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Abstract. Preventing and fighting forest fires has been a challenge worldwide in recent decades. Forest fires alter forest struc-

ture and composition, threaten people’s livelihoods, and lead to economic losses, as well as soil erosion and desertification.

Climate change and related drought events, paired with anthropogenic activities, have magnified the intensity and frequency

of forest fires. Consequently, we analysed forest fire susceptibility (FFS), which we understand
:::
can

::
be

::::::::::
understood

:
as the

likelihood of fire occurrence in a certain area. We applied Random Forest (RF) machine learning (ML) algorithm to model5

current and future FFS in the federal state of Brandenburg (Germany) using topographic, climatic, anthropogenic, soil, and

vegetation predictors. FFS was modelled at a spatial resolution of 50 metres for current (2014-2022) and future scenarios

(2081-2100)considering different shared socioeconomic pathways (SSP3.70 and SSP5.85). Model accuracy ranged between

69 % (RFtest) and 71 % (LOYO), showing a moderately high model reliability for predicting FFS. The model results under-

score the importance of anthropogenic parameters and vegetation parameters in modelling FFS on a regional level. This study10

will allow forest managers and environmental planners to identify areas, which are most susceptible to forest fires, enhancing

warning systems and prevention measures.

1 Introduction

Over the past decades, climate change has been leading to a higher intensity and frequency in extreme weather events all over

the planet (Kemter et al., 2021; Silva et al., 2018; Wu et al., 2021). In Germany, very low precipitation has been occurring15

more frequently in the last six years, leading to an increased number of forest fires (Gnilke and Sanders, 2021). Long periods

of drought have been causing soils and vegetation to dry out substantially. Especially in forests, the drying out of trees, un-

derground vegetation, litter, and soils is making forests highly flammable (Littell et al., 2016). Consequently, it is crucial to

understand the conditions that cause the emergence and spread of forest fires as well as to detect the areas that are most prone

to forest fires (Ambadan et al., 2020). This way, forest fire prevention and management strategies can be improved, decreasing20

the subsequent potential threats to forests, population and infrastructure located in proximity to forests. In the long run, this

may also decrease the financial costs of climate change (Chicas and Østergaard Nielsen, 2022).

Apart from meteorological conditions, forest fires are influenced by a number of environmental factors, including soil mois-

ture, topography, sun exposition, lightning strikes, and wind (He et al., 2022; Saidi et al., 2021; Wang et al., 2021). Moreover,
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they are closely linked to human influence, encompassing the expansion of infrastructure in proximity to forests, as well as the25

utilisation of forests for recreational purposes (Ghorbanzadeh et al., 2019). On a European scale, a study by El Garroussi et al.

(2024) shows that 96 % of wildfires are triggered by human influence. In a similar vein, Gnilke and Sanders (2021) state that up

to 50 % of the burnt area from forest fires in Germany is caused by human action. German forest fire statistics identified human

negligence as the most important factor in the occurrence of forest fires (Federal Office for Agriculture and Food, 2023). Thus,

anthropogenic influences should be carefully considered along with other parameters when analysing forest fires (He et al.,30

2022; Ruffault and Mouillot, 2017).

Forest fires and the assessment of meteorological, climatic, and anthropogenic parameters have been addressed in numerous

studies. Some of them analyse the fire risk of certain regions (Ambadan et al., 2020; Saidi et al., 2021), whereas others focus on

the identification of parameters influencing forest fire emergence (He et al., 2022; Ruffault and Mouillot, 2017). For example,

Saidi et al. (2021) developed a GIS-remote sensing approach to investigate forest fire risk in Tunisia, whereas He et al. (2022)35

studied the drivers of bushfires in New South Wales, Australia over a time period of 40 years. The current state of research

on forest fires suggests that topography, climate, land use, and anthropogenic influences are the most influential parameters

(Abdollahi and Pradhan, 2023; Cilli et al., 2022; Ghorbanzadeh et al., 2019; He et al., 2022; Ruffault and Mouillot, 2017; Saidi

et al., 2021; Li et al., 2024). For example, Ruffault and Mouillot (2017) consider human influence, land cover, and weather

conditions for the assessment of influencing factors for wildfires in the French Mediterranean region.40

FFS can be analysed with a variety of methodological approaches, including knowledge-based approaches, such as hierarchical

weighting (Busico et al., 2019), ML and statistical approaches, or hybrid approaches (Chicas and Østergaard Nielsen, 2022).

ML algorithms include RF (Cilli et al., 2022; He et al., 2022; Milanović et al., 2021; Oliveira et al., 2012, 2016), boosting

models (Ruffault and Mouillot, 2017; Wang et al., 2021), and artificial neural networks (Ghorbanzadeh et al., 2019). Previous

research on FFS has been focusing on bigger research areas (Busico et al., 2019; He et al., 2022; Saidi et al., 2021), whereas45

research on a smaller scale has fallen short. However, geodata and remote sensing data at high spatial resolution allow for

detailed analysis to enhance forest fire research on a local scale. Especially regarding climate change and the growing likeli-

hood of weather extremes such as droughts, local FFS modelling is essential for identifying key drivers on a local scale. This

way, improved prevention and management strategies of forest fires can be provided. While future climate data now enables

the modelling of future forest fire susceptibility (FFS), those types of studies remain scarce (Busico et al., 2019), indicating50

significant untapped potential for enhancing forest fire prevention efforts.

This study focuses on the analysis of forest fires in Brandenburg, Germany. Due to a high percentage of coniferous forest, this

federal state has been particularly prone to forest fires in the past. Furthermore, remnants of old munitions at former military

training sites have been causing forest fires in Brandenburg in 2018 and 2019 (Gnilke et al., 2022). Although this issue has

been addressed by German newspapers, it has received minimal attention in scientific research (Feng et al., 2022). Therefore,55

this study aims to predict FFS in Brandenburg under two current (2016 and 2022) and two future scenarios (2081-2100) using

geodata and remote sensing data at high spatial resolution and the Random Forest (RF) machine learning (ML) algorithm.

Following Zhang et al. (2019), FFS in this study represents “the probability estimation of fire occurrence”. In addition to

topographic, vegetation, and soil parameters, this study incorporates a comprehensive set of anthropogenic and land use pa-
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rameters, including new predictors such as the distance to campsites and military training sites, to expand existing research on60

forest fires. To our knowledge, only few studies have analysed FFS at a high spatial resolution so far (Ghorbanzadeh et al.,

2019; Suryabhagavan et al., 2016; Razavi-Termeh et al., 2020; Pourtaghi et al., 2015) and we do not know of any studies that

modelled future FFS at a high spatial resolution. Within the scope of this investigation, the following research questions will

be answered:

a) Which variables are most significant in terms of forest fire spread in north-east Germany?65

b) Which areas in Brandenburg are most susceptible to forest fires now? How will these areas change considering future

climate conditions?

2 Materials and Methods

2.1 Study area

The federal state of Brandenburg (Fig. 1) was selected as the study area for modelling FFS under current and future scenarios.70

Brandenburg is located in the north-east of Germany. With sandy or sandy-loamy soils and a high number of rivers and lakes,

the federal state is characterised by a periglacial landscape. Agriculture and managed forests are the main land uses. The forests

are dominated by pine trees (Pinus sylvestris L.) (Matos et al., 2010) and the climate is characterised by rather dry summer

months. The combination of these conditions is linked to a medium to high forest fire risk (Holsten et al., 2009; Matos et al.,

2010; Reyer et al., 2012; Thonicke and Cramer, 2006). Comparing all German federal states, Brandenburg is the federal state75

that has been most affected by forest fires (Gnilke and Sanders, 2021), which is why it was selected for this study.

