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Abstract. Eulerian and Lagrangian numerical moisture tracking models, which are primarily used to quantify moisture 20 

contributions from global sources to specific regions, play a crucial role in hydrology and (paleo)climatology studies on the 

Tibetan Plateau (TP). Despite their widespread applications on the TP, potential discrepancies in their moisture tracking 

results and their underlying causes remain unexplored. In this study, we compare the most widely used Eulerian and 

Lagrangian moisture tracking models over the TP, i.e., WAM-2layers and FLEXPART-WaterSip, specifically focusing on 

an Indian Summer Monsoon (ISM)-dominated basin (Yarlung Zangbo River Basin, YB) and a westerlies-dominated basin 25 

(upper Tarim River Basin, UTB). Compared to the bias-corrected FLEXPART-WaterSip, WAM-2layers model generally 

estimates higher moisture contributions from westerlies-dominated and distant sources but lower contributions from local 

recycling and nearby sources downwind of the westerlies. These differences become smallerdiscrepancies can be mitigated 

with higher spatial and temporal by increasing the spatial-temporal resolutions of forcing data in WAM-2layers. A notable 

advantage of WAM-2layers over FLEXPART-WaterSip is its closer alignment of estimated moisture sources with actual 30 

evaporation, particularly in source regions with complex land–sea distributions. However, the evaporation biases in 

FLEXPART-WaterSip can be partly corrected through calibration with actual surface fluxes. For moisture tracking over the 

TP, we recommend using high-resolution forcing datasets, prioritizing temporal resolution over spatial resolution,  with a 

focus on temporal resolution for WAM-2layers;, while for FLEXPART-WaterSip, we suggest applying bias corrections to 

optimize the filter for precipitation particles and adjust evaporation estimates.  35 
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1 Introduction 

Moisture tracking through numerical models play a pivotal role in advancing our quantitative understanding of the global and 

regional atmospheric water cycle, and is crucial for a variety of applications in meteorology, hydrology, and climate science 

(Gimeno et al., 2012; Gimeno et al., 2020). The Tibetan Plateau (TP) region, often referred to as the “Asia water tower”, 

encompasses the world’s highest plateau and has been experiencing a rapid retreat of glaciers and permafrost, accompanied 40 

by shifts in precipitation patterns and a pronounced warming trend in recent decades (Yao et al., 2018; Yao et al., 2022). 

Numerous research efforts based on meteorological analyses and climate proxy indicators (e.g., precipitation and ice-core 

isotopes) have comprehensively investigated the hydrologic cycle in this region (Yao et al., 2013; Yang et al., 2014; Liu et al., 

2020b). Recent advancements in numerical moisture tracking models have further facilitated the quantitative diagnosis of 

moisture source–receptor relationships across the TP region (Chen et al., 2012; Zhang et al., 2017; Li et al., 2022a). In recent 45 

years, numerical moisture tracking has been widely used to analyze precipitation and water resource changes over the TP (Li 

et al., 2019; Ayantobo et al., 2022; Zhang et al., 2023b), interpret the characteristics of TP’s climate proxy indicators (Shao et 

al., 2021; Li et al., 2022b; Wang et al., 2022), and investigate the impacts of TP’s climatic conditions on downstream areas 

(Zhang et al., 2023a). 

 50 

Table 1 summarizes the numerical moisture tracking studies over the TP for the past twenty years; the utilized models can be 

broadly classified into two categories: Eulerian and Lagrangian models. The Eulerian moisture tracking approach typically 

employs a fixed spatial grid system and primarily focuses on averaged physical quantities with predefined grid spacings, while 

Lagrangian models uses a particle tracking approach to infer the movement of moisture through diagnosing source–receptor 

relationships. Among these models, the Water Accounting Model-2layers (WAM-2layers) and the FLEXible PARTicle 55 

dispersion model (FLEXPART) coupled with the “WaterSip” moisture source diagnostic method (FLEXPART-WaterSip) are 

the most widely use Eulerian and Lagrangian moisture tracking models, respectively. As suggested in Table 1, existing studies 

mainly used either Eulerian or Lagrangian moisture tracking models driven by very diverse forcing datasets, meanwhile 

covering various study periods and regions across the TP. This diversity largely hinders the quantitative comparison of 

moisture tracking results from different models and the attribution of their discrepancies. Nevertheless, two general patterns 60 

can be observed through a quantitative comparison of the long-term moisture tracking results in these studies. First, moisture 

sources tracked by Eulerian models tend to cover a large part of the western Eurasian continent and can stretch  southward to 

the southern Indian Ocean (Zhang et al., 2017; Li et al., 2019; Li et al., 2022a; Zhang et al., 2024). In contrast, moisture sources 

tracked by Lagrangian models predominantly extend southward (Chen et al., 2012; Sun and Wang, 2014; Chen et al., 2019; 

Yang et al., 2020), with broader westward extensions observed in the moisture tracking for the westernmost TP and Xinjiang 65 

region (Zhou et al., 2019; Liu et al., 2020a; Yao et al., 2020; Hu et al., 2021). Second, areas with higher evaporation rates, 

such as the ocean surface, in general contribute more moisture compared to surrounding land areas. While the moisture sources 

simulated by Eulerian models aligns well with the land–sea distribution (Zhang et al., 2017; Li et al., 2019; Li et al., 2022a; 
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Zhang et al., 2024), this alignment is less pronounced for Lagrangian models (Chen et al., 2012; Sun and Wang, 2014; Chen 

et al., 2019; Zhou et al., 2019; Liu et al., 2020a; Yang et al., 2020; Yao et al., 2020; Hu et al., 2021). In this context, we 70 

speculate that different moisture tracking methods (both Eulerian and Lagrangian ones) may involve certain unrecognized 

uncertainties or errors when applied to the TP region. This underscores the pressing need for further exploration to examine 

the discrepancies among these models to better characterize the complex hydrological processes of the TP. 

 
Table 1: A Overviewnon-exhaustive overview  of moisture tracking studies with Eulerian and Lagrangian models in the TP and its 75 

vicinity. Note that extensive studies on water isotopes in the TP with moisture tracking simulations are not included here. “E and 

P” means the model diagnoses evaporation and precipitation separately, while “E – P” means the model diagnoses contributions 

through water budget (i.e., evaporation minus precipitation). 

