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Abstract

a-The Svalbard

Archipelago, highly sensitive to rapid environmental changes, offers an ideal physical laboratory to

investigate how environmental drivers can shape the seasonal chemical composition of snow in a

warming climate. From 2018 to 2021, sampling campaigns at the Gruvebadet Snow Research Site in
Ny-Alesund, in the North-West of the Svalbard Archipelago, captured the interannual variability in
ionic and elemental impurities within surface snow, reflecting seasonal differences in atmospheric
and oceanic conditions. Notably, warmer conditions prevailed in 2018-19 and 2020-21, contrasting
with the relatively colder season of 2019-20. Our findings suggest that impurity concentrations in the
2019-20 colder season are impacted by enhanced sea spray aerosol production, likely driven by a
larger extent of sea ice, and drier, windy conditions. This phenomenon was particularly evident in
March 2020, when extensive sea ice was present in Kongsfjorden and around Spitsbergen due to an
exceptionally strong, cold stratospheric polar vortex and unusual Arctic Oscillation (AO) index

positive phase.

proeess. This study provides a detailed characterization of how snow chemistry in this area responds

to major environmental conditions, with particular attention to sea-ice extent, atmospheric circulation,

synoptic conditions, and Arctic climate variability.

1. Introduction

Chemical analysis of surface Arctic snow and-ice—can provide valuable comprehension of the

composition of Arctic aerosols, its deposition, and related exchange processes (Lai et al., 2017). These

recognized—as—an—inherentcharacteristie—ofthe—globalln Svalbard, climate
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change-n-Svalbard-is-partienlarly-erueial-as-changesinnear-surface-air temperature, precipitation,
and sea ice extent eceuratan-extremelyhighpaeeover recent decades have strongly shaped these

processes, underscoring the importance of a detailed snow chemical characterisation (Gjermundsen

et al., 2020; Rantanen et al., 2022).

The Svalbard region, located at the southern edge of the seasonal Arctic sea-ice zone, is characterised
by a maritime climate with strong temperature variations during winter (Hansen et al., 2014; Barbaro
et al., 2021). In the Arctic winter, the stratospheric polar jet fosters a high-atmospheric vorticity zone.
This winter vortex typically acts as a strong barrier for the long-range transport of pollutants from
mid-latitudes (Lawrence et al., 2020). However, it occasionally allows warm southern air to penetrate
the region (Schoeberl and Newman, 2015). Additionally, Svalbard frequently experiences intense
cyclonic storms in autumn and winter, which bring both heat and moisture from lower latitudes
(Rinke et al., 2017). These intense meteorological variations, generally linked with a weaker polar
vortex (Sobota et al., 2020; Salzano et al., 2023), favour long-range transport of aerosols to the
archipelago, including pollutants from continental sources (Stohl et al., 2006b; Yttri et al., 2014a;
Vecchiato et al., 2024; D’ Amico et al., 2024).

Arctic snow captures dry and wet deposition and forms an archive that includes a range of seasonal
chemical species such as major ions and trace elements, as well as human-made pollutants emitted
into the Arctic atmosphere (Koziol et al., 2021). Ny-Alesund is a well-monitored area and a natural
laboratory for complex system observations, ideal for exploring both long-range contaminants from
mid- to high-latitude regions of Eurasia and Canada (Nawrot et al., 2016; Song et al., 2020; Vecchiato
etal., 2024; D’ Amico et al., 2024), and local inputs from both natural processes and human settlement
(Vecchiato et al., 2018). Previous research has extensively investigated the chemistry of Arctic snow
and the exchange of inorganic species between the cryosphere and the atmosphere across multiple
sites, including Barrow, Summit Greenland, Alert, Sodankyli, and over the Arctic Ocean during the
MOSAIC expedition (e.g., Beine et al., 2003; Bjorkman et al., 2013; Jacobi et al., 2019). Specific
studies in Ny-Alesund and surrounding areas have explored the temporal and compositional aspects
of the lower atmosphere (Stohl et al., 2006a; Eleftheriadis et al., 2009; Geng et al., 2010; Zhan et al.,
2014; Feltracco et al., 2020, 2021; Turetta et al., 2021), though relatively few have addressed the

detailed seasonal dynamics of snow-atmosphere interactions in this region. Building on this existing
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research, our study aims to enhance the understanding of these interactions, particularly in the context

of recent climatic changes.

In this study, we evaluate the surface snow concentration of ionic (Cl, Br, NOs, SO+,
MSA;methane sulphonic acid (MSA), Na*, NH4", K*, Ca?") and elemental impurities (Li, Be, Mg,
Al Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Ag, Cd, Sb, Cs, Ba, Tl, Pb, Bi, U) for the snow
seasons between 2018-2021, at the Gruvebadet Snow Research Site (GSRS) location, 1 km south of

Ny-Alesund, where clean and undisturbed snow conditions are guaranteed throughout the whole
sampling season. The differences in average meteorological and climatological conditions across the
studied seasons are analysed to assess how sea ice extent, polar vortex, and Arctic Oscillation (AO)
conditions influence the composition of surface snow in connection with the aerosol-producing and
deposition processes in Kongsfjorden. Additionally, a Kruskal-Wallis’s test, followed by Dunn’s
post-hoc analysis, has been employed to identify species most affected by inter-annual and seasonal
variations, with the goal of uncovering potential correlations between meteorological-climatic

conditions and chemical concentrations.

2. Methodology
2.1 Sampling and processing

Three sampling campaigns were conducted in Svalbard between 2018 and 2021, covering the period
from October to May according to the onset of the snowpack formation and melting. Sample
collection followed the protocol presented in Spolaor et al. (2019), further adopted by Berto et al.
(2021), where consecutive and adjacent sampling was carried in a 3x3 meters snow sampling area,
within a clean sampling snowfield of 100 m widewidth. Each sample was collected 10 cm apart from
the previous one, along a precise path. This method was designed to minimise the temporal variability
between consecutive samples and reduce the impact of potential spatial variability (within the 5-15%
range, according to Spolaor et al., 2019).

During the first sampling campaign, carried out from October 4™, 2018 to May 10", 2019, 133 snow
samples were collected at the Gruvebadet Snow Research Site (GSRS), a clean-area located about 1
km south of Ny-Alesund, nearby the Gruvebadet Atmospheric Laboratory (GAL), dedicated to the
chemical and physical monitoring of the seasonal snowpack (Scoto et al., 2023; Fig. 1).