2.2 Current and future forest fire susceptibility scenarios

The aim of this research is to compare FFS under different temporal scenarios. To do so, current and future FFS in the federal

state of Brandenburg were modelled. To represent the current state, the years of 2016 and 2022 were selected after carefully

analysing the monthly precipitation sums and mean monthly air temperature of Brandenburg between 2014 to 2022 (see Fig.80

S 1 and S 2 in the supplement
::::::::::
Supplement). Based on this analysis, 2016 was characterised by average climatic conditions,

whereas 2022 was characterised by conditions of drought (low precipitation rates). Consequently, the scenario of 2016 was

considered as a baseline scenario with average climatic conditions. In contrast to 2016, the scenario of 2022 represents a very

dry year, which can be expected to occur more frequently due to the expected increase in extreme weather events in the future

(Silva et al., 2018; Wu et al., 2021).85

The future scenarios of FFS cover the period of 2081 to 2100 using two different shared
:::
the socio-economic pathways (SSPs)

:::::::
pathway

:::::
(SSP)

::::
5.85. SSPs are different projections of future greenhouse gas emissions under distinct potential political and

socioeconomic developments. The SSPs range from SSP1.19 to SSP5.85
:::
SSP

::::
5.85, covering CO2 concentrations ranging from

393 to 1135 ppm until 2100. For the scope of this research, the scenarios SSP3.70 and SSP5.85 were selected for further

analysis. Whereas SSP3.70 refers to a “medium-high reference scenario”, SSP5.85
:::
SSP

::::
5.85

:
represents “a high fossil-fuel90
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Figure 1. The federal state of Brandenburg in north-east Germany. Basemap © 2024 TerraMetrics, Google, GeoBasis-DE/BKG (© 2009).

Border layers © BKG (2024) dl-de/by-2-0 (Data not changed).

development world throughout the 21st century” (Meinshausen et al., 2020).
::
We

:::::::
decided

::
to

::::
use

::::
SSP

::::
5.85

::::
from

::::
the

::::::
Global

::::::
Climate

::::::
Model

:::::::
(GCM)

:::::::::::::::::::::::::::::
MPI-ESM-1-2-HR.Xu et al. (2023)

::::
state

:::
that

::::
this

:::::
GCM

::::::
reflects

:::::
future

:::::::
drought

:::::::::
conditions

:::::
rather

:::::
well,

:::::
which

::
is

::::
why

::
it

:::
was

:::::::
selected

:::
for

::::
this

:::::
study.

::::
The

::::::
climate

::::
data

::::::::
(monthly

:::::::
average

::::::::
minimum

::::::::::
temperature

:::::
(°C),

:::::::
monthly

:::::::
average

::::::::
maximum

::::::::::
temperature

:::::
(°C),

:::
and

:::::::
monthly

::::
total

:::::::::::
precipitation

::::::
(mm))

::::
were

::::::::::
downloaded

:::::
from

:::::::::
WorldClim

:::::::::::::::::::
(www.worldclim.org).

::::
This

::::::
website

::::::::
provides

::::::
gridded

:::::::::::
multi-annual

::::
data

:::
sets

:::::
based

:::
on

:::::::
different

::::::
GCMs

:::
for

:::::::
different

::::::::::::::
socio-economic

::::::::
pathways

::::::
(SSPs)95

:::
and

:::::::
different

:::::
time

::::::
periods

:::::::
between

:::::
2021

::
to

:::::
2100

::
up

:::
to

::
30

:::
arc

:::::::
seconds

::::
(~1

:::
km)

::::::
spatial

:::::::::
resolution.

:::
In

:::::
order

::
to

::::::
include

::::::
future

:::
land

:::::
cover

:::::::
changes

::::
into

:::
the

:::::
future

::::::::::
predictions,

:::::
future

::::
FFS

:::
was

::::::::
predicted

::::::
twice:

::
a)

::::::::
including

::::
only

:::::::
projected

:::::::::::::
meteorological

::::
data

::
for

::::::::::
2081-2100;

:::
and

:::
b)

::::::::
including

::::::::
projected

::::::::::::
meteorological

::::
data

:::
for

:::::::::
2081-2100

:::
and

::::::::
projected

::::
land

:::::
cover

::::
data.

::::::
Within

:::
the

::::
Fig.

::
2,

::
4,

::
5,

::
6,

:::
and

::
7,

::
as
::::

well
:::

as
::
in

:::::
Table

:
3
:::

the
:::::

latter
::::
will

::
be

:::::::
labeled

::::
with

::::
"*".

:::::::::::
Additionally,

:
a
::::
third

::::::
future

:::::::
scenario

:::::
based

:::
on

:::
the

::::
SSP

::::
3.70

:::
was

:::::::::
predicted.

:::
The

::::::
results

:::
can

:::
be

:::::
found

::
in

:::
the

::::::::::
Supplement

::::
(Fig.

::
S
:::
10

::
to

:
S
::::
13). After analysing the monthly frequency of100

forest fires in the federal state of Brandenburg, the month of June was selected for the prediction of the four scenarios, since

forest fire data showed the highest number of forest fires in this month between 2014 to 2022 (Lower Forestry Authority of the
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State of Brandenburg, 2023). For model training, we used all available forest fire events of all months between 2014 to 2022

and pre-processed climatic data sets in accordance with the available forest fire data.

2.3 Data105

2.3.1 Forest fire data

To model FFS in Brandenburg under different scenarios, forest fire data as well as a set of predictor datasets were acquired and

pre-processed. Data including statistical and geospatial information on forest fires in Brandenburg were provided by the Lower

Forestry Authority of the State of Brandenburg (2023), an institution that focuses on analysing the vitality of forests in the

federal state (Lower Forestry Authority of the State of Brandenburg, 2023; Ministry for Rural Development, Environment and110

Agriculture in Brandenburg, 2023). The Lower Forestry Authority of the State of Brandenburg (2023) provided data containing

the following information: forest district number, section, date and hour, cause of fire, burnt area (ha), and X-Y coordinates of

the fire ignition point.

2.3.2 Predictor variables115

To model FFS in Brandenburg, a set of 20 predictors were selected for the analysis. The predictor variables are shown in

Table 1 (also see Fig. S 4 in the supplement
:::::::::
Supplement). They cover meteorology, vegetation, topography, soil, anthropogenic

influences and land use and land cover (LULC) and were identified as most relevant for modelling FFS based on an extensive

literature review. In the following sections, the predictor variables will be presented in more detail.

a) Meteorology120

To assess climatic conditions for both the current and future scenarios, air temperature and precipitation were selected. Since

climate change and the consequent increase in extreme weather events such as meteorological droughts around the world

may increase the frequency and intensity of forest fires in the future (Abdollahi and Pradhan, 2023; Silva et al., 2018), air

temperature and precipitation patterns are crucial for the analysis of FFS. Further climatic parameters such as wind speed,

solar radiation or lightning strikes may impact the emergence of forest fires as well (Abdollahi and Pradhan, 2023; Busico125

et al., 2019). However, for the scope of this work the focus remained on air temperature and precipitation, since both cur-

rent and projected data was only available for those climatic parameters. Following the suggestions by He et al. (2022), we

used monthly climate data between 2013 to 2022, which was aggregated to three months to incorporate precipitation and

air temperature prior to the occurrence of a forest fire. In this regard, the 3-monthly aggregation of the climatic variables

is more suitable to reflect situations of drought that usually result from extended periods with precipitation rates below the130

average (Rad et al., 2021; Wilhite and Buchanan-Smith, 2005; Wu et al., 2021)
::::::
Several

::::::
forest

:::
fire

::::::
related

::::::
studies

:::::
have

::::
used

::
a

:::::::
monthly

::::::::::
aggregation

::
of

:::::::::::::
meteorological

:::
data

::::
sets

::
to

::::::
model

:::::
forest

::::
fires

:::::::::::::::::::::::::::::::::::::::::::::
(Busico et al., 2019; Wang et al., 2021; He et al., 2022)

:
.
:::::::::::::
He et al. (2022)

::::::
further

:::::
argue

:::
that

::::::
future

::::::
studies

::::::
should

:::::::
consider

::
a

:::::::
monthly

::
or

::::::::
quarterly

::::::::::
aggregation

::
of

:::::::::::::
meteorological

::::
data
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::::
when

:::::::::::
investigating

:::::
forest

:::::
fires.