 Model 
Moisture source 

diagnosis 
Study area 

Forcing 

dataset 
Study period Reference 

E
u

le
ri

an
 

WAM-1layer E and P Central-western TP ERA-I, NCEP-2 1979–2013 Zhang et al. (2017) 

WAM-2layers E and P Endorheic TP 
ERA-I, MERRA-
2, JRA-55 

1979–2015 Li et al. (2019) 

WAM-2layers E and P Southern/northern TP ERA-I 1979–2016 Zhang et al. (2019a) 

WAM-2layers E and P TP ERA-I 1979–2015 Guo et al. (2019) 

WAM-2layers E and P TP ERA-I 1998–2018 Zhang (2020) 

WAM-2layers E and P TP ERA-I, MetUM 1982–2012 Guo et al. (2020) 

WAM-2layers E and P Major basins in TP 
ERA-I, MERRA-

2, JRA-55 
1979–2015 Li et al. (2022a) 

WAM-2layers E and P 
TP (forward tracking 
oceanic evaporation) 

ERA-I, MERRA-
2, JRA-55 

1979–2015 Li et al. (2022b) 

WAM-2layers E and P 
TP (forward tracking 
TP evaporation) 

ERA5 2000–2020 Zhang et al. (2023a) 

WAM-2layers E and P 
Five typical cells in 

the TP 
ERA5 2011–2020 Zhang et al. (2024) 

CAM5.1 with a 

tagging method  
E and P Southern/northern TP MERRA 1982–2014 Pan et al. (2018) 

L
ag

ra
n

g
ia

n
 

FLEXPART E – P TP NCEP-GFS 2005–2009 (summer) Chen et al. (2012) 

FLEXPART 
Areal source–receptor 

attribution 

Grassland on eastern 

TP 
NCEP-CFSR 2000–2009 Sun and Wang (2014) 

FLEXPART WaterSip 
Four regions within 
TP 

ERA-I 
1979–2018 (May–
August) 

Chen et al. (2019) 

FLEXPART 
Areal source–receptor 

attribution 
Xinjiang NCEP-FNL 

2008–2015 (April–

September) 
Zhou et al. (2019) 

FLEXPART WaterSip Southeastern TP ERA-I 
1980–2016 (June–

September) 
Yang et al. (2020) 

FLEXPART WaterSip Xinjiang NCEP-CFSR 1979–2018 Yao et al. (2020) 

FLEXPART WaterSip 
Northern/Southern 

Xinjiang 
NCEP-CFSR 1979–2018 Hu et al. (2021) 

FLEXPART 
Areal source–receptor 

attribution 

Source region of 

Yellow River 
NCEP-FNL 1979–2009 Liu et al. (2021) 

FLEXPART WaterSip Xinjiang NCEP-CFSR 
1979–2018 (April–
September) 

Yao et al. (2021) 

FLEXPART E – P 
Three-rivers 

headwater region 
ERA-I 

1980–2017 (boreal 

summer) 
Zhao et al. (2021) 

FLEXPART E – P 
Three-rivers source 

region 
NCEP-FNL 1989–2019 Liu et al. (2022) 

FLEXPART WaterSip 
Three-rivers 
headwater region 

ERA-I 1980–2017 Zhao et al. (2023) 
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HYSPLIT WaterSip 
Three-rivers 

headwater region 
NNR1 

1960–2017 (June–

September) 
Zhang et al. (2019b) 

HYSPLIT E – P Western TP ERA-I 1979–2018 (winter) Liu et al. (2020a) 

HYSPLIT 
Maximum specific 
humidity 

Seven regions within 
TP 

NCEP/NCAR 
1961–2015 (summer 
extreme event) 

Ma et al. (2020) 

HYSPLIT 
Contribution function 

and weighting 
TP NCEP-GDAS 

1950–2015 (extreme 

precipitation events) 
Ayantobo et al. (2022) 

HYSPLIT WaterSip Southern Xinjiang ERA5 2021(June 15–17) Chen et al. (2022) 

LAGRANTO WaterSip Southeastern TP ERA-I 
1979–2016 (winter 
extreme precipitation) 

Huang et al. (2018) 

LAGRANTO WaterSip 
Three regions within 

TP 
ERA-I 

1979–2016 (winter 

extreme precipitation) 
Qiu et al. (2019) 

LAGRANTO WaterSip Northern TP ERA-I 
2010–2018 (monsoon 

season) 
Wang et al. (2023) 

QIBT E and P Southeastern TP ERA-I 
1982–2011 (April–

September) 
Xu and Gao (2019) 

 

It is noteworthy that several studies have employed both Eulerian and Lagrangian models to diagnose moisture sources and 80 

perform comparative analyses in other regions. For example, a comparison among RCM-tag (coupled with MM5), WAM, and 

3D-T (a modification of QIBT) models in West Africa revealed that the number of vertical layers and the mixing assumption 

for evaporation significantly influence simulations, especially in regions with strong wind shear (van der Ent et al., 2013). 

Another comparison between Eulerian and Lagrangian approaches (implemented in the COSMO model) in Europe found that 

the linkage of moisture uptakes in the atmospheric boundary layer to evaporation in the Lagrangian approach is mostly 85 

consistent with the advanced Eulerian model (Winschall et al., 2014). Tuinenburg and Staal (2020) compared a set of moisture 

tracking models for 7 source locations globally and concluded that the three-dimensional Lagrangian models were most 

accurate and suitable for areas with relatively complex terrain, as they can better track moisture with strong vertical variability 

in horizontal transport. Using the Eulerian WRF-WVT model as a benchmark for moisture tracking over the Mediterranean 

region, Cloux et al. (2021) considered the Lagrangian FLEXPART-WRF model more appropriate for a qualitative description 90 

of moisture origin rather than a precise estimation of source contributions. These comparative studies emphasize that the most 

suitable moisture tracking model depends on the specific case, including but not limited to the research question, spatial extent, 

and computing resource available. Despite these existing efforts, it remains unclear whether their conclusions are applicable 

to moisture tracking over the TP, especially concerning the most widely used models in the region. Moreover, the studies on 

the generation mechanisms of model uncertainties through moisture tracking intercomparison is still lacking.  95 

 

The overall objective of this study is to investigate potential errors/uncertainties in numerical moisture tracking models and 

the underlying mechanisms of their discrepancies over the TP. This is achieved through a comparison between the most 

commonly used Eulerian and Lagrangian models in the region, specifically WAM-2layers and FLEXPART-WaterSip. Given 

that the TP’s climate is mainly influenced by the interactions between the Indian Summer Monsoon (ISM) and mid-latitude 100 

westerlies, we selected two representative basins for our comparative analysis: the ISM-dominated Yarlung Zangbo River 

Basin (YB) and the westerlies-dominated upper Tarim River Basin (UTB) (Fig. S1 in the Supplement). Section 2 describes 

the mechanisms, forcing data, and numerical settings for both moisture tracking models. Section 3 provides a comprehensive 
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comparison of the moisture tracking results for both basins. Section 4 delves into the intermediate processes of moisture 

tracking in the two models: moisture fluxes in WAM-2layers and particle trajectories in FLEXPART. To further illustrate the 105 

differences between these two models, Section 5 examines the relationship between the simulated moisture contributions and 

actual evaporation from various source regions. Section 6 introduces a two-step bias correction method for FLEXPART-

