
1 
 

Impact of Arctic Amplification variability on the chemical composition of the 1 

snowpack in Svalbard 2 

Azzurra Spagnesia,b, Elena Barbaroa,b *, Matteo Feltraccoa,b, Federico Scotoc,b, Marco Vecchiatob, 3 

Massimiliano Vardèa,, Mauro Mazzolaa, François Burgayd,e, Federica Bruschif, Clara Jule Marie Hoppeg, 4 

Allison Baileyg, Andrea Gambaroa,b, Carlo Barbantea,b, Andrea Spolaora,b 5 

a Institute of Polar Sciences - National Research Council of Italy (ISP-CNR), Via Torino 155, 30172, Venice, Italy  6 
b Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 7 

30172, Venice, Italy 8 

c Institute of Atmospheric Sciences and Climate - National Research Council of Italy (ISAC-CNR), Campus Ecotekne, 9 

Lecce, 73100, Italy 10 
d Laboratory of Environmental Chemistry (LUC), Paul Scherrer Institut (PSI), Villigen, 5232, Switzerland 11 

e Oeschger Centre for Climate Change Research, University of Bern, Bern, 3012, Switzerland 12 

f  Department of Chemistry, Biology and Biotechnology, University of Perugia, Via dell'Elce di Sotto 8, 06123, Perugia, 13 

Italy 14 

g  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany 15 

 16 

 17 

Corresponding: Elena Barbaro (elena.barbaro@cnr.it)  18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

https://doi.org/10.5194/egusphere-2024-1393
Preprint. Discussion started: 17 June 2024
c© Author(s) 2024. CC BY 4.0 License.



2 
 

Abstract 31 

Arctic Amplification (AA) is leading to significant glacier ice melting, rapid sea ice decline, and 32 

alterations in atmospheric and geochemical processes in the Arctic regions, with consequences on the 33 

formation, transport, and chemical composition of aerosols and seasonal snowpack. Svalbard is 34 

particularly exposed to the AA, thus represents a relevant site in the Arctic to evaluate changes in 35 

local environmental processes contributing to the seasonal snow chemical composition. Sampling 36 

campaigns were conducted from 2018 to 2021 at the Gruvebadet Snow Research Site in Ny-Ålesund, 37 

in the North-West of the Svalbard Archipelago. During the investigated years, interannual variability 38 

of ionic and elemental impurities in surface snowpack has been associated to an alternation between 39 

relative warm years (2018-19, 2020-21), typical of the Arctic Amplification (AA) period, and 40 

relatively cold years (2019-20), more similar to the pre-AA conditions. Our results indicate that the 41 

concentration of impurities during the colder sampling season is strongly dependent on the production 42 

of sea spray related aerosol, likely deriving by a larger extension of sea ice, and drier, windy 43 

conditions. Our findings were therefore linked to the presence of sea ice in the Kongsfjorden in March 44 

2020, and more generally around Spitsbergen, resulting from the exceptional occurrence of a strong 45 

and cold wintry stratospheric polar vortex and unusual AO index positive phase. By comparing the 46 

snow chemical composition of the 2019-20 season with 2018-19 and 2020-21, we present an 47 

overview of the possible impact of AA on the Svalbard snowpack, and the related change in the 48 

aerosol production process.  49 

1. Introduction 50 

Chemical analysis of surface Arctic snow and ice can provide valuable comprehension of the 51 

composition of Arctic aerosols, its deposition, and exchange processes (Lai et al., 2017), which may 52 

be variously influenced by the Arctic Amplification (AA), a non-linear increase in near-surface air 53 

temperatures observed from 1975 to date (Chylek et al., 2022). AA is recognized as an inherent 54 

characteristic of the changing global climate system, with multiple intertwined causes operating on a 55 

spectrum of spatial and temporal scales. These include, but are not limited to, changes in sea ice 56 

extent that impact heat fluxes between the ocean and the atmosphere, and water vapor that alters 57 

longwave radiation (Serreze and Barry, 2011). The Svalbard Archipelago is particularly affected by 58 

AA due to the relatively low altitude of its main ice fields and its geographical location in the higher 59 

North Atlantic, which make the effect of AA more significant (Spolaor et al., 2024). Therefore, in the 60 

21st century, predicting and characterizing climate change in Svalbard is particularly crucial, as 61 

changes in near-surface air temperature, precipitation, and sea ice extent occur at an extremely high 62 
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pace (Gjermundsen et al., 2020; Rantanen et al., 2022). The Svalbard region, located at the southern 63 

edge of the seasonal Arctic sea ice zone, is characterized by a maritime climate with strong 64 

temperature variations during winter (Hansen et al., 2014; Barbaro et al., 2021). In the Arctic winter, 65 

the stratospheric polar jet fosters a high-atmospheric vorticity zone. This winter vortex typically acts 66 

as a strong barrier for long-range transport of pollutants from mid-latitudes (Lawrence et al., 2020). 67 

However, it occasionally allows warm southern air to penetrate the region (Schoeberl and Newman, 68 

2015). Additionally, Svalbard frequently experiences intense cyclonic storms in autumn and winter, 69 

which bring both heat and moisture from lower latitudes (Rinke et al., 2017). These intense 70 

meteorological variations, generally linked with a weaker polar vortex (Sobota et al., 2020; Salzano 71 

et al., 2023), favor long-range transport of aerosols to the archipelago, including pollutants from 72 

continental sources (Stohl et al., 2006b; Yttri et al., 2014a; Vecchiato et al., 2024; D’Amico et al., 73 

2024).  74 

Arctic snow captures dry and wet deposition and forms an archive that includes a range of seasonal 75 

chemical species such as major ions and trace elements, as well as human-made pollutants emitted 76 

into the Arctic atmosphere (Koziol et al., 2021). Ny-Ålesund is a well-monitored area and a natural 77 

laboratory for complex system observations, ideal for exploring both long-range contaminants from 78 

mid- to high-latitude regions of Eurasia and Canada (Nawrot et al., 2016; Song et al., 2022; Vecchiato 79 

et al., 2024; D’Amico et al., 2024), and local inputs from both natural processes and human settlement 80 