:::::::::
Especially

::
in

:::::
order

::
to

:::::::
identify

:::::::::
conditions

::
of

:::::::::::::
meteorological

::::::::
droughts

::::
prior

::
to
:::

the
::::::::::

emergence

::
of

:
a
:::::
forest

::::
fire,

:::
we

::::::::
followed

:::
the

:::::::::::
methodology

::
of

:::::
other

::::::
authors

::::
that

::::
used

:
a
:::::::::::

three-month
::::::::::
aggregation

::
of

:::
the

:::::::
broadly

::::
used

:::::
SPEI135

::::::
drought

:::::
index

::
to

:::::::
identify

::::::::::::
meteorological

::::::::
droughts

:::::::::::::::::::::::::::::::::::::::::::
(Zhou et al., 2023; Wen et al., 2020; Guo et al., 2018).

b) Vegetation

The type and condition of vegetation is a crucial factor in the emergence of forest fires (Abdollahi and Pradhan, 2023). Several

studies have shown that monocultural forests are more likely to be affected by forest fires not only in number, but also in extent

(Afreen et al., 2011; Bauhus et al., 2017). For example, Bauhus et al. (2017) state that coniferous species such as pine trees tend140

to be highly flammable, which is mainly caused by their resins and oils. Furthermore, the distance to the forest edge can impact

tree vitality and the consequent vulnerability to droughts (Buras et al., 2018). Buras et al. (2018) analysed the tree mortality of

Scots pine forests by comparing trees on the forest edge and trees in the interior of the forests. Their results show an increase

in vulnerability to drought of trees located at forest edges, resulting in higher mortality and decreased vitality. Consequently,

the selected vegetation-related predictors were the percentage of broadleaf forest, canopy height, tree cover density, and the145

distance to forest edges.

c) Topography

Numerous studies have shown the influence of topography on the emergence of forest fires, which is why topographic parame-

ters are commonly used for studying forest fires (Abdollahi and Pradhan, 2023; Busico et al., 2019; Ghorbanzadeh et al., 2019;

He et al., 2022; Maingi and Henry, 2007; Saidi et al., 2021; Wang et al., 2021). For example, Preston et al. (2009) have pointed150

out that bushfires spread with higher velocity and intensity on upward slopes. Furthermore, they discuss how aspect impacts

sun and wind regimes, which may influence forest fires as well. In this regard, Busico et al. (2019) conclude that northern

aspects decrease the likelihood of forest fire ignition. Besides slope and aspect, elevation has been pointed out as a significant

parameter for forest fires (He et al., 2022; Maingi and Henry, 2007). Chicas and Østergaard Nielsen (2022) performed an

extensive analysis of existing studies on mapping FFS, confirming that slope, elevation, aspect and topographic wetness index155

(TWI) are the most commonly used topographic parameters. Following their assessment, those four parameters were selected

for the scope of this study.

d) Soil

The spread of forest fires is greatly influenced by the characteristics of the soil and its moisture content (He et al., 2022).

Therefore, it was considered important to include different soil characteristics as predictor variables. The soil depth chosen160

for the soil predictors was 0-5 cm, since fires are usually initiated on the soil surface (Badía-Villas et al., 2014; Mallik et al.,

1984). The water retention capacity of soils is significantly influenced by their structure, such as the relative proportions of sand

and silt. Soil types characterised by larger pore sizes, such as sandy soils, typically exhibit low water retention capabilities,

leading to arid conditions and a diminished field capacity. Conversely, soils with intermediate pore sizes, or silty soils, have

higher moisture levels and more water available for plants (Amelung et al., 2018). Therefore, the proportion of sand particles165

(> 0.05 mm) in the fine earth fraction (sand) and the proportion of silt particles (≥ 0.002 mm and ≤ 0.05 mm) in the fine earth
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fraction (silt) were selected for the analysis. Similarly, both bulk density of the fine earth fraction (bdod) and organic carbon

density (ocs) can serve as proxies for water retention and therefore for the flammability of the soil (Oyonarte et al., 1998). For

example, Oyonarte et al. (1998) have shown a high correlation between water retention and organic carbon, as well as bulk

density, which underlines their potential influence on FFS. Thus, bulk density of the fine earth fraction and organic carbon170

density were used as predictor variables as well.

e) Anthropogenic influences & land use and land cover (LULC)

Finally, anthropogenic factors as well as LULC have been shown to influence the emergence of past forest fires in Brandenburg

(Gnilke and Sanders, 2021). The data provided by the Lower Forestry Authority of the State of Brandenburg (2023) on causes of

forest fire ignitions in Brandenburg between 2014 to 2022 (see Table S 2 in the supplement
::::::::::
Supplement) confirms this statement.175

In a similar vein, He et al. (2022) argue that human activities such as the construction of transportation networks and other types

of infrastructure influence forest fire emergence on a local scale. Therefore, they strongly suggest
:::::
highly

::::::::::
recommend including

anthropogenic factors into the analysis of forest fires. Likewise, Ghorbanzadeh et al. (2019) relate the increase in forest fires

not only to the changing climate, but also to anthropogenic aspects such as human activities or demographic expansion. Thus,

to predict FFS in northern Iran, they included proximity to villages, streets, and recreational areas, as well as aspects of land180

use as predictor variables. The latter has been emphasised by Busico et al. (2019) as well, who stated that anthropogenic land

use significantly contributes to forest fire emergence. Consequently, to include anthropogenic influences as well as aspects of

LULC, distance to urban settlements, streets, railways, campsites, water bodies and military sites were selected as predictor

variables.
:::::::::
According

::
to

:::
the

:::::::::
respective

::::
data

:::
set,

:::
we

:::::::::
understand

::::::::
"distance

:::
to

:::::
urban

::::::::::
settlements"

::
as

::::
the

:::::::
distance

::
to

:::
any

::::
type

:::
of

:::::::::
constructed

::::::::::::
above-ground

:::::::
building

:::::::::::::::::::::::::::::::::::::::
(European Environment Agency [EEA], 2020b)

:
.
:::
We

::::::
assume

::::
that

::::
this

:::::::
predictor

::::
can

:::::
show185

:::
(ir-)

:::::::
regular

::::::
human

:::::::
presence

:::
at

:::::
these

:::::
places

::::
that

::::
may

:::
be

::::::
related

::
to

:::
an

::::::::
increased

:::::
FFS.

:::::::::::
Furthermore,

::
to

:::::::
address

::::::
future

::::
land

::::
cover

::::::::
changes,

:::
we

:::::::
included

::
a
::::
data

:::
set

::
on

::::::::
projected

::::
land

:::::
cover

:::::::
change

::
in

::::
2050

::::::::
provided

:::
by

::::::::::::::::::::
Esri Environment (2021)

:
.
::
To

::::
our

:::::::::
knowledge,

::::
this

:::
was

:::
the

::::
only

::::::::
available

::::
data

::
set

:::::
with

:
a
::::
high

::::::
spatial

::::::::
resolution

::
to

:::::
show

:::::
future

::::
land

:::::
cover

::::::::
changes,

:::::
which

::
is

::::
why

:
it
::::
was

:::::::
selected

::
for

::::
this

:::::
study.

:
Table 1 provides an overview of the predictors as well as their characteristics and origin.

2.4 Data processing190

RStudio version ’2023.12.0.369’ with R version 4.3.1 (2023-06-16 ucrt) was used for data pre-processing, analysis, RF mod-

elling and computation of statistics, graphs and maps. Geospatial packages such as terra, sf, maptools and ggplot2 were used

for data pre-processing and analysis. The caret package was used for modelling and the computation of performance metrics.