WaterSip simulations based on a comparison between actual and simulated surface fluxes. Section 7 further investigates the 

potential determinants of the observed discrepancies between the two approaches through a series of carefully designed 

numerical experiments.  110 

2 Eulerian and Lagrangian approaches for moisture tracking: WAM-2layers and FLEXPART-WaterSip models 

In this study, the WAM-2layers V3.0.0b5 is adopted for Eulerian moisture tracking. This two-layers version, designed to deal 

with wind shear in the upper air, is an update to the earlier single-layer version (van der Ent et al., 2010). As illustrated in the 

conceptual diagram (Fig. 1a), the underlying principle of WAM-2layers is the water balance equation (van der Ent et al., 2014), 

which in the lower layer is given by: 115 

𝜕𝑆𝑔,𝑙𝑜𝑤𝑒𝑟

𝜕𝑡
= −

𝜕(𝑆𝑔,𝑙𝑜𝑤𝑒𝑟𝑢)

𝜕𝑥
−

𝜕(𝑆𝑔,𝑙𝑜𝑤𝑒𝑟𝑣)

𝜕𝑦
+ 𝐸𝑔 − 𝑃𝑔 ± 𝐹𝑣,𝑔       (1) 

where subscript 𝑔 denotes the tagged moisture; 𝑆 is the moisture content in the atmosphere; 𝑡 is time; 𝑢 and 𝑣 are the zonal (𝑥) 

and meridional (𝑦) wind fields, respectively; 𝐸 is evaporation (which only occurs in the bottom layer); 𝑃 is precipitation; and 

𝐹𝑣 is the vertical moisture transport between the two layers. The model prescribes a two-layer structure, typically dividing at 

approximately 810 hPa with a standard surface pressure. Modifications to 𝐹𝑣  (4𝐹𝑣  in the net flux direction and 3𝐹𝑣  in the 120 

opposite direction) are implemented to account for turbulent moisture exchange. Note that the division between two layers 

varies with topography, which decreases to ~520 hPa over the TP (~4000 m). 
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Figure 1: Mechanisms of (a) WAM-2layers and (b) FLEXPART-WaterSip models. “Step two” in (b) is adapted from Sodemann et 125 

al. (2008). 

 

The Lagrangian particle trajectory simulation in this study is conducted using FLEXPART V10.4, a versatile model widely 

employed to simulate the transport and turbulent mixing of gases and aerosols in the atmosphere (Pisso et al., 2019). 

FLEXPART can operates in domain-filling mode to represent the entire atmosphere using uniformly distributed particles with 130 

equal mass. It is independent of a computational grid, which enables effective descriptions of atmospheric transport at a 

theoretically infinitesimal spatial resolution. For this study, five million particles were released across the entire tracking 

domainat altitudes ranging from 100 m to 20,000 m across the entire target region. The outputs from FLEXPART 

include detailed three-dimensional position, topography height, potential vorticity, specific humidity, air density, temperature, 

mass, and planetary boundary layer height (BLH) of each particle/parcel at 6-hourly intervals (Fig. 1b). Similar to other 135 
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Lagrangian models such as HYSPLIT (Stein et al., 2016) and Lagranto (Sprenger and Wernli, 2015), FLEXPART on its own 

does not identify potential moisture sources for precipitation in the target region nor quantify their contributions. To address 

this limitation, we adopted the “WaterSip” method proposed by Sodemann et al. (2008). This method identifiesy moisture 

sources using humidity information along particle trajectories simulated by FLEXPART, which involves key processes such 

as filtering trajectories that lead to precipitation, calculating specific humidity changes and their attributed fractions, and 140 

determining potential moisture sources based on moisture uptake thresholds and BLH (Fig. 1b). A more detailed description 

of this method can be found in Sodemann et al. (2008). Default screening thresholds in this study are set at 0.2 g kg–1 for 

specific humidity change, 80% for relative humidity, and 1.5 times the BLH for particle height, although adjustments were 

made for sensitivity experiments detailed in Sections 6 and 7. In summary, the FLEXPART-WaterSip approach adopted here 

integrates the particle trajectory simulated by FLEXPART with the moisture source–receptor diagnostics of WaterSip. 145 

 

Both WAM-2layers and FLEXPART-WaterSip operate as offline models that rely on meteorological fields as forcing inputs. 

Here we used the fifth-generation atmospheric reanalysis product from the European Centre for Medium-Range Weather 

Forecasts (ERA5) as the forcing dataset, which benefits from decades of advancements in data assimilation, core dynamics, 

and model physics (Hersbach et al., 2020). The moisture tracking simulations specifically target July 2022, a month 150 

significantly influenced by the ISM in the TP region (Yao et al., 2013; Curio and Scherer, 2016). The moisture tracking domain 

spans from 30°S to 80°N and from 40°W to 140°E, covering nearly all potential oceanic and terrestrial source regions of 

precipitation over TP (Chen et al., 2012; Li et al., 2022a). In the simulations, the two representative basins are represented with 

gridded boundaries as shown in Fig. S1 in the Supplement. Considering the number of particles released, data size, and 

computational resources needed, both models are driven by 1°×1° and 3-hourly ERA5 data, although some specific variables 155 

used in the two models are different due to their distinct physical mechanisms. 

 

In WAM-2layers, tagged moisture is continuously released into Eulerian grids and tracked as it progressively accumulates and 

diffuses across grids over time. The tagged moisture was released throughout the entire July (from 31-July to 1-July in 

backward mode), with the backward tracking period extending back to 1 June. A previous study in the TP region demonstrated 160 

that a ~30-day tracking period can ensure that approximately 95% of the tagged moisture returns to the ground (Zhang et al., 

2017), which is consistent with our numerical experiments in the YB and UTB (Fig. 2a). In comparison, FLEXPART-WaterSip 

model tracks atmospheric particles released at each step independently, thereby avoiding interference between particles 

released at different times. This differs from WAM-2layers, which ensures that in FLEXPART-WaterSip moisture released at 

various times does not converge into the same set of Eulerian grids. Typically, the average residence time of moisture in the 165 

atmosphere (~10 days) is used as the tracking period for a single particle release in FLEXPART-WaterSip. To align the tracking 

duration and maximize the tracking of tagged moisture in both models (Fig. 2), the backward tracking time in FLEXPART-

WaterSip was extended to 30 days. For FLEXPART-WaterSip, although large deviations in actual air parcel movements may 

occur beyond the average 10-day residence time, the associated uncertainties in trajectories beyond this period are unlikely to 
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substantially impact the results, as the majority of moisture uptake occurs within the first 10 days (Sodemann et al., 2008). Our 170 

numerical experiments, as illustrated in Fig. 2b, indicate that within the first 10 days (20 days), we traced 89% (99%) of the 

precipitation moisture in the YB and 97% (99%) in the UTB. Detailed configurations of WAM-2layers and FLEXPART 

models can be found in Part 2 of the Supplement. The WaterSip source code we developed in this study can be found in Part 

3 of the Supplement. 