The surface snow was sampled within the upper 3 cm, as this layer is the snewlayer—most

impaeteddirectly affected by aereselatmospheric deposition and exechange-processes—at-the-snow-
atmosphere interfaceexchanges (Spolaor et al., 2018, 2021b). Fhischoice-also-mintmisedSampling

only the uppermost layer reduces the effeetrisk of differentphysical snow-conditions{densttyerystal
4
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shapesignal dilution in deeper snow layers, and size}ensures a simple, robust protocol suitable for

long-term campaigns with minimal disturbance of the snowpack.

Throughout the season, the sampling resolution varied based on light conditions. During the polar
night (from October to early March), snow sampling was carried out every 3-5 days. With the
beginning of the polar day, daily sampling was conducted until the end of the snow season.

The second campaign was carried out from October 26™, 2019 to May 25%, 2020, with a total of 107
samples collected. Consecutive samples represent the same snow layer in the absence of snowfall or
wind drift/erosion. However, factors such as snow aging, potential element re-emission,
transformation, and dry deposition can introduce variability, making continuous monitoring essential.
Finally, during the third snow sampling campaign, lasting from October 27", 2020 to June 15, 2021,
a weekly sampling was conducted at GSRS, with a total of 32 samples collected.

During snow sampling, the temperature and density of surface snow were measured, and the density
of snow was calculated based on weighting a 100 cc cylinder. After collection, snow samples were
melted, and two different aliquots were obtained and stored in separate vials. In a 1.5 mL
polypropylene (PP) vial, 1 mL of sample was stored for ionic species, while another aliquot was
stored in a 5 mL LDPE vials for trace elements analysis. PP vials designated to ionic species analysis
were previously sonicated for 30 min in UltraPure Water (UPW) (18 MQ cm™ at 25 °C) for
decontamination. LDPE vial used for trace elements analysis were instead conditioned with HNO3
2% and sonicated for 30 min. All sample aliquots were stored at -20°C in dark conditions and
transported to the Venice ISP-CNR laboratories.

To assess potential contamination during sampling, handling, and transport, field blanks were
collected during each campaign. Metal-free vials (Avantor, VWR Centrifuge Tubes, CHN) were
opened to ambient air at the sampling sites for a few minutes without collecting snow, then sealed
and transported to the Ny-Alesund laboratory. There, they were filled with 2% HNOs and stored under
the same conditions as the snow samples. In parallel, analytical blanks were prepared by opening
vials to air, sealing them, and transporting them directly to Venice, where they were filled with 2%
HNOs and ultrapure water from the laboratory. Both field and analytical blanks were analysed
alongside the snow samples, confirming that background contamination levels were consistently

below LODs or one order of magnitude lower than the lowest concentration detected for all analytes.

Furthermore, seawater temperatures and salinity at 10 m depth were also monitored in Kongsfjorden
(Kb3; 78°57.228°N, 11°57.192’E) during 2019-2021 spring seasons, with data collected every 3-6
days (Assmy et al. 2023). Data was derived from Conductivity Temperature Depth (CTD) casts with
either a MiniSTD model SD-204 (SAIV A/S, Bergen, Norway) or a XR-620 CTD (RBR Ltd, Ottawa,

5
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Fig. 1. Gruvebadet Snow Research Site (GSRS) location with respect to Ny-Alesund Research Station, in the Brogger

peninsula (Svalbard Islands).
2.2 Analysis of ionic species

The analysis of anionic species (Cl, Br, NOj;, SO, MSA) was carried out using an ion
chromatograph (IC, Thermo Scientific Dionex™ ICS-5000, Waltham, MA, USA) coupled with a
single quadrupole mass spectrometer (MS, MSQ Plus™, Thermo Scientific, Bremen, Germany). The
separation was performed using an anionic exchange column (Dionex Ion Pac AS 19 2 mm ID x 250
mm length) equipped with a guard column (Dionex lon Pac AG19 2 mm ID % 50 mm length). Sodium
hydroxide (NaOH), used as mobile phase, was produced by an eluent generator (Dionex ICS 5000EG,

Thermo Scientific). The NaOH gradient with a 0.25 mL min™' flow rate was: 0-6 min at 15 mM; 6-
6
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15 min gradient from 15 to 45 mM; 15-23 min column cleaning with 45 mM; 23—33 min equilibration
at 15 mM. The injection volume was 100 pL. A suppressor (ASRS 500, 2 mm, Thermo Scientific)
removed NaOH before entering the MS source. The IC-MS operated with a negative electrospray
source (ESI) with a temperature of 500°C and a needle voltage of 3 kV. The other MS parameters are
reported by Barbaro et al. (2017). The same IC system was simultaneously used to determine cationic
species (Na*, K, Ca?" and NH4"). However, Ca** was not measured within the samples collected
during the second campaign due to instrumental limitations.

The separation occurred with a capillary cation-exchange column (Dionex Ion Pac CS19—4 mm 0.4
mm ID x 250 mm length), equipped with a guard column (Dionex Ion Pac CG19—+4, 0.4 mm ID x 50
mm length), and the species were determined using a conductivity detector. Analytical blanks of
ultrapure water (> 18 MQ cm) were included in the analysis, and the Method Detection Limit (MDL)
was set to 3 times the standard deviation of the blank values. Checks for accuracy were made using
certified multi-element standard solutions for anions (CI°, Br’, NOs", SO+, no. 89886-50ML-F, Sigma
Aldrich) and cations (Na®, K*, Ca**, no. 89316-50ML-F, Sigma Aldrich) at a concentration of 10 mg
L' + 0.2%. The analytical precision was quantified as the relative standard deviation (RSD) for

replicates (n > 3) of standard solutions and was always < 10% for each ion.
2.3 Trace Elements analysis

Twenty-six elements (Li, Be, Mg, Al, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Ag, Cd, Sb,
Cs, Ba, TI, Pb, Bi and U) were analysed on samples previously melted and acidified to 2% v/v with
HNOs3 (UpA grade, Romil, UK) for 24 hours before analysis (Spolaor et al., 2018; Spolaor et al.,
2021a).

The analysis was performed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS, iCAP
RQ, Thermo Scientific, US). The ICP-MS was equipped with an ASX-560 autosampler (Teledyne
Cetac Technologies), PolyPro PFE nebulizer, PFE cyclonic spray chamber thermostated at 2.7°C,
sapphire injector, quartz torch and Ni cones. The acquisition was performed at 1550 W of plasma RF
power in Kinetic Energy Discrimination (KED) — high matrix mode, using He as collision gas (4.3
mL min™'). Instrument parameters were optimised for best sensitivity in the whole mass range,
minimum oxides (< 1%) and double charges (< 3%). Quantification was obtained by external
calibration with multi-elemental standards prepared in ultrapure water (18 MQ cm™ at 25° C) with
2% v/v ultrapure grade HNO3 (UpA grade, Romil, UK), with a combination of certified level multi-
elemental solutions IMS-102 and IMS-104 from UltraScientific. Analytical quality control was
performed by memory test blank (repeated analysis of ultrapure grade HNO3 2% v/v blank solution)
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after each sample and calibration verification (repeated analysis of reference standards) every 11

samples. More details are found in Spolaor et al., 2021a.