The dplyr and readxl packages were used for the analysis and formatting of the forest fire data. The open source software QGIS

3.28.10-Firenze was used for processing, analysis, and visualisation of the geodata. Figure 2 provides an overview of the main195

data processing steps that will be explained in the following sections.

a) Pre-processing of predictor layers

Prior to modelling FFS under current and future scenarios, the necessary datasets were downloaded and pre-processed. Pre-

processing steps involved projecting the data to the same coordinate reference system (EPSG 25833), cropping to the geo-
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Figure 2. Methodological approach for modelling forest fire susceptibility under different scenarios.

graphic extent of Brandenburg, masking the forest areas in Brandenburg, and resampling to a spatial resolution of 50 metres200

using bilinear interpolation for numeric variables, and nearest neighbour interpolation for factor variables. Furthermore, several

predictor datasets such as distance to campsites or military areas were created based on available data from OpenStreetMap

Contributors (2023) or LGB State Office for Land Surveying and Geoinformation Brandenburg (2023). The topographic pre-

dictors slope, aspect and TWI were computed in RStudio based on the digital elevation model derived from LGB State Office

for Land Surveying and Geoinformation Brandenburg (2023). A forest mask was generated by filtering all pixels with tree205

cover density greater than or equal to 50 % from the tree cover density dataset. Proximity rasters were computed for various

features, including urban settlements, roads, railways, military sites, campsites, water bodies, and forest edges, by applying the

“Proximity (raster distance)” tool in QGIS derived from the GDAL toolbox.

b) Processing of training points

The forest fire data table provided by the Lower Forestry Authority of the State of Brandenburg (2023) served as the baseline210

for the creation of the training points for the RF models. Rows containing NA values were removed and the fire data points

were converted to shapefile format for further processing. Looking at the statistics of the burnt area (ha) of each of the fires
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in Brandenburg between 2014 to 2022, the maximum burnt area of a forest fire was 422 ha. In contrast, the median burnt

area was only 0.05 ha, indicating a high number of small fires and a relatively low number of big fires (see Table S 1 in the

supplement
::::::::::
Supplement). Since the spread extent of the fires was not included in the data provided by the Lower Forestry215

Authority of the State of Brandenburg (2023), a circular fire spread was assumed. The diameter of a circular burnt forest fire

based on the median burnt area (0.05 ha or 500 m2) is ˜
:
~25 m. Considering that the direction of the fire spread was unknown

as well, the doubled diameter of a median sized forest fire in Brandenburg (50 m) was assumed as a baseline for converting the

forest fire points into a raster dataset (see Fig. S 3 in the supplement
:::::::::
Supplement). Consequently, the fire points were resampled

to a raster grid with 50 m spatial resolution considering the potential fire spread in different directions. Accordingly, all the220

predictor variables were resampled to the same spatial resolution.

In addition to the provided set of fire points, a set of non-fire points was created that included the identical number of points per

year as the pre-processed fire points from the data table provided by the Lower Forestry Authority of the State of Brandenburg

(2023). To create those non-fire points, the maximum extent of each forest fire for each year was computed to identify areas

where no fires occurred for each year. To do so, the fire point data table was first subsetted by year and then burnt area was225

estimated based on the previously described approach. The results were nine raster layers for each year between 2014 to 2022

that contained the maximum extent that was potentially burnt in that respective year. For each year, potential burnt areas were

then removed from the forest mask layer to derive areas where no fires occurred. Based on the forest masks that excluded

potentially burnt areas, random non-fire points were created for each year, matching the number of fires that occurred in the

respective year. To do so, the randomPoints() function from the R package raptr was used.230

Finally, the resulting non-fire points were merged with the fire points to complement the training points. To do so, the training

points were assigned to the classes of “fire” and “non-fire”, respectively. Each fire registered by the Lower Forestry Authority

of the State of Brandenburg (2023) was paired with a non-fire point with the same date. To prepare the dataframe for the RF

models, the training points were used to extract the geospatial information of the predictor variables using extract() function

from the terra R package. The resulting data table included the spatial coordinates of all non-fire and fire points and the235

information of all the predictor variables at those locations. This dataframe served as the basis for training RF models to

predict FFS under current and future scenarios.

2.5 Correlation analysis and Random Forest modelling

To assess FFS in Brandenburg under different temporal scenarios, RF classification ML algorithm was used. Precisely, a total

of ten RF models were run using binary classes (fire and non-fire) for predicting current and future FFS. RF is a well known240

and often used ML algorithm in forestry and remote sensing (Gislason et al., 2006). In the field of forest fire research, RF

has been frequently applied, achieving high accuracies (Eslami et al., 2021; He et al., 2022; Lizundia-Loiola et al., 2020; Mi-

lanović et al., 2021; Oliveira et al., 2016). The RF algorithm is based on the bagging approach, developed by Breiman (1999).

It involves the growth of a set of random decision trees to form what is known as a “Random Forest” (Breiman, 2001; Kuhn

and Johnson, 2013). As mentioned before, FFS is defined in this study as the estimated likelihood of a forest fire event (Zhang245
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et al., 2019). The probability score of a pixel being predicted as a fire pixel represents its susceptibility to a forest fire.

Model for future scenarios

First, a model (RFfuture) containing data from all the available years (2014 to 2022) was set up for the prediction of future FFS

scenarios. Following Nguyen et al. (2021), the input data for modelling FFS was split into 70 % for model training (RFtrain) and250

30 % for testing the model performance (RFtest). We refer to the 30 % left out data as the testing dataset. Before running a RF

model, a set of tuning parameters can be set. After initially running the model, the results showed the best model performance

at mtry = 2. Consequently, the model was run with mtry set to 2.

Models for current scenarios255

For current FFS scenarios, a so-called "leave-one-year-out" (LOYO) approach was implemented in order to evaluate the mod-

els’ capacity for temporal extrapolation. Leaving one year out of training and using the excluded year for testing can be used to

assess how models will perform on an unseen (or future) year. In this case, the approach was used for modelling current FFS

for the scenarios of 2016 and 2022. LOYO models were computed for all nine available years (2014 to 2022). For instance,

LOYO2016 refers to a model trained on all years except 2016, which was used to predict FFS in 2016. As mentioned before,260

mtry was set to 2 to be consistent with the model for the future FFS scenarios.

Performance metrics

After training the RF models, performance metrics were calculated using the caret and rPROC packages. The confusionMa-

trix() function provides information on the different performance metrics such as accuracy, kappa, sensitivity, or specificity.265

Additionally, F1-score and AUC were computed using the rPROC package in RStudio. AUC was calculated by first computing

the receiver operator characteristic (ROC) curve using the roc() function. The formulas for calculating the different perfor-

mance metrics can be found in the supplement
:::::::::
Supplement

:
(Table S 3). They typically range between 0 and 1, with values

close to 1 implying a high model performance.

3 Results270

3.1 Model accuracy

To assess the reliability of the RFfuture model in predicting FFS in Brandenburg, performance metrics and a confusion matrix

(see Table S 4 in the supplement
::::::::::
Supplement) were computed. The training (RFtrain) and testing set (RFtest) for the RFfuture

model consisted of 3243 and 1388 points respectively. 487 out of 681 fire points and 520 out of 707 non-fire points were

correctly classified. The performance metrics (Table 2) for both RFtest and the LOYO cross validation all range between275

0.654 and 0.718 (excluding the kappa values), showing a moderately high model reliability of predicting FFS in Brandenburg.

RFtest had an accuracy of 0.718, reflecting the number of samples that were correctly classified as fire points. The LOYO

cross validation indicates a marginally lower mean accuracy of 0.695. The precision values of LOYO cross validation (0.702)

11



Table 2. Overview of the validation metrics.

Accuracy Kappa Precision Recall F1-Score AUC

RFtest 0.718 0.435 0.712 0.714 0.713 0.718

LOYO cross-validation 0.695 0.388 0.702 0.654 0.676 0.694

and RFtest (0.712) illustrate the proportion of correctly assigned fire points out of all samples that were classified as fire. To

further assess the performance of the RF FFS classification, the ROC curve was computed. The area under the ROC curve280

(AUC) refers to the likelihood that a fire point was correctly classified (Bradley, 1997). Here, AUC is 0.694 for the LOYO

cross validation and at 0.718 for RFtest. Finally, recall and F1-score metrics show similar values, indicating a moderately high

model reliability. A detailed overview of all the performance metrics for every LOYO model can be found in Table S 5 in the

supplement
::::::::::
Supplement.