175 

 

Figure 2. Backward moisture tracking periods and accumulated moisture uptake from all source regions in (a) WAM-2layers and 

(b) FLEXPART-WaterSip models. Solid lines represent the YB, and dotted lines represent the UTB. 

3 Moisture tracking in two representative basins  

Figure 3 shows the simulated moisture sources for precipitation in July 2022 over the YB and UTB based on WAM-2layers 180 

and FLEXPART-WaterSip models. Moisture contributions are quantified as equivalent water height (mm) over the source 

regions. For the YB, in addition to significant local recycling, the distribution of most moisture sources aligns with the path of 

the ISM, extending from the southern slopes of the Himalayas through the Bay of Bengal (BB) and the Indian subcontinent to 
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the Arabian Sea (AS), and reaching as far as the Southern Indian Ocean (SIO) (Fig. 3a and c). Moisture sources for the UTB 

mainly stretch along the westerlies to the Central Asia region (Fig. 3b and d). Generally, WAM-2layers simulations suggest a 185 

broader range of distant moisture sources (including both the westerlies-dominated and ISM-dominated regions) when 

compared to those identified by FLEXPART-WaterSip. 
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Figure 3: Spatial distributions of moisture contributions (equivalent water height over source regions; mm) to precipitation in July 190 

2022 in the (a and c) YB and (b and d) UTB simulated by (a and b) WAM-2layers and (c and d) FLEXPART-WaterSip models. 

Purple lines represent the TP boundary and yellow lines represent the boundaries of the two representative basins. Red boxes in 

(d) delineate the eight source regions: Northeastern Atlantic (NEA), Midwestern Eurasia (MWE), Northern Eurasia (NE), TP, 

Arabian Sea (AS), Bay of Bengal (BB), Western Pacific (WP), and Southern Indian Ocean (SIO).  

 195 

The differences between the moisture tracking results from the two models are shown in Figure 4 (WAM-2layers minus 

FLEXPART-WaterSip). Compared to FLEXPART-WaterSip, WAM-2layers model tends to estimate a higher moisture 

contribution from the westerlies-dominated northwestern source regions for both basins, spanning from nearby sources 

northwest of the YB and west of the UTB to distant sources across the entire northwestern Eurasian continent and northeastern 

Atlantic. Additionally, WAM-2layers model estimates greater moisture contributions from large parts of the Indian Ocean, 200 

particularly the distant Southern Indian Ocean in the YB simulation. In contrast, lower contributions estimated by WAM-

2layers are mainly from local and nearby source regions downwind of the westerlies, specifically around the southern slopes 

of the Himalayas in the YB simulation and the entire Tarim Basin in the UTB simulation. Notably, over the Red Sea and 
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Persian Gulf regions, WAM-2layers model indicates higher moisture contributions from the oceans but lower moisture 

contribution from the surrounding lands than FLEXPART-WaterSip, especially in the YB simulation (Fig. 4a). These 205 

discrepancies between the two moisture tracking models are consistent both in absolute and relative terms (Figs. 4 and S2). 

 

Figure 4: Absolute differences in moisture contributions to precipitation in July 2022 between WAM-2layers and FLEXPART-

WaterSip (WAM-2layers minus FLEXPART-WaterSip) for the (a) YB and (b) UTB simulations. 

 210 

Considering the distribution of moisture sources, eight critical source regions (see the red boxes in Fig. 3d) are selected for 

further quantitative analysis. Figure 5 shows the relative contributions from the eight critical regions and remaining regions to 

precipitation in the YB and UTB. Both models indicate that the major moisture sources for the YB are local recycling and the 

ISM regions (TP, AS, BB, and SIO), whereas for the UTB, the primary sources are local recycling and westerlies-influenced 

regions (TP, NE, and MWE). Specifically, WAM-2layers model estimates that the TP contributes 32% of the moisture toward 215 

the YB, which is about two-thirds of the estimate by FLEXPART-WaterSip model (53%). An even greater discrepancy is 

observed for the contribution of the TP to the UTB, for which WAM-2layers model estimates 28% compared to FLEXPART-

WaterSip’s 72%. For distant sources, the SIO is the most representative one for the YB, with WAM-2layers estimating its 

contribution at 30%, compared to only 11% by FLEXPART-WaterSip. For the UTB, the MWE is a key distant source, with 

WAM-2layers estimating a 36% contribution, doubling that calculated by FLEXPART-WaterSip (15%). In summary, 220 

compared to FLEXPART-WaterSip, WAM-2layers model generally estimates higher moisture contributions from the 

westerlies-dominated sources as well as distant sources, but lower contributions from local recycling and nearby sources 

downwind of the westerlies. 
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 225 

Figure 5: Relative moisture contributions (%) to precipitation in July 2022 over the (a) YB and (b) UTB from the eight selected 

source regions (NEA, MWE, NE, TP, AS, BB, WP, and SIO) and the remaining (Rem.) source regions simulated by WAM-2layers 

and FLEXPART-WaterSip models. 

4 Moisture fluxes in WAM-2layers and particle trajectories in FLXPART-WaterSip simulations 

When tracing moisture sources, WAM-2layers model primarily utilizes horizontal moisture fluxes in the upper and lower 230 

atmospheric layers to determine the water vapor transport from global sources to the target region in a backward mode. Figure 

6 illustrates the average moisture transport fluxes in the two layers during the entire simulation period as estimated by WAM-

2layers. The ISM-dominated moisture transport to the TP region primarily occurs in the lower layer, whereas the westerlies-

dominated moisture transport to the region is mainly from the north in the lower layer and from the west in the upper layer, a 

phenomenon pronounced in the northwest vicinity of the UTB. 235 
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Figure 6: Average moisture transport fluxes (kg m–1 s–1) in the (a) lower and (b) upper layers in WAM-2layers during the entire 

simulation period (June–July 2022). 