(Vecchiato et al., 2018). While previous research investigated the temporal and compositional aspects 81 

of the Ny-Ålesund lower atmosphere (Stohl et al., 2006a; Eleftheriadis et al., 2009; Geng et al., 2010; 82 

Zhan et al., 2014; Feltracco et al., 2020, 2021; Turetta et al., 2021), the chemistry of Arctic snow and 83 

the exchange of inorganic species between cryosphere and atmosphere have been the subject of a 84 

relatively small number of studies or of specific events (Dommergue et al., 2010; Spolaor et al., 2013, 85 

2019; Barbante et al., 2017).  86 

In this study, we evaluate the surface snow concentration of ionic (Cl-, Br-, NO3
-, SO4

2-, MSA, Na+, 87 

NH4+, K+, Ca2+) and elemental impurities (Li, Be, Mg, Al, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, 88 

Se, Rb, Sr, Ag, Cd, Sb, Cs, Ba, Tl, Pb, Bi, U) for the snow seasons between 2018-2021, at the 89 

Gruvebadet Snow Research Site (GSRS) location, 1 km far from Ny-Ålesund, where clean and 90 

undisturbed snow conditions are guaranteed throughout the whole sampling season.  91 

The differences in average meteorological and climatological conditions across the studied seasons 92 

are analysed to assess how sea ice extent, polar vortex, and Arctic Oscillation (AO) conditions 93 

influence the composition of surface snow in connection with the aerosol-producing and deposition 94 

processes in Kongsfjorden.  95 
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2. Methodology 96 

2.1 Sampling and processing 97 

Three sampling campaigns were conducted in Svalbard between 2018 and 2021, covering the period 98 

from October to May according to the onset of the snowpack formation and melting.  99 

During the first sampling campaign, carried out from October 4th, 2018 to May 10th, 2019, 114 surface 100 

snow samples were collected in a delimited snow field located ~ 100 m south of the “Dirigibile Italia 101 

Station” in Ny-Ålesund (78.92° N 11.93° E, Ny-Ålesund, Svalbard). The surface snow was sampled 102 

within the upper 3 cm, as this is the snow layer most influenced by the aerosol-cryosphere exchanges, 103 

and, in case of snowfall, by deposition (Spolaor et al., 2018, 2021b). This choice also minimised the 104 

effect of different physical snow conditions (density, crystal shape and size).  105 

Concurrently, additional 133 snow samples were collected at the Gruvebadet Snow Research Site 106 

(GSRS) to evaluate the spatial variability with respect to the snow samples collected in Ny-Ålesund. 107 

The GSRS is a clean-area located about 1 km south of Ny-Ålesund, nearby the Gruvebadet 108 

Atmospheric Laboratory (GAL), dedicated to the chemical and physical monitoring of the seasonal 109 

snowpack (Scoto et al., 2023; Fig. S1). Throughout the season, the sampling resolution varied based 110 

on light conditions. During the polar night (from October to early March), snow sampling was carried 111 

out daily at Ny-Ålesund, and every 3-5 days at the GSRS. With the beginning of the polar day, daily 112 

sampling was conducted both in Ny-Ålesund and at the GSRS in March, and then continued only at 113 

the GSRS until the end of the snow season in June due to the lower contamination of the site, more 114 

distant from the fervent local activities. This sampling resolution overlap during March ensured a 115 

good comparison of results in both snow fields (Fig. S2).  116 

Starting from the second campaign, snow sampling activities were conducted only at the GSRS site, 117 

since clean conditions of the field in Ny-Ålesund could not be guaranteed due to construction works. 118 

The snow sampling was carried out from October 26th, 2019 to May 25th, 2020, with a total of 107 119 

samples collected. The surface snow layer was sampled every 3-5 days during the polar night (until 120 

February 24th, 2020), and daily from the beginning of the polar day until the end of the snow season.  121 

Finally, during the third snow sampling campaign, lasting from October 27th, 2020 to June 15th, 2021, 122 

a weekly sampling was conducted at GSRS, with a total of 32 samples collected.  123 

During snow sampling, the temperature and density of surface snow were measured, and the density 124 

of snow was calculated based on weighting a 100 cc cylinder. After collection, snow samples were 125 

melted, and two different aliquots were obtained and stored in separate vials. In a 1.5 mL 126 

polypropylene (PP) vial, 1 mL of sample was stored for ionic species, while another aliquot was 127 

stored in a 5 mL LDPE vials for trace elements analysis. PP vials designated to ionic species analysis 128 
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were previously sonicated for 30 min in UltraPure Water (UPW) (18 MΩ cm-1 at 25 °C) for 129 

decontamination. LDPE vial used for trace elements analysis were instead conditioned with HNO3 130 

2% and sonicated for 30 min. All sample aliquots were stored at -20°C in dark conditions and 131 

transported to the Venice ISP-CNR laboratories.  132 

Furthermore, seawater temperatures and salinity at 10 m depth were also monitored in Kongsfjorden 133 

(Kb3; 78°57.228’N, 11°57.192’E) during 2019-2021 spring seasons, with data collected every 3-6 134 

days (Assmy et al. 2023). Data was derived from Conductivity Temperature Depth (CTD) casts with 135 

either a MiniSTD model SD-204 (SAIV A/S, Bergen, Norway) or a XR-620 CTD (RBR Ltd, Ottawa, 136 

Canada). Combined casts of both instruments conducted in May 2020 and 2021 did not reveal 137 

differences in temperature or salinity in the reported accuracy (two post comma digits). 138 