3.2 Importance of predictor variables285

Overall, distance to urban settlements, the percentage of broadleaf forest, and the distance to railways were the three most

significant predictors for the RFfuture model. The importance of these predictors, as well as others, is shown in Fig. 3. Land use

and anthropogenic predictors exhibited moderate to high influence for the model, such as the distance to urban settlements (100

%), the distance to railways (84.3 %), or the distance to campsites (50.9 %). Similarly, vegetation predictors showed varying

degrees of influence, ranging from moderate (e.g., distance to forest edge) to high parameter importance, notably the percentage290

of broadleaf forest (87.8 %). Soil predictors demonstrated medium importance, ranging from 39.9 % for organic carbon density

to 53.4 % for silt content. Topographic predictors displayed varied importance, with elevation at 49.1 % and the TWI at 11.6

%. In contrast, climatic variables had a relatively minor influence on model performance, with air temperature contributing

only 14.4 % and precipitation accounting for a mere 3.1 %. The value distributions of the three most significant predictors

are depicted in Fig. S 5 of the supplement
::::::::::
Supplement. A Wilcoxon test was conducted to test significance. The notably low295

p-values of the Wilcoxon tests, for example p = 5.70e-20 for the percentage of broadleaf, confirm that the value distributions

of all three predictors significantly differ between fire and non-fire points. A comprehensive overview of the p-values for all

predictor variables is provided in Table S 6 in the supplement
::::::::::
Supplement.

The value distributions of the three most significant predictors (Fig. S 5) lead to several conclusions. First, fire points tend to

be closer (mean ˜
:
~578 m) to urban settlements than non-fire points (mean ˜

:
~813 m). Second, the distribution in the percentage300

of broadleaf is ranging mainly from 0 to almost 40 % for non-fire points, whereas the percentage of broadleaf for fire points is

close to 0 (excluding some outliers). Third, similarly to the distance to urban settlements, non-fire points tend to be further away

from railways than fire points.
::
To

:::::
more

::::::
deeply

::::::
explore

:::
the

::::::::::
relationship

:::::::
between

:::
key

::::::::
variables

:::
and

::::
FFS,

::::::
partial

:::::::::
dependence

:::::
plots

::::
were

::::::
created

::::
(see

::::
Fig.

:
S
::
7

::
to

:
S
::
9
::
in

:::
the

:::::::::::
Supplement).

:
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Figure 3. Variable importance based on the RFfuture model.

3.3 Forest fire susceptibility under current and future scenarios305

Figure 4 shows the FFS in Brandenburg for the two current scenarios, June 2016 and June 2022, as well as for the two future

scenarios, June 2081-2100 under SSP3.70 and SSP5.85.
::::
SSP

::::
5.85

:::
and

:::::
June

:::::::::
2081-2100

:::::
under

::::
SSP

::::
5.85

:::::::::
including

::::::::
projected

:::
land

:::::
cover

:::::
data.

:::
For

::::::::::
comparison,

:::
the

::::
FFS

:::
for

::::
June

:::::::::
2081-2100

:::::
under

::::
SSP

::::
3.70

:::
can

::
be

::::::
found

::
in

:::
the

::::::::::
Supplement

::::
(Fig.

:
S
::::
10).

:
The

values range from 0 to 100 %, reflecting the likelihood of fire ignition at each pixel (the FFS). In all four scenarios, the FFS is

higher in the southern part of Brandenburg. Especially in the south of Berlin, several patches with a FFS of >= 75 % can be310

identified. In the north and north-east of Brandenburg however, the FFS is rather low in all the scenarios, ranging between 0 to

20 %.

Figure 5 illustrates the anomalies in FFS relative to the reference scenario of June 2016. In the June 2022 scenario
::::::::
(scenario

::
a), FFS exhibits notable positive anomalies across various regions of the federal state, with anomalies ranging from + 5 to

+ 15 % compared to June 2016. Many areas across Brandenburg maintain similar FFS levels as the 2022 scenario. Only a315

few selected small regions in the south-east and south-west register
::::::
exhibit negative FFS anomalies compared to June 2016.

Regarding future FFS anomalies relative to June 2016, the southern parts of Brandenburg experience positive FFS anomalies

of up to +
:::::
future

::::::::
scenarios

:::::
differ

:::::
rather

:::::::::::
substantially

::::
from

::::
one

:::::::
another.

:::::::
Whereas

:::
the

::::::::
scenario

:::::::::
neglecting

::::
land

:::::
cover

:::::::
changes

::
(b)

::::::
shows

:::::::
positive

:::
FFS

:::::::::
anomalies

:::
up

::
to

::
15

::
%

::::
and

::::
more

::
in

::::::::
southern,

:::::::
eastern,

:::
and

:::::::
western

::::
parts

:::
of

::::::
Berlin,

:::
one

::::
area

::
in

:::
the

:::::
south
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Figure 4. Forest fire susceptibility in Brandenburg under different scenarios.
:::::::
Scenarios

:
c
:::
and

:
d
::::
both

::::
show

:::::::
predicted

::::
FFS

::
in

:::
June

:::::::::
2081-2100

::::
under

::::
SSP

::::
5.85.

::::::
Scenario

::
d

::::::
includes

:::::::
projected

::::
land

::::
cover

::::
data,

::::::
whereas

:::::::
scenario

:
c
::::
does

:::
not.

:
Border layer © 2018-2022 GADM.
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Table 3. Statistical overview of the four forest fire susceptibility scenarios.
:::::::
Scenarios

::::::::::
“2081-2100”

:::
and

:::::::::
“2081-2100

:::
*”

:::
both

:::::
show

:::::::
predicted

:::
FFS

::
in

::::
June

::::::::
2081-2100

:::::
under

:::
SSP

:::::
5.85.

::::::
Scenario

::::::::::
“2081-2100

::
*”

:::::::
includes

:::::::
projected

:::
land

:::::
cover

::::
data,

::::::
whereas

:::::::
scenario

::::::::::
"2081-2100"

::::
does

:::
not.

2016 2022 2081-2100 (SSP3.70) 2081-2100 (SSP5.85)
:
*
:

Minimum 0.040 0.040 0.042 0.042
::::
0.072

Maximum 0.936 0.964 0.978 0.976
::::
0.878

:

Mean 0.409 0.419 0.414 0.417
::::
0.393

Standard Deviation 0.147 0.146 0.144 0.144
::::
0.116

:::::
shows

:::::::
negative

::::
FFS

:::::::::
anomalies

:::
up

::
to

:
-
:
20 %. Conversely, slightly negative FFS anomalies are visible in the northern region320

of Brandenburg and more substantial
::
In

::::::::::
comparison

::
to

:::
the

::::::::
scenario

:::::
based

:::
on

::::
only

::::::::::::
climatological

::::::::::
projections,

:::
the

::::::::
scenario

:::::::::::
incorporating

::::
land

:::::
cover

:::::::
changes

:::
(c)

::::::
shows

::::::
mostly

:
negative FFS anomalies in a larger area in

::::::
ranging

:::::
from

:
0
:::

to
:
-
:::
20

:::
%,

::::::::
especially

::
in

:
the southern part of the state. Overall, both future FFS scenarios exhibit similar trends in FFS . Comparing the

anomaly values of the same areas in the south of Brandenburg under the different scenarios, it can be noted that many of these

areasindicate higher FFS anomaly values for the future scenarios (
:::::::::::
Brandenburg.

::::
The

:::::::
northern

::::
part

::
of

:::::::::::
Brandenburg

:::::::
however

::
is325

:::::::::::
characterised

::
by

:::
an

:::::::
increase

::
in

::::
FFS

::
in

:::::
many

:::::
areas,

:::::::
reaching

:::::::::
anomalies

:
up to + ˜20 %) than for the scenario of 2022 (up to +

˜15 %). However.
:::::::::::
Additionally, some areas in the south of Brandenburg showed the opposite relationship, with negative FFS

anomaliesfor the future scenarios and higher FFS anomalies (with values close to zero)in the 2022 scenario
:::::
South

:::
and

:::::
West

:::
also

:::::
show

:::::::
positive

::::
FFS

:::::::::
anomalies.

