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Abstract. Reducing methane emissions from the oil and gas (oil/gas) sector has been identified as a critically 14 

important global strategy for reducing near-term climate warming. Recent measurements, especially by satellite and 15 

aerial remote sensing, underscore the importance of targeting the small number of facilities emitting methane at high 16 

rates (i.e., “super-emitters”) for measurement and mitigation. However, the contributions from individual oil/gas 17 

facilities emitting at low emission rates that are often undetected are poorly understood, especially in the context of 18 

total national- and regional-level estimates. In this work, we compile empirical measurements gathered using 19 

methods with low limits of detection to develop facility-level estimates of total methane emissions from the 20 

continental United States (CONUS) midstream and upstream oil/gas sector for 2021. We find that 70% (95% 21 

confidence intervals: 61-81%) of the total 14.6 (12.7-16.8) Tg/yr oil/gas methane emissions in the CONUS for the 22 

year 2021 originate from facilities emitting <100 kg/hr, and 30% (26-34%) and ~80% (68-90%) from facilities 23 

emitting <10 kg/hr and <200 kg/hr, respectively. While there is variability among the emission distribution curves 24 

for different oil/gas production basins, facilities with low emissions are consistently found to account for the 25 

majority of total basin emissions (i.e., range of 60% - 86% of total basin emissions from facilities emitting <100 26 

kg/hr). We estimate that production well sites were responsible for 70% of regional oil/gas methane emissions, from 27 

which we find the well sites that accounted for only 10% of national oil and gas production in 2021, 28 

disproportionately accounted for 67-90% of the total well site emissions. Our results are also in broad agreement 29 

with data obtained from several independent aerial remote sensing campaigns (e.g., MethaneAIR, Bridger Gas 30 

Mapping LiDAR, AVIRIS-NG, and Global Airborne Observatory) across 5-8 major oil/gas basins. Our findings 31 

highlight the importance of accounting for the significant contribution of small emission sources to total oil/gas 32 

methane emissions. While reducing emissions from high-emitting facilities is important, it is not sufficient for the 33 

overall mitigation of methane emissions from the oil and gas sector which according to this study is dominated by 34 

small emission sources across the US. Tracking changes in emissions over time and designing effective mitigation 35 

policies should consider the large contribution of small methane sources to total emissions.   36 
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1 Introduction 39 
 40 

Methane is a short-lived but powerful greenhouse gas with a global warming potential more than 80 times 41 

stronger than carbon dioxide (CO2) over 20 years (AR6 Synthesis Report: Climate Change 2023, 2024). Therefore, 42 

the reduction of methane emissions has become a key goal to achieve rapid climate mitigation in the short term  43 

(Ocko et al., 2021). In North America, one of the largest sources of methane emissions originates from the oil and 44 

gas (oil/gas) sector, with most emissions originating from the production (i.e., upstream) and transportation/storage 45 

(i.e., midstream) sectors (Alvarez et al., 2018). Multiple studies, especially over the past decade, have focused on the 46 

quantification of methane sources from the oil/gas sector, with particular emphasis on the continental United States 47 

(CONUS) (Alvarez et al., 2018; de Gouw et al., 2020; Omara et al., 2018; Lu et al., 2022; Zhang et al., 2020; Shen 48 

et al., 2022; Cusworth et al., 2022; Nesser et al., 2023; Brandt et al., 2016; Duren et al., 2019; Maasakkers et al., 49 

2021; Lu et al., 2023; Worden et al., 2022). Several studies have recognized the importance of a small percentage of 50 

high-emitting sites (i.e. “super-emitters”) and reported them as accounting for a large fraction of total methane 51 

emissions (Brandt et al., 2016; Cusworth et al., 2022; Duren et al., 2019; Sherwin et al., 2024). The emission rate 52 

thresholds that characterize these super-emitting facilities are critical information for methane measurement 53 

platforms, especially remote sensing technologies focused on detecting high-emitting point sources. Aerial and 54 

satellite remote sensing technologies have enabled more frequent monitoring of emissions from oil and gas sites and 55 

rapid mapping of large areas, although they face limitations in detection sensitivity. Despite the improved ability to 56 

locate and quantify emissions from high-emitting sites, there has been considerable lack of understanding about the 57 

characteristics of low methane emitting facilities, especially those emitting at rates below the limits of detection 58 

(LOD) of most point-source detection remote sensing platforms, and their contributions to total oil/gas methane 59 

emissions. 60 

While some studies offer important yet limited insights into the contributions of different lower-emitting 61 

infrastructure from the CONUS oil/gas sector, there is a lack of understanding about their overall contribution to the 62 

total sectoral regional and national scale emissions. A recent study by Xia et al. (2024) combined aerial remote 63 

sensing data from Bridger Gas Mapping LiDAR (Bridger GML) in four oil/gas basins supplemented with 64 

component-level modeling for facilities emitting below the Bridger GML LOD and found significantly more 65 

emission sources in the 1 – 10 kg/hr range when compared to the emission distribution used by the EPA (Xia et al., 66 

2024).  In a study focused on production well sites in the CONUS, the main source of methane emissions from the 67 

oil/gas sector (Alvarez et al., 2018; Omara et al., 2018; Rutherford et al., 2021), Omara et al. (2018) found that 90% 68 

of total methane emissions from producing well sites came from those emitting at rates <100 kg/hr. A follow-up 69 

study by Omara et al. (2022) highlights that the total methane emissions from low-producing well sites producing 70 

less than 15 boe/day (i.e., 1 Mcf = 1,000 cubic feet of natural gas = 19.2 kg of methane at 15.6 oC and 1 atmosphere; 71 

1 boe = 1 barrel of oil equivalent = 6 Mcf; assumed methane content in natural gas of 80%), which comprise 80% of 72 
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all producing well sites in the CONUS, were responsible for nearly half of all methane emissions from the oil/gas 73 

production sector. Kunkel et al. (2023) observed that the use of the Bridger GML remote sensing platform with an 74 

LOD of 3 kg/hr, combined with prior Carbon Mapper detections in a section of the Permian basin showed a 75 

significant contribution from sources below the listed LOD of Carbon Mapper of 10 kg/hr. Cusworth et al. (2022) 76 

found that 35% of total methane emissions (including non-oil/gas sources) from several major oil/gas producing 77 

basins (other than the Appalachian basin) in the CONUS come from facilities emitting >10 kg/hr, indicating that 78 

65% of emissions come from facilities emitting <10 kg/hr. Although these studies using independent measurement 79 

platforms provide new emerging insights about the importance of low methane emitting oil/gas facilities, there 80 

generally remains a lack of quantitative assessment of the relative fractions of emissions originating from different 81 

emission rate thresholds aggregated over individual oil/gas basins as well as at a national scale. 82 

There are a variety of different methane quantification methods that differ in terms of their spatial resolution of 83 

sources, logistical constraints, costs of implementation, and their LODs. Measurement method sensitivities and 84 

LODs have important policy implications. For example, the Environmental Protection Agency (EPA) recently 85 

finalized regulations that define a “super-emitter event” as an emission rate threshold of 100 kg/hr or greater 86 

(Standards of Performance for New, Reconstructed, and Modified Sources and Emissions Guidelines for Existing 87 

Sources: Oil and Natural Gas Sector Climate Review, 2024), albeit without clear information on what percentage of 88 

total regional emissions are captured within this definition. Satellite and aerial remote sensing methods have point 89 

source LODs that range anywhere from 1-3 kg/hr for Bridger’s airborne GML (Johnson et al., 2021; Kunkel et al., 90 

2023; Thorpe et al., 2024; Xia et al., 2024) to ~200 kg/hr for GHGSat (Sherwin et al., 2023). In contrast, ground-91 

based measurement methods such as OTM-33a and tracer release have LODs <1 kg/hr (Fox et al., 2019). A study by 92 

Ravikumar et al. (2018) using the Fugitive Emissions Abatement Simulation Toolkit (FEAST) suggests that a 93 

method with a LOD of 0.1-1 kg/hr would sufficiently capture all emissions from the oil/gas sector, whereas the 94 

ability to quantify emissions below this threshold would not lead to any significant increases in mitigation. 95 

Ultimately, there is a need for clarification in the total percentage contribution of emissions originating from a given 96 

emission rate threshold, which requires characterizing entire emissions distributions, not only the high emitters. 97 

In this work, we create and analyze measurement-based methane emission rate distributions of US upstream and 98 

midstream oil/gas facilities to determine the percentage contributions of different emission rate thresholds to total 99 

methane emissions.  First, we use empirical measurements gathered from ground-based sampling platforms to 100 

develop a bottom-up facility-based model to estimate methane emissions for upstream and midstream facilities in 101 

the continental US (CONUS) for 2021. Next, we aggregate our facility-level, population-based data to determine the 102 

national- and basin-level contributions of methane emissions originating from facilities emitting at different 103 

emission rate thresholds, in addition to comparisons to aerial-remote sensing platforms. Finally, we break down the 104 

emission distribution curves by facility category to analyze how the percentage contributions of total emissions vary 105 

across facility types.  106 

 107 
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2 Materials and methods  108 
 109 

2.1 Empirical measurements  110 
 111 

We compile 1,901 facility-level methane emission rate measurements from 16 studies (Brantley et al., 2014; 112 

Caulton et al., 2019; Deighton et al., 2020; Goetz et al., 2015; Lan et al., 2015; Mitchell et al., 2015; Omara et al., 113 