2.4 Transport modelling, sea ice, Kongsfjorden condition, and polar vortex

The Lagrangian particle dispersion model HYSPLIT (Draxler, 1998; Stein et al., 2015) was used to
determine the source region of air masses over Ny-Alesund. This model has previously been shown
to be an effective tool for the prediction of transport pathways into and within the Arctic and Antarctic
regions (Barbaro et al., 2015; Feltracco et al., 2021). The simulations were driven using
meteorological data from the Global Data Assimilation System (GDAS) one-degree archive, set the
top of the model at 10000 m and the height source equal to the GSRS altitude. Back-trajectories were
calculated every 6 h, with a propagation time of 120 h for each sampling period. The choice of a 6-
hour interval for the calculation of back-trajectories allows for the capture of temporal variability in
air mass origins over the day, which is particularly important in polar regions where atmospheric
circulation patterns can change rapidly. This temporal resolution strikes a balance between
computational efficiency and the need for sufficient detail to characterise the variability in source
regions during each sampling period. The propagation time of 120 hours was selected to provide an
adequate temporal window to trace long-range transport pathways that influence air mass
composition at Ny-Alesund. This configuration is consistent with previous studies on atmospheric
circulation in the same site (Feltracco et al., 2021).

This approach was used to ensure an envelope working for all investigated tracers. The resulting
multiple trajectories were based on the screen-plot analyses of total spatial variance.

The Ice Service provided by the Norwegian Meteorological Institute (NIS) was employed to analyse
the weather conditions via remotely sensed data and to generate ice charts of Svalbard, ice-edge
information, and sea surface temperatures trends. Sea ice extent variability in Kongsfjorden was
evaluated based on dataset made available by Gerland et al. (2022).

Differences between the sampling campaigns were evaluated through the National Centers for
Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) Reanalysis
data from NOAA Physical Sciences Lab's daily composites tool, used to calculate the near-surface

air temperatures across the Northern Hemisphere from October to May.

2.5 Statistical procedures and Enrichment Factors (EFs) Analysis

8
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Results below the limit of detection were assumed to be equal to 2 of Method Determination Limit
(MDL) prior to perform statistical analysis, to approximate their likely level based on the data
distribution curve (best approximated as log-normal for most of the studied variables) (George et al.,
2021).

Enrichment Factors (EFs) usingwere calculated to explore the mixed sources of the investigated

elements (Widepohl, 1995). For this scope, Ba was used as a crustal element of reference (‘Widepeohl;

1995:-Spolaor et al., 2021a; Ruppel et al., 2023} -werecaleulated-to-explore the mixed soureesof the
investigated-elements:). To complement the EFs analysis, a Hierarchical Cluster Analysis (HCA) was

performed using Ward’s algorithm and Euclidean distances as clustering criteria, to determine the
presence of some clusters and simplify the interpretation of the dataset.

Additionally, to examine the inter-annual and seasonal variations in chemical’s concentrations and to
identify the species most affected by these changes, a Kruskal-Wallis’ test was employed, followed
by Dunn’s post-hoc test for pairwise comparisons. The Kruskal-Wallis’ test, a nonparametric
alternative to Anova, which is typically applied when samples do not follow a normal distribution
(Van Hecke, 2013), was chosen to assess differences in chemical concentrations across the years of
sampling campaigns and multiple seasons. This allowed for an objective evaluation of temporal
differences in concentration levels, while Dunn’s post-hoc analysis, which uses the same shared
rankings and pooled variance assumed under the Kruskal-Wallis null hypothesis, helped identify
which specific seasons showed statistically significant differences from each other. The Bonferroni
correction was used for the Dunn’s test to control for false positives when performing multiple
pairwise comparisons (Dunn, 1961).

The ultimate goal of this analysis was to uncover potential correlations between meteorological-
climatic conditions and chemical concentrations in surface snow, helping to better understand how
environmental factors contribute to contamination trends.

These combined statistical approaches provided a comprehensive framework for analysing the

complex dataset.
3. Results
3.1 Interannual trends of chemical species on the surface snow

Three consecutive snow seasons were evaluated to define the chemical composition of the surface
snow in the Arctic site of GSRS. The sea salt ions Cl" (50 %), and Na* (23%) represent the most
abundant species, followed by SO4* (11 %), Mg (7 %), Ca (2%), Fe (1%) and Al (1%). Similar

9
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relative concentration abundances were also found in previous studies on the snow of the Svalbard
Archipelago (Beaudon and Moore, 2009; Vega et al., 2015; Barbaro et al., 2021; Spolaor et al.,
2021b).

Table 1 reports the average ionic loads of the most abundant (> 1%) species in the surface snow,
considering three different seasons: autumn is defined until December 21%, winter until March 21*,
and spring from then to the melt onset, identified by 5-6 consecutive days of negative snow
accumulation. The average ionic loads of the less abundant (< 1%) species are reported instead in

Table S1. Average loads are presented in place of medians to avoid underrepresentation of the

occasional high concentration events, which are critical for understanding the snowpack chemistry

dynamics in the Arctic environment.

Table 1. Average ionic loads of the most abundant (>1%) ionic and elemental species in the surface snow during each
season of the three consecutive sampling campaigns. The standard deviation is shown in brackets, while in the case of
2- 69

nss-SO4% the brackets represent the percentage of nss-SO4> compared to the total SO4>. “n” indicates the number of

samples considered for the calculation of the average. Annual averages are reported at the end of each sampling year.