::::
For

::::::::::
comparison,

:::
the

::::
FFS

:::::::::
anomalies

:::
for

::::::::::
2081-2100

:::::
under

::::
SSP

::::
3.70

:::
can

:::
be

:::::
found

:::
in

:::
the

::::::::::
Supplement

::::
(Fig.

::
S

::
11

::
to

::
S

:::
13).330

Table 3 presents summary statistics of the FFS for the four scenarios. Upon comparing the values across all scenarios, it is ev-

ident that the 2016 scenario exhibits the lowest minimum , maximum, and mean FFS values
::::
value among the four. Conversely,

the 2022 scenario demonstrates higher maximum and mean FFS values, suggesting a greater susceptibility compared to 2016.

Notably, the mean susceptibility value for 2022 (0.419) is the highest among the four scenarios . The minimum and maximum

values of the future scenarios are higher than those of the current scenarios. Specifically, the maximum value of the SSP3.70335

scenario slightly surpasses that of
::::::::
indicating

:::
the

::::::
highest

:::::
mean

:::::
FFS.

::::
The

:::::
future

:::::::
scenario

:::::::::
excluding

::::::::
projected

::::
land

:::::
cover

::::
data

:::::
shows

:::
the

::::::
highest

:::::::::
maximum

:::::
value

::::
and

::::
only

:
a
:::::::
slightly

:::::
lower

:::::
mean

:::::
value

::::::
(0.414)

::::
than

:::
the

::::::::
scenario

::
of

::::
June

:::::
2022.

:::::::
Finally

:::
the

:::::
future

:::::::
scenario

::::::::
including

::::
land

:::::
cover

:::
data

:::
(*)

:::::
shows

:::
the

::::::
lowest

:::::::::
maximum,

:::::
mean

:::
and

:::::::
standard

::::::::
deviation

::::
FFS

:::::
values

:::::::::
compared

::
to

the SSP5.85 scenario . The period from 2081 to 2100 under SSP5.85 exhibits a slightly higher mean value (0.417) , indicating a

marginally elevated mean FFS compared to SSP3.70. However, disparities in FFS between the two future scenariosare minimal340

overall. These results suggest that FFS increases in future scenarios, except for the mean FFS values that are highest in the

2022 scenario.
::::
other

:::::::::
scenarios.
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Figure 5. Forest fire anomalies compared to 2016.
:::::::
Scenarios

:
b
:::
and

::
c

:::
both

::::
show

::::::::
predicted

:::
FFS

::
in

::::
June

::::::::
2081-2100

::::
under

::::
SSP

::::
5.85.

:::::::
Scenario

:
d
::::::
includes

:::::::
projected

::::
land

::::
cover

::::
data,

:::::::
whereas

::::::
scenario

:
c
::::
does

:::
not.

:
Border layer © 2018-2022 GADM.
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To assess variabilities in FFS on a local scale, a detailed zoom to an area in the west of Brandenburg is shown in Fig. 6.

The four maps show the municipality of Medewitz in the west of Brandenburg. The 2016 scenario shows a fairly low FFS

(Fig. 6a). The three other maps show FFS anomalies compared to 2016 (Fig. 6b to d). Whereas the scenario of 2022 shows345

positive anomaly values of 10 to 15 %, anomaly values are even higher in the future scenarios
:::::::
scenario

:::::::::
excluding

::::::::
projected

:::
land

:::::
cover

::::
data, reaching + 20 %. In contrast, the

:::::::
scenario

::::::::
including

::::
land

:::::
cover

:::::::
changes

:::
(d)

:::::
shows

:::::::
negative

:::::::::
anomalies

::
up

:::
to

:
-

::
15

:::
%.

::::::::
However,

:::::
pixels

::
in

:::
the

::::
east

:::
and

:::::
south

::
of

:::
the

::::
map

:::::
show

::::::
positive

::::
FFS

:::::::::
anomalies

::
as

::::
well.

:

:::
The

:
four zoomed-in maps in Fig. 7 depict the Crinitz municipality located in the south of Brandenburg. Fig. 7bto d reveal

negative FFS anomalies compared to the 2016 reference scenario (Fig. 7a) , as opposed to the anomalies in Medewitz (Fig. 6b350

to d) . The
:::::::
Whereas

::
the

:::::
June 2022 map shows some areas with positive anomalies

::::::
scenario

:::
(b)

::::::
mainly

::::::
shows

::::::::
anomalies

:::::
close

::
to

::
0,

:::::
except

:::
for

:::::
some

:::::
pixels

:::::::
reaching

:::
up

::
to

::
+

::
16

:::
%,

:::
the

:::::
future

:::::::
scenario

::::::
relying

:::::
only

::
on

:::::::
climatic

:::::::::
projections

:::
(c)

::::::
shows

:::::::::
substantial

:::::::
negative

::::::::
anomalies

::::::::
reaching

::
up

:::
to

:::
-20

:::
%.

::::::::
Similarly,

:::
the

:::::::
scenario

:::::::::
including

::::::::
projected

::::
land

:::::
cover

::::
data

:::
(d)

:::::
shows

::
a

:::::::::
substantial

::::::::
proportion

:::
of

:::::
pixels

::::
with

:::::::
negative

::::
FFS

:::::::::
anomalies.

::::::::
However,

::::
some

:::::
areas in the north east and west, whereas the future scenarios

indicate overall negative FFS anomaliesof up to - 20 %
:::
and

::::::::
southwest

:::
of

::
the

::::
city

:::::
show

::::::
positive

::::
FFS

:::::::::
anomalies.355

Figures 6 and 7 show that despite the trend of overall increase in FFS between 2016 and the future scenarios
::::::
scenario

:
of

2081-2100 under SSP3.70 and SSP5.85
::::::::
excluding

::::::::
projected

::::
land

:::::
cover

::::
data (Fig. 4 and 5), FFS is not increasing in all parts

of
:::::
differs

:::::::::::
significantly

:::::
across

:
the federal state. Another aspect to mention is that FFS appears higher at forest edges and forest

areas in proximity to urban areas (see FFS of 2016 in Fig. 6a and 7a).
:::::::::::
Furthermore,

::
the

::::::
future

:::::::
scenario

:::::::::::
incorporating

::::
land

:::::
cover

::::::
changes

::::::
shows

:::::::::
substantial

:::::::::
differences

::
to

:::
the

:::::::
scenario

:::::
only

::::::
relying

::
on

:::::::
climatic

::::::::::
projections.360

4 Discussion

4.1 The drivers of forest fire susceptibility

Overall, the climatic variables did not have a significant influence on the model performance. In contrast, the anthropogenic,

LULC, and vegetation predictors showed a higher importance. The results reflect that climatic parameters do not appear to

play a pivotal role for FFS .
:::
(see

::::
Fig.

::
S

:
6
::
in

:::
the

:::::::::::
Supplement).

:
The reason for this finding may be the extent of the study area,365

as meteorological conditions do not show high spatial variation within Brandenburg. Meteorological conditions may be more

important when analysing FFS on a national or international scale (Busico et al., 2019; He et al., 2022; Li et al., 2024). Ac-

cording to the Lower Forestry Authority of the State of Brandenburg (2023), a high number of fires were caused by intentional

arson and other anthropogenic actions such as open fires or smoking (see Table S 2 in the supplement
::::::::::
Supplement). Therefore,

climatic conditions may not have contributed to the emergence of those fires in a significant way. Furthermore, meteorological370

projections assume that air temperatures will increase overall. However, precipitation is expected to increase in the future as

well (see Fig. S 1 and A
:
S 2 in the supplement

::::::::::
Supplement). Consequently, wetter conditions may have lowered future FFS,

outweighing the effect of higher air temperatures and contributing to the lower mean FFS in future scenarios compared to the

extremely hot and dry year of 2022.
:::
The

:::::::
German

:::::::
Weather

:::::::
Service

::::::::::::
(DWD, 2019)

::::::
predicts

:::::::
changes

:::::::
between

::
-
:
4
::
%

::
to

::
+
::
13

:::
%

::
in

::
the

::::::
annual

:::::::::::
precipitation

:::::
sums

::::
until

:::
the

:::
end

:::
of

:::
the

::::
21st

:::::::
century,

:::::::::
illustrating

:::
the

:::::::::
uncertainty

:::
of

:::::
future

:::::::::::
precipitation

::::::::::
predictions.375
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Figure 6. Detailed maps of future FFS increase
:::::::
anomalies

:
in the municipality of Medewitz (Brandenburg).