 

In comparison, FLEXPART outputs detailed information on air particles and trajectories critical to diagnosing moisture 240 

sources. Figure 7 shows the spatial distributions of particles and trajectories contributing to precipitation over the YB and UTB 

in the FLEXPART-WaterSip simulation. It should be noted that the particles and trajectories in Fig. 7 are clustered results 

using the K-means clustering method for clearer graphical representation, reducing the number of particles by a factor of 100 

and the number of trajectories by a factor of 150. This treatment may have filtered out some chaotic and distant particles and 

trajectories. In Lagrangian backward simulations, particles released from the YB predominantly travel southwestward, while 245 

those from the UTB primarily spread westward (Fig. 7a and b). Within about 15 days, the traced particles can reach the farthest 

source regions. The results of backward tracking days suggest approximately three distinct, fastest moisture transport paths to 

the YB: the northwestern route from the MWE, the southwestern route from the AS, and the southeastern route from the WP. 

The most pronounced moisture transport path to the UTB is confined to western routes. Additionally, there is a notable rapid 

northeastward transport of tracked particles in the UTB over a short period after release (Fig. 7b and Fig. 3d), a phenomenon 250 

indiscernible in WAM-2layers simulations (Fig. 3b and d and Fig. 6). This phenomenon may be associated with the complex 

and variable convective activities as well as the simulation biases in the region, as indicated by the vertical wind patterns at 

different pressure levels across the study domain (Fig. S3 in the Supplement) and the overestimated local evaporation in 

FLEXPART-WaterSip (see Sections 5 and 6).  
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 255 

Figure 7: Spatial distributions of (a and b) particles and (c–h) trajectories that transport moisture to the (a, c, and e) YB and (b, d, 

and f) UTB as simulated in FLEXPART model: (a and b) particles color-coded by backward-tracking days (0–30 days), (c and d) 

trajectories color-coded by height (m, above ground) at each numerical step, and (e and f) trajectories color-coded by specific 

humidity (g kg–1) at each numerical step. 

 260 

As suggested in Fig. 7c–d, trajectories originating from the western sources are typically at higher altitudes, some even 

exceeding 6000 m, but they notably descend before reaching the target region, forming a strip-like lower atmospheric transport 

channel in the western part of the target region. This is in general consistent with WAM-2layers simulations, in which the 

upper-layer horizontal transport of moisture originating from the northwestern Eurasian is higher than that in the lower layer 
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(Fig. 6). In comparison, trajectories from the ISM-dominated sources are at relatively lower altitudes, with some originating 265 

from the SIO even descending below 1000 m. Generally, the moisture-carrying capacity of these trajectories correlates with 

both their altitude and the moisture conditions in their source regions. As shown in Fig. 6e–f, trajectories from the ISM-

dominated regions and lower altitudes exhibit higher moisture content, whereas those from the westerlies-dominated regions 

and higher altitudes are characterized by lower moisture content. 

 270 

A notable difference between WAM-2layers and FLEXPART-WaterSip simulations, as illustrated in Fig. 4, is that the spatial 

extent of source regions identified in FLEXPART-WaterSip is much smaller than in WAM-2layers, especially in distant 

regions such as northwestern Eurasia. Particle trajectories simulated by FLEXPART are only sparsely distributed across 

northwestern Eurasia, particularly for the YB (Fig. 7). This inconsistency is also evident when comparing previous studies 

using WAM-2layers (Zhang et al., 2017; Li et al., 2022a) and FLEXPART-WaterSip (Chen et al., 2019; Yao et al., 2020). 275 

This indicates that the underestimated moisture contributions from these distant sources in FLEXPART-WaterSip, as 

compared to WAM-2layers, are largely due to a lower proportion of particles originating from these source regions reaching 

the target region. 

5 Relationship between “actual evaporation” and simulated moisture contributions 

In general, for moisture source–receptor diagnostics within a specific source region, areas with higher evaporation rates 280 

generally contribute more moisture to the target region than areas with lower rates, especially where the contrast between 

oceanic and terrestrial evaporation is pronounced. To further investigate the relationship between evaporation and simulated 

moisture contributions from various source regions, we employ evaporation data from ERA5 as the benchmark (“actual 

evaporation”; Fig. 8a) for the entire tracking period (June–July 2022). As shown in Figs. 3 and 8a, the distribution of moisture 

sources simulated by WAM-2layers aligns more closely with global evaporation patterns from ERA5 (oceanic evaporation 285 

rates exceed those of surrounding terrestrial areas) compared to that by FLEXPART-WaterSip. This alignment is particularly 

evident in the Red Sea and Persian Gulf regions, where one of the most pronounced discrepancies between the two models is 

observed (Fig. 4a).  
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 290 

Figure 8: (a) Evaporation from ERA5 and (b) simulated evaporation from FLEXPART-WaterSip during June–July 2022. 

 

We then examine the relationship between “actual evaporation” and simulated moisture contributions across all grid cells in 

the eight selected source regions (Fig. S4). It is clear that, for both basins, positive correlations between “actual evaporation” 

and moisture contributions mainly appears in WAM-2layers simulations, especially in the westerlies-dominated NEA and 295 

MWE as well as the ISM-dominated AS and SIO regions, where correlation coefficients all exceed 0.3. In contrast, 

FLEXPART-WaterSip simulations rarely show strong positive correlations between “actual evaporation” and moisture 

contributions. A striking example is the Red Sea and Persian Gulf regions where oceanic evaporation is notably higher than 

terrestrial evaporation (Fig. 8a). As mentioned above, FLEXPART-WaterSip model appears to inadequately capture the 

relatively high evaporation over the Red Sea, Persian Gulf, and eastern Mediterranean (see Fig. 3c), despite extensive tracking 300 
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particles in these regions (see Fig. 7a). We speculate that the complex atmospheric activities in these regions, as partially 

evidenced by vertical velocities in Fig. S3, may contribute to these issues in moisture source diagnosis using the WaterSip 

method. Some earlier studies have also indicated that this method is prone to misidentifying the convergence/divergence 

processes (Winschall et al., 2014; Cloux et al., 2021), particularly a study over the Sahara has further emphasized the 

importance of cloud microphysical processes as well as dry and moist convection embedded in the heat low (Dahinden et al., 305 

2023). To further illustrate the underlying mechanisms, we randomly selected two representative trajectories: one from the 

SIO to the YB, and the other from the NEA to the UTB (Fig. S5 in the Supplement). Comparisons between model outputs and 

ERA5 data, as shown in Fig. S6 in the Supplement, suggest that the modeled changes in specific humidity for particles may 

not fully reflect the actual processes of precipitation and evaporation during the moisture transport. Relying solely on specific 

humidity changes and particle height to assess evaporation, precipitation, and moisture transport can be quite challenging. 310 

Although the WaterSip method employs thresholds (e.g., 1.5 BLH and 0.2 g–1 kg–1 every 6 h for specific humidity changes) to 

exclude a large number of potential misdiagnoses over the source regions, further advancements in diagnostic and correction 

methods are still needed. 