mg m Total CI Na* SO+ nss-SOs+ Mg  Fe Ca NOy K* NH4*
N 32 15 7 3 1 3 2 0.3 0.5 0.3 0.04
auumn 2018 (n=22) o5 op gy @) G6%)  B3)  (5)  (03) (0.5 (04  (0.03)
. 115 55 31 16 8 8 0.4 0.4 2 2 0.3
winter 2018-19 (n=41) o5 68y (39)  (16) (51%) (8) (03) (03) () () (03
. _ 75 36 19 9 4 6 2 0.6 1 1 0.5
spring 2019 (n=31) G0) (@3 Q) O (@8%) () () 04 (1) (1) (04
Year 2018-19 222 106 58 28 13 17 4 1 4 3 0.8
@25 (20) (12) (D (48%) (3) (1) (0.1) (0.8 (0.6) (0.2)
_ 212 101 40 26 16 10 1 9 5 2 4
auumn 2019 (0=15) —9g) 71y 53 @0 (61%) 6 () (12) @ () ()
. 335 159 79 41 21 16 2 9 3 3 7
winter 2019-200743) (150) 88)  (73) @0 (2%) 8 () (10 @ @ @
spring 2020 (n=49) 264 110 52 28 15 21 6 13 4 2 5
() O D @5 (3% @) (9 (160 @ (%) (8
Year 2019-20 811 370 171 95 52 47 9 31 12 7 16
3 G Q) B (5% ©® @ ©® O 1 @
autumn 2020 (n=6) 796 435 191 66 18 84 1 2 6 9 2
(542)  (466) (205) (83) (27%) (165) (2) (5 (1)  (10) (2
winter 2020-21 (n=13) 327 207 64 41 24 6 0.2 0.2 5 3 1
(203) (194) (48) (36)  (60%) (5 (0.4) (0.1) (3) Q) )
spring 2021 (n=13) 178 107 36 16 7 9 4 1 3 2 1
pring 92) (86 (26 (12 @#% (10 O @ @ @ 0
1300 749 291 123 49 99 5 3 14 14 4

Year 2020-21 (194) (168) (83) (25) (40%)  (44) (2) Q) Q) “) 0.5)
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The average loads of the first sampling year were lower compared to the other campaigns (Fig. S1;
Table 1).

High average loads were observed instead for Cl- and Na* in the top snowpack layer during the 2019-
20 and 2020-21 winter seasons. The highest concentrations of sea salt species were found in autumn
2020, despite low snow accumulation (17.25 c¢cm) in a period of relatively high precipitation (4.91
mm) (Fig. 2, Table S3). This apparent contradiction can likely be attributed to the increased wind
speeds during that time, which may have caused snow redistribution, thereby limiting accumulation
despite the considerable precipitation.

The non-sea-salt sulphate (nss-SO4%"), calculated using a seawater SO4*/Na’ mass ratio of 0.252
(Millero et al., 2008), was the most abundant fraction of the total sulphate in autumn 2019 and winter
2020-21, while in autumn 2018 and 2020 sea salt sulphate (ss-SO4>") was the dominant fraction. No
clear predominance between the two fractions was achieved during the other investigated seasons,
which may reflect a more mixed influence of marine and continental sources (Table 1).

The abundance of all chemical species investigated is quite similar for all years (Fig. S1), although
the sampling campaign 2019-20 showed higher percentage of calcium ranging between 3% and 5%,
in contrast to the typical concentrations < 1% found in the other two campaigns.

To further examine differences in species concentrations across seasons and years, a Kruskal-Wallis
test was performed. The test indicates significant differences (y*> 15.51, df = 8, p-value = 0.05) for
several species across the nine seasons of the three sampling campaigns. These species include Br”
(x> = 16.9), MSA (i* = 81.3), SO4> (3> = 21.3), nss-SO4> (> = 23.4), Bi (x> = 19.2), Cd (x> = 31.9),
Cu () = 44.5), Fe (x> = 21.9), Pb (* = 45.1), Ni (x> = 20.6), Ag (x> =24.5), U (> =22.1), V (* =
40.9), Zn (y~ = 29.9). To identify which seasons accounted for these differences, a Dunn’s test with
Bonferroni correction was applied as a post-hoc test, revealing significant seasonal differences for
multiple elements (Fig. S2), with pronounced differences particularly between autumn and winter,
and between spring and winter (P.adj < 0.05; Table S5).

Finally, correlations between meteo-climatic variables (air temperature, wind speed, wind direction,
precipitation, AO index) and the concentrations of the selected species were computed to assess
potential meteorological influences. The results indicated generally weak positive correlations (p <
0.5, p-values < 0.05) for the variables considered. Notably, MSA showed a correlation with air
temperature (p = 0.2, p-values < 0.05), as did Bi (p = 0.2, p-values < 0.05), Cu (p = 0.2, p-values <
0.05), Fe (p = 0.2, p-values < 0.05), Pb (0.1, p-values < 0.05), Ni, (p = 0.2, p-values < 0.05), Ag (p =
0.2, p-values < 0.05), U (p = 0.3, p-values < 0.05), V (p = 0.3, p-values < 0.05), and Zn (p = 0.3, p-
values < 0.05).
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3.2 Polar vortex and Arctic Sea ice extent in 2019-20

According to the 2023 survey conducted by the National Snow and Ice Data Center (NSIDC), the
maximum extent of Arctic Seasea ice since 2014 has been recorded in March 2020, with 14.73 million
square kilometres of the Arctic Ocean surface, in a decadal trend characterised by a -2.53% of decline;
due-to-the-Aretie Amplifieation-. Considering the Kongsfjorden area, the total sea ice extent varied
from 63.94 km? in March 2019 to 129.81 km? in March 2020, and was with 46.26 km? lowest in
March 2021 (Gerland et al., 2022). Specifications on Drift Ice (DI), Fast Ice (FI), and Open Water
(OW) extent are reported in Table S2. The 2020 maximum sea ice extent followed the exceptionally
strong and cold stratospheric polar vortex that took place in the Northern Hemisphere (NH) during
the 2019-20 polar winter, together with low wave activity from the troposphere, which allowed the
polar vortex to remain relatively undisturbed (Lawrence et al., 2020). Notably, the 2020 Arctic Sea
ice extent is 16% and 9% higher than previous (2018-19) and following (2020-21) records (dataset
NSIDC, NOAA). Lower surface mean air temperatures (-14.7°C, compared to the -11.4°C recorded
in 2018-19, and the -8.0°C recorded in the 2020-21), average reduced precipitations (2.1 mm
compared to 2.6 mm in 2018-19, and 3.2 mm in 2020-21), higher maximum mean wind speed (17.7
ms™! for 6 days, compared to 15.4 ms™ for 3 days in 2018-19, and 13.8 ms™! for 5 days in 2020-21),
and higher mean snow height (62.63 cm compared to 58.06 cm in 2018-19, and 57.77 cm in 2020-
21) were observed during the 2019-20 winter season, attributed to the influence of a strong polar
vortex triggered by a net positive Artic Oscillation (AO) phase. The 2020 anomalous AO index is
displayed in Fig. S3. Seasonal values of mean air temperatures (°C), mean precipitation (mm),
maximum mean wind speed (m sec') and mean snow depth (cm) during the three consecutive
sampling campaigns are reported in Table S3. Temperature data were provided by the Norwegian
Centre for Climate Services (NCCS), while sea ice extent data were supplied by National Snow and
Ice Data Center (NSIDC). Seawater temperature data collected at 10 m depth at a mid-fjord station
near Ny-Alesund (Kb3) was found to be colder during 2020 compared to 2019 and 2021 spring
seasons (Table S4). Although these temperatures were still above the freezing point for the observed
salinity levels, they contributed to colder overall conditions in Kongsfjorden, supporting the

formation and prolonged presence of sea ice when combined with cold atmospheric conditions.