2016, 2018; Rella et al., 2015; Riddick et al., 2019; Robertson et al., 2017, 2020; Subramanian et al., 2015; 114 

Yacovitch et al., 2015; Zhou et al., 2021; Zimmerle et al., 2020) that use ground-based site/facility level and 115 

source/component level measurement methods with low LOD’s of ~0.1 kg/hr. Most (i.e., 85%) of empirical 116 

measurements we use in this work were gathered using ground-based mobile laboratories that quantified methane 117 

emissions at the site/facility level using either tracer-based releases, the EPA Other Test Method (OTM-33a), or 118 

Gaussian plume transport modeling (Fox et al., 2019) (Table S2). The remaining 15% of empirical measurements we 119 

use (Deighton et al., 2020; Riddick et al., 2019; Zimmerle et al., 2020) are ground-based methods that aggregated 120 

source/component-level HiFlow sampling or static/dynamic chamber measurements, which could mean that other 121 

on-site emission sources were not quantified during measurement and overall emission rate estimates are 122 

conservative. Only one study was excluded from our analysis (ERG, 2011) due to a combination of age and a focus 123 

on component-level measurements. 124 

The compiled empirical measurements target a variety of production well sites and/or midstream facilities 125 

across at least nine oil/gas-producing basins in the CONUS (Table S3). For all facility categories (i.e., production 126 

well sites, gathering and boosting compressor stations, transmission and storage compressor stations, and processing 127 

plants), we prioritize datasets of randomly sampled sites that include measurements below the method’s LOD or 128 

reported as zero emissions, except for measurements from two studies (Brantley et al., 2014; Lan et al., 2015) which 129 

we discuss later in Section 2.3. Additionally, for production well site measurements, we focus only on data that 130 

provide facility-level gas production data for the date/month of measurement. Our compiled dataset of 131 

measurements includes both routine intentional (e.g., venting from pneumatic devices) and non-intentional (e.g., 132 

malfunctioning equipment and/or leaks from valves, connectors, flanges, etc) emissions, and while we remove any 133 

measurements attributed to high emitting intermittent events such as flowbacks and liquids unloadings if that 134 

information is present, we cannot fully discount that emissions from these high-emitting intermittent sources are 135 

included in our compiled dataset. Furthermore, we remove any empirical measurement data associated with flaring 136 

emissions, which are treated separately as discussed below, if that information is provided in the empirical data. 137 

We categorize the empirical measurements by facility category as production well sites, gathering and boosting 138 

compressor stations (G&B compressors), transmission and storage compressor stations (T&S compressors), or 139 

processing plants. We group the empirical measurements from production well sites into six production bins based 140 

on gross average daily gas production as reported in individual studies. We use gross daily average gas production 141 

data instead of oil and gas production data for two reasons: 1) the limited availability of facility-level oil production 142 

data provided from empirical measurement studies; and 2) the established relationship between gas production and 143 
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emission rates observed in previous work (Omara et al., 2018, 2022, 2024). The gas production ranges of the 144 

production bins (Fig. 1) are chosen to evenly distribute empirical measurements above the method LOD to all six 145 

production bins. This categorization creates nine distinct facility categories: G&B compressors, T&S compressors, 146 

processing plants, and six groups of production well sites. We further classify the nine distinct facility categories 147 

into five primary facility categories: low-production well sites which produce combined oil and gas <15 boe/day  148 

(i.e., 0.13 kt of methane production per year), non-low-producing well sites which produce ≥15 boe/day, processing 149 

plants, G&B compressors, and T&S compressors. In addition to these facility categorizations, we also include 150 

Visible Infrared Imaging Radiometer Suite (VIIRS) flare detections and flared gas volume estimates in our analysis, 151 

which are treated as an independent methane source since flares can be located on multiple facility categories across 152 

the upstream and midstream oil/gas sectors.      153 

 154 

Figure 1: Facility-level empirical measurement data distributed by different distinct facility categories for production well sites 155 
(left) and midstream facilities (right). Individual measurements are shown for each box plot and colored according to their 156 
emission rate status for that facility category, where blue points are considered non-detectable emissions below an emission rate 157 
threshold of ≤0.1 kg/hr/facility which is the method LOD we use, black points are measurements above our method LOD but 158 
below the top 5% emitter category, and red points are the top 5% of empirical emission rates or loss rates for that facility 159 
category. The number of empirical measurements available for each facility category is denoted at the top of each boxplot. The 160 
estimated mean frequency of finding a facility emitting below the method LOD is shown in inset red text at the bottom of each 161 
boxplot  We show absolute emission rates (kg/hr) rather than normalized loss rates (%) for the lowest cohort of production well 162 
sites due to the reasoning presented in Section 2.3. Unit conversions: 1 Mcf = 1,000 cubic feet of natural gas = 19.2 kg of 163 
methane at 15.6 oC and 1 atmosphere; 1 boe = 1 barrel of oil equivalent = 6 Mcf; assumed methane content in natural gas of 80%. 164 

 165 
2.2 Activity data  166 
 167 
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We use activity data (i.e., number of facilities and spatial locations) for actively producing wells in 2021 168 

provided by Enverus for the CONUS. We calculate both the annual averaged daily gross gas production, and oil and 169 

gas production for each producing well using the number of producing days and total annual oil and gas production 170 

data provided by Enverus. We convert production wells to production well sites by spatially aggregating individual 171 

wells within 25-meter (vertical wells) or 50-meter (horizontal wells) distances from each other and separately 172 

merging their combined oil and gas production and gas production, and converting these production values to a mass 173 

equivalent production rate in kg/hr of methane (i.e., 1 Mcf = 1,000 cubic feet of natural gas = 19.2 kg of methane at 174 

15.6 oC and 1 atmosphere; 1 boe = 1 barrel of oil equivalent = 6 Mcf; assumed methane content in natural gas of 175 

80%), similar to previous approaches (Omara et al., 2018).  176 

We acquire activity data for operational transmission and storage (T&S) and gathering and boosting (G&B) 177 

compressor stations and processing plants from Enverus for 2021 for the CONUS, which was further supplemented 178 

by additional data from the Oil and Gas Infrastructure Mapping (OGIM) database published in Omara et al.  (2023). 179 

We filter data for these midstream facilities to include only active facilities in the year 2021. For VIIRS flare 180 

detections, we use the 2021 natural gas flared volume estimates based on natural gas flaring detections provided by 181 

the VIIRS instruments installed aboard satellite platforms which have a 750x750 meter source resolution (NOAA-20 182 

and Suomi National Polar-orbiting Partnership) (Elvidge et al., 2015). In terms of potential double-counting between 183 

the VIIRS flare detections and the empirical measurements we use in this work, the majority of VIIRS detections are 184 

in the Permian, Bakken, and Eagle Ford oil/gas basins (i.e., 86% of total VIIRS detections) which corresponds to a 185 

small number of our empirical measurement data (Table S3) (Plant et al., 2022). However, the limited availability of 186 

spatial coordinates for our empirical measurements restricts our ability to perform a direct comparison to exclude 187 

overlapping/proximal VIIRS detections and our facility-level empirical measurements. Therefore, we do 188 

acknowledge that there is a possibility of double counting between our empirical measurement data and the VIIRS 189 

flare detections, but we expect the degree of overlap to be low.  190 

2.3 Facility-level methane emission inventory  191 

We calculate annual methane emissions from all facility categories (i.e., six production bins of production well 192 

sites, T&S compressor stations, G&B compressor stations, processing plants, and VIIRS flare detections) using a 193 

multi-step probabilistic modeling approach adapted from multiple studies (Omara et al., 2018, 2022; Plant et al., 194 

2022) (Fig. 2). Briefly, for each individual facility and VIIRS flare detection in the CONUS for 2021, we estimate an 195 

annually averaged methane emission rate using empirical measurement data, and consequently the cumulative 196 

distribution of methane emission rates from the aggregation of these individual emission rates. Each emission rate 197 

estimate is indexed according to the corresponding replicate (n=500), and we use these repetitions to determine 198 

uncertainty for the cumulative methane emission distribution curves. The detailed steps of this process for all facility 199 

categories and VIIRS flare detections are described below. 200 

For the highest five gas production bins of producing well sites ranging from 29 to >3,908 Mcf/day (or 0.2 to 201 

>27 kt of methane production per year, Figure 1), we use gross gas production normalized loss rates to model the 202 
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distributions used to calculate methane emission rates from Eq. (1), where the: Loss rate is the fraction of emitted 203 

gas relative to gas production, the emission rate is rate of methane emitted from a facility in kilograms per hour, 204 

𝜎CH4 is the methane content of the emitted gas which we assume to be 80%, and the gas production is the mass 205 

equivalent of natural gas produced in kilograms per hour at 1 atmosphere and 15.6 oC (1 Mcf = 1,000 cubic feet of 206 

natural gas = 19.2 kg of methane at 15.6 oC and 1 atmosphere; 1 boe = 1 barrel of oil equivalent = 6 Mcf). For the 207 

lowest well site gas production bin of 0 to 29 Mcf/day (i.e, 0 to 0.2 kt of methane production per year) and 208 

midstream facilities, we use the empirical absolute methane emission rate data as is. This approach is partly based 209 

on the methods used by Omara et al. (2022) for the low production well site category, which exploits a weak 210 

relationship between gross gas production data (which is most accessible in empirical measurement studies) and 211 

absolute emission rates to better extrapolate emissions to the entire population of production well sites in the 212 