:::::::
Scenarios

:
c
:::
and

::
d

:::
both

:::::
show

:::::::
predicted

:::
FFS

::
in
::::
June

::::::::
2081-2100

:::::
under

::::
SSP

::::
5.85.

:::::::
Scenario

:
d
:::::::
includes

:::::::
projected

::::
land

::::
cover

::::
data,

:::::::
whereas

::::::
scenario

::
c
:::
does

::::
not. Base Map

© OpenStreetMap contributors 2024. Distributed under the Open Data Commons Open Database License (ODbL) v1.0, Border layer ©

2018-2022 GADM.

::
As

::
a

:::::
result,

::
in

::::
case

::
of

::
a
:::::::
decrease

::
in

:::::::::::
precipitation

::::
until

:::
the

::::
end

::
of

:::
the

::::
21st

:::::::
century,

:::
this

::::
will

:::::::
strongly

:::::
affect

:::
the

:::::::::::
flammability

::
of

::::::::::::
Brandenburg’s

::::::
forests

:::
and

::::
thus

:::
the

:::::
future

::::
FFS.

:

Extreme weather events may be a better indicator of future FFS rather than averaged long-term meteorological trends. Extreme

weather conditions such as the dry conditions in 2022 were efficiently captured by the current meteorological data, whereas the

multi-annually aggregated monthly projected meteorological data (WorldClim) did not reflect these extreme weather events.380

For instance, the monthly average precipitation sum in Brandenburg shows flatter curves for the future precipitation, whereas

more intense changes in mean precipitation values can be seen in 2016 and 2022 (see Fig. S 2 in the supplement
::::::::::
Supplement).

For example, the precipitation curve for 2022 shows a substantial drop in March, reflecting a very dry month with low precipi-

tation that may have driven the higher FFS mean value in 2022 compared to other scenarios. Hence, future FFS might turn out

higher in reality, given the expected increase in extreme weather events that will enhance the likelihood of drought conditions385

(Rad et al., 2021; Silva et al., 2018; Wu et al., 2021). To assess the future development of FFS on a local scale, climatic data

18



Figure 7. Detailed maps of future FFS decrease
:::::::
anomalies

:
in the municipality of Crinitz (Brandenburg).

:::::::
Scenarios

::
c

:::
and

:
d
::::

both
:::::

show

:::::::
predicted

:::
FFS

::
in
::::
June

::::::::
2081-2100

:::::
under

::::
SSP

::::
5.85.

:::::::
Scenario

:
d
:::::::
includes

:::::::
projected

::::
land

::::
cover

::::
data,

:::::::
whereas

::::::
scenario

::
c
:::
does

::::
not. Base Map

© OpenStreetMap contributors 2024. Distributed under the Open Data Commons Open Database License (ODbL) v1.0, Border layer ©

2018-2022 GADM.

with a higher temporal resolution is needed to reflect weather extremes more adequately than multi-annually aggregated cli-

mate data.

The moderate to low influence of topographic predictors in predicting FFS is most likely due to the rather homogeneous to-

pography in Brandenburg. For vegetation parameters, the percentage of broadleaf forest was most important for the modelling.390

This result aligns with several studies that have shown monocultural coniferous forests to be more sensitive to forest fires

(Afreen et al., 2011; Bauhus et al., 2017; Gnilke et al., 2022). Being dominated by pine trees makes Brandenburg particularly

susceptible to forest fires. For example, Gnilke et al. (2022) assessed the fire damage in pine forests in Brandenburg, concluding

that pure pine stands showed the most burning marks, whereas mixed tree stands were more resilient to forest fires. Further-

more, Buras et al. (2018) have underlined the vulnerability of pine trees located at forest edges, similarly to our results about395

the influence of distance to forest edge (mean distance for fire points 148.5 m and mean distance for non-fire points 174.8 m;

also see Table S 6 in the supplement
::::::::::
Supplement). Thus, forest edges in Brandenburg may require special protection to avoid
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future forest fires.

On a regional scale, anthropogenic parameters appear to be more relevant for FFS. In particular, the distance to urban settle-

ments and railways showed a high significance for modelling FFS in Brandenburg. This confirms the statistics of forest fire400

emergence in Brandenburg provided by the Lower Forestry Authority of the State of Brandenburg (2023) (see Table S 2 in

the supplement
::::::::::
Supplement), highlighting that most forest fires in Brandenburg emerge from human negligence or malicious

arson. Several other studies have reached the same conclusion (Busico et al., 2019; Cilli et al., 2022; Ghorbanzadeh et al.,

2019; Gnilke and Sanders, 2021; He et al., 2022; Ruffault and Mouillot, 2017).
::::::::
However,

:::
the

:::::::
distance

::
to
:::::::

military
:::::
sites

::::
only

:::::::::
moderately

:::::::::
influenced

:::
the

:::
RF

::::::
models

::::
(see

::::
Fig.

::
3).

:::::::::::
Furthermore,

:::
the

:::::::::
Wilcoxon

:::
test

::::
(see

:::::
Table

::
S

:
6
::
in

:::
the

:::::::::::
Supplement)

::::
was

:::
not405

:::::::::
significant,

::::::::::
underlining

:::
that

:::::
there

::::
was

::
no

:::::
clear

:::::::::
difference

::
in

:::
the

::::::::::
distribution

::
of

:::
fire

::::
and

:::::::
non-fire

::::::
points

:::::
across

::::::::::::
Brandenburg.

::::::::
Therefore,

:::
the

::::
data

::::
and

:::::
model

::::::
results

::
do

:::
not

:::::
show

:
a
:::::
clear

::::::::::
relationship

:::::::
between

:::::::
distance

::
to

:::::::
military

::::
sites

:::
and

:::::
FFS.

4.2 Assessing current and future forest fire susceptibility

Future scenarios
:::::::
Overall,

:::
the

::::::
future

:::::::
scenario

::::::::::
2081-2100

:::::
(excl.

::::::::
projected

:::::
land

:::::
cover

:::::
data)

:
revealed a substantial increase

in mean FFS compared to 2016. However, in 2022 the mean FFS was higher than
:
in

:
2016 and the two future scenarios.410

The comparatively high mean FFS of 2022 can be explained by significantly drier and hotter conditions compared to 2016.

However
::::::::::
Nevertheless, the mean FFS values

::::
value

:
of the future scenarios are

:::::::
scenario

::::::::
neglecting

:::::
land

:::::
cover

:::::::
changes

::
is only

slightly below the mean FFS value of 2022 and higher than the mean FFS value of 2016, underlining an expected FFS increase

in the future compared to the reference scenario of 2016. Looking at these results, FFS can be expected to increase in most

parts of the federal state of
:::::::::
Considering

::::::::::
exclusively

:::::
future

:::::::
climatic

::::::::::
conditions,

:::
this

::::::::
indicates

:::
an

:::::::
expected

::::::
overall

::::::::
increase

::
in415

:::
FFS

::
in
:
Brandenburg until the end of the 21st century . Since

::::::::
compared

::
to

::::
June

:::::
2016.

:::::::::
However,

::::
since

:
the future modelled cli-

mate data relies on multi-annual monthly averages of air temperature and precipitation, future FFS is possibly underestimated

in this study. The presumably increased emergence of extreme weather events in the future is yet to be reflected in future

meteorological data . In particular, the

:::
The

::::::
second

::::::
future

:::::::
scenario

::::::::
including

::::
both

::::::::
projected

::::
land

:::::
cover

:::::::
changes

:::
(*)

::::
and

:::::
future

:::::::
climatic

:::::::::
conditions

::::::
paints

:
a
::::::::
different420

::::::
picture.