 

Similar to the moisture source-receptor diagnosis for precipitation particles in the target area, computing all released particles 315 

in the atmosphere would provide simulated evaporation over the entire tracking domain. Therefore, Fig. 8b displays the 

FLEXPART-WaterSip simulated evaporation over the tracking domain during the entire tracking period. In comparison with 

“actual evaporation”, FLEXPART-WaterSip model generally captures the spatial pattern of evaporation across oceanic regions 

but largely overestimates terrestrial evaporation from mid- and low-latitudes (e.g., surrounding the Mediterranean, the Middle 

East, and the Indian subcontinent; all of which are critical source regions for the two basins in the TP). These findings are 320 

consistent with a previous long-term, global scale study by Keune et al. (2022). Although FLEXPART-WaterSip demonstrates 

potential in capturing complex local atmospheric activities, the bias in simulated evaporation can inevitably affect the 

quantification of moisture source–receptor dynamics. 

6 Bias correction of FLEXPART-WaterSip simulations  

Keune et al. (2022) introduced the Heat And MoiSture Tracking framEwoRk (HAMSTER), a unified framework designed to 325 

correct biases in moisture source–receptor diagnostics based on particle trajectories from Lagrangian models. This framework 

leverages the relationships between actual and simulated surface fluxes (evaporation and precipitation). The first step, in line 

with WaterSip, is to use specific thresholds for specific humidity changes, relative humidity, and particle height to quantify 

moisture source–receptor relationships for precipitation in the target region (a “random attribution” method was also 

introduced). Subsequently, a first round of corrections is conducted by comparing actual and simulated precipitation in the 330 

target region (i.e., bias correction of receptor variables). A second round of corrections then focuses on comparing actual and 

simulated evaporation across all source regions (i.e., bias correction of source variables). These processes aim to achieve 
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reasonable, bias-corrected moisture source contributions. It is noteworthy that the HAMSTER method does not include 

calibration for the filtering thresholds of precipitation particles in the target region, potentially leading to certain deviations in 

the spatiotemporal distribution of tracked particle trajectories. If actual precipitation data in the target region were used to 335 

calibrate the filtering thresholds of precipitation particles, the step of “bias correction of receptor variables” in HAMSTER 

could be replaced. Inspired by the HAMSTER method, we develop a simplified two-step approach to correct moisture tracking 

results from FLEXPART-WaterSip: 

 

Step 1: Optimize the filtering thresholds of precipitation particles in the target region. Using the default precipitation particle 340 

filtering thresholds for specific humidity change (0.2 g kg–1) and relative humidity (80%), we conducted numerical experiments 

to examine how adjustments to these thresholds impact simulated precipitation. As shown in Fig. 9a and b, maintaining a 

constant relative humidity threshold at 80% while varying the specific humidity change threshold from 0.05 to 0.2 g kg–1 

results in a minimal decrease in simulated precipitation (less than 1 mm for both basins). In contrast, fixing the specific 

humidity change threshold at 0.2 g kg–1 while changing the relative humidity threshold leads to substantial changes in simulated 345 

precipitation (Fig. 9c and d). Our experiments indicate that precipitation simulation is more sensitive to changes in the relative 

humidity threshold, with the optimal values of 63% for the YB and 74% for the UTB. This step ensures a more accurate 

selection of precipitation particles for subsequent moisture source diagnosis. 

 

Figure 9: Sensitivity of the simulated precipitation in the (a and c) YB and (b and d) UTB to (a and b) the threshold of specific 350 

humidity change and (c and d) the threshold of relative humidity. 
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Step 2: Correct biases in simulated evaporation over the source regions. First, use the optimized thresholds from Step 1 to 

quantify moisture source contributions. Next, calculate grid-scale correction factors by dividing actual evaporation by 

simulated evaporation for each grid cell over the entire moisture tracking period (Fig. S7 in the Supplement). These correction 355 

factors are then applied to correct moisture source contributions. This step addresses the simulation biases in evaporation 

across the moisture tracking domain when using the WaterSip method. It is important to note that although these correction 

factors are likely to vary over time, this variability was not accounted for in this study due to the relatively short simulation 

period. For long-term moisture source diagnosis corrections, implementing time-varying correction factors would be more 

appropriate. 360 

 

The bias-corrected FLEXPART-WaterSip simulations for the YB and UTB, based on the two-step bias correction approach, 

are shown in Fig. 10a and b. The bias correction align the FLEXPART-WaterSip simulation results more closely with the 

global pattern of terrestrial and oceanic evaporation, especially around the Red Sea and Persian Gulf regions. Additionally, it 

enhances the moisture contributions from the high-latitude Eurasian continent and the Indian Ocean, while reducing 365 

contributions from the western land areas in the mid- and low-latitude (Fig. S7 in the Supplement). We further compare these 

bias-corrected simulations with the original WAM-2layers and FLEXPART-WaterSip simulations, as shown in Fig. 10c–f. 

The differences depicted in Fig. 10c–d are generally consistent with those in Fig. 4, indicating that WAM-2layers model tends 

to estimate higher moisture contributions from the westerlies-dominated sources and distant sources, but lower contributions 

from local recycling and nearby sources downwind of the westerlies for both the YB and UTB. Compared to the bias-corrected 370 

results, the original (uncorrected) FLEXPART-WaterSip simulations for the YB estimate lower moisture contributions from 

areas surrounding the target region and oceanic source regions, but higher contributions from the western land areas (Fig. 10e). 

For the UTB, the uncorrected FLEXPART-WaterSip simulations mainly estimate higher moisture contributions from the target 

region and its surrounding areas (Fig. 10f), including the northeastward stretch of moisture sources observed in Fig. 3d. These 

comparisons demonstrate that through bias correction, the original discrepancies in reflecting actual evaporation between 375 

WAM-2layers and FLEXPART-WaterSip simulations can be significantly mitigated. 
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Figure 10: (a and b) Spatial distributions of bias-corrected moisture contributions (equivalent water height over source regions; mm) 

to precipitation in July 2022 in the (a) YB and (b) UTB simulated by FLEXPART-WaterSip model. (c–f) Absolute differences in 380 
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moisture contributions between original WAM-2layers/FLEXPART-WaterSip simulations and bias-corrected FLEXPART-

WaterSip simulations for the (c and e) YB and (d and f) UTB. 

7 Potential determinants of discrepancies in moisture tracking 

We now turn to a more comprehensive examination of the discrepancies observed in the original WAM-2layers and 

FLEXPART-WaterSip simulations. Considering the underlying physics of the models, forcing datasets, parameter selections, 385 

and our computational resources, we designed four sets of numerical experiments to investigate potential factors contributing 

to the discrepancies in different simulations. 

