
Author response to reviewer comments 

Anonymous Reviewer #1 

This work uses emission factors from ~20 published studies across ~9 regions to estimate national 

methane emissions from active mid- and up-stream oil/gas production facilities for 2021. Using 

infrastructure inventories (Enverus, OGIM database), regional emission rates were modelled and 

validated with airborne surveys. 

The manuscript is well written and the subject is of suitable content for EGUsphere. The subject is timely 

as there is active discussion regarding how mitigation funding can most effectively be used to reduce 

fugitive emissions from O&G. The figures are well designed and informative. 

We thank the reviewer for the valuable comments and edits, and we hope the following responses address 

their concerns.  

All of the page references in the responses below reference the attached manuscript with tracked changes 

included. Text in “bold blue italics” references prior text from the manuscript, and text in “bold red 

italics” references new added text. 

 

I have two main hesitations that together question the novelty of this work and the contributions that it 

provides. First, the chosen methodology, which is complicated and I am not convinced contributes to the 

authors results, discussion, or conclusions (see general comment 1). Second, the close similarity of this 

work prior work from this group (see Omara et al. 2022; 2024) questions the novelty of this manuscript. 

Specifically, the aggregation of emission factors is already published in Omara et al. 2018, 2022, & 2024. 

Scaling from emission factors to national budgets using Enverus is repeated from Omara et al. 2022 & 

2024. Lastly, comparison of national/regional/basin-level emissions to airborne studies was previously 

done in Omara et al. 2022 & 2024.  

Our understanding is that the reviewer is suggesting that Conclusions 1 and 2 [Section 5 – page 25] in the 

paper can be reached solely from the empirical measurements and emission factors without any 

extrapolation/modeling of distributions, which we respectfully disagree with. 

Multiplying an average methane emission factor by the number of facilities can produce a rough estimate 

of total methane emissions, but is not a suitable approach for characterizing facility-level methane 

emission distributions, which must account for the stochasticity in facility-level methane emissions 

profiles and related uncertainties (for references that discuss this stochasticity: 

https://www.nature.com/articles/ncomms14012, https://pubs.acs.org/doi/full/10.1021/acs.est.6b04303, 

https://pubs.acs.org/doi/full/10.1021/acs.est.8b03535) Developing robust methods for characterizing such 

distributions at the basin- and national-scale is the focus of this work. While we do present estimates of 

total emissions estimates at the national/basin/aerial spatial scale, these are a by-product of our 

methodology and not the main findings, which are the detailed distributions of individual facility-level 

emission rate and the large majority contribution of total emissions linked to an aggregate of smaller 

emitting sources (i.e., the distributions presented in Figures 3, 5, and 6).      

If, for example, an EPA GHGI emission factor (e.g., average methane emission rate per facility) and the 

associated confidence bounds (e.g., standard deviation of the mean) are applied to each individual facility 

https://www.nature.com/articles/ncomms14012
https://pubs.acs.org/doi/full/10.1021/acs.est.6b04303
https://pubs.acs.org/doi/full/10.1021/acs.est.8b03535


to provide an independent emission rate, and this is repeated for all facilities in the CONUS, this 

simplified approach would not produce an accurate distribution of emission rates because a representative 

methane emission factor would still need to account for (i) facilities that may be non-emitting at any one 

time, (ii) the fact that different facility categories (including different production ranges of well sites) can 

emit at different rates at any one time, and (iii) the representativeness of facility-level empirical data (and 

inherent uncertainties in emissions quantification) when compared with the national population of 

facilities.  

For these reasons, we believe a probabilistic modeling approach that accounts for these factors (and 

others) is essential to assessing emissions distributions and underpins the novel findings we present in this 

work. Moreover, the conclusions in terms of the specific emission rate thresholds and the aggregate 

emissions below those and their relative fractions to the total emissions across the US oil and gas 

upstream and midstream sectors as well as over each individual oil/gas basin has not been produced 

before based on empirically derived measurement-based analysis, which this study presents as a major 

step forward in our understanding the dynamics of oil/gas emissions and their source contributions which 

have important policy implications for measurement and mitigation, as we have discussed throughout the 

manuscript. 