CONUS. 213 

𝐿𝑜𝑠𝑠 𝑟𝑎𝑡𝑒 =
𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 [

𝑘𝑔

ℎ𝑟
]

𝜎𝐶𝐻4  × 𝐺𝑎𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 [
𝑘𝑔

ℎ𝑟
]
    (1) 214 

For our estimation of facility-level emission rates, we break down the modeling process into two separate steps: 215 

the first determines whether a randomly selected facility is emitting methane above our method LOD of ≤0.1 216 

kg/hr/facility, and the second determines the associated methane emission rate for that individual facility. To test the 217 

sensitivity of our method to the selection of the method LOD, we also perform an additional sensitivity analysis for 218 

other method LODs (Fig. S8). The processes outlined below are all specific to each of our nine facility categories. 219 

Brantley et al. (2014) and Lan et al. (2015) are excluded from this first step since they do not include measurements 220 

below the method LOD but include valuable data on well site emission rates with associated well site production 221 

data. To determine whether a facility is emitting methane above the method LOD threshold in our estimates, we first 222 

use bootstrapping with replacement (n=1,000) of our empirical measurement data to simulate the frequency of 223 

finding an individual facility emitting methane above the method LOD (i.e., ≤0.1 kg/hr/facility), which we call an 224 

“emitting facility” or “emitter” herein (Fig. 2). The results of the bootstrapping procedure represent a normal 225 

probability distribution from which we estimate the frequency of finding an emitting facility (i.e., above the method 226 

LOD) with associated uncertainty bounds. Next, we remove the empirical measurements below the LOD and use 227 

bootstrapping with replacement (n=1,000) on the above LOD empirical measurements to determine the probability 228 

of an emitting facility being in the top 5% (i.e., 95th percentile or above of empirical measurement data) or bottom 229 

95% (i.e., 95th percentile or below the empirical measurement data) of emitters, except for processing plants and 230 

T&S compressors which had too few measurements (n=20 and n=50 respectively) to distinguish between the top 5% 231 

and bottom 95% of emission or loss rates. Similar to the process of determining the frequency of finding an emitting 232 

facility, we use the results of the bootstrapping to develop a normal probability distribution that classifies an 233 

emitting facility as either a top 5% or bottom 95% emitter. This pseudo-random selection of a top 5% emitter within 234 

each facility category accounts for the functional definition of abnormally large emissions (i.e., super-emitters) that 235 

can be observed in all facility categories (including well sites in different production bins) (Zavala-Araiza et al. 236 

2015, Brandt et al. 2016). We fit the results of the bootstrapping to two normal distributions: one for the top 5% of 237 
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emitters and one for the bottom 95% of emitters. We use the associated parameters of each normal distribution to 238 

randomly determine whether a facility is emitting in the top 5% or bottom 95% of emitters. These steps are repeated 239 

for each facility for each facility category in the CONUS. 240 

At the end of the first step of this facility-level modeling process, all facilities in the CONUS are classified as 241 

either a: bottom 95% emitter, top 5% emitter, or below the method LOD. Loss rates are used to calculate emission 242 

rates for the top five highest production bins of well sites, whereas we directly estimate methane emission rates for 243 

the well sites in the lower production cohort (Fig. 1), and for midstream facilities excluding VIIRS flare detections.  244 

For facilities classified as the top 5% and bottom 95% of emitters, we estimate their methane emissions by first 245 

fitting a lognormal distribution to the empirical measurement data, including measurements from Brantley et al. 246 

(2014) and Lan et al. (2015), of either the gas production normalized loss rates or methane emission rates (Eq. 1), 247 

depending on the facility category. Next, we use the parameters of the modeled distributions to randomly assign 248 

either an emission or loss rate to a randomly selected facility (n=500), depending on its emitter status and facility 249 

category. We test each estimated methane emission distribution to the associated empirical measurements and find a 250 

good fit for all facility categories (Table S6). To account for facilities emitting below the method LOD, we 251 

randomly assign an emission rate from re-sampling our dataset of empirical measurements below the method LOD 252 

for that facility category. Finally, once all facilities are assigned an emission rate, we compile the ensemble of 253 

emission distributions to develop facility-level emission distribution curves and total regional oil/gas methane 254 

emissions for the CONUS in 2021. 255 

For all VIIRS flares detections, we use the total reported volumes of gas flared for 2021 from flares detected 256 

using the VIIRS instrument (Elvidge et al. 2015) multiplied by the observed flare destruction efficiencies and 257 

percentage of unlit flares from Plant et al. (2022) to calculate annual methane emission rates from this source. As 258 

previously stated, our empirical measurements are largely located outside of oil/gas basins where the majority of 259 

VIIRS flare detections are located (i.e. Permian, Eagle Ford, and Bakken), but we cannot discount the possibility 260 

that there are instances of double-counting flares measured via our ground-based empirical data and those detected 261 

by VIIRS. For each VIIRS flare detection, we randomly determine whether it is an unlit or lit flare based on the 262 

basin-specific percentages of unlit flares reported by Plant et al. (2022). If a flare is determined to be lit, we use the 263 

corresponding basin-specific observed destruction removal efficiencies as reported by Plant et al. (2022) multiplied 264 

by the corresponding annual total volume of gas flared and convert to an emission rate. The basin-specific observed 265 

destruction removal efficiencies are estimated through a fitted normal distribution using the mean and standard 266 

deviations modeled from the 95% confidence intervals presented in Plant et al. (2022). If a flare is determined to be 267 

unlit, we use a destruction removal efficiency of 0%. For VIIRS flare detections located outside of the Bakken, 268 

Eagle Ford, and Permian basins, we used the total CONUS averaged destruction removal efficiencies of 95.2% 269 

(95% confidence interval: 94.3 – 95.9%) and percentage of unlit flares of 4.1% as reported by Plant et al. (2022).    270 

 271 
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 272 

Figure 2: Flowchart describing the facility-level estimates, with steps colored according to the specific process and data being 273 
used. We note that methane emission rates for flares are calculated using a separate approach from that of production well sites 274 
and midstream facilities. Processing plants and T&S compressors are excluded from the determination of whether a facility is a 275 
top 5% emitter due to a lack of available empirical measurement data.  276 

 277 
2.4 Extrapolation to smaller spatial boundaries 278 
 279 

We perform several comparisons of our estimated emission distribution curves and total aggregated 280 

emissions to estimates from aerial and satellite remote-sensing studies. To perform these comparisons, we restrict 281 

our estimates and the results from other aerial/satellite studies to spatial domains of interest (e.g., an oil/gas basin 282 

boundary or the overflown domain from an aerial sampling campaign), and to specifically compare estimates of 283 

oil/gas methane emissions from the facility categories we are investigating in this work. For comparisons to satellite 284 

remote-sensing studies, we prioritize national-level satellite inversions that estimate methane emissions from the 285 

CONUS that include spatially explicit maps of methane emission inversions specifically for oil/gas sources. We join 286 

the spatially explicit satellite inversions of methane emissions to the top twelve producing oil/gas basin boundaries 287 
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in the CONUS, in addition to their national-level inversions which we also use for national comparisons. Since our 288 

facility-level model includes geo-located activity data (i.e., facility coordinates), we can estimate facility-level 289 

methane emissions distributions and estimate total methane emissions for any spatial boundary in the CONUS by 290 

spatially joining facilities within a target boundary. Spatial variability in our facility-level estimates is driven by two 291 

main factors: counts of facilities and facility types, and averaged annual production characteristics. Due to 292 

constraints on data availability, we do not constrain our available empirical measurement data to the specific regions 293 

where they were gathered (Table S3). We tested the sensitivity of excluding empirical measurements gathered from 294 

specific oil/gas on the national emission distribution curves and total national methane emissions and found no 295 

significant variation (Fig. S9). Due to a lack of data availability, we do not have sufficient spatial information from 296 

empirical measurements of G&B compressors, T&S compressors, and processing plants to test for basin-level 297 

differences in empirical measurement data.  298 

For comparisons to aerial remote sensing studies/results, we prioritize studies that include both measured 299 

point sources (i.e., oil/gas methane sources that are above the LOD of the aerial remote sensing measurement 300 

platform), estimates of total regional oil/gas emissions, and descriptions/outlines of the surveyed spatial domains 301 

which are required for these comparisons. Based on these criteria, we compare our estimated emissions to those 302 

from  peer-reviewed studies (Cusworth et al., 2022; Kunkel et al., 2023; Xia et al., 2024) and the results of research 303 

flights from MethaneAIR in the Permian and Uinta oil/gas basins (Omara et al., 2024; Chan Miller et al., 2023; 304 

Chulakadabba et al., 2023; MethaneAIR, 2024), with discussion in later sections on a recent study by Sherwin et al. 305 

(2024). In all cases, we estimate facility-level methane emissions within the spatial domains outlined by the aerial 306 

remote sensing studies to estimate region-specific methane emission distribution curves, use the relevant method 307 

limits of detection to characterize emission rate thresholds valid for comparison, and subtract any emission unrelated 308 

to the facility types we characterize (Chen et al., 2024). In the case of Cusworth et al. 2022, we infer the spatial 309 

domains by georeferencing figures from their studies using the georeferencer tool QGIS (v.3.34.2-Prizen). We 310 

compare our spatially joined facility-level emission distributions to the percentage of emissions contributed from 311 

facilities emitting below discrete methane emission rate thresholds for all four aerial remote sensing studies, and to 312 

the continuous cumulative methane emissions distribution curves from Bridger GML surveys (Kunkel et al., 2023; 313 