4. Discussion

4.1 Ny-Alesund seasonal and interannual trends variability in surface snow

The three consecutive sampling campaigns conducted from 2018 to 2021 confirmed the dominance

of sea salt input in the surface snow of Svalbard, due to the proximity of the sampling site to the
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coastline (Barbaro et al., 2021). The dominant ions are Na®, Cl;, and SO4*, associated with the
scavenging precipitation of marine aerosol (Hodgkins and Tranter, 1998). The observed mean
seasonal trends (Fig. S1) display the highest concentrations of marine species in autumn 2020,
followed by 2020-21 and 2019-20 winter seasons. However, wintrywintertime concentrations are
presumably linked to weakened (2019-20) or destroyed (2020-21) polar vortex (Fig. 2) and intense
cyclonic storms, associated with anomalous warming events capable of transporting both heat and
moisture from lower latitudes to Svalbard (Rinke et al., 2017). In addition to these factors, it is
important to account for snow ablation or erosion by wind. The change in snow height (Ah) between
consecutive sampling events provides valuable insights into such processes. A decrease in snow
height signals ablation can indeed result from snow melting (under positive temperatures), snow
aging, sublimation, or snow drift. In particular, when wind speeds exceed 5 m s!, the threshold
commonly accepted for initiating snow drift and ablation episodes (Pomeroy, 1989), we can infer the
snow erosion due to wind drift likely occurred (Fig. 2). This effect may explain some of the variability

in snow ion concentrations, especially during intense storms or strong winds.

Autumn 2020 represents most likely an outlier, due to scarce precipitations (Fig. 3) that led to more
concentrated impurities in the surface snow. In contrast, late spring 2020 saw a notable increase in
typical marine ions (Na*, CI", Br-, MSA, SO4>) and geogenic elements (Al, Ca, Mn, Fe, Sr), compared
to spring 2019 (Fig. 3). This increase may be attributed to the very close drift Arctic Sea ice presence
in Kongsfjorden (Table S2), which reached its maximum extent in March 2020 due to low-
temperature anomalies and intensified atmospherically driven sea ice transport and deformation,
caused by higher than normal winter wind speeds (Fig. S4). These conditions likely enhanced the
production of sea spray aerosols, which, when carried by winds, may have increased the deposition
of marine species onto the snowpack. The increased deposition of geogenic elements might also have
been influenced by low temperature anomalies (as seen with Fe), and/or by stronger wind speeds,
although significant correlations have not emerged in this preliminary statistical analysis.
Additionally, an outstanding positive phase of the Arctic Oscillation (AO) in the troposphere (Fig. 2)
was recorded in January-March 2020 (Lawrence et al., 2020; Dethloff et al., 2022). Although the
entire period was remarkable, January and February featured as clear outliers in the historical

timeseries (1950-2023) reported by the NOAA service, while March 2020 exhibited significantly
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values of Ah;. NOAA Physical Sciences Lab's daily composites tool was used to calculate the near-surface air

temperatures across the Northern Hemisphere from October to May. Grey bands_across the panels indicate the winter

periods.

A 2021 spring peak of marine species was also recorded, although more attenuated than in spring
2020 (Fig. 3, Fig. S1). This variation is likely attributable to different extents of sea ice in the fjord.
Nonetheless, seawater temperatures in 2021, similar to those in 2020 and 2.3°C colder than in 2019
(Table S4), along with comparable wind speed conditions (Fig. S4), may also have contributed to the

observed trends in marine species concentrations. Similarly, the spring peak of Mg, Sr, Mn, Fe, Al,
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and V in 2021 seems to reflect the high wind speed (Fig. 3) and positive AO index (Fig. 2a) recorded
from March to April 2021. Positive anomalies for air temperatures (A) and wind speed (W)
conditions; (Fig. 2b and 2e), together with negative anomalies in seawater (O) conditions (Table S4)

were observed during the 2020-21 campaign, while negative A and O conditions were accompanied
to positive W during 2019-20. On the contrary, 2018-19 diverges from the other campaigns for
positive O condition associated to negative W condition anomalies. These ebservations—provide
valuable—instghts—intocontrasting patterns suggest that variability in atmospheric circulation and

oceanic state exerts a direct control on the timing and intensity of aerosol deposition to the snowpack.

In particular, stronger winds and warmer air masses enhance the transport and deposition of crustal

and sea-salt species, whereas negative oceanic anomalies appear to modulate their availability as

sources. This highlights how combined shifts in atmospheric and oceanic conditions #mpaetdrive the
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A19  Fig. 3. Wind-direction{);-wind-speed-(m-see )andonielonic loads (mg m?) of Na*, Cl', Mg, SO47, nss-SOs*, MSA,

120 Br, Brea, Ca, Sr, Mn, Fe, Al, Pb, V, Ni in the surface snow for the three sampling campaigns: 2018-19, 2019-20, 2020-

421 21. Seasonal trends are here presented for specific elements to provide a detailed view of how concentrations vary across

A22 distinct sampling periods. Precipitation trends (mm), wind speed (m sec™!), and wind direction (°) are reported twice for

A23 visual clarity.

A24 A

425 4.2 Enrichment Factors and source attribution

126  Enrichment Factors (EFs) are a mean of identifying and quantifying human interference with element

27  cycles (Widepohl, 1995). EFs are calculated from elemental ratios, and are most often used to indicate

128  the impacts of pollution according to Eq. (1):

[TE]
[Bal] l
25 Plense 0
[Balycc
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where [TE] is the concentration of the trace element of interest, [Ba] is the concentration of a

lithogenic tracer (in this case Ba substitutes Al), and the subscripts ‘sample’ and ‘UCC’ refer to the

concentration of the lithogenic tracer within the sample and the UCC (e.g., Taylor and McLennan,

1993).

Evaluation of EF can help to discuss the singular case is-represented-byof Pb, which showed a 12.5-

fold increase during winter-spring 2019 period compared to autumn 2018 (Fig. 3). and provide

insights into element sources.