For the second comment mentioned by the reviewer regarding the methods in this work sharing 

similarities with previous studies (e.g. Omara et al. 2018,2022,2024), each of these previous studies had a 

different scope and presented different data outputs than our work. Our work differs from these previous 

studies by Omara et al. by i) estimating full methane emission distribution curves (i.e., not just total 

methane emissions) across multiple spatial scales ranging from the entire CONUS to the aerial remote 

sensing campaign survey regions, ii) presenting both the cumulative, and grouped, emission distribution 

curves for major oil/gas emitting facility categories, which allows for the clear distinction between 

emission distribution curves from different facility categories and a relative assessment of their total 

contributions to CONUS annual emissions, iii) presenting detailed comparisons to prior work (i.e., 

satellite and remote sensing studies) on the distribution of methane emissions across spatial scales and at 

different emission rate thresholds, which involved the additional analysis of data provided by other 

studies, and iv) a revised methodology that utilizes new ground-based facility-level measurement data and 

a separate approach for accounting for lit and unlit VIIRS flare detections. As we discuss in the Main 

Text, characterizing the full methane emissions distribution curves, that is, the contributions from 

individual facilities emitting below or above an emission rate threshold is crucially important for effective 

methane emissions mitigation. For example, any methane measurement platform with an established limit 

of detection and/or 90% probability of detection, could reference the emission distribution curves we 

present in our work, and determine a rough approximation of what percentage of total methane emissions 

their measurement method technique could capture. Our work represents the first comprehensive attempt 

to develop such an emissions distribution curve, using empirical measurements collected from ground-

based measurement methods and robust probabilistic models to characterize the facility-level distributions 

for the full US upstream and midstream oil and gas methane sources. As part of this work, we estimate 

emissions from major upstream and midstream oil and gas methane sources, including well sites, natural 

gas gathering and transmission compressor stations, natural gas processing plants, and emissions from 

natural gas flaring facilities, accounting for methane emissions from both the lit and unlit flares. 

● In order to improve the clarity of our methods, and to better illustrate differences between our 

methods/results and other studies, we have added the following text in the manuscript. 
● [page 6-7] “We calculate annual methane emissions from all facility categories (i.e., six 

production bins of production well sites, T&S compressor stations, G&B compressor stations, 

and processing plants, and VIIRS flare detections) using a multi-step probabilistic modeling 

approach adapted from multiple studies (Omara et al., 2018, 2022; Plant et al., 2022) (Fig. 2). 

Briefly, for each individual facility and VIIRS flare detection in the CONUS for 2021, we 



estimate an annually averaged methane emission rate using empirical measurement data, and 

consequently the cumulative distribution of methane emission rates from the aggregation of 

these individual emission rates. Each emission rate estimate is indexed according to the 

corresponding replicate (n=500), and we use these repetitions to determine uncertainty for the 

cumulative methane emission distribution curves. The detailed steps of this process for all 

facility categories and VIIRS flare detections are described below.” 

 

● Revised Figure 2 added: 

 

● “Figure 2: Flowchart describing the facility-level estimates, with steps colored according to the 

specific process and data being used. We note that methane emission rates for flares are 

calculated using a separate approach from that of production well sites and midstream 

facilities. Processing plants and T&S compressors are excluded from the determination of 

whether a facility is a top 5% emitter due to a lack of available empirical measurement data.”  

● New text added in the Methods concerning VIIRS flare detections  

● [pages 8-9] “For all VIIRS flares detections, we use the total reported volumes of gas flared for 

2021 from flares detected using the VIIRS instrument (Elvidge et al. 2016) multiplied by the 

observed flare destruction efficiencies and percentage of unlit flares from Plant et al. (2022) to 

calculate annual methane emission rates from this source.  As previously stated, our empirical 

measurements are largely located outside of oil/gas basins where the majority of VIIRS flare 

detections are located (i.e. Permian, Eagle Ford, and Bakken), but we cannot discount the 

possibility that there are instances of double-counting flares measured via our ground-based 



empirical data and those detected by VIIRS. For each VIIRS flare detection, we randomly 

determine whether it is an unlit or lit flare based on the basin-specific percentages of unlit 

flares reported by Plant et al. (2022). If a flare is determined to be lit, we use the corresponding 

basin-specific observed destruction removal efficiencies as reported by Plant et al. (2022) 

multiplied by the corresponding annual total volume of gas flared and convert to an emission 

rate. The basin-specific observed destruction removal efficiencies are estimated through a fitted 

normal distribution using the mean and standard deviations modeled from the 95% confidence 

intervals presented in Plant et al. (2022). If a flare is determined to be unlit, we use a 

destruction removal efficiency of 0%. For VIIRS flare detections located outside of the Bakken, 