Xia et al., 2024).  314 

Each aerial remote sensing campaign utilizes independent methods to estimate their percentage 315 

contributions from small methane sources, which in some cases requires additional analysis of the aerial remote 316 

sensing results. For our analysis of continuous methane emissions distribution curves from the Bridger GML 317 

campaigns (Kunkel et al., 2023; Xia et al., 2024), we restrict our analysis to estimated emission rates >3 kg/hr, 318 

which is the approximate LOD of the Bridger GML remote sensing platform. For MethaneAIR, we use the 319 

percentage of area emissions (i.e., diffuse area methane sources) relative to the total methane emissions for the 320 

spatial boundary, which roughly corresponds to all emissions <200 kg/hr (i.e. effectively those emissions below the 321 

point source detection limit of MethaneAIR that flew in multiple campaigns in the US at 40,000ft above ground 322 

level (Chulakadabba et al., 2023)). MethaneAIR characterizes the total regional emissions including the spatial area 323 
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emissions at high resolution using a geostatistical inverse modeling framework (Miller et al., 2013) while ingesting 324 

high-emitting point source information in the inversion (Chulakadabba et al., 2023; Omara et al., 2024).  For 325 

Cusworth et al. (2022), we analyze all campaigns by subtracting both aerially detected pipeline emissions and all 326 

non-oil/gas emissions (e.g., wastewater, landfills, agriculture), since our study is focused solely on upstream and 327 

midstream oil/gas sources. In addition, we subtract emissions from pipelines and non-oil/gas sources emitting below 328 

aerial detection limits (i.e., TROPOMI inversions subtracted by aerially detected emissions) by estimating the 329 

relative fractions of pipeline and non-oil/gas sources from the aerial detections, with the assumption that these 330 

fractions are representative (Table S4). However, this process can introduce additional uncertainties in our 331 

comparisons, especially for campaigns where 50% or more of aerially detected emissions were from pipelines or 332 

non-oil/gas sources. 333 

 We account for the intermittency of detected methane sources with <3 overpasses in Cusworth et al. 334 

(2022) by resampling with replacement (n=1,000) the source persistence of methane sources with ≥3 overpasses for 335 

the same campaign, which is consistent with their methodology. We calculate the percentage contributions of low 336 

emitting sources in Cusworth et al. (2022) using Eq. (2): where %E[<x] is the percentage of total oil/gas methane 337 

emissions below an emission rate threshold x (kg/hr), T is the total area emissions measured via TROPOMI 338 

inversions (kg/hr), and P[>x] is the sum of point source emissions above the emission rate threshold x (kg/hr). 339 

%𝐸[<𝑥] = 1 −
𝑃[>𝑥]

𝑇
                                                                                             (2) 340 

 341 
2.5 Uncertainty calculations 342 
 343 

Our emission distributions based on facility-level estimates incorporate uncertainty through several steps, such 344 

as the: probabilistic distributions of a select facility being a top 5%, bottom 95% emitter, or facility emitting below 345 

the LOD; emission rate and loss rate distributions produced from facility-level empirical measurements; and flaring 346 

combustion efficiencies. In addition, we incorporate uncertainties from the empirical measurements into our facility-347 

level model by simulating new empirical emission rates based on the associated method uncertainties. At the 348 

beginning of each of the 500 model iterations, we use the reported empirical methane emission rate data and 349 

estimate a new emission rate using a normal distribution with the mean as the initial reported emission rate and the 350 

standard deviation as a percentage of the mean value. These measurement uncertainties (i.e., 1-sigma) are chosen 351 

based on the measurement methodology using the lower percentage uncertainty ranges provided by Fox et al. (2019) 352 

for facilities measured via the OTM-33a (±25%), Gaussian plume dispersion (±50%), and tracer release (±20%) 353 

methods. For HiFlow sampler measurements, we use an uncertainty range of ±16% (Riddick et al., 2022), and for 354 

chamber-based measurements, we use ±14% (Williams et al., 2023). Therefore, each model iteration incorporates a 355 

unique suite of empirical measurement data based on the initially reported emissions and their associated 356 

uncertainties, which in turn impacts the probabilistic modeling of the chance of a facility emitting below the method 357 

LOD, the empirical data is used to determine the parameters of the lognormal distributions of loss rates and emission 358 
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rates, and the ranges of the production bins. To calculate the cumulative uncertainty of our facility-level model 359 

estimates, we estimate 500 methane emission distributions and aggregate the 2.5th and 97.5th percentiles of our seven 360 

primary facility categories (i.e., low and non-low producing well sites, G&B compressors, T&S compressors, and 361 

processing plants), which include lit and unlit VIIRS flare detection emissions, to determine our 95% confidence 362 

intervals. This process is repeated for all simulations at the national-, basin-, and aerial remote sensing boundary 363 

levels. For uncertainty calculations in satellite- and aerial-remote sensing studies we use for comparisons, we present 364 

the reported 95% confidence intervals, if available.  365 

 366 

3 Results 367 
 368 

3.1 Distribution of emission rates at the national scale 369 
 370 

Based on the results from our facility-level model estimates, we estimate that 70% (95% confidence 371 

interval: 61-81%) of total methane emissions from the upstream/midstream sector in the CONUS for 2021 originate 372 

from facilities emitting methane at rates <100 kg/hr (Fig. 3). For other emission rate thresholds, we find that 30% 373 

(26-34%) of total emissions come from facilities emitting <10 kg/hr, which corresponds to the lower thresholds of 374 

aircraft-based aerial remote sensing studies (Cusworth et al., 2022; Johnson et al., 2021; Kunkel et al., 2023; Thorpe 375 

et al., 2024; Xia et al., 2024), and 79% (68-90%) of total emissions come from facilities emitting <200 kg/hr. We 376 

find that the emission rate threshold corresponding to 50% of cumulative methane emissions from 377 

upstream/midstream facilities in the CONUS for year 2021 is 25 kg/hr (19-33 kg/hr). These results suggest that a 378 

large majority of oil/gas emissions in the CONUS are not detectable by existing satellite remote-sensing point 379 
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source imagers (Sherwin et al., 2023). 380 

 381 

Figure 3: Results from 500 estimated facility-level emission distributions showing the cumulative percentages of 382 
total methane emissions contributed from facilities emitting below methane emission rate thresholds. For example, 383 
facilities emitting <100 kg/hr account for 70% (61-81%) of total methane emissions. The inset table in the upper left 384 
displays the total percentage of methane emissions contributed from several discrete emission rate thresholds with 385 
95% confidence intervals shown in parenthesis.  386 

 387 

The distribution for our national-level methane emissions follows an S-shaped curve, noting that the x-axis 388 

(i.e., facility-level methane emission rates) is presented in the log10 scale. From 0.1 to 1 kg/hr, we observe a plateau 389 

in the distribution curve indicating that increasing emission rates within this range do not significantly increase the 390 

percentage contribution to total regional emissions (Fig. 3), similar to the findings in Ravikumar et al. (2019). From 1 391 

to 100 kg/hr, we see a sharper rise in the emission distribution, indicating that increasing emission rates at this range 392 

lead to a more substantial contribution to total methane emissions, and account for 68% (60 – 75%) of total methane 393 
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emissions (Fig. 3, Table S4). Above an emission rate threshold of 100 kg/hr, we see an exponential decline in the 394 

percentage contributions of total emission with increasing emission rates, with total methane emissions in this range 395 

amounting to 28% (18 – 37%) of the total oil/gas emissions. Facilities emitting at the 1-10 kg/hr and 100-1,000 kg/hr 396 

ranges contribute a similar cumulative percentage at 26% (23 - 29%) and 22% (18 - 26%) respectively. Similar 397 

percentage contributions are also observed between the 0.1-1 kg/hr and >1,000 kg/hr ranges at 4.5% (4.0 - 5.1%) and 398 

6.1% (2.6 - 13%) respectively. Overall, we find that the highest contribution to total national CONUS methane 399 

emissions occurs from facilities emitting in the 10-100 kg/hr range at 42% (37 - 46%). In terms of facility counts, 400 

from the 673,940 total active oil/gas facilities we estimate in the CONUS for 2021, we estimate that essentially all 401 

(i.e., ~99.9%) of these facilities emit methane below 100 kg/hr.  402 

Our facility-level model estimates total methane emissions from US upstream/midstream oil/gas emissions 403 

for 2021 to be 14.6 (12.7 - 16.8) Tg/yr, or 1,668,000 (1,453,000 – 1,921,000) kg/hr (Fig. 4), which corresponds to a 404 

gross gas production normalized loss rate of 2.4%, assuming a uniform 80% methane content in natural gas across 405 

oil/gas producing regions in the CONUS. This national emission total of 14.6 (12.7 - 16.8) Tg/yr is more than 406 

double the EPA Greenhouse Gas Inventory Report for natural gas and petroleum systems in 2021, excluding post-407 

meter and distribution methane emissions (Inventory of U.S. Greenhouse Gas Emissions and Sinks, 2024). We 408 

compare our total national estimates to previous estimates by seven studies that predominantly utilize satellite-based 409 

remote-sensing platforms such as GOSAT and TROPOMI inversions (Lu et al., 2022, 2023; Maasakkers et al., 410 

