point source and diffuse area contributions to total 

regional estimates. In the work by Xia et al. (2024) they combine measurements from Bridger GML across four 

oil/gas basins and use component-level simulations to account for facilities emitting below the 3 kg/hr LOD of 

Bridger GML. Other approaches also exist, such as Cusworth et al. (2022) who use TROPOMI inversions as the 

denominator, with their numerator obtained from the point source emissions quantified from their aerial detection 645 

platforms above a certain threshold. Similarly, Sherwin et al. (2024) present point source emission rates from several 

aerial campaigns as their numerator, with the denominator calculated from a combination of a component-level 

bottom-up model for production well sites (Rutherford et al., 2021) and emission estimates for midstream facilities 

emitting below aerial detection limits using emission factors from the 2023 GHGI (Inventory of U.S. Greenhouse 

Gas Emissions and Sinks, 2024). These remote sensing studies largely rely on aerial detections of generally higher-650 

emitting point sources as part of their numerator, which has variable LODs depending on the target region, 

topography, measurement technology, presence of co-located non-oil/gas methane sources (i.e., source attribution), 

weather conditions, infrastructure density, and infrastructure type(s). These variables pose additional challenges 

when quantifying the contributions from facilities emitting above/below specific emission rate thresholds, which are 

critical information to inform mitigation policy. Assessing performance, tracking mitigation, and accurate reporting 655 

requires building a comprehensive picture of emissions by characterizing all emitters big and small, and reconciling 

with total basin/sub-basin level emissions. Ultimately, the key seems to be merging the best data from both 

approaches to build a hybrid inventory, ideally using a multi-tiered system with multiple methods that span a range 

of LODs that allow for gathering empirical measurements from facilities emitting at all parts of the methane 

emission distribution curve. Our study is a step in that direction considering measurement-based data while also 660 

presenting a robust comparison with available independent remote sensing measurements. At the same time, large-

area aggregate emissions data obtained from wide-area remote sensing mapping or mass balance surveys can better 

constrain total regional emissions (e.g. Cusworth et al. 2022; Omara et al. 2024) towards a more empirically robust 
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denominator in characterizing the relative contributions of small emission and high emission sources to total 

emissions.  665 

We show that our facility-level emission models produce national- and basin-level methane emissions estimates 

that are in good agreement with other independent measurement-based studies. However, we note the following 

limitations/biases that could be improved with future data collection efforts. The empirical measurements that we 

use in our model are representative of the year and time they were measured (i.e., 2010-2020), meaning that they 

would not reflect any updates in regulatory practices or changes in facility operational and emission management 670 

practices. Furthermore, there are several oil/gas methane emission sources that we do not account for in our 

estimates, which include: gathering/transmission/distribution pipelines, oil refining and transportation, abandoned 

oil/gas wells, offshore oil/gas infrastructure, post-meter sources, and oil/gas distribution infrastructure in urban 

areas. For some sources omitted in this work such as abandoned oil/gas wells, their inclusion would likely lead to a 

higher contribution from low-emitting facilities, since the highest recorded emission rate from an abandoned oil/gas 675 

well is 76 kg/hr (Riddick et al., 2024). For others such as oil refineries, their inclusion would likely lead to a lower 

contribution from small methane sources given their low facility counts and high per-site emissions (Duren et al., 

2019). Despite their omissions, total methane emissions from these sources are currently estimated to account for 5-

10% (Alvarez et al., 2018; Williams et al., 2021; Inventory of U.S. Greenhouse Gas Emissions and Sinks, 2024; 

Riddick et al., 2024) of total oil/gas sectoral emissions. Our estimates also utilize empirically measured emission 680 

rates from ground-based sampling platforms which are limited in number, especially in the case of processing plants 