Eagle Ford, and Permian basins, we used the total CONUS averaged flaring efficiencies 

destruction removal efficiencies of 95.2% (95% confidence interval: 94.3 – 95.9%) and 

percentage of unlit flares of 4.1% as reported by Plant et al. (2022).” 

 

 

 

 

 

 
 

 

General Comments: 

1) Methodology: What is the benefit of using a bootstrapping approach? Is the bootstrapping solely to 

provide confidence intervals, or is there an additional benefit? 

The bootstrapping in this work is used for developing a probability distribution of a given facility 

emitting below the method LOD (i.e., 0.1 kg/hr), or being a top 5% emitter (in some cases). It is one of 

several ways in which we incorporate different facets of uncertainty into the estimates. The benefit of 

utilizing a bootstrapping approach is to include uncertainty associated with the chance of a facility being 

above/below the method LOD and a top 5% within the modeled outputs, which is then reflected in the 

estimated emission rate distributions. We would also point to a previous response regarding the 

stochasticity of facility-level emission rates for oil/gas facilities. 

● [Previous response] “Multiplying an average methane emission factor by the number of facilities 

can produce a rough estimate of total methane emissions, but is not a suitable approach for 

characterizing facility-level methane emission distributions, which must account for the 

stochasticity in facility-level methane emissions profiles and related uncertainties (for references 

that discuss this stochasticity: https://www.nature.com/articles/ncomms14012, 

https://pubs.acs.org/doi/full/10.1021/acs.est.6b04303, 

https://pubs.acs.org/doi/full/10.1021/acs.est.8b03535) Developing robust methods for 

characterizing such distributions at the basin- and national-scale is the focus of this work. While 

we do present estimates of total emissions estimates at the national/basin/aerial spatial scale, these 

are a by-product of our methodology and not the main findings, which are the detailed 

distributions of individual facility-level emission rate and the large majority contribution of total 

emissions linked to an aggregate of smaller emitting sources (i.e., the distributions presented in 

Figures 3, 5, and 6).” 

https://www.nature.com/articles/ncomms14012
https://pubs.acs.org/doi/full/10.1021/acs.est.6b04303
https://pubs.acs.org/doi/full/10.1021/acs.est.8b03535


 

● We have added some new text in the Methods that describes some of the reasoning behind these 

methods. 

o [page 8] “Next, we remove the empirical measurements below the LOD and use bootstrapping 

with replacement (n=1,000) on the above LOD empirical measurements to determine the 

probability of an emitting facility being in the top 5% (i.e., 95th percentile or above of empirical 

measurement data) or bottom 95% (i.e., 95th percentile or below the empirical measurement 

data) of emitters, except for processing plants and T&S compressors which had too few 

measurements (n=20 and n=50 respectively) to distinguish between the top 5% and bottom 95% 

of emission or loss rates. This pseudo-random selection of a top 5% emitter within each facility 

category accounts for the functional definition of abnormally large emissions (i.e., super-

emitters) that can be observed in all facility categories (including well sites in different 

production bins) (Zavala-Araiza et al. 2015, Brandt et al. 2016).” 

My criticism is that many of the same results and conclusions are achieved without this analysis or less 

complex approach. Conclusions 1 and 2 can be drawn solely from the prior EF distributions. Conclusions 

3 and 4 require knowing the number of facility types and production rates (taken from Enverus, OGIM 

database) but also do not require the monte carlo bootstrapping. Same critique for sections 3.1, 3.2, and 

3.3. 