2021; Shen et al., 2022; Worden et al., 2022) except for Alvarez et al. (2018) and Omara et al. (2024) who developed 411 

unique facility-based modeling approaches using empirical measurement data collected from multiple oil/gas basins 412 

in the CONUS (Fig. 4). Our estimate of national methane emissions overlaps with six out of seven other national 413 

estimates of oil/gas methane emissions for the US, with a combined average of 13.1 (ranging from 11.1 - 15.7) 414 

Tg/yr. We do not estimate methane emissions from gathering/transmission/distribution pipelines, post-meter 415 

emissions, abandoned oil and gas wells, and refineries due to the scarcity of measurement-based data for these 416 

sources. Total methane emissions from these sources emit ~2 Tg/year of methane emissions based on other studies 417 

(Williams et al., 2021; Alvarez et al., 2018; Omara et al., 2024; Weller et al., 2020; Inventory of U.S. Greenhouse 418 

Gas Emissions and Sinks, 2024). Overall, our total national estimate of CONUS methane emissions for 2021 shows 419 
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good agreement with multiple independent and recent measurement-based estimates. 420 

 421 

Figure 4: Comparison of total CONUS oil/gas emissions for 2021 from this facility-level measurement-based 422 
inventory compared to empirical estimates from other studies. Bars are colored according to the methodology used 423 
to derive the total national estimates, and the years within the bars represent the corresponding time periods for the 424 
estimates. Black inset lines represent 95% confidence intervals. Our total estimates for “This work” do not include 425 
emissions from other oil/gas methane sources such as abandoned oil and gas wells, 426 
transmission/gathering/distribution pipelines, post-meter emissions, and refineries. Emission estimates from Omara 427 
et al. (2024) do not include methane emissions from abandoned oil and gas wells. We assume that the remote 428 
sensing estimates (i.e., GOSAT and TROPOMI) include all oil/gas methane sources, including downstream 429 
emissions. 430 

 431 

3.2 Distribution of emission rates at the basin-level scale 432 
 433 

Among the top nine emitting oil/gas basins in the CONUS, we observe variations among the different 434 

basins in terms of the methane emission distributions, especially at higher emission rate thresholds (Fig. 5). The 435 

majority of the top nine emitting oil/gas basins in Fig. 5 show higher percentage contributions from facilities 436 

emitting <100 kg/hr when compared to our national estimate of 70% (61 – 81%) (Fig. 3). These percentage 437 

contributions vary from ~80% in the Permian, Appalachian, and Eagle Ford basins, up to ~90% in the oil-dominant 438 

San Joaquin basin. Only the Anadarko and Bakken basins have notably lower contributions to total emissions at the 439 

100 kg/hr threshold at ~60% compared to the national level, which is still a significant majority of total methane 440 

emissions. Despite these variations, our facility-level model estimates that the majority of total national oil/gas 441 

emissions are consistently contributed from facilities emitting <100 kg/hr for the top nine emitting basins.  442 
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Our estimated facility-level emission distributions for the top nine emitting oil/gas basins all follow an S-443 

shaped curve (Fig. 5) like the national distribution (Fig. 3), albeit with certain variations. For all basins, the initial 444 

plateau in the emissions distribution curves ends at around 1 kg/hr before beginning to rise more steeply. For the 445 

Appalachian and San Joaquin basins, the second plateau is at the 20-50 kg/hr emission rate threshold (Fig. 5). For 446 

the remaining basins, the rise in the emission distribution curves plateaus gradually, indicating a more consistent 447 

relationship of emission rate thresholds to their contribution to total emissions. The variability displayed among the 448 

500 basin-level simulations differs among the oil/gas basins, with less spread in the 500 estimated methane 449 

emissions distributions for the Appalachian, Anadarko, and Permian basins compared to the Uinta, Denver-450 

Julesburg, and San Joaquin basins (Fig. 5 and Fig. S6). These variations are likely caused in part by the overall total 451 

basin-level methane emissions, where an extremely high estimated methane emission rate would have a greater 452 

impact on the percentage contribution to the total for basins with lower overall emissions (e.g., the apparent outliers 453 

for the Greater Green River and Bakken basins in Fig. 5). We discuss below other plausible causes for basin-to-454 

basin variability in the estimated methane emission distributions.   455 

 In terms of total methane emissions, the top two emitting oil/gas basins are the Permian and Appalachian, 456 

which collectively account for 5.2 (4.4 – 6.3) Tg/year (Fig. S1) or 37% of total upstream and midstream oil/gas 457 

methane emissions. This exceeds the cumulative contribution from the other seven highest emitting oil/gas basins 458 

which collectively account for 3.7 (2.9 – 5.0) Tg/yr. Notably, we find that the highest emissions in the CONUS 459 

occur from regions outside of any basin boundary 4.3 (1.2 – 6.3) Tg/year. Our estimates for basin-level total 460 

emissions also show good agreement with remote-sensing satellite-based observations (Fig. S1), except for the 461 

Appalachian, Bakken, Greater Green River, and Denver-Julesburg basins where our results are consistently more 462 

than double those from the remote-sensing studies that used a prior-emission based inversion result (Lu et al., 2023; 463 

Shen et al., 2022). These four basins are in regions with relatively low TROPOMI observation counts and densities 464 

compared to other regions in the CONUS (Shen et al., 2022), in addition to other factors that could influence 465 

satellite-based inversions such as the presence of many non-oil/gas sources such as coal, livestock, and landfills. 466 

Overall, our estimates of total basin-level emissions are consistent with satellite-based observations. 467 

  468 

  469 
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 470 

Figure 5: A) Results from 500 model simulations showing the cumulative methane emissions distribution curves for 471 
total upstream/midstream oil/gas methane emissions for the top nine emitting oil/gas basins in the CONUS for 2021. 472 
The model averages for each basin are shown in solid black lines. Inset dashed lines represent the percentage 473 
contributions of total emission from sources emitting <100 kg/hr. Emission distribution curves for the remaining 474 
eleven oil/gas basins in the CONUS are shown in Fig. S6, and a map of the spatial boundaries used for the different 475 
oil/gas basins is shown in Fig. S10.  476 

 477 

3.3 Distribution of emission rates by facility category 478 
 479 

 We find significant variations in the methane emission rate distribution curves among the different facility 480 

categories (Fig. 6A). Over 50% of total methane emissions from low (i..e, <15 boe/day, or <0.13 kt of methane 481 

production per year and non-low production well sites, lit flares, and G&B compressor stations occur from facilities 482 

emitting <100 kg/hr (Fig. 6A). In contrast, only 17% (15-18%) of emissions from processing plants, 19% (18-20%) 483 

of emissions from T&S compressor stations, and 9% (7-12%) of emissions from unlit flares are contributed from 484 

emission sources <100 kg/hr. Similar variability is also observed at other emission rate thresholds, such as only 1% 485 

(0-2%) of total emissions for T&S compressor stations, unlit flares, and processing plants originating from facilities 486 

emitting at rates <10 kg/hr, compared to 50% (43-58%) from low producing well sites and 30% (24-35%) from non-487 

low producing well sites (Fig. 6A). At higher emission rate thresholds, we find that 33% (20-45%) of total emissions 488 

from T&S compressors and processing plants are emitted from facilities <200 kg/hr, compared to 84% (68-93%) 489 
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from non-low producing well sites (>boe/day of combined oil and gas), 86% (83-88%) from VIIRS flare detections, 490 

78% (70-86%) from G&B compressor stations, and essentially 100% of emissions from low producing well sites.  491 

A breakdown of the 673,940 total facilities in our model has 541,970 as low-producing well sites, followed 492 

by 121,824 non-low-production well sites, 4,431 G&B compressor stations 2,093 T&S compressor stations, 919 493 

processing plants, and 3,153 total VIIRS flare detections. Of these 673,940 total facilities, 99.5% (99.4 – 99.6%) 494 

emit methane at rates <100 kg/hr (Fig. S11), and in turn contribute 70% of total methane emissions (Fig. 3). Overall, 495 

we estimate that 68% of total CONUS oil/gas methane emissions for 2021 come from production well sites, of 496 

which 44% are from low-production well sites with combined oil/gas production <15 boe/day (i.e., <0.13 kt of 497 

methane production per year), and the remaining 24% from non-low production well sites (i.e., >15 boe/day) (Fig. 498 

6B). Midstream facilities contribute 29% of total methane emissions, with 13% from T&S compressors, 8% from 499 

processing plants, 7% from G&B compressor stations. The remaining 4% from VIIRS flare detections are evenly 500 

split with 2% each from lit and unlit flares respectively. Based on the population counts for each facility category 501 

and their corresponding total methane emissions, the average methane emission rate per facility category is highest 502 

for processing plants at 146 (115 – 283) kg/hr, followed by 106 (89 – 129) kg/hr for T&S compressor stations, 27 503 

(25 - 29) kg/hr for G&B compressor stations, 3.3 (2.9 – 3.8) kg/hr for non-low producing well sites, and 1.3 (1.2 – 504 

1.5) kg/hr for low producing well sites. For VIIRS flares detections, we find a large difference in average emissions 505 

between lit flares at 11 (9.2 – 13) kg/hr and unlit flares at 205 (132 – 294) kg/hr. 506 