 

Experiment 1 – model resolution: Simulation of moisture sources using WAM-2layers is essentially a dynamic reproduction 

of moisture transport conditions based upon forcing datasets, which means that the accuracy heavily depends on the spatial 390 

and temporal resolutions of input data. In addition to the original settings (1°×1° at 3-hourly resolution), we introduce three 

additional configurations of ERA5 data to determine whether improved spatial and/or temporal resolutions in forcing data 

could provide more accurate moisture source attributions: 1°×1° at hourly resolution, 0.25°×0.25° at 3-hourly resolution, and 

0.25°×0.25° at hourly resolution. The results from these additional simulations are summarized in Fig. S8 in the Supplement. 

 395 

Experiment 2 – moisture source diagnosis thresholds: Quantifying moisture source–receptor relationships in FLEXPART-

WaterSip hinges on the diagnosis of potential precipitation particles and evaporation sources, which in turn depends on a set 

of threshold settings. Previous studies have suggested that optimal configurations for these thresholds may vary globally 

(Sodemann et al., 2008; Fremme and Sodemann, 2019; Keune et al., 2022). In addition to the original setting (a relative 

humidity threshold of 80% and a specific humidity change threshold of 0.2 g kg–1), we introduce one additional configuration 400 

for precipitation particles selection using the optimized relative humidity threshold for the YB and UTB (63% and 74%, 

respectively), and two additional configurations for evaporation source identification with specific humidity change threshold 

set at 0.1 and 0 g kg–1. The results from these additional simulations are summarized in Fig. S9 in the Supplement. 

 

Experiment 3 – number of particles: Using particle trajectories for source diagnostics inevitably limits the identified 405 

moisture sources to these trajectories. Consequently, a lower number of trajectories may result in potential inaccuracies, 

particularly when representing small to medium-scale atmospheric processes. This numerical experiment is designed to 

determine whether the relatively sparse particle trajectories over distant source regions could introduce substantial uncertainties 

when estimating moisture contributions in FLEXPART-WaterSip. In this experiment, we reduce the number of particles 

initially released in FLEXPART from five million to one million. The results of this experiment are summarized in Fig. S10 410 

in the Supplement. 
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Experiment 4 – “areal source–receptor attribution” method: Different from the WaterSip method proposed by Sodemann 

et al. (2008), which attributes precipitation at a specific point within the target region to moisture uptake from multiple points 

along the trajectories, Sun and Wang (2014) introduced the “areal source–receptor attribution” method, focusing on a regional 415 

rather than a point scale. The “areal source–receptor attribution” method calculates the total moisture contribution from an 

examined source to precipitation across the entire target region instead of at specific points. It facilitates the differentiation of 

moisture contributions from within and outside the examined sources along the trajectories. The basic framework of the “areal 

source–-receptor attribution” method is shown in Fig. S11 in the Supplement, and the detailed methodology can be found in 

Sun and Wang (2014). In this numerical experiment, we apply “areal source–receptor attribution” method to quantify moisture 420 

contributions from the eight source regions. 
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Figure 11: Relative moisture contributions (%) to precipitation over the (a) YB and (b) UTB from the eight selected source regions 

and the remaining (Rem.) source regions simulated by four sets of numerical experiments (including different configurations in 425 
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WAM-2layers and FLEXPART-WaterSip and FLEXPART-“areal source–receptor attribution”) as well as the bias-corrected 

FLEXPART-WaterSip simulations. Black histograms represent the bias-corrected FLEXPART-WaterSip simulations. RH and Δq 

represent relative humidity threshold and specific humidity change threshold (g kg–1), respectively. Experiments 1–4 correspond to 

numerical experiments focusing on model resolution, moisture source diagnosis thresholds, number of particles, and “areal 

source–receptor attribution” method. 430 

 

Figure 11 shows the relative moisture contributions from the eight selected source regions and the remaining source regions 

to the YB and UTB in the four set of numerical experiments and the bias-corrected FLEXPART-WaterSip simulations. The 

results for each source region includes 11 sets of simulations, including original simulations in Section 3 and the bias-corrected 

simulations in Section 6. In Experiment 1, increasing the spatial and temporal resolutions of the forcing dataset in general 435 

aligns WAM-2layers simulations more closely with the bias-corrected FLEXPART-WaterSip (e.g., see results with 0.25°×0.25° 

at hourly resolution in Fig. S8e and f in the Supplement), particularly for the YB. For nearby sources, moisture contributions 

from the TP to the YB (UTB) increases from 32% (28%) to 51% (44%). For distant sources, contributions from the SIO and 

MWE to the YB (UTB) decrease from 30% (8%) to 13% (2%) and from 7% (36%) to 5% (34%), respectively. Our sensitivity 

experiments for temporal and spatial resolutions reveal that increasing temporal resolution (from 3h to 1h) substantially 440 

enhances the reliability of moisture source simulations (Fig. S8a–b in the Supplement). This aligns with prior knowledge that 

models with finer temporal resolution are better at capturing atmospheric perturbations, which could be of significant 

importance for moisture tagging (van der Ent et al., 2013). In contrast, solely increasing spatial resolution (from 1° to 0.25°) 

may lead to a stronger eastward extension of moisture sources for both basins (Fig. S8c–d in the Supplement), which is 

inconsistent with WAM-2layers (0.25°, 1h) and bias-corrected FLEXPART-WaterSip results. In addition to spatiotemporal 445 

resolutions, van der Ent et al. (2013) previously summarized that the two primary factors affecting the WAM2layers 

simulations are the moisture weighted well-mixed assumption and the method used to handle wind shear and turbulence. 