We have included the following response as an expansion to an earlier comment by the reviewer below 

which we believe addresses the main concerns: 

 

● Multiplying an emission factor by the number of facilities would not be able to provide individual 

facility-level emissions, which is our focus, but rather an aggregated total of emissions without 

any information on how much methane is being emitted above/below a given emission rate 

threshold. While we do present estimates of total emissions estimates at the national/basin/aerial 

spatial scale, these are a by-product of our methodology and not the main findings, which are the 

detailed distributions of individual facility-level emission rate (i.e., the distributions presented in 

Figures 3, 5, and 6). 

 
If an emission factor (i.e., average emission rate) and the associated parameters (i.e., standard 

deviation of the mean) are applied to each individual facility to provide an independent emission 

rate, and this is repeated for all facilities in the CONUS which are then combined together, then 

this would form the base of our methodology. However, this approach would not produce an 

accurate distribution of emission rates because the emission factor would still need to account for 

facilities that are non-emitting, the fact that different facility categories (including different 

production ranges of well sites) emit at different rates, that the available empirical measurement 

data for well sites does not share the same production characteristics as the entire CONUS,  and 

that the measurements used to derive this emission factor have inherent uncertainties. After 

accounting for these factors (and others) we begin to reconstruct the methodology used in our 

work, which we believe is essential to produce the findings we present. 
 

 

As an example, the main conclusion of the authors (Conclusion 1, L712) is that 72% (70% as stated in 

abstract, L22) of total emissions are from facilities that emit less than 100 kg/hr.  This is in fact buried in 

the last table of the supplement, which states the prior emission distribution and shows that 72.7% 

emissions facilities are from these “small” emitters. The posterior is unchanged from the prior, which is 

good since MC bootstrapping in this approach shouldn’t change the center value. 



In this instance, the table that is being referenced (Table S5) represents the posterior (i.e. the estimated 

individual facility-level emission rates), not the empirical data (i.e., the “prior”). The table's purpose is to 

easily highlight the information presented in Figure 3 in terms of different emission rate magnitudes and 

their associated contributions to total oil/gas emissions.  

● We edited the caption of Table S5 for better clarity in SI to highlight that it is showing the 

resulting estimated emissions and does not represent the empirical measurement data, and have 

also moved the table to the front of the SI Tables. 
o “Table S1: Breakdown of total oil/gas methane emission for the CONUS in 2021 contributed 

from different magnitudes of methane emission rates with the corresponding percentage of total 

facilities responsible for those emissions. These results show a breakdown of the emission 

distributions curves presented in Figure 3 of the main text.” 

 

A MC bootstrapping technique may be more interesting if applied to randomly select which EF studies to 

include. For example, if 6 of the 11 studies of facility category “Well Sites” listed in Table S1 were 

randomly selected for each simulation, then we might assess dependence based on regional dependence of 

studies, sampling/analytical methodology, etc. Indeed, regional differences are maybe observed, e.g. loss 

rates of 0.90% for Appalachian and Greater Green River regions (Omara et al, 2018) compared to  >4.5% 

for San Joaquin and San Juan regions, but the variance within the regional populations precludes saying 

these loss rates are different (based on a Tukey test). Could the Tukey test be run on the log10 (loss %), 

given that these appear to be lognormally distributed in Figure 1? 

We agree with the reviewer that this would be an interesting sensitivity analysis to perform, so we 

conducted two additional tests (shown in the responses below). The tests examine the impacts of 1) 

Reducing the number of empirical measurement data to be used in the estimates and 2) Eliminating data 

from a given oil/gas basin/region (well sites only given limited data on regions for midstream assets. In 

order, the sensitivity tests show 1) reducing the number of empirical measurements only increases 

uncertainty bounds but does not affect the overall emission distributions or total emissions estimates 2) 

excluding data from certain regions does not generally impact our results for emission distributions or 

total emissions, even for the Appalachian where the majority of our empirical measurement data are 

located, with the analysis performed on all 9 basins varying the emission distributions by +/-3-4% and our 

total estimates by +/-6-7%, which is well within our stated uncertainty bounds.  

We have since removed the Tukey tests due to this new suggested sensitivity analysis related to the 

impacts of excluding empirical measurement data from given oil/gas basins. We believe this revised 

approach better characterizes the uncertainties related to the spatial distribution of measurement data we 

use in our estimates, since it also includes additional factors such as the relative counts of facilities, 

differences in oil/gas production, and the number of empirical data available from each region.  