(n=20) and T&S compressor stations (n=50) (Table S1). Finally, we include a small number (i.e., 5% of total 

empirical data used in the model) of measurements gathered using ground-based component/source-level sampling 

methods from two studies (Deighton et al., 2020; Riddick et al., 2019). All measurements from these two studies 

targeted the lowest production cohort of production well sites and exhibited statistically lower emission rates than 685 

those gathered using facility-level ground-based methods (Figure S4) for the same well site production cohort, 

meaning that any bias introduced by the inclusion of these measurements would lead towards the underestimation of 

total emissions and/or the percentage contributions from low-emitting sources. Despite these limitations, we have 

shown that our results are broadly in agreement with satellite- and aerial-based remote sensing studies at 

national/basin/local scales, and other facility-level estimates. 690 

Going forward, several approaches can be used to better understand the percentage contributions from facilities 

emitting at different leak rate thresholds, and ultimately improve our understanding of oil/gas methane emissions in 

the CONUS and around the world. A combination of multiple satellite and aerial remote sensing approaches and 

synthesis of their data by bringing in point source detections at multiple thresholds at the same time characterizing 

total regional emissions as demonstrated using a compilation of multi-scale measurements seems a viable pathway 695 

towards building a more complete picture of the overall methane emissions. Combining aerial and satellite remote 

sensing measurements with ground-based site/facility-level estimates presents itself as an effective next step, as 

implemented/suggested by prior studies (Alvarez et al., 2018; Allen, 2014).  Aerial or satellite remote sensing 

platforms focused on point source detection offer the ability to rapidly locate the small number of the highest 
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emitting facilities that contribute a disproportionate fraction of emissions, offering valuable data on specific facility 700 

locations that allow for rapid mitigation. However, more direct observational approaches are needed to acquire total 

emissions data which according to this study is dominated by small-emitting sources that are undetected by high-

emitting point source detection systems. Facility-level population-based approaches can account for the lower-

emitting facilities that contribute the most total oil/gas methane emissions, which is needed for accurate emission 

reporting and understanding the contributions of total emissions above/below emission rate thresholds. The ground-705 

based estimates can be further constrained by large-area aggregated emission quantification provided by regional 

remote sensing or mass balance mapping approaches (Shen et al., 2022; Omara et al., 2024; Jacob et al., 2022) 

towards producing a more robust overall emission quantification.  

5 Conclusions 

 In conclusion, our work highlights several key aspects of oil/gas methane emission rate distribution curves 710 

in the CONUS for 2021, which include: 

1. A large majority (72%) of total national continental oil/gas methane emissions in the US originate from 

low-emitting facilities (<100 kg/hr). 

2. Emission rate distributions vary among different oil/gas basins, but among the top nine producing basins 

we consistently find that most methane emissions (63%-90%) originate from oil/gas facilities emitting at 715 

rates <100 kg/hr. 

3. We estimate that production well sites emit 70% of total oil/gas methane emissions in the CONUS, with 

44% contributed from low-producing well sites (<15 boed) which is nearly half of total national US oil/gas 

methane emissions. 

4. Our results are in broad agreement with those from independent aerial/satellite remote sensing estimates, 720 

both in comparing contributions from discrete emission rate thresholds and continuous emissions 

distribution curves, which emphasize the importance of small diffuse methane sources to total oil/gas 

methane emissions. 

Our results highlight, and quantify, the significant contributions of the large number of low-emitting oil/gas 

facilities to total regional/basin/local oil/gas methane emissions in the CONUS for 2021. In addition to the CONUS, 725 

the small oil/gas methane sources are likely a significant component of total regional emissions in other countries as 

well as recent data suggest from Romania and Canada (Stavropoulou et al., 2023; Tyner and Johnson, 2021) and 

would need to be further investigated to build a comprehensive assessment of small-emitting methane emissions and 

their relative contributions to total oil/gas methane emissions globally. This work emphasizes the need for multi-

scale approaches to quantify total regional oil/gas methane emissions; and at the same time characterize and account 730 

for the large contribution from small emission sources dispersed across a wide area, in addition to incorporating data 

on high-emitting point sources towards producing overall robust methane emission quantification. 
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