4.2.1 Enrichment Factors in seasonal snow of Ny-Alesund

The calculated EFs (Fig. 4) for Be, Al. V, Mn, Fe, Co., Rb. Cs, and U were consistently below 10,

indicating a predominantly crustal (geogenic) origin for these elements (Wedepohl, 1995; Gabrieli et
al., 2011). In contrast, Ni, and Sr displayed EFs greater than 10, suggesting contributions from mixed

sources. Notably, Ni exhibited exceptionally high EF values — above 100 — during autumn 2019 and
spring 2020 (Ni). Mixed sources were also recognised for Li, K, Cr, Cu, Zn, As, Ag, Cd, and T1 with

occasional EF values over 100. This suggests significant anthropogenic contributions, especially for
Cu (spring and autumn 2019: spring 2020). As (from autumn 2020 to spring 2021). Zn (autumn 2019

and Cd (from autumn 2018 to spring 2019; winter 2019-20).

~The EF for Pb during theseall seasons exceeded 100, indicating a strong anthropogenic contribution.
In contrast, the peak observed in 2020 no longer shows such elevated EF values (i.e., EF = 26),
suggesting a mixed source (Fig. 4). This implies that the April-May 2020 peak is largely of crustal
origin, as the overlap with V (EF < 10) also suggests, possibly due to local dust events driven by

strong winds exceeding the 5 m sec! threshold (Fig. 3; Table S3).
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Fig. 4. Enrichment Factors (EFs) calculated on all the presented trace elements for the three sampling campaigns: 2018-
19, 2019-20, 2020-21. Calculating EFs for the full dataset offers a more robust assessment of potential sources and

enrichment patterns, minimizing the variability inherent in individual seasons and allowing for a clearer distinction

between crustal and non-crustal contributions.

The 2019 springtime Pb concentration maxima are typically consistent with a mixture of eastern and

western European sources (Sherrell et al., 2000; Bazzano et al., 2015, 2021). In this study, cluster

mean trajectories obtained for winter 2018-2019 highlighted a 25% of air mass provenance from
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Russian Arctic and a 13% from eastern Siberia (Fig. S5), possibly explaining the higher
concentrations of Pb revealed in spring 2019, following a reduced precipitation regime that occurred
in January 2019. A local anthropogenic origin can be excluded though, since no activities (ordinary-
extraordinary maintenance or particular events) were recorded in the vicinity of the sampling site in
the 2019 sampling season. However, at present, the long-range transport of Pb remains a hypothesis,

likely supported by the breakdown of the-wintry-polar vortex (Fig. 2).

Backward trajectories (Fig. S5) for Ny-Alesund area (78.92° N, 11.89° E) appear mostly in line with
literature findings (Platt et al., 2022; Vecchiato et al., 2024), showing three main seasonal characters:
a prevalent mass movement from ice-covered Central Arctic Ocean, Kara Sea, and Greenland Sea
during autumn, a main provenance from Central Arctic Ocean and Kara Sea during winter, and a
predominant trajectory from Northern Canada in addition to air masses arriving from Arctic Ocean

and Kara seas during spring.
42 The-maind.2.2 Main ion sources in-the seasonal snow of Ny-Alesund

Examining the dominant ions associated with marine aerosol, we found ClI/Na* median ratios ranging
from 1.3 to 1.5 w w!, slightly lower than the expected value of 1.8 w w! in the pure seawater (Zhuang
et al., 1999), pointing the occurrence of a minimum CI" depletion in aerosol, quantified as 14% for
the 2018-19 and 2019-20 campaigns, and as just 2% for the 2020-21 campaign. A possible
explanation for this phenomenon could be the de-chlorination of sea-spray aerosol during transport.
This reaction occurs when sea-salt particles containing NaCl interact with acids such as HNOs3,
H>SOu4, or organic acids, leading to the release of gaseous HCI (Zhuang et al., 1999, and reference
therein). Although less likely, this process could also occur at the snow-atmosphere interface. On the
contrary, a possible influence of biomass burning on Cl” depletion process has been excluded by the
very low correlation (0.18, p-value < 0.05) found between CI depletion values and nss-K /K" ratios,

which is a tracer of relative contribution of biomass burning (Song et al., 2018).

Positive correlations between Mg, Ca, and K with Na* and CI" (Fig. 5, p-value <0.05) suggest a
common sea-spray source. However, the concentrations of Mg are also positively correlated with nss-
Ca (pioad = 0.55, p-value < 0.05), calculated according to Morales et al. (1998), indicating a shared
non-marine source. This suggests that in addition to their marine origin, these ions (Mg, Ca) also have
contributions from a non-marine, crustal source. Further evidence comes from the Ca/Mg ratios in
surface snow samples collected during the three campaigns, which were higher than those found in

seawater (0.32, Millero et al., 2008). This excess indicates the likely presence of mineral particles
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(i.e., calcite and dolomite), potentially originating from local rock or soil dust (e.g., limestone,
dolostone, and marble, which are abundant in Svalbard), as previously observed by Barbaro et al.
(2021). To further explore the mixed sources of these elements, we calculated the Enrichment Factors
(EFs) of Mg and Ca. For Mg, the EF values were consistently above 10 in all the seasons analysed,
indicating a significant non-crustal source (e.g., marine). In contrast, Ca displayed EF values greater
than 10 only during autumn 2019, suggesting that its non-crustal contribution (likely from sea spray)
was more pronounced during that specific season. Based on these findings, we conclude that Mg and
Ca effectively share a common sea spray origin, but the sea-salt contribution of Ca was mainly
significant in autumn 2019, while the excess of Ca in other seasons likely reflects inputs from crustal

source, such as local mineral dust.

Similarly, sulphate (SO4>") is highly and significantly correlated (p-values < 0.05) with both Na* (pioad
=0.80) and CI" (poad= 0.91), indicating that sea-spray is its main source. Nonetheless, Na*/SO4* and
CI/SO4* ratios are significantly lower than typical seawater values (3.97 and 7.13, respectively,
according to Millero et al., 2008) for the former two campaigns (2018-19, 2019-20). The elevated
sulphate concentrations compared to sodium, also in winter snow, suggest the absence of a strong
frost flower signature. Additionally, the lack of significant depletion in nss-SO4*" further supports the
minimal role of frost flowers in contributing to the snow composition. Therefore, while frost flowers
are known to impact snow chemistry in Svalbard (Rankin et al., 2002; Beaudon and Moore, 2009;
Roscoe et al., 2011), our analysis indicates that their contribution to the observed sea salt peaks in
Kongsfjorden during the 2018-19, 2019-20 campaigns was likely limited. This analysis highlights
that, while sea ice extent supports higher sea-salt concentrations in snow, the specific sulphate and
ion ratios observed point to sea spray as the main source, with only a minor role for frost flower-

related inputs.

Instead, the presence of nss-SO4> suggests potential inputs from other sources, such as crustal
material, anthropogenic emissions (e.g., fossil fuel combustion), or the oxidation of dimethylsulfide

(DMS) released from marine biological activities.