● The Tukey test figures have been replaced with a new Figure S9 displaying the resulting 

changes in total methane emission distribution curves (A) and total methane emissions 

for the CONUS (B): 



 

o “Figure S9: A) Sensitivity analysis of the effects of excluding empirical measurements 

from a single basin showing the impacts on oil/gas methane emission distributions for 

the CONUS. 25 emission distribution curves are presented for each basin (colored 

lines) exclusion scenario with comparisons to the entire dataset of empirical data 

(black lines). B) Sensitivity analysis of the effects of excluding empirical measurements 

from a single basin showing the impacts on total oil/gas methane emission estimates 

for the CONUS. Each box and whisker plot contains 25 estimates of total methane 

emissions colored according to the oil and gas basin from which empirical 

measurements were excluded. The black boxplot with red outlines shows the baseline 

scenario, which has no empirical measurement data removed.” 

 

● New text has been added in the Discussion section: 
o [page 28] “In addition, there are variations in the number of production well site 

empirical measurements among oil/gas basins (Table S3), although a sensitivity 

analysis shows that excluding data from individual oil/gas basins does not significantly 

impact our results (Fig. S9).” 
 
 
 
 

 

 

 

 

 

 

 

 



● Below is a figure illustrating the effects of reducing the sample size of empirical 

measurement data on total methane emission estimates for the CONUS. 25 iterations are 

performed for each barplot. “Baseline” refers to the full suite of empirical measurements 

as we use in our manuscript. Note that we see increased variation in results from a 50% 

reduction of measurement data relative to our baseline, with no significant change in the 

average total methane emissions 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

● Below is a figure illustrating the effects of reducing the sample size of empirical 

measurement data on methane emission distributions for the CONUS. 25 iterations are 

performed for each emission distributions. “Baseline” refers to the full suite of empirical 

measurements as we use in our manuscript. Note that we see increased variation in results 

from a 50% reduction of measurement data relative to our baseline, with no significant 

change in the overall emission distributions 

 

 

2) What is the 95% CI for the total national CH4 emissions?                                                                    

The 95% confidence intervals for national CH4 emissions are 14.6 (12.7 - 16.8) Tg/yr. We have added 

these uncertainty ranges in the abstract. 

3) Data Availability: Data should be made available in a publically accessible, reliable repository and 

linked, preferably, through a DOI per EGUsphere instructions.                                                                 

We agree with the reviewer and are making all the data publicly accessible used for the emission 

distribution curves presented in Figure 3 (~350,000 rows by 500 columns) with coordinate/facility 

type/basin level data removed due to data sharing restrictions based on our activity data (i.e., Enverus).   

These data are now available for download at Zenodo (link: https://doi.org/10.5281/zenodo.13314532), 

which now referenced in the Data Availability section. 

Ideally, I would also prefer to see a table or reference section in the supplementary that has direct links, 

references, etc to the data from other studies used in this manuscript. This would be the data references in 

Table S1, plus Lan et al. 2015.                                                                                                                      

https://doi.org/10.5281/zenodo.13314532


We have added this information to Table S1 (i.e. links in SI Table S1), including Lan et al. (2015) which 

was left out due to a clerical mistake and Goetz et al. (2015). 

 

 

Specific Comments: 

Would be useful to state what the LOD of Bridger GML is here. 

We have included references to the Bridger LOD stated by Kunkel et al. 2023 in this section (i.e., 3 

kg/hr). 

 
“1,898 facility-level…” I am a bit confused since Table S1 only sums to 1866 observations. 

We thank the reviewer for bringing this to our attention, we neglected to include the Lan et al. (2015) and 

new Goetz et al. (2015) measurements in this total. This has been fixed in Table S1.  

 
“high-emitting intermittent are included” à “high-emitting intermittent sources are included” 

Text has been corrected. 

 

There appears to be a linearly decreasing relationship between the loss % and production rates for well-

sites (facility category 5-9). Is this real? Is there a reason to include this in the facility-level model? 