2.2 Analysis of ionic species 139 

The analysis of anionic species (Cl-, Br-, NO3
-, SO4

2-, MSA) was carried out using an ion 140 

chromatograph (IC, Thermo Scientific Dionex™ ICS-5000, Waltham, MA, USA) coupled with a 141 

single quadrupole mass spectrometer (MS, MSQ Plus™, Thermo Scientific, Bremen, Germany). The 142 

separation was performed using an anionic exchange column (Dionex Ion Pac AS 19 2 mm ID × 250 143 

mm length) equipped with a guard column (Dionex Ion Pac AG19 2 mm ID × 50 mm length). Sodium 144 

hydroxide (NaOH), used as mobile phase, was produced by an eluent generator (Dionex ICS 5000EG, 145 

Thermo Scientific). The NaOH gradient with a 0.25 mL min-1 flow rate was: 0-6 min at 15 mM; 6-146 

15 min gradient from 15 to 45 mM; 15-23 min column cleaning with 45 mM; 23–33 min equilibration 147 

at 15 mM. The injection volume was 100 μL. A suppressor (ASRS 500, 2 mm, Thermo Scientific) 148 

removed NaOH before entering the MS source. The IC-MS operated with a negative electrospray 149 

source (ESI) with a temperature of 500°C and a needle voltage of 3 kV. The other MS parameters are 150 

reported by Barbaro et al. (2017). The same IC system was simultaneously used to determine cationic 151 

species (Na+, K+, Ca2+ and NH4
+). However, Ca2+ was not measured within the samples collected 152 

during the second campaign due to instrumental limitations.  153 

The separation occurred with a capillary cation-exchange column (Dionex Ion Pac CS19–4 mm 0.4 154 

mm ID × 250 mm length), equipped with a guard column (Dionex Ion Pac CG19–4, 0.4 mm ID × 50 155 

mm length), and the species were determined using a conductivity detector. Analytical blanks of 156 

ultrapure water (> 18 MΩ cm) were included in the analysis, and the Method Detection Limit (MDL) 157 

was set to 3 times the standard deviation of the blank values. Checks for accuracy were made using 158 

certified multi-element standard solutions for anions (Cl-, Br-, NO3
-, SO4

2-, no. 89886-50ML-F, Sigma 159 

Aldrich) and cations (Na+, K+, Ca2+, no. 89316-50ML-F, Sigma Aldrich) at a concentration of 10 mg 160 

https://doi.org/10.5194/egusphere-2024-1393
Preprint. Discussion started: 17 June 2024
c© Author(s) 2024. CC BY 4.0 License.



6 
 

L-1 ± 0.2%. The analytical precision was quantified as the relative standard deviation (RSD) for 161 

replicates (n > 3) of standard solutions and was always < 10% for each ion. 162 

2.3 Trace Elements analysis 163 

Twenty-six elements (Li, Be, Mg, Al, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Ag, Cd, Sb, 164 

Cs, Ba, Tl, Pb, Bi and U) were analyzed on samples previously melted and acidified to 2% v/v with 165 

HNO3 (UpA grade, Romil, UK) for 24 hours before analysis (Spolaor et al., 2018; Spolaor et al., 166 

2021a).  167 

The analysis was performed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS, iCAP 168 

RQ, Thermo Scientific, US). The ICP-MS was equipped with an ASX-560 autosampler (Teledyne 169 

Cetac Technologies), PolyPro PFE nebulizer, PFE cyclonic spray chamber thermostated at 2.7°C, 170 

sapphire injector, quartz torch and Ni cones. The acquisition was performed at 1550 W of plasma RF 171 

power in Kinetic Energy Discrimination (KED) – high matrix mode, using He as collision gas (4.3 172 

mL min-1). Instrument parameters were optimized for best sensitivity in the whole mass range, 173 

minimum oxides (< 1%) and double charges (< 3%). Quantification was obtained by external 174 

calibration with multi-elemental standards prepared in ultrapure water (18 MΩ cm-1 at 25° C) with 175 

2% v/v ultrapure grade HNO3 (UpA grade, Romil, UK), with a combination of certified level multi-176 

elemental solutions IMS-102 and IMS-104 from UltraScientific. Analytical quality control was 177 

performed by memory test blank (repeated analysis of ultrapure grade HNO3 2% v/v blank solution) 178 

after each sample and calibration verification (repeated analysis of reference standards) every 11 179 

samples. More details are found in Spolaor et al., 2021a. 180 

 181 

2.4 Transport modelling, sea ice, Kongsfjorden condition, and polar vortex  182 

 183 

The Lagrangian particle dispersion model HYSPLIT (Draxler, 1998; Stein et al., 2015) was used to 184 

determine the source region of air masses over Ny-Ålesund. This model has previously been shown 185 

to be an effective tool for the prediction of transport pathways into and within the Arctic and Antarctic 186 

regions (Barbaro et al., 2015; Feltracco et al., 2021). The simulations were driven using 187 

meteorological data from the Global Data Assimilation System (GDAS) one-degree archive, set the 188 

top of the model at 10000 m and the height source equal to the GSRS altitude. Back-trajectories were 189 

calculated every 6 h, with a propagation time of 120 h for each sampling period, as suggested in 190 

previous studies on atmospheric circulation in the same site (Feltracco et al., 2021). This approach 191 

was used to ensure an envelope working for all investigated tracers. The resulting multiple trajectories 192 

were based on the screen-plot analyses of total spatial variance.  193 
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The Ice Service provided by the Norwegian Meteorological Institute (NIS) was employed to analyse 194 

the weather conditions via remotely sensed data and to generate ice charts of Svalbard, ice-edge 195 

information, and sea surface temperatures trends. Sea ice extent variability in Kongsfjorden was 196 

evaluated based on dataset made available by Gerland et al. (2022).  197 

Differences between the sampling campaigns were evaluated through the NCEP/NCAR Reanalysis 198 

data from NOAA Physical Sciences Lab's daily composites tool, used to calculate the near-surface 199 

air temperatures across the Northern Hemisphere from October to May.  200 

 201 

2.5 Statistical procedures 202 

 203 

Results below the limit of detection were assumed to be equal to ½ of Method Determination Limit 204 