Production well sites constitute the bulk of total methane emissions among the facility categories we 507 

considered, with most of these emissions contributed from low production well sites. Overall, we find that 67-90% 508 

of well site emissions originated from only 10% of national oil and gas production in 2021 (Fig. S7), highlighting a 509 

disproportionately large fraction of emissions relative to production. In terms of individual well site level production 510 

values, the same 67-90% of total cumulative methane emissions were contributed from well sites producing >50 511 

boe/day (i.e., 0.43 kt of methane production per year) or lower. For well sites producing 15 boe/day (i.e., 0.13 kt of 512 

methane production per year) or lower, which is the production threshold used to define a well site as being 513 

marginally producing in previous work (Deighton et al., 2020; Omara et al., 2022), we find that these low producing 514 

well sites accounted for 50-75% of total well site emissions, or 4.7-6.8 Tg/yr.  515 

 516 

  517 
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 518 

Figure 6: A) Results from an ensemble of 500 estimated methane emission distributions showing the percentage of 519 
total methane emissions among facility categories contributed from facilities emitting at rates below an emission rate 520 
threshold. The inset table on the bottom right displays the discrete percentage contributions to total methane 521 
emissions contributed from facilities emitting <100 kg/hr. B) Breakdown of total annual methane emissions 522 
contributed from all emitting facility categories and those emitting at rates <100 kg/hr.   523 

 524 

3.4 Comparisons to aerial remote sensing studies 525 
 526 

 We perform comparisons of the percentage contributions of methane emissions from facilities emitting 527 

below discrete emission rate thresholds between seven aerial remote sensing campaigns across four distinct regions 528 

and our estimated facility-level results (Fig. 7). The aerial remote sensing technologies include data from Bridger 529 

GML measurements (Kunkel et al., 2023; Xia et al., 2024), MethaneAIR (Omara et al. 2024; Miller et al. 2023), and 530 

the results from Global Airborne Observatory and next-generation Airborne Visible/Infrared Imaging Spectrometer 531 

campaigns (Cusworth et al., 2022) which are also included in the aerial detections used by Sherwin et al. (2024). In 532 

comparing the percentage contributions to total emissions from low-emitting sources between our facility-level 533 

estimates and the aerial remote sensing campaigns, we find that emission contributions agree well across aerial 534 

remote sensing campaigns for the total percentage of methane emissions from facilities emitting, as seen in Fig. 7 535 

for both less than 100 kg/hr and 200 kg/hr.  536 

For the Bridger GML remote sensing campaigns (Kunkel et al., 2023; Xia et al., 2024), we find good 537 

agreement in the percentage of total emissions contributed from facilities emitting <200 and <100 kg/hr compared to 538 

our facility-level model estimates (Fig. 7). A comparison of continuous emissions distribution curves between our 539 
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facility-level emission distributions and two Bridger GML aerial remote sensing campaigns (Kunkel et al., 2023; 540 

Xia et al., 2024) targeting four oil/gas basins is shown in Fig. S3. The Bridger GML aerial sampling platform has the 541 

lowest LOD among the aerial campaigns we analyze in this work and a similar source resolution (i.e., 30 meters) to 542 

our facility-level model (i.e., 50 meters), allowing for a more detailed comparison of continuous emission 543 

distribution curves due to the higher number of detected methane sources at low emission rates provided by Bridger 544 

GML surveys. We find close agreement between our facility-level methane emission distribution curves and the 545 

observed emissions by Bridger GML in the four-basin aggregate provided by Xia et al. (2024) (Fig. S3A) which 546 

includes Anadarko, Bakken, Eagle Ford and Permian basins (individual basin data are not currently available in Xia 547 

et al. (2024)), as well as separately for the Permian remote sampling campaign (Fig. S3B) by Kunkel et al. (2023), 548 

with the measured emissions from the Bridger GML surveys overlapping with our facility-level model simulations 549 

throughout the continuous distribution of methane emission rates. 550 

For the multiple aerial remote sensing campaigns performed by Cusworth et al. (2022), we generally find 551 

good agreement with all of our estimates statistically overlapping for discrete emissions rate thresholds of <100 552 

kg/hr and <200 kg/hr for the Permian and Uinta oil/gas basins (Fig. 7). For the San Joaquin and Denver-Julesburg 553 

oil/gas basins, we see good agreement at the emission rate threshold of <200 kg/hr and at <100 kg/hr (i.e. 554 

overlapping uncertainty bounds). For the Appalachian basin, we find broad agreement at both emission rate 555 

thresholds of <100 kg/hr and <200 kg/hr, with our results consistently showing a 20-30% greater contribution from 556 

emission sources below the discrete emission rate thresholds (Fig. 7). We find the closest agreement in the Permian 557 

and Uinta oil/basins, where the differences in the average percentage contributions vary from -9% to +4% across the 558 

three discrete emission rate thresholds of <100 and <200 kg/hr (Fig. 7). In Denver-Julesburg and Appalachian 559 

basins, the differences are observed to be larger, compared to other basins, where the differences in average 560 

percentage contributions across the discrete emission thresholds vary from -30% to +18%, however, they are within 561 

our estimated uncertainty bounds. The detected point sources by Cusworth et al. (2022) in the Denver-Julesburg and 562 

Appalachian basins contain many non-oil/gas point sources (Table S4), which may lead to additional uncertainty in 563 

the comparisons for these basins since we use the relative proportions of point sources to subtract an estimated 564 

contribution of non-oil/gas point sources from the TROPOMI estimates to provide a more direct comparison 565 

between our estimates (since our study only focuses on upstream and midstream oil and gas sectors) and those of 566 

Cusworth et al. (2022). Notably, the Appalachian basin contains the highest percentage contribution of non-oil/gas 567 

point sources at 67% (Table S4). In contrast, we note that all of the detected point sources by Cusworth et al. (2022) 568 

in the Permian and Uinta basins were attributed to oil/gas point sources (Table S4). 569 

Our comparisons to the available flight results from MethaneAIR, which quantifies both total regional 570 

methane emissions and high-emitting point sources >200 kg/hr from the same aerial platform (Chulakadabba et al., 571 

2023), show close agreement between our facility-level estimates and the available aerial campaigns in the Uinta 572 

and Permian basins for facilities emitting <200 kg/hr (Fig. 7B). For the MethaneAIR flight in the Uinta basin, we 573 

estimate that 92% (46 - 100%) of total oil/gas methane emissions are from sources emitting <200 kg/hr, compared to 574 

88% from MethaneAIR (Fig. 7B). For the available flight in the Permian basin from MethaneAIR, we estimate total 575 
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contributions from sources emitting <200 kg/hr at 77% (59 – 90%) compared to the 71% estimated by MethaneAIR 576 

(Fig. 7B).  577 

Overall, our findings show that our facility-level estimates closely agree with the results from multiple 578 

aerial remote sensing campaigns from different regions and using various measurement methods. 579 

  580 

 581 

Figure 7: Comparisons of the cumulative percentage of oil/gas methane emissions from all oil/gas facilities emitting 582 
A) <100 kg/hr, and B) <200 kg/hr, between our facility-level empirical emissions estimates and aerial remote 583 
sensing campaigns. Bars are colored according to the study and grouped according to the target oil/gas basin(s). All 584 
results from the facility-level simulations (i.e., this work) are constrained to the spatial boundaries of the aerial 585 
campaigns for direct comparisons (note that for a given basin, spatial boundaries might be slightly different). 586 
Uncertainty bars for the facility-level simulations are the 2.5th and 97.5th percentiles of 500 simulations. Maps of all 587 
spatial boundaries used for comparisons are provided in Fig. S2. Comparisons to MethaneAIR are not performed at 588 
the <100 kg/hr threshold because MethaneAIR detections are not available for point sources below this emission 589 
rate threshold.  590 

 591 

4 Discussion 592 
 593 
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Understanding how facilities with different magnitudes of emissions contribute to total regional emissions 594 

has direct policy implications for methane quantification and mitigation, such as the selection of 595 

measurement/screening methods with the appropriate detection sensitivities (Ravikumar et al., 2018). Our main 596 

finding is that 70% of total oil/gas methane emissions from the upstream/midstream sectors come from facilities 597 

emitting at rates <100 kg/hr, which is the emission rate threshold above which point source emissions are  referred 598 

to as “super-emitting” oil/gas source by the EPA (Standards of Performance for New, Reconstructed, and Modified 599 

Sources and Emissions Guidelines for Existing Sources: Oil and Natural Gas Sector Climate Review, 2024). While 600 

detecting and mitigating emissions from super emitters are important (Cusworth et al., 2022; Duren et al., 2019; 601 

Sherwin et al., 2024), our results underscore the need to account for oil/gas methane sources emitting at lower rates, 602 

as the cumulative contribution of lower-emitting sites accounts for a large majority of emissions across US oil/gas 603 

basins. Facility-level, measurement-based data collected in other countries present a similar story. From a sample of 604 

sites (n=302) measured via Bridger GML remote sensing platform in British Columbia, Canada (Tyner and Johnson, 605 

2021), roughly 60% of the total quantified oil/gas site-level emissions originate from sites emitting <32 kg/hr. In 606 

Romania, a site-level measurement-based inventory (Stavropoulou et al., 2023) using 178 measurements finds that 607 

oil production facilities emitting <100 kg/hr contribute 78% of total oil/gas methane emissions in the studied region. 608 