To estimate the crustal fraction of sulphate (cr-SO4%), the nss-Ca (as crustal marker) content was
multiplied by 0.59 (SO4*/Ca w/w ratio in the uppermost Earth crust - Wagenbach et al. 1996),
obtaining variable contributions for the three sampling campaigns, ranging from 2.45% up to 12.94%.
Conversely, the anthropogenic contribution to nss-SO4>" concentrations was investigated by the
application of the [ex- SO4*] concentration formula (Schwikowski et al., 1999), considering the

average concentration of [Ca] instead of the average ionic concentration [Ca®'] because Ca*'
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concentrations were not measured in the samples collected during the second campaign due to

instrumental limitations:
[ex- SO4*] =[SO4*] - (0.12 [Na*']) — (0.175 [Ca*"])

The coefficient 0.12 is based on the molar ratio of SO4> to Na*, while the value 0.175 represents the

observed slope corresponding to the pre-industrial nss-SO4*/nss-Ca ratio in mineral dust found in

snow (Schwikowski et al., 1999, and reference therein). The obtained results showed a 50 up to 60%

of anthropogenic contribution for the nss-SO4* input. This finding corroborates previous results from
Amore et al. (2022), who noted that anthropogenic sulphate was the most abundant apportioned
component at Gruvebadet, accounting for at least 50% all over the year during the 2010-2019
investigated period. The plausible source of the anthropogenic fraction is the atmospheric transport
of secondary aerosols containing SO4>, and ammonium sulphate. This sulphate can be formed by
SOx emitted from coal combustion throughout the winter and biomass burning in the spring (Barbaro
et al., 2021 and reference therein). The nss-SO4> does not correlate significantly with other ionic

species (except for Mg), thus suggesting a separate origin (Fig. 5).
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Fig. 5. Spearman correlation plots. Aa) Correlation plot for the three sampling seasons; Bb) Correlation plot for the
2018-2019 season; €c) Correlation plot for the 2019-2020 season; Bd) Correlation plot for the 2020-2021season.

Higher positive correlations are presented in shades of red, while lower negative correlations are shown in shades of

blue.

To quantify the biogenic nss-SO4? contribution, the methanesulfonic acid (MSA) loads - the final
product of DMS oxidation - were multiplied by 3.0 (Udisti et al., 2016), revealing biogenic SO4>
contributions ranging from 0.15% (2018-19, 2020-21) up to 0.38% (2019-20). Furthermore, the
MSA/nss-SO4>" ratio was inspected, revealing a mean value of 0.02 + 0.03 during the first (2018-19)
and the third (2020-21) sampling campaigns, and a maximum ratio equal to 0.06 = 0.18 reached
during the second campaign (2019-20), similar to the subarctic western North Pacific ratio found by
Jung et al. (2014). However, several factors can influence MSA formation, a univocal marker of
biogenic emissions, including higher biological productivity related to higher nutrient input; the
concentrations of NOs3 radicals as key oxidants for DMS decomposition (higher NO; gives higher
MSA); and lower air temperatures, which tend to yield higher MSA levels (Andreae et al., 1985;
Udisti et al., 2020).
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For the 2019-20 campaign, it seems likely that a combination of these three factors, together with the
positive expansion of sea ice and the very close drift ice presence in March 2020, as revealed from
satellite reconstructions (Fig. S6), contributed to the increased release of MSA in aerosol, and its
consistent deposition in surface snow (Fig. 3). Indeed, DMS was likely accumulated under the sea
ice cover in the fjord and surrounding areas, and then being released and oxidised in the atmosphere
when the ice broke off and melted (April-May). Furthermore, lower temperatures (-17.3°C in March
2020, compared to -16.1°C in March 2019, and -9.8°C in March 2021), positive correlation between
MSA and NO3™ (pioad = 0.49, p-value < 0.05), and high-speed short-range transport (wind directions
between 0°-60° and speeds > 5 m sec!) from the source to the near-coast sink site (GSRS) would
have aided elevated concentrations of MSA in atmospheric depositions. However, the dominant south
and southwest winds (180°-240°) during the major MSA peak in April 2020 (Fig. 3) likely transported
marine aerosols and DMS from open ocean regions, further facilitating the increased MSA

concentrations observed.

Contrarily, in the 2018-19 season, sea ice lasted only until April and was restricted to the inner,

shallower parts of Kongsfjorden (Assmy et al., 2023},peossiblynet-allewing). This limited duration

may not have provided enough time with adequate sunlight for substantial biological activity to
accumulate beneath or within itthe ice. This occurred despite the dominance in 2019, unlike the
following year, of Phaeocystis pouchetii, a phytoplankton species known for its capacity to generate

DMS in significant quantities;-aceordingto- (Assmy et al-—., 2023).

Finally, the ammonium (NH4") load showed positive correlations with several ions (Fig. 5). It was

strongly correlated with Na* (pioad = 0.71, p-value < 0.05), CI" (pioad = 0.52, p-value < 0.05) and K*
(Proad = 0.72, p-value < 0.05);-as-well-as). Positive correlations were also observed with SO4% (pioad =
0.54, p-value < 0.05), NO3™ (pioad = 0.45, p-value < 0.05), MSA (pioad = 0.37, p-value < 0.05) and Br
(proad = 0.53, p-value < 0.05);-suggesting). These results suggest a close link with sea-salt ions and

biogenic emissions. However, some contribution from biomass burning events and potential

influence from anthropogenic activities cannot be excluded.

434.2.3 Bromine enrichment

The bromine enrichment factor (Bren) is well known to reflect specific processes (i.e., sea ice gas
phase Br emission) that affect the Br concentration and load in the snowpack (Spolaor et al., 2014).
Therefore, calculating the relative enrichment over the Br/Na ratio in sea water can offer crucial

insights on sea ice variability for the investigated Arctic areas (Barbaro et al., 2021). As reported in
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previous studies (Maffezzoli et al., 2017; Barbaro et al., 2021), the Br enrichment factor (Brenr) can
be calculated as Brenr = Br/ (0.0065 Na*), where 0.0065 represents the Br/Na" seawater mass ratio.
Contrarily to what observed in a former study (Barbaro et al., 2021) for the Hornsund area and north-
western Spitsbergen, where the Brenr mean values were often < 1, indicating some Br™ depletion, in
this study we observed Brenr mean values ranging from 1.5 up to 17.7, with the highest value
associated to the second sampling campaign conducted in 2019-20, which showed the most extensive
sea ice coverage. These results support the impact of the sea ice expansion and the close drift ice in
the Kongsfjorden on the snow chemical composition. Indeed, newly formed sea ice releases gas-
phase Br into the polar atmosphere, thus supplying an extra Br~ source in addition to sea spray