(MDL) prior to perform statistical analysis, to approximate their likely level based on the data 205 

distribution curve (best approximated as log-normal for most of the studied variables) (George et al., 206 

2021).   207 

The Wilcoxon test was applied on data from the 2018-19 sampling campaign conducted at Ny-208 

Ålesund and Gruvebadet to determine whether the difference between the population median and the 209 

hypothesized median of surface snow contamination level was statistically significant. This model 210 

assumes that the data is sampled from two matched or dependent populations, and data is assumed to 211 

be continuous. Because it is a nonparametric test, it does not require a particular probability 212 

distribution of the dependent variable in the analysis. Furthermore, a Hierarchical Cluster Analysis 213 

(HCA) was performed using Ward’s algorithm and Euclidean distances as clustering criteria, to 214 

determine the presence of some clusters and simplify the interpretation of the dataset.  215 

3 Results 216 

3.1 Comparison between concentration trends at Gruvebadet and Ny-Ålesund  217 

The concentration variations between an undisturbed area in Ny-Ålesund village and GSRS sites were 218 

compared during the 2018-19 sampling campaign to better understand the effect of spatial variability 219 

between the two sampling sites. The concentration trends of Na+, as sea salt tracer, Pb as 220 

anthropogenic species, and Ca2+ as crustal tracer, are reported in Fig. S2, for both sampling sites. 221 

Although the difference in time resolution between sites is apparent in Fig. S2, the difference in 222 

concentration trends appears very low or negligible, with few isolated peaks for sea salt and crustal 223 

tracers present in the Ny-Ålesund record from November to February, following positive temperature 224 

anomalies and precipitation events (Fig. S2). Concordant Pb trends emerge at Ny-Ålesund and 225 

Gruvebadet, with highest concentrations observed from February to May. 226 
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To evaluate the differences in concentration range and spatial distribution of surface snow impurity 227 

content, we applied the Wilcoxon test for the 2018-19 sampling period by comparing the distributions 228 

for positive and negative differences of the ranks of their absolute values. At a significance level of 229 

0.01, the two distributions from GSRS and Ny-Ålesund sites were not statistically different for all the 230 

trace elements and most of the inspected ions.  231 

For this reason, only the GSRS temporal trend has been considered throughout the manuscript, 232 

referring to ionic loads (mg m-2) instead of concentrations (ng g-1), to highlight the seasonal trends of 233 

specific tracers. The ionic load is calculated as ionic concentrations multiplied by the density and the 234 

depth of sampled strata.  235 

3.2 Interannual trends of chemical species on the surface snow 236 

Three consecutive snow seasons were evaluated to define the chemical composition of the surface 237 

snow in the Arctic site of GSRS. The sea salt ions Cl- (50 %), Na+ (23%) represent the most abundant 238 

species (Fig. S3), followed by SO4
2- (11 %), Mg (7 %), Ca (2%), Fe (1%) and Al (1%). Similar 239 

relative abundances were also found in previous studies on the snow of the Svalbard Archipelago 240 

(Beaudon and Moore, 2009; Vega et al., 2015; Barbaro et al., 2021; Spolaor et al., 2021b).  241 

Table 1 reports the average ionic loads of the most abundant (> 1%) species in the surface snow, 242 

considering three different seasons: autumn is defined until December 21st, winter until March 21st, 243 

and spring from then to melt onset. The average loads of the first sampling year were lower compared 244 

to the other campaigns (Fig. S4). The average ionic loads of the less abundant (< 1%) species are 245 

reported instead in Table S1.  246 

 247 

Table 1. Average ionic loads of the most abundant (>1%) ionic and elemental species in the surface snow during each 248 

season of the three consecutive sampling campaigns. The standard deviation is shown in brackets, while in the case of 249 

nss-SO4
2- the brackets represent the percentage of nss-SO4

2- compared to the total SO4
2-. “n” indicates the number of 250 

samples considered for the calculation of the average.  251 

 252 

mg m-2 total Cl- Na+ SO4
2- nss-SO4

2- Mg Fe Ca NO3
- K+ NH4

+ 

autumn 2018 (n=22) 
32 

(25) 

15 

(21) 

7 

 (11) 

3 

 (4) 

1 

(36%) 

3  

(3) 

2  

(5) 

0.3 

(0.3) 

0.5 

(0.5) 

0.3  

(0.4) 

0.04 

(0.03) 

winter 2018-19 (n=41) 
116 

(80) 

55 

(68) 

31 

(39) 

16 

(16) 

8  

(51%) 

8  

(8) 

0.4 

(0.3) 

0.4 

(0.3) 

2 

 (2) 

2  

(2) 

0.3 

(0.3) 

spring 2019 (n=51) 
76 

(50) 

36 

(43) 

19 

(24) 

9  

(9) 

4 

(48%) 

6  

(5) 

2 

 (3) 

0.6 

(0.4) 

1  

(1) 

1  

(1) 

0.5 

(0.4) 

autumn 2019 (n=15) 
214 

(98) 

101 

(71) 

40 

(53) 

26 

(20) 

16  

(61%) 

10 

(6) 

1  

(1) 

9  

(12) 

5  

(4) 

2  

(3) 

4  

(5) 

winter 2019-20 (n=43) 
339 

(120) 

159 

(88) 

79 

(73) 

41 

(20) 

21 

(52%) 

16 

(8) 

2  

(5) 

9  

(10) 

3  

(2) 

3  

(4) 

7  

(8) 

spring 2020 (n=49) 
273 

(132) 

110 

(91) 

52 

(77) 

28 

(25) 

15 

(53%) 

21 

(21) 

6  

(9) 

13 

(16) 

4  

(2) 