However, addressing these issues is beyond the scope of this work. Moreover, Tuinenburg and Staal (2020) advised caution 

regarding the large moisture fluxes relative to Eulerian grid cells as well as the use of smaller time steps to mitigate numerical 

dispersion. OverallOverall, Experiment 1 demonstrates that improving the spatiotemporal resolutions of forcing data in WAM-450 

2layers can mitigate the underestimation of nearby sources and overestimation of distant sources for both basins, particularly 

for the YB. (Tuinenburg and Staal, 2020) 

 

In Experiment 2, adjusting the thresholds of relative humidity substantially enhances the overall moisture contributions from 

the source regions to both basins of the TP, yet it has minimal effect on the spatial patterns of moisture sources (Fig. S9a–b in 455 

the Supplement). Sensitivity experiments on specific humidity change threshold show only a slight impact on moisture source 

simulations for the two basins (Fig. S9c–f in the Supplement). Generally, modifying the thresholds of moisture source–receptor 

diagnostics does not seem to reduce the potential biases in the spatial distributions of moisture sources when compared to the 

bias-corrected FLEXPART-WaterSip. In Experiment 3, reducing the number of released particles somewhat limits our ability 
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to discern finer details in the spatial distribution of moisture sources (Fig. S10 in the Supplement), although the quantified 460 

moisture contributions closely resemble those in the original FLEXPART-WaterSip simulations with 5 million particles. This 

is in line with a previous study showing that the Lagrangain model is not very sensitive to the number of particles once a 

certain threshold is reached (Tuinenburg and Staal, 2020).  In Experiment 4, unlike the WaterSip method, the “areal source–

receptor attribution” method utilizes all simulated trajectories for moisture source diagnosis, which may accumulate errors in 

trajectories that do not result in precipitation in the target region. Reapplying the “areal source–receptor attribution” method 465 

with trajectories filtered by the WaterSip method can produce moisture contributions that more closely align with the 

FLEXPART-WaterSip estimates (results not shown). Overall, these sensitivity experiments underscore that current approaches 

to diagnosing moisture sources for the TP using numerical moisture tracking models still hold substantial potential for 

improvement and refinement. 

8 Discussion and conclusions 470 

Over the past few decades, considerable efforts have been made to identify and quantify the contributions of moisture sources 

to precipitation over the TP. A synthesis of these studies indicates that the most commonly used Eulerian and Lagrangian 

moisture tracking models are WAM-2layers and FLEXPART-WaterSip, respectively. However, the suitability and reliability 

of these models for moisture tracking over the TP, especially the potential discrepancies in moisture tracking results, have not 

yet been thoroughly examined. This study addresses this gap by focusing on two representative basins of the TP: the YB 475 

(representing the ISM-dominated regions) and the UTB (representing the westerlies-dominated regions). Moisture source 

contributions to precipitation over these two basins were tracked using both WAM-2layers and FLEXPART-WaterSip models. 

We then investigated the discrepancies in moisture tracking results between these two models and their potential determinants 

through comparisons with actual evaporation, bias correction, and a set of sensitivity experiments. 

 480 

The WAM-2layers model, designed for moisture tracking based on the water balance equation at a spatial-temporal resolution 

constrained by the forcing dataset, may face challenges in accurately capturing moisture transport to target regions through 

smaller-scale atmospheric processes. Compared with FLEXPART-WaterSip, the application of WAM-2layers over the TP is 

more computationally efficient. A notable pattern in WAM2layers, when comparedpersistent issue with WAM-2layers, 

relative to the bias-corrected FLEXPART-WaterSip, is its tendency to estimate higher moisture contributions from westerlies-485 

dominated sources and distant sources but lower contributions from local recycling and nearby sources downwind of the 

westerlies. However, this can be mitigated by utilizing higher spatial and temporal resolutions for forcing dataset in WAM-

2layers, with a priority on improving temporal resolution, particularly in the ISM-dominated YB region. In addition, WAM-

2layers offers one notable advantage over FLEXPART-WaterSip: its simulated spatial distribution of moisture sources is more 

consistent with the pattern of actual evaporation, particularly around the Red Sea and Persian Gulf regions where the contrast 490 

between terrestrial and oceanic evaporation is strong. 
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The FLEXPART model, designed to track air particles in the atmosphere based on well-established physical mechanisms, is 

complemented by the WaterSip method to diagnose moisture source–receptor relationships with information from simulated 

trajectories. FLEXPART-WaterSip enables us to investigate the movement of air particles transporting moisture in a detailed 495 

three-dimensional space. We investigated the potential impact of different filtering thresholds in the WaterSip method and 

varying numbers of released particles on moisture source–receptor diagnostics. The simulation of precipitation in the two 

basins is more sensitive to changes in relative humidity thresholds, while adjusting specific humidity change threshold does 

not significantly alter improve the estimated moisture source contributions. Nevertheless, the WaterSip method facilitates 

calibration of simulation biases by comparing results with actual observations (such as precipitation and evaporation). 500 

Therefore, if possible, we recommend bias-correcting the simulations from FLEXPART-WaterSip (through e.g., the method 

proposed by Keune et al. (2022) or the simplified two-step approach proposed in this study). The corrected results substantially 

reduce the evaporation biases over the source regions, particularly addressing the discrepancies arising from land–sea contrast 

in evaporation. 

 505 

This study serves as a valuable reference for future numerical simulations aimed at tracking moisture sources across the TP 

region, including several crucial aspects such as model selection, error and uncertainty analysis, and strategies for improving 

simulation reliabilityenhancing simulate accuracy. While recognizing that each model is best suited to specific scenarios, this 

study highlights the critical need to account for the distinct characteristics of different models and the potential uncertainties 

in diagnosing moisture sources. Although this investigation is confined to short-term simulations using WAM-2layers and 510 

FLEXPART-WaterSip models in two typical basins over the TP, it is anticipated that future research will extend such 

intercomparisons to other regions and even continental or global scale. Furthermore, in the field of numerical moisture tracking, 

it would be highly beneficial to explore the reliability of forcing data, incorporate additional physical moisture tracers (such 

as hydrogen and oxygen isotopes), and develop improved bias-correction methods for moisture source-receptor 

diagnosis.Furthermore, investigating the application of more sophisticated techniques for moisture source–receptor 515 

identification, particularly those that enhance the capability of Eulerian or Lagrangian models to capture small-scale 

atmospheric convection and turbulence, would be of significant benefit. 

 

Code availability. The official website of WAM-2layers is https://wam2layers.readthedocs.io/en/latest/ (version 3.0.0b5). The 

official website of FLEXPART is https://www.flexpart.eu/ (version 10.4). The relevant code and installation tutorials can be 520 

obtained from these official websites. For the WaterSip method, the authoritative website is 

https://wiki.app.uib.no/gfi/index.php?title=WaterSip. The WaterSip source code we developed in this study is available at 

https://doi.org/10.5281/zenodo.12780143. can be found in Part 3 of the Supplement. All additional algorithms are available on 

request from the first/corresponding author. 

 525 
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Data availability. ERA5 data are publicly available at the Climate Data Store (CDS) (https://cds.climate.copernicus.eu/). The 

input data of WAM-2layers were downloaded according to the example code in 

https://github.com/WAM2layers/WAM2layers/tree/main/scripts. The forcing data of FLEXPART were downloaded and pre-

processed using the flex_extract v7.1.2 (https://www.flexpart.eu/flex_extract/). All simulation results in this study are available 

at https://doi.org/10.5281/zenodo.12780143.on request from the first/corresponding author. 530 
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