In short, the high percentage contribution from lower-emitting (<100 kg/hr) oil/gas facilities that account for a large 609 

majority of total emissions is not unique to the US and is likely present in other countries as well. A combination of 610 

approaches that characterize entire emission distributions across populations of sites (i.e., not just focusing on 611 

measuring super-emitters) and quantification of regional-level emissions is needed in other countries to quantify the 612 

relative contributions of low-emitting sources that in aggregate can be significant sources of overall oil/gas methane 613 

emissions. Most of our analysis centers around quantifying the percentage contributions of oil/gas methane sources 614 

emitting below one discrete emission rate threshold (i.e., <100 kg/hr, per EPA’s definition of a super-emitter). We 615 

estimate that over 99% of the total oil/gas facilities that we analyze in this work emit below 100 kg/hr (Fig. S11), 616 

which in turn contribute 70% (61 – 81%) of total methane emissions (Fig. 3). The emission rate threshold of 100 617 

kg/hr is relevant to US policy decisions (EPA’s Final Rule for Oil and Natural Gas Operations Will Sharply Reduce 618 

Methane and Other Harmful Pollution., 2024), but we also illustrate the importance of a complete characterization of 619 

emissions, which gains importance as newer methane monitoring technologies have different LODs. For example, 620 

the effective LOD at high probabilities of detection for available point source imaging satellites of ~200 kg/hr 621 

(Jacob et al., 2022) would only be able to quantify 21% (10-32%) of all oil/gas point sources in the CONUS, if the 622 

full oil/gas sector was mapped in its entirety, based on our facility-level results. When considering the relationship 623 

of facility-level emission rates to total cumulative methane emissions, we find that oil/gas methane emissions in the 624 

CONUS are dominated by many low-emitting facilities, which relates directly to methane measurement 625 

technologies. 626 

Point source-focused remote sensing platforms offer the advantage of rapidly surveying large areas (i.e., 627 

100’s-1,000’s km2) which facilitates the detection and quantification of high-emitting point sources (Cusworth et al., 628 

2022; Duren et al., 2019; Sherwin et al., 2024). In contrast, logistical constraints often limit the sample sizes for 629 

ground-based vehicle sampling platforms, however, these limitations can be overcome with stratified random, 630 
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representative sampling and statistical analysis approaches like this work. Ground-based measurement platforms 631 

provide much lower LODs (i.e., <1 kg/hr) when compared to remote sensing platforms, which are necessary to 632 

quantify emissions from the large number of small methane sources we find that contribute roughly three-quarters of 633 

total regional oil/gas emissions in the CONUS and will only improve as additional ground-based measurements are 634 

gathered. Overall, our main findings highlight the importance of methods that can rapidly locate the small number of 635 

high-emitting point sources we estimate, but our findings emphasize the need to account for the disproportionately 636 

large majority percentage of total regional oil/gas emissions that are emitted from smaller diffuse methane sources.  637 

 When extrapolating our facility-level model results to the basin-level we see variations among the emission 638 

distribution curves for different oil/gas basins, but still find that most methane emissions come from facilities 639 

emitting <100 kg/hr. The variations in the emission distribution curves for different basins are driven by many 640 

factors, such as the: production characteristics, number and density of facilities, different types and relative counts of 641 

facility categories, the availability of empirical measurement data used to model emissions, and the total oil/gas 642 

methane emissions (i.e., the denominator). For example, the Appalachian basin is dominated by a high number of 643 

older low-production well sites (Deighton et al., 2020; Riddick et al., 2019; Enverus, 2024) with fewer midstream 644 

facilities such as processing plants and G&B compressors, which contrasts with the Bakken basin where we find a 645 

high number of midstream facilities, high-producing well sites, and VIIRS flare detections (Elvidge et al., 2015; 646 

Enverus, 2024). When comparing the emissions distribution curves for the Bakken and Appalachian basins (Fig. 5), 647 

we observe higher contributions from lower-emitting facilities for the Appalachian compared to the Bakken. An 648 

example of differences in basin-level production is shown in Fig. S4 and Fig. S5, where we see variable profiles 649 

among the different oil and gas-producing basins in terms of well site production characteristics, which are the main 650 

source of total methane emissions in this work (Fig. 6). We also observe the influence of total basin-level emissions 651 

on the variability among our emission distribution curves, where large emitting sources in the San Joaquin basin can 652 

lead to high variability among the estimated emission distribution curves compared to the Permian basin which has 653 

roughly ten times the total emissions compared to the San Joaquin (Fig. 5). We note that a direct comparison of our 654 

model results with aerial remote sensing methods may be limited, in part, by methodological differences in methane 655 

quantification approaches (and underlying uncertainties). The remote sensing observations assessed here as 656 

snapshots may capture facility-level emission distributions that are not well represented in annually averaged 657 

methane emissions distributions, as we estimate here. Nevertheless, we find broad agreement with these independent 658 

aerial remote sensing estimates at the basin scale and across smaller spatial domains, as discussed. Ultimately, as 659 

many characteristics will influence methane emissions distribution curves among different oil/gas producing regions 660 

in the CONUS, mitigation strategies will need to be structured accordingly to the region they are targeting. 661 

 Our results find that over half of cumulative methane emissions from three different facility categories 662 

come from facilities emitting <100 kg/hr, including methane emissions from lit and unlit flares. We show how the 663 

large contributions from small methane sources to total regional emissions are not unique to any one facility 664 

category, but it is important to contextualize our emission distribution curves with the corresponding total regional 665 

emissions. Our facility-level estimates find that the main source of oil/gas methane emissions in the CONUS are 666 
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oil/gas production well sites, of which the low production category is responsible for 44% (39 – 49%) of the total 667 

estimated oil/gas methane emissions in the CONUS in 2021. Low-producing well sites, also known as “marginal 668 

wells”, have been shown in previous work to be a significant source of methane emissions, especially relative to 669 

their contribution to overall oil/gas production (Deighton et al., 2020; Omara et al., 2022). Omara et al.  (2022) found 670 

that marginal wells contributed anywhere from 37%-75% of total methane emissions from production well sites, 671 

which is like our estimates (i.e., 50-75%). Despite low production well sites having a lower mean emission rate 672 

compared to other facility categories, the large facility counts result in significant aggregate total emissions of 673 

methane. This implies that detection and mitigation strategies to reduce methane emissions from these and other 674 

low-emitting oil and gas infrastructure (e.g., abandoned oil/gas wells) would require alternative mitigation and 675 

detection approaches compared to those for the small number of super-emitting emission sources. For detection, 676 

measurement methods that can measure emission rates between 0.1-100 kg/hr are required, since this range makes 677 

up 70% of total methane emissions (Figure 3 and Table S1) as modeled herein. In terms of methane mitigation 678 

policy, financial incentives, like the USD 4.7 billion from the Biden Bipartisan Infrastructure Law for abandoned 679 

wells, could be used to prioritize the repair of old and leak-prone production well sites, as these low-producing well 680 

sites only account for a small fraction (i.e., 5.6% in 2019) of total oil/gas production (Omara et al., 2022). 681 

We see good agreement between our facility-level results and a majority of aerial remote sensing studies, which 682 

are expected to capture a wide range of high-emitting facilities in a survey region. For example, when comparing 683 

our model results to Kunkel et al. (2023) and Xia et al. (2024) we find that our estimated methane emissions closely 684 

match the distribution of methane emissions measured in Bridger GML surveys (Fig. S3). We also find good 685 

agreement to satellite remote sensing estimates of emissions, such as our basin-level (Fig. S1) and national-level 686 

comparison to satellite inversions (Fig. 3), and other aerial remote sensing study regions (Table S2). Our 687 

comparisons of the contributions of low-emitting sources below discrete emission rate thresholds also agree closely 688 

with recent MethaneAIR, Kairos Aerospace, GAO, and AVIRIS-NG aerial surveys, whose results also highlight the 689 

importance of small methane sources to overall oil/gas methane emissions. Recently, Sherwin et al. (2024) 690 

suggested that a majority of total emissions originate from a small fraction of high-emitting sites. Notably, most of 691 

the aerial measurements that are used in Sherwin et al. (2024) are obtained from the Cusworth et al. (2022) study, 692 

with which we see good agreement (Fig. 7). Sherwin et al. (2024) perform an alternative analysis than Cusworth et 693 

al. (2022) for aerially measured sources with <3 overpasses and assume that sources with one or two overpasses 694 

emit at their observed intermittency of 100%, 50%, or 0% of the time. This difference in analytical approaches 695 

produces higher contributions from aerial emissions in Sherwin et al. (2024) by 31% on average for seven aerial 696 

campaigns compared to Cusworth et al. (2022) (Table S7), which uses a resampling approach described earlier in 697 

the Methods Section 2.4.  In addition, emissions from Sherwin et al. (2024) that are below aerial detection limits are 698 

estimated using a combination of an equipment-level bottom-up model presented in Rutherford et al. (2021) for 699 

production well sites, and emission factors from the U.S. Greenhouse Gas Inventory (Inventory of U.S. Greenhouse 700 

Gas Emissions and Sinks, 2024) for midstream facilities, which produces 52% lower emissions on average for seven 701 

aerial campaigns (Table S7). Therefore, the aerially measured emissions in Sherwin et al. (2024) are higher and the 702 

emissions below aerial detection limits are lower which leads to a higher contribution to total methane emissions 703 
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from high-emitting facilities (Table S7). Ultimately, the broad agreement we find across multiple disparate 704 

measurement techniques and platforms across Bridger GML aerial campaigns (Kunkel et al., 2023; Xia et al., 2024),  705 

MethaneAIR measurements (MethaneAIR L4 Area Sources 2021 | Earth Engine Data Catalog, 2024; Omara et al., 706 

2024), and the multiple surveyed regions presented in Cusworth et al. (2022), altogether provide collective evidence 707 

about the large contribution of smaller emission sources to total regional emissions.       708 