2  

(4) 

5  

(8) 
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autumn 2020 (n=6) 
803 

(542) 

435 

(466) 

191 

(205) 

66 

(83) 

18 

(27%) 

84 

(165) 

1 

 (2) 

2  

(5) 

6 

(11) 

9  

(10) 

2 

(2) 

winter 2020-21 (n=13) 
327 

(203) 

207 

(194) 

64 

(48) 

41 

(36) 

24 

(60%) 

6  

(5) 

0.2 

(0.4) 

0.2 

(0.1) 

5  

(3) 

3 

 (2) 

1  

(1) 

spring 2021 (n=13) 
181 

(92) 

107 

(86) 

36 

(26) 

16 

(12) 

7 

(43%) 

9 

(10) 

4  

(7) 

1  

(2) 

3  

(2) 

2  

(2) 

1  

(1) 

 253 

In general, the winter seasons showed the higher average loads, with the winters 2019-20 and 2020-254 

21 being rather similar. Higher values of sea salts species were found in autumn 2020, but less snow 255 

accumulation was recorded during that period (Fig. 1). 256 

The non-sea-salt sulfate (nss-SO4
2-), calculated using a seawater SO4

2-: Na+ mass ratio of 0.252 257 

(Millero et al., 2008), was the most abundant fraction of the total sulfate in autumn 2019 and winter 258 

2020-21, while in autumn 2018 and 2020 sea salt sulfate (ss-SO4
2-) was the dominant fraction. No 259 

clear predominance between the two fractions was achieved during the other investigated seasons 260 

(Table 1). 261 

The abundance of all chemical species investigated is quite similar for all years (Fig. S5), although 262 

the sampling campaign 2019-20 showed higher percentage of calcium ranging between 3% and 5%, 263 

in contrast to the typical concentrations < 1% found in the other two campaigns.  264 

3.3 Polar vortex and Arctic Sea ice extent in 2019-20 265 

According to the 2023 survey conducted by the National Snow and Ice Data Center (NSIDC), the 266 

maximum extent of Arctic Sea ice since 2014 has been recorded in March 2020, with 14.73 million 267 

square kilometres of the Arctic Ocean surface, in a decadal trend characterized by a -2.53% of decline, 268 

due to the Arctic Amplification. Considering the Kongsfjorden area, the total sea ice extent varied 269 

from 63.94 km2 in March 2019 to 129.81 km2 in March 2020, and was with 46.26 km2 lowest in 270 

March 2021 (Gerland et al., 2022). Specifications on Drift Ice (DI), Fast Ice (FI), and Open Water 271 

(OW) extent are reported in Table S2. The 2020 maximum sea ice extent followed the exceptionally 272 

strong and cold stratospheric polar vortex that took place in the Northern Hemisphere (NH) during 273 

the 2019-20 polar winter, together with low wave activity from the troposphere, which allowed the 274 

polar vortex to remain relatively undisturbed (Lawrence et al., 2020). Notably, the 2020 Arctic Sea 275 

ice extent is 16% and 9% higher than previous (2018-19) and following (2020-21) records (dataset 276 

NSIDC, NOAA), appearing more similar to Arctic type than Arctic Amplification conditions. Lower 277 

surface air temperatures, reduced precipitations, higher wind speed (m sec-1), and minor mean snow 278 

height with respect to the typical AA conditions, were induced by strong cold polar vortex triggered 279 

by a net positive Artic Oscillation (AO) phase, and recorded in the 2019-20 winter season. The 2020 280 

anomalous AO index is displayed in Fig. S6. Seasonal values of mean air temperatures (°C), mean 281 
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precipitation (mm), maximum mean wind speed (m sec-1) and mean snow depth (cm) during the three 282 

consecutive sampling campaigns are reported in Table S3. Temperature data were provided by the 283 

Norwegian Centre for Climate Services (NCCS), while sea ice extent data were supplied by National 284 

Snow and Ice Data Center (NSIDC). Seawater temperature data collected at 10 m depth at a mid-285 

fjord station near Ny-Ålesund (Kb3) was found to be colder during 2020 compared to 2019 and 2021 286 

spring seasons (Table S4), promoting the formation of sea ice in Kongsfjorden, and supporting its 287 

duration through the season, together with cold atmospheric conditions. Salinity data also revealed 288 

modest fluctuations across the considered seasons, showing a decrease of 0.35 psu in 2020 relative to 289 

2019, and a decrease of 0.1 psu compared to 2021.  290 

4. Discussion 291 

4.1 Ny-Ålesund seasonal and interannual trends variability in surface snow  292 

The three consecutive sampling campaigns conducted from 2018 to 2021 confirmed the dominance 293 

of sea salt input in the surface snow of Svalbard, likely due to the proximity of the Kongsfjord 294 

(Barbaro et al., 2021). The dominant ions are Na+, Cl-, and SO4
2-, likely associated with the 295 

scavenging precipitation of marine aerosol (Hodgkins and Tranter, 1998). The observed mean 296 

seasonal trends (Fig. S4) display the highest concentrations of marine species in autumn 2020, 297 

followed by 2020-21 and 2019-20 winter seasons. However, wintry concentrations are presumably 298 

linked to weakened (2019-20) or destroyed (2020-21) polar vortex (Fig. 1) and intense cyclonic 299 

storms, associated with anomalous warming events capable of transporting both heat and moisture 300 

from lower latitudes to Svalbard (Rinke et al., 2017). Autumn 2020 represents most likely an outlier, 301 

due to scarce precipitations (Fig. 1) that led to more concentrated impurities in the surface snow. 302 

Concerning the spring season, higher concentrations of typical marine (Na+, Cl-, Br-, MSA, SO4
2-) 303 

and geogenic (Al, Ca, Mn, Fe, Sr) species deposited in late spring 2020, compared to spring 2019 304 