Yes, the measurements being shown in this figure are the empirical measurement data we use in our 

work. This decreasing relationship between production and production-normalized loss rates exists and 

has been shown/used in prior studies (e.g., Omara et al. 2018). However, the relationship between 

production and loss rates is weak (i.e., visible in a log/log plot), but useful for better constraining the 

extrapolation of emission rates to the full population of well sites in CONUS. A more detailed 

explanation of this relationship is explained in Cardoso-Saldana et al. (2020) (link: 

https://pubs.acs.org/doi/pdf/10.1021/acs.est.0c03049), but to briefly summarize: emissions from high-

producing wells are a combination of production-independent leaks (i.e., fugitive emissions from leaks 

from pipes, flanges, etc) and production-dependent emissions (i.e., condensate flashing). As the 

production of a well drops exponentially over time, the associated emissions from production-dependent 

leaks also drop, whereas the production-independent emissions persist.  We utilize this empirically 

observed relationship between facility level methane loss rate and production to constrain emission 

estimates for specific production cohorts, where, in general, loss rates are lower for higher producing 

facilities, and vice versa. This is an important component of our model as the distribution of well site 

productivity varies across basins.       
 

 

 
“… gas flared for 2021 by Elvidge et al. (2016)… efficiencies from Plant et al. (2022)” Are these the 

correct references? It seems unlikely that Elvidge et al (2016) published gas flaring for 2021. 

We thank the reviewer for pointing out this mistake. We have re-written the section to clarify that the 

Elvidge et al. (2016) reference is meant to provide background on the VIIRS detection instrument and is 

not being used to draw in actual gas flared values. 

 

“…production well sites that we use in this work generally do not show significant…” à “… basin-to-

basin, production well sites in …” 

Corrections made 

 

https://pubs.acs.org/doi/pdf/10.1021/acs.est.0c03049


“… Ravikumar et al. (2019) From …” à “…Ravikumar et al. (2019). From…” 

Corrections made 

 

What do the error bars represent? 95% CI? 

Yes, these bars all represent the associated 95% confidence intervals. We have added new clarifying text 

in the Figure 4 description. 

 

“our results show the essentiality of expanding beyond solely on super-emitter mitigation”. Some sort of 

grammatical correction needed. 

Agreed, corrections made. 

 
It would be nice to provide the sample size of these studies. 

Agreed, we have included sample sizes for these studies in other countries. 

 
Appears to be missing a reference to Lan et el. 2015.                                                                                

Lan et al. 2015 reference added, and number of measured facilities corrected throughout manuscript. 

There are several other references used by Omara 2018 not included in this study. (Goetz et al 2015, ERG 

2018). 

 

With regards to Goetz et al. 2015, we have since included these data into our dataset of empirical 

measurement data. The addition of these data (n=3) do not change our results and main findings in any 

significant way.  

 

We only know of the ERG 2011 study, but we would be happy to investigate a more recent component-

level study if another exists. For the ERG 2011 dataset, we decided to exclude it given that it is an older 

dataset (10+ years) and a compilation of component-level measurements, which we acknowledge in our 

work may underestimate total facility-level emissions given that there is no guarantee that all emitting 

components were measured. While we do include some component-level aggregation studies in our work, 

both of those studies (Riddick et al. 2019, Deighton et al. 2020) provide measurements within the past 10 

years. However, we did perform a sensitivity analysis on the effects of including versus excluding the 

ERG 2011 data and found no change in our model results for both total emissions and the emissions 

distributions (see below).   

 

● Comparison of total CONUS oil/gas methane emissions when including/excluding ERG 

2011 empirical data for 25 estimates each. 

 

 



 
 
 
 
 
 
 
 
 
 
 
 

● Comparison of emission distribution curves for total CONUS oil/gas methane emissions when 

including (red)/excluding(black) ERG 2011 values for 25 emission distribution curves each. 

 



 
 
 
 

The total number of well sites for the Barnett basin is 32 wells less than the sum of the bins. I assume this 

is the 32 wells measured by Lan et al. (2015) that was not included in Table S1. 

That is correct, this was a clerical error on our part. The mistake has been corrected to include the 32 

wells from Lan et al. (2015), in addition to the new 3 measurements from Goetz et al. (2015) as 

previously suggested by the reviewer. 

 

 

 

 

 

 

 

 

 