:::
As

:::::
shown

::
in
:::::
Table

::
3,

:::::
mean

::::
FFS

:::
was

::::::
lowest

::
of

:::
all

::::::::
scenarios

::::::::
indicating

::
an

::::::
overall

::::::::
decrease

::
in

::::
FFS.

::::
This

:::::
result

:::
can

:::::
most

:::::
likely

::
be

::::::::
explained

:::
by

::::
two

:::::::
aspects:

:::::
First,

:::::
Esri’s

:::::
"Land

::::::
Cover

::::
2050

::
-
:::::::
Global"

::::
data

:::
set

:::::::::::::::::::::
(Esri Environment, 2021)

::::
used

::
to

::::
plot

:::::
future

:::::::
distance

::
to

:::::
urban

::::::::::
settlements

:::::::
projects

:
a
::::::::
decrease

::
in

::::::::
urbanised

:::::
areas

::
in

:::
the

:::::
future

:::::::::
compared

::
to

:::
the

:::::::::
Impervious

::::::::
Built-up

:::
data

:::
set

:::::::::::::::::::::::::::::::::::::::
(European Environment Agency [EEA], 2020b)

:
.
::::::::
Shrinking

::::::
urban

:::::
areas

:::
can

:::
be

::::::::
explained

:::
by

:::::::::::
demographic

::::::::
changes,

::::
such

::
as

:::
the

:::::
ageing

::::
and

::::::
decline

::
of

:::
the

:::::::
German

:::::::::
population,

:::::::::
especially

::
in

:::
the

::::
East

::
of

:::::::
Germany

::::::::::::::::::::
(Kroll and Haase, 2010)

:
.
::::::::
Although425

:::::::::::::::::::
Kroll and Haase (2010)

::::
state

:::
that

:::
the

::::::
ageing

::
of

:::
the

:::::::
German

:::::::::
population

:::
has

:::
not

:::
yet

:::::::::
influenced

::::
land

:::
use

:::::::
changes,

::::
they

:::::
argue

::::
that

:::
this

::
is

:::::
likely

::
to

::::::
change

::
in

:::
the

::::::
future.

:::::::
Second,

:::::
Esri’s

:::::
"Land

:::::
Cover

:::::
2050

:
-
:::::::
Global"

::::
data

::
set

::::::::::::::::::::::
(Esri Environment, 2021)

::
has

::
a
:::::
lower

:::::
spatial

:::::::::
resolution

::::
(300

:::
m)

::::
than

:::
the

:::::::::::::
COPERNICUS

:::::::::::::
Imperviousness

::::
data

:::
set

::::::::::::::::::::::::::::::::::::::::
(European Environment Agency [EEA], 2020b)

::::
used

::
to

::::
map

:::
the

:::::::
distance

::
to

::::::::
"current"

:::::
urban

::::::::::
settlements

:::
(10

:::
m).

:::
As

::
a
:::::
result,

:::::
Esri’s

::::
data

:::
set

::::
may

:::::
show

:::::
some

::::::::::
inaccuracies

::::
due

::
to

:::::
mixed

:::::
pixel

::::::
effects.

::::
For

:::::::
instance,

:::::
some

:::::::
smaller

:::::::::
settlements

:::::
may

:::
not

::::::
appear

::
in

:::
the

::::::
future

::::
land

:::::
cover

::::
data

:::
set.

::::
Our

::::::
results430

:::::::::
underscore

::::
how

:::
the

:::::::
inclusion

:::
of

::::::::
projected

::::
land

::::
cover

::::
data

:::::::::::
significantly

:::::::
changes

:::
the

::::::::
projected

:::
FFS

:::
in

::
the

::::::
future,

:::
an

:::::
aspect

::::
that
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:::
can

::
be

::::::
further

::::::::
explored

::
in

:::::
future

::::::
studies

::::
with

::::
new

::::
land

:::::
cover

::::::::::
projections.

:::::
Based

:::
on

:::
our

::::::::
findings,

::
it
::::
can

::
be

::::::
argued

::::
that

::::::
future

:::::
urban

:::::::::::
development

::::::
trends

::::
will

:::::::::::
significantly

::::::::
influence

:::::
FFS.

::::::
Hence,

::
a

:::::::::
population

::::::
decline

:::
and

::::::::::::
abandonment

::
of

:::::::
villages

:::
and

:::::
rural

::::
areas

::::
may

::::::::
decrease

::::
FFS

::
in

:::::
those

:::::
areas.

::::::::
However,

::::
new

::::::::::
settlements

:::
due

::
to

:::::::::
continuous

::::::::::::::
suburbanization

::::::::
processes

::::
may

::::::
require

:::::::::
additional

:::::
forest

:::
fire

:::::::::
prevention

::::::
efforts

::
in

:::
the

::::::
future.

:::::::::
Regardless

:::
of435

::::
these

::::::
trends,

:::
the

:
expected increase in drought events

:
in
:::::::::::
Brandenburg

:
(Gnilke et al., 2022) may intensify the FFS in Branden-

burg in the future.
:::::::::::
Consequently,

::::::::
effective

:::::
forest

:::
fire

:::::::::::
management

::::::::
strategies

:::
in

:::::::::::
Brandenburg

::::
need

::
to

:::::::
address

:::::
these

:::::::
aspects.

::::::::
Therefore,

:::
the

:::::::::
following

::::::
chapter

:::::::
provides

::::
key

::::::::
strategies

::
for

:::
the

:::::::::::
management

::
of

:::::
forest

::::
fires

::
in
:::
the

::::::
future.

:

4.3 Strategies for forest fire management in Brandenburg

Forest fire management strategies include the improvement of forest fire prediction, prevention, detection, extinction, constant440

monitoring of meteorological conditions, and assessment of previous forest fires to improve management strategies (Martell,

2007). An effective forest fire prevention strategy in Brandenburg involves promoting the growth of mixed forests instead of

the prevalent monocultural pine forests. In particular, increasing the percentage of broadleaf trees is needed (Ministry for Rural

Development, Environment and Agriculture in Brandenburg, 2024; Gnilke et al., 2022). Protection measures should put par-

ticular emphasis on forest edges and forests in proximity to any type of anthropogenic infrastructure. The prediction of FFS445

as implemented here provides a helpful tool to identify the most susceptible forest areas in Brandenburg, where the imple-

mentation of forest fire management strategies is most important. Complementing with constant monitoring of meteorological

conditions, it can provide a powerful means to predict FFS and to provide an early warning system for forest fires. In addition

to that, the constantly updated meteorological data, as well as drought indices and the forest fire danger index provided by the

German Meteorological Service (GMS) are essential to predict FFS in Brandenburg (Fekete and Nehren, 2023).450

The conventional approach to fire detection involves integrating public reports with observation towers and aerial patrols

(Martell, 2007). Increasing the number of observation towers in forest areas with high FFS could speed up fire detection and

extinguishment. A valuable forest fire prevention measure is the restriction of human activities in forests or the closure of

forests to the public in accordance with the meteorological conditions, given the large anthropogenic contribution to FFS. This

is recommendable especially in forest areas with high FFS to decrease the number of fires caused by anthropogenic influences.455

However, the meaning of forests for recreational purposes, as well as the economic factor of touristic forest users should be

considered before implementing such measures. Additionally, implementing public education initiatives on forest fires through

school programs and media campaigns is imperative for fostering greater awareness on forest fires and modifying behaviors to

reduce ignition risks (Martell, 2007).

Moreover, the implementation of fire breaks is recommendable to limit the spread of forest fires (Berčák et al., 2023). Another460

strategy can be the thinning of pine forests to reduce fire risk. For example, Crecente-Campo et al. (2009) have concluded

that thinning of Pinus sylvestris can contribute to the growth of a mixed leaved forest that has shown to be more resilient to

forest fires (Afreen et al., 2011; Bauhus et al., 2017; Gnilke et al., 2022). Finally, it is crucial to employ interregional forest fire

management strategies, since forest fires, such as the fire in Bohemian Switzerland National Park in 2022, may spread from

neighbouring countries to Germany or vice versa (Boháč and Drápela, 2023). Considering the high FFS in the southeast of465
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the federal state, forest fire management authorities in Brandenburg should