(Fig. 2), may be due to the very close drift Arctic Sea ice presence in Kongsfjorden (Table S2), which 305 

reached its maximum extent in March 2020. Indeed, the formation of sea ice leads to the production 306 

of highly saline frost flowers and brine at both the sea ice-ocean and sea ice-atmosphere interface. 307 

Brine and frost flowers formed on the surface of sea ice can be lifted by winds and dispersed, thereby 308 

increasing the concentration of sea spray aerosol in the planetary boundary layer, and subsequently 309 

enhancing deposition over the snowpack. The maximum sea ice coverage in the fjord occurred in 310 

March 2020 was a consequence of low-temperature anomalies and intensified atmospherically driven 311 

sea ice transport and deformation due to higher winter wind speeds (Fig. S7), likely linked to the 312 

exceptional occurrence of a strong and cold stratospheric polar vortex. Concurrently, an outstanding 313 

positive phase of the Arctic Oscillation (AO) in the troposphere (Fig. 1) was recorded in January-314 
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March 2020 (Lawrence et al., 2020; Dethloff et al., 2022), featuring as an outlier in the historical 315 

timeseries 1950-2023 reported by the NOAA service.  316 

 317 

 318 

 319 

 320 

 321 

 322 

 323 

 324 

 325 

 326 

 327 

 328 

 329 

 330 

 331 

 332 

 333 

 334 

 335 

 336 

 337 

 338 

Figure 1. AO Index, Radiation (W m-2), air temperature (°C), precipitation (mm), snow height (cm), wind speed (m sec-339 

1), and wind direction (°) from the NCEP/NCAR Reanalysis data. NOAA Physical Sciences Lab's daily composites tool 340 

was used to calculate the near-surface air temperatures across the Northern Hemisphere from October to May. 341 

https://doi.org/10.5194/egusphere-2024-1393
Preprint. Discussion started: 17 June 2024
c© Author(s) 2024. CC BY 4.0 License.



12 
 

A 2021 spring peak of marine species was also recorded, although more attenuated than spring 2020 342 

(Fig. 1, Fig. S4). This variation is likely attributable to different extents of sea ice in the fjord. 343 

Nonetheless, seawater temperatures in 2021, similar to those in 2020 and 2.3°C colder than in 2019 344 

(Table S4), along with comparable wind speed conditions (Fig. S7), may also have contributed to the 345 

observed trends in marine species concentrations. Similarly, the spring peak of Mg, Sr, Mn, Fe, Al 346 

and V in 2021 seems to reflect the high wind speed and positive AO index recorded from March to 347 

April 2021. In particular, positive anomalies for atmospheric (A) and wind speed (W) conditions, 348 

together with negative oceanic (O) conditions were observed during the 2020-21 campaign, while 349 

negative A and O conditions were accompanied to positive W during 2019-20. On the contrary, 2018-350 

19 diverges from the other campaigns for positive O condition associated to negative W condition 351 

anomalies. These findings highlight the complex interplay between atmospheric patterns (AO and 352 

wind speed), local climate (temperature and sea ice extent), and oceanic conditions (SST, salinity), 353 

showing similar ionic and elemental trends in surface snow for wind, sea ice, and SST 354 

counterbalanced conditions. 355 

 356 

Figure 2. Ionic loads (mg m-2) of Na+, Cl-, Mg, SO4
2-, nss-SO4

2-, MSA, Br-, Ca, Sr, Mn, Fe, Al, Pb, V, Ni in the surface 357 

snow for the three sampling campaigns: 2018-19, 2019-20, 2020-21. 358 
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A singular case is represented by Pb, with remarkable trend concentration revealed during spring 359 

2019. Generally, Pb presents a typical seasonal variability in the Arctic aerosol, with higher wintry 360 

concentration caused by seasonal differences in the mixing conditions of the troposphere (Paatero et 361 

al., 2010). An accumulation in aerosol may lead to a prominent wet deposition in surface snow during 362 

spring, possibly due to enhanced mixed-phase clouds’ scavenging. The springtime Pb concentration 363 

maxima are typically consistent with a mixture of eastern European, Post-Soviet States, and western 364 

European sources (Sherrell et al., 2000; Bazzano et al., 2015, 2021). In this study, cluster mean 365 

trajectories obtained for winter 2018-2019 highlighted a 25% of air mass provenance from Russian 366 

Arctic and a 13% from eastern Siberia (Fig. S8), possibly explaining the higher concentrations of Pb 367 

revealed in spring 2019, following a reduced precipitation regime that occurred in January 2019. A 368 

local anthropogenic origin can be excluded though, since no activities were recorded in the vicinity 369 

of the sampling site in 2019. In addition, both GSRS and Ny-Ålesund (Fig. S2), located at 1 km of 370 

distance from each other, recorded comparable high concentrations of Pb, thus ruling out a possible 371 

contamination. However, at present, the long-range transport of Pb remains a hypothesis, likely 372 

supported by the breakdown of the wintry polar vortex (Fig. 1). To clarify the origins of Pb peaks 373 

recorded between winter and spring 2019 further investigations are needed, which goes beyond the 374 

scope of this study. 375 

Other backward trajectories (Fig. S8) for Ny-Ålesund area (78.92° N, 11.89° E) appear mostly in line 376 

with literature findings (Platt et al., 2022; Vecchiato et al., 2024), showing three main seasonal 377 

characters: a prevalent mass movement from ice-covered Central Arctic Ocean, Kara Sea, and 378 

Greenland Sea during autumn, a main provenance from Central Arctic Ocean and Kara Sea during 379 

winter, and a predominant trajectory from Northern Canada in addition to air masses arriving from 380 

Arctic Ocean and Kara seas during spring.  381 

 4.2  The main ion sources in the seasonal snow of Ny-Ålesund   382 

Looking at the dominant ions associated to the marine aerosol, we found Cl-/Na+ median ratios 383 

ranging from 1.3 to 1.5 w w-1, slightly lower than the expected value of 1.8 w w-1 in the pure seawater 384 