Given the variability in methane detection technologies, a range of approaches can be taken to estimate methane 709 

emission rate distributions, each providing unique advantages and disadvantages. MethaneAIR provides a novel 710 

remote sensing approach where high-emitting point sources, distributed area sources and total regional emissions are 711 

quantified using the same aerial platform, providing the ability to directly measure high-emitting point source and 712 

diffuse area contributions to total regional estimates. In the work by Xia et al. (2024) they combine measurements 713 

from Bridger GML across four oil/gas basins and use component-level simulations to account for facilities emitting 714 

below the 3 kg/hr LOD of Bridger GML. Other approaches also exist, such as Cusworth et al.  (2022) who combine 715 

TROPOMI inversions to estimate total regional methane emissions with point source emissions quantified from their 716 

aerial detection platforms (i.e., GAO, AVIRIS-NG). Similarly, Sherwin et al. (2024) combine point source emissions 717 

measured via aerial remote sensing with site/facility-level emission rates estimates calculated from a combination of 718 

an equipment-level bottom-up model for production well sites (Rutherford et al., 2021) and emission factors from the 719 

2023 GHGI for midstream facilities (Inventory of U.S. Greenhouse Gas Emissions and Sinks, 2024) for facilities 720 

emitting below aerial detection limits. Remote sensing studies have key advantages over ground-based sampling 721 

platforms, such as rapidly surveying wide areas and capturing higher-emitting point sources, but have variable LODs 722 

depending on the target region, topography, measurement technology, presence of co-located non-oil/gas methane 723 

sources (i.e., source attribution), weather conditions, infrastructure density, and infrastructure type(s). These variables 724 

pose additional challenges when quantifying the contributions from facilities emitting above/below specific emission 725 

rate thresholds, which are critical information to inform mitigation policy. Assessing performance, tracking mitigation, 726 

and accurate reporting requires building a comprehensive picture of emissions by characterizing all emitters big and 727 

small, and reconciling with total basin/sub-basin level emissions. Ultimately, the key seems to be merging the best 728 

data from both approaches to build a hybrid inventory, ideally using a multi-tiered system with multiple methods that 729 

span a range of LODs that allow for gathering empirical measurements from facilities emitting at all parts of the 730 

methane emission distribution curve. Our study is a step in that direction considering measurement-based data while 731 

presenting a robust comparison with available independent remote sensing measurements. At the same time, large-732 

area aggregate emissions data obtained from wide-area remote sensing mapping or mass balance surveys can better 733 

constrain total regional emissions (e.g. Cusworth et al. 2022; Omara et al. 2024) towards a more empirically robust 734 

denominator in characterizing the relative contributions of small emission and high emission sources to total 735 

emissions.  736 

We show that our facility-level emission models produce national- and basin-level methane emissions estimates 737 

that are in good agreement with other independent measurement-based studies. However, we note the following 738 

limitations/biases that could be improved with future data collection efforts. The empirical measurements that we 739 
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use in our model are representative of the year and time they were measured (i.e., 2010-2020), meaning that they 740 

would not reflect any updates in regulatory practices or changes in facility operational and emission management 741 

practices. In addition, there are variations in the number of production well site empirical measurements among 742 

oil/gas basins (Table S3) although a sensitivity analysis shows that excluding data from individual oil/gas basins 743 

does not significantly impact our results (Fig. S9). Furthermore, there are several oil/gas methane emission sources 744 

that we do not account for in our estimates, which include: gathering/transmission/distribution pipelines, oil refining 745 

and transportation, abandoned oil/gas wells, offshore oil/gas infrastructure, post-meter sources, and oil/gas 746 

distribution infrastructure in urban areas. For some sources omitted in this work such as abandoned oil/gas wells, 747 

their inclusion would likely lead to a higher contribution from low-emitting facilities, since the highest recorded 748 

emission rate from an abandoned oil/gas well is 76 kg/hr (Riddick et al., 2024). For others such as oil refineries, 749 

their inclusion would likely lead to a lower contribution from small methane sources given their low facility counts 750 

and high per-site emissions (Duren et al., 2019). Despite their omissions, total methane emissions from these sources 751 

are currently estimated to account for 5-10% (Alvarez et al., 2018; Riddick et al., 2024; Inventory of U.S. 752 

Greenhouse Gas Emissions and Sinks, 2024; Williams et al., 2021) of total oil/gas sectoral emissions. Our estimates 753 

also utilize empirically measured emission rates from ground-based sampling platforms which are limited in 754 

number, especially in the case of processing plants (n=20) and T&S compressor stations (n=50) (Table S2). The 755 

empirical data used in our analysis includes a smaller sample of super-emitting facilities relative to those captured 756 

by remote sensing platforms (Duren et al., 2019; Sherwin et al., 2024), but our use of production-normalized loss 757 

rates and lognormal distributions to estimate facility-level methane emission rates anticipates and accounts for the 758 

possibility of finding low-probability, high-magnitude emissions that occur at rates beyond those that appear in our 759 

dataset of empirical observations. For example, our highest empirical emission rate is 1,360 kg/hr for a T&S 760 

compressor station, whereas our maximum estimated facility-level emission rate across all 500 facility-level 761 

emission distribution curves averages 7,500 kg/hr (3,000 - 21,000 kg/hr). Finally, we include a small number (i.e., 762 

5% of total empirical data used in the model) of measurements for production well-sites gathered using ground-763 

based component/source-level sampling methods from two studies (Deighton et al., 2020; Riddick et al., 2019). All 764 

measurements from these two studies targeted the lowest production cohort of production well sites and exhibited 765 

statistically lower emission rates than those gathered using facility-level ground-based methods for the same well 766 

site production cohort, meaning that any bias introduced by the inclusion of these measurements would lead towards 767 

the underestimation of total emissions and/or the percentage contributions from low-emitting sources. Despite these 768 

limitations, we have shown that our results are broadly in agreement with satellite- and aerial-based remote sensing 769 

studies at national/basin/local scales, and other facility-level estimates. 770 

Going forward, several approaches can be used to better understand the percentage contributions from facilities 771 

emitting at different leak rate thresholds, and ultimately improve our understanding of oil/gas methane emissions in 772 

the CONUS and around the world. A combination of multiple satellite and aerial remote sensing approaches and 773 

synthesis of their data by bringing in point source detections at multiple thresholds at the same time characterizing 774 

total regional emissions as demonstrated using a compilation of multi-scale measurements seems a viable pathway 775 

towards building a more complete picture of the overall methane emissions. Combining aerial and satellite remote 776 
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sensing measurements with ground-based site/facility-level estimates presents itself as an effective next step, as 777 

implemented/suggested by prior studies (Allen, 2014; Alvarez et al., 2018).  Aerial or satellite remote sensing 778 

platforms focused on point source detection offer the ability to rapidly locate the small number of the highest 779 

emitting facilities that contribute a disproportionate fraction of emissions, offering valuable data on specific facility 780 

locations that allow for rapid mitigation. However, more direct observational approaches are needed to acquire total 781 

emissions data which according to this study is dominated by small-emitting sources that are undetected by high-782 

emitting point source detection systems. Facility-level population-based approaches can account for the lower-783 

emitting facilities that contribute the most total oil/gas methane emissions, which is needed for accurate emission 784 

reporting and understanding the contributions of total emissions above/below emission rate thresholds. The ground-785 

based estimates can be further constrained by large-area aggregated emission quantification provided by regional 786 

remote sensing or mass balance mapping approaches (Shen et al., 2022; Omara et al., 2024; Jacob et al., 2022) 787 

towards producing a more robust overall emission quantification.  788 

5 Conclusions 789 

 In conclusion, our work highlights several key aspects of oil/gas methane emission rate distribution curves 790 

in the CONUS for 2021, which include: 791 

1. A large majority (70%) of total national continental oil/gas methane emissions in the US originate from 792 

lower-emitting facilities (<100 kg/hr). 793 

2. Emission rate distributions vary among different oil/gas basins, but among the top nine producing basins 794 

we consistently find that most methane emissions (60%-86%) originate from oil/gas facilities emitting at 795 

rates <100 kg/hr. 796 

3. Production well sites were found to be responsible for 70% of regional oil/gas methane emissions, from 797 

which the sites that accounted for only 10% of national oil and gas production in 2021, disproportionately 798 

accounted for 67-90% of the total well site emissions. 799 

4. Our results were consistently found to be in close agreement with those from independent aerial/satellite 800 

remote sensing estimates, both in comparing contributions from discrete emission rate thresholds and 801 

continuous emissions distribution curves, which emphasize the importance of the large majority 802 

contribution of small-emitting methane sources to total oil/gas methane emissions. 803 

Our results highlight, and quantify, the significant contributions of the large number of low-emitting oil/gas 804 

facilities to total regional/basin/local oil/gas methane emissions in the CONUS for 2021. In addition to the CONUS, 805 

the small oil/gas methane sources are likely a significant component of total regional emissions in other countries as 806 

well as recent data suggest from Romania and Canada (Stavropoulou et al., 2023; Tyner and Johnson, 2021) and 807 

would need to be further investigated to build a comprehensive assessment of small-emitting methane emissions and 808 

their relative contributions to total oil/gas methane emissions globally. This work emphasizes the need for multi-809 
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scale approaches to quantify total regional oil/gas methane emissions; and at the same time characterize and account 810 

for the large contribution from small emission sources dispersed across a wide area, in addition to incorporating data 811 

on high-emitting point sources towards producing overall robust methane emission quantification. 812 
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