(Spolaor et al., 2016).
444.3 Anthropogenic and natural sources of ions and particulate trace elements

To complement the EFs analysis and further distinguish possible anthropogenic contributions from
natural ones (marine and geogenic) for ions and particulate trace elements, a Hierarchical Cluster

Analysis (HCA) method was carried out- using the whole dataset, which encompasses all three

sampling campaigns (2018-2021) to capture the full variability in sulphate sources and atmospheric

processes across different seasons and years. Results of clustering (Fig. 6) clearly disentangle marine
(Na*, CI, K, NH4", SO4*, NO3’, Br', Mg, Sr, bio-SO4>", MSA), anthropogenic (As, Co, Ag, Ba, Cd,
Zn, Pb, Bi, Cr, Cu, Ni), and geogenic (nss-Ca, Tl, Li, Al, Cs, Rb, Fe, Mn, U, Be, Se, V) sources of

ionic and elemental species, considering the whole sampling campaign period (2018-2021).
Interestingly, nss-SO4> is brought together with the marine cluster, suggesting that its presence is
largely influenced by marine biogenic sources, alongside contributions from secondary sulphate
formation in the atmosphere. This indicates that nss-SO4>", despite having a variety of sources such
as human contribution or dust, is closely linked to the marine environment. One important reason for
this 1s the emission of DMS by phytoplankton. Additionally, secondary sulphate formation may have
further contributed to the nss-SO4*". Cobalt was grouped within the anthropogenic cluster in HCA, in
contrast with EFs that suggested a crustal origin. This apparent discrepancy may reflect the relatively
larger uncertainties typically associated with EF calculations, which can inherit errors from the choice
of reference element, assumptions about crustal composition, and variability in background
concentrations, compared to the more integrative approach of HCA (e.g., Reimann and de Caritat,
2000). Moreover, the trend for Co closely aligns with anthropogenic ones (e.g., As), while distinct
trends are evident for crustal elements. Therefore, while the HCA results offer a reliable perspective
on source differentiation and clustering patterns, they are best interpreted as complementary to the

EF calculations rather than directly integrated with them. Incorporating EFs directly into the HCA
26



626  could introduce significant inaccuracies, as EFs rely on reference element ratios that may vary and
627  thus add complexity to the clustering process, potentially skewing the results. Consequently, HCA
628 independently provides robust insights in this context, enhancing our understanding without the

629  additional uncertainties that EF-based clustering might introduce.
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Fig. 6. Hierarchical cluster analysis applied to further disentangle the particulate trace element non-crustal sources.

5: 5. Summary and Conclusion

In this study, trace elements and major ions were investigated in surface snow samples collected in
Ny-Alesund between October 2018 to June 2021. Seasonal and interannual variations of impurities
have—beenwere observed, with general—higherthe highest concentrations of marine species
revealedrecorded in late spring 2020;-asseciated-to-more (e.g., CI'= 110 mg m>, Na' = 52 mg m?,
SO4* =28 mg m™). These elevated levels coincided with the most extensive sea ice in Kongsfjorden
in March 2020—premeted (FI = 113.28 km? DI = 16.53 km?). driven by negative temperature
anomalies in both the atmosphere (-7.47°C) and ocean (-0.55°C), and likely related to higher air mass
recycle within the Arctic. TheseresultsprevideThis provides direct evidence efhewthat sea ice extent

modulates the storage, release, and transport of marine-derived impurities,-thereby influencing snow-

atmosphere chemical exchange processes under varying climatic conditions. Higher concentrations

in spring 2020 for geogenic (e.g.. Fe = 6 mg m™~, Ca = 13 mg m™) and anthropogenic (e.g., Co=5 pg

m?2, Cr=25 pegm? Ni=131 ug m?) species are consistent with the combined influence of higher

wind speeds; (16.09 m s!), low atmespheric-temperature-anomaliestemperatures, and generally drier
28
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conditions resulting from the exceptional occurrence of a strong and cold stratospheric polar vortex,
accompanied by an unprecedently positive phase of the Arctic Oscillation in the troposphere during
January-March 2020. While correlations between meteorological variables and concentrations were
generally weak, the overall meteorological context suggests that these unusual conditions likely
contributed to the observed deposition patterns. This is particularly evident especially in the cold
yearsyear of 2020, when the production of sea spray related aerosol likely derives by a larger

extension of sea ice and stronger local Arctic circulation-, as also indicated by elevated Bre,, mean

values (17.7 compared to the usual < 1; Barbaro et al., 2021). The identification of geogenic, marine,

and anthropogenic sources in the snowpack was allowed by a chemometric approach (HCA), which

clarified-the EEsresults—Thecomplemented the enrichment factor analysis. This approach mitigates

potential biases for EFs results that may come from reference element selection, assumptions about

crustal composition, and backeround variability (Reimann and de Caritat, 2000). In this work, the use

of chemometric techniques (HCA) and back-trajectory analysis enabled a clearer attribution of

sources and transport pathways, improving the-interpretation of snow composition in relation to

meteorological drivers. Speeifically—the—distinetNotably, seasonal air mass patterns revealed;
charaeterised-by dominant Arctic-origin air masses in fall and winter and a-tack-of-expeetedreduced
mid-latitude inputs in spring, underscere-the—changingdynamies—of-highlighting shifts in snow-

atmosphere interactions #under a warming Arctic. Overallthese-insightsadvance ourunderstanding
ofhoewThese results demonstrate that recent climatic anomalies, such-as-alteredincluding changes in

sea ice extent, shifts in Arctic Oscillation phases, and stronger polar vortices, significantly modulate
the chemical composition of the snowpack in Svalbard. Our findings highlightunderscore the
sensitivity of snow-atmosphere exchanges to both local and large-scale climatic processes, offering
impertant-providing valuable context for interpreting trends in snow chemistry trends-in a rapidly
changing Arctic environment. Furtherstatisticalinvestigations;—inelading-Limitations such as weak

correlations between meteorological variables and concentrations suggest that further multivariate

and lengerlong-term analyses;-would-be-valuable-forbetter quantifyying these-correlations— are needed

to quantify these relationships more robustly. Overall, this study emphasizes that snow chemistry can

serve as a sensitive indicator of Arctic atmospheric dynamics and climatic variability, advancing our

understanding of the links between cryosphere processes, atmospheric circulation, and ionic-

elemental deposition.
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The data supporting the findings of this study are available within the article and its supplementary
materials. Other data that support the findings of this study are available from the corresponding

author upon request.
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