(Zhuang et al., 1999), pointing the occurrence of a minimum Cl- depletion in aerosol, quantified as 385 

14% for the 2018-19 and 2019-20 campaigns, and as just 2% for the 2020-21 campaign. A possible 386 

explanation for this phenomenon could be the de-chlorination of sea-spray aerosol during transport, 387 

or, less likely, at the snow-atmosphere interface; while a possible influence of biomass burning on 388 

Cl- depletion process has been excluded by the negative correlation found between Cl- depletion 389 
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values and nss-K+/K+ ratios, which is a tracer of relative contribution of biomass burning (Song et al., 390 

2018).  391 

Mg, Ca, and K+ appear positively correlated with Na+ and Cl-, which may indicate a common sea-392 

spray source. However, the concentrations of Mg are also positively correlated with nss-Ca (ρload = 393 

0.55), suggesting that they share some non-marine source(s). Moreover, surface snow samples 394 

collected during the three campaigns had greater Ca : Mg ratios than seawater (0.32, Millero et al., 395 

2008), pointing that the excess of these ions may come from mineral particles (i.e., calcite and 396 

dolomite), derived from local rock or soil dust (e.g., limestone, dolostone, and marble, which are 397 

abundant in Svalbard), as previously observed by Barbaro et al. (2021).  398 

Additionally, sulfate (SO4
2-) is highly and significantly correlated (p < 0.05) with both Na+ (ρload = 399 

0.76) and Cl- (ρload = 0.93), indicating that sea-spray is its main source. Nonetheless, Na+/SO4
2- and 400 

Cl-/SO4
2- ratios are significantly lower than typical seawater values (3.97 and 7.13, respectively, 401 

according to Millero et al., 2008) for the former two campaigns (2018-19, 2019-20). This indicates 402 

an input of nss-SO4
2-, which may originate from crustal inputs, the transport of anthropogenic 403 

compounds (e.g., emissions from fossil fuels), or by the oxidation of dimethylsulfide (DMS) released 404 

from marine biological activities. To quantify the biogenic nss-SO4
2- contribution, the 405 

methanesulfonic acid (MSA) loads - the final product of DMS oxidation - were multiplied by 3.0 406 

(Udisti et al., 2016), revealing biogenic SO4
2- contributions ranging from 0.15% (2018-19, 2020-21) 407 

up to 0.38% (2019-20). Furthermore, the MSA/nss-SO4
2- ratio was inspected, revealing a mean value 408 

of 0.02 ± 0.03 during the first (2018-19) and the third (2020-21) sampling campaigns, and a maximum 409 

ratio equal to 0.06 ± 0.18 reached during the second campaign (2020-21), similar to the subarctic 410 

western North Pacific ratio found by Jung et al. (2014). However, several factors can influence MSA 411 

formation, a univocal marker of biogenic emissions, including higher biological productivity related 412 

to higher nutrient input; the concentrations of NO3 radicals as key oxidants for DMS decomposition 413 

(higher NO3 gives higher MSA); and lower air temperatures, which tend to yield higher MSA levels 414 

(Andreae et al., 1985; Udisti et al., 2020). For the 2019-20 campaign, it seems likely that a 415 

combination of these three factors, together with the positive expansion of sea ice and the very close 416 

drift ice presence in March 2020, as revealed from satellite reconstructions (Fig. S9), contributed to 417 

the increased release of MSA in aerosol, and its consistent deposition in surface snow (Fig. 2). Indeed, 418 

DMS was likely accumulated under the sea ice cover in the fjord and surrounding areas, and then 419 

being released and oxidised in atmosphere when the ice broke off and melted (April-May). 420 

Furthermore, lower temperatures, highly positive correlation between MSA and NO3
- (ρload = 0.64), 421 

and short-range transport from the source to the near-coast sink site (GSRS) would have aided 422 
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elevated concentrations of MSA in atmospheric depositions. Contrarily, in the 2018-19 season, the 423 

sea ice melted significantly earlier, possibly not allowing enough time with adequate sunlight for 424 

substantial biological activity to accumulate beneath or within it. This occurred despite the dominance 425 

of a species known for high DMS production in 2019, unlike the following year, according to Assmy 426 

et al. (2023).  427 

The crustal fraction of sulfate (cr-SO4
2-) was estimated by multiplying the nss-Ca (as crustal marker) 428 

content by 0.59 (SO4
2-/Ca w/w ratio in the uppermost Earth crust - Wagenbach et al. 1996), obtaining 429 

variable contributions for the three sampling campaigns, ranging from 2.45% up to 12.94%. 430 

The anthropogenic contribution to nss-SO4
2- concentrations was also investigated by the application 431 

of the [ex- SO4
2-] concentration formula, considering the average concentration of [Ca] instead of the 432 

average ionic concentration [Ca2+] for the already clarified reason: 433 

[ex- SO4
2-] = [SO4

2-] – (0.12 [Na+]) – (0.175 [Ca2+]) 434 

The obtained results showed a 50 up to 60% of anthropogenic contribution for the nss-SO4
2- input, 435 

corroborating previous results showed for the same area by Amore et al. (2022). The plausible source 436 

of the anthropogenic fraction is the atmospheric transport of secondary aerosols containing SO4
2-, and 437 

ammonium sulfate. This sulfate can be formed by SOx emitted from coal combustion throughout the 438 

winter and biomass burning in the spring (Barbaro et al., 2021 and reference therein). The nss-SO4
2- 439 

does not correlate significantly with other ionic species (except for Mg), thus suggesting a separate 440 

origin.  441 

The ammonium (NH4
+) load showed significant positive correlations with Na+ (ρload = 0.76), Cl- (ρload 442 

= 0.62) and K+ (ρload = 0.75), as well as with SO4
2- (ρload = 0.62), NO3

- (ρload = 0.58), MSA (ρload = 443 

0.52) and Br- (ρload = 0.62), suggesting a close link with sea-salt ions and biogenic emissions, rather 444 

than anthropogenic activities, although some contribution from biomass burning events cannot be 445 

excluded.  446 

4.3 Bromine enrichment 447 

The bromine enrichment factor (Brenr) is well known to reflect specific processes (i.e., sea ice gas 448 

phase Br- emission) that affect the Br- concentration and load in the snowpack (Spolaor et al., 2014). 449 

Therefore, calculating the relative enrichment over the Br/Na ratio in sea water can offer crucial 450 

insights on sea ice variability for the investigated Arctic areas (Barbaro et al., 2021). As reported in 451 
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previous studies (Maffezzoli et al., 2017; Barbaro et al., 2021), the Br enrichment factor (Brenr) can 452 

be calculated as Brenr  = Br- / (0.0065 Na+), where 0.0065 represents the Br- : Na+ seawater mass ratio. 453 

On the contrary to what observed in a former study (Barbaro et al., 2021) for the Hornsund area and 454 

north-western Spitsbergen, where the Brenr mean values were often < 1, indicating some Br- depletion, 455 

in this study we observed Brenr mean values ranging from 1.5 up to 17.7, with the highest value 456 

associated to the second sampling campaign conducted in 2019-20, which showed the most extensive 457 

sea ice coverage. These results support the impact of the sea ice expansion and the close drift ice in 458 

the Kongsfjorden on the snow chemical composition. Indeed, newly formed sea ice releases gas-459 

phase Br- into the polar atmosphere, thus supplying an extra Br- source in addition to sea spray 460 

(Spolaor et al., 2016). 461 

4.4 Anthropogenic and natural sources of ions and particulate trace elements  462 

To distinguish possible anthropogenic contributions from natural ones (marine and geogenic) for ions 463 

and particulate trace elements, a Hierarchical Cluster Analysis (HCA) method was carried out. 464 

Results of clustering (Fig. 3) clearly disentangle marine (Na+, Cl-, K+, NH4
+, SO4

2-, NO3
-, Br-), 465 

anthropogenic (Mg, Ba, Bi, Cr, As, Ag, Cd, Pb, Cu, Ni), and geogenic (Al, Cs, Co, Rb, Fe, Be, Se, 466 

Ca, Mn, Li, Sr) sources of ionic and elemental species. Interestingly, biogenic MSA is brought 467 

together with the anthropogenic cluster, likely due to the coincidence of an algal bloom event with 468 

the major deposition of anthropogenic metals in surface snow. Although winter is the most eligible 469 

season for greater deposition of impurities due to favorable atmospheric conditions, Pb, and Ni show 470 

higher concentrations in spring 2019 and spring 2020, respectively (Fig. 2), representing the indicator 471 

of anomalous atmospheric and depositional events. However, in the absence of detailed information 472 

on the size of the particles, and on the isotopic composition of the investigated elements, which may 473 

distinguish local from long-range transport pollutants, no definitive statements can be made about the 474 

sources of these impurities.  475 

 476 

 477 

 478 

 479 
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 494 

Figure 3. Hierarchical cluster analysis applied to further disentangle the particulate trace element non-crustal sources. 495 

5. Summary and Conclusion 496 

In this study, trace elements and major ions were investigated in surface snow samples collected in 497 

Ny-Ålesund between October 2018 to June 2021. Seasonal and interannual variations of impurities 498 

have been observed, with general higher concentrations of marine species revealed in late spring 499 

2020, associated to Arctic type conditions, and attributed to more extensive sea ice in Kongsfjorden 500 

in March 2020, promoted by negative temperature anomalies in both atmosphere and ocean and likely 501 

related to higher air mass recycle within the Arctic. In fact, sea ice has a role in concentrating, storing, 502 

and releasing marine species, as well as influencing atmospheric and oceanic processes that affect 503 

their production and distribution. Higher concentrations in spring 2020 for geogenic and 504 

anthropogenic species were attributed instead to higher wind speeds, low atmospheric temperature 505 

anomalies, and generally drier conditions resulting from the exceptional occurrence of a strong and 506 

cold wintry stratospheric polar vortex, accompanied by an unprecedently positive phase of the Arctic 507 

Oscillation in the troposphere during January-March 2020. Therefore, our results highlighted a close 508 

dependence of high concentrations of impurities found in the snowpack at Ny-Ålesund on 509 

meteorological conditions, especially during cold years, when the production of sea spray related 510 

aerosol likely derives by a larger extension of sea ice and stronger local Arctic circulation. From the 511 

comparison with previous and following seasons, the 2020-21 and 2018-19 were recognised as typical 512 

years of Arctic Amplification conditions, whilst the 2019-20 sampling campaign year has been 513 

assimilated to the Arctic type conditions. Furthermore, the identification of geogenic, marine, and 514 
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anthropogenic sources in the snowpack was allowed by a chemometric approach (HCA), which 515 

brought to light an unexpected positive correlation between MSA and anthropogenic impurities 516 

during the 2020 spring season. This relation can likely be attributable to the coincidence of early 517 

spring algal bloom events with the major deposition of anthropogenic derived elements in surface 518 

snow consequent to a wintry retention of these pollutants in the atmosphere, due to a former reduced 519 

precipitation regime. Finally, back trajectories were realized, and three seasonal features were 520 

identified, with a prevalent air mass provenance from circumpolar Arctic area during fall and winter, 521 

and a predominant trajectory from Northern Canada in addition to air masses arriving from Arctic 522 

Ocean and Kara seas during spring. On the contrary, no prevalent mid-latitude air currents were 523 

revealed in spring as expected, considering the period of the three sampling campaigns (2018-2021). 524 

Our results highlight the complex interplay between atmospheric patterns, local and oceanic 525 

conditions that jointly drive snowpack impurity amounts and composition.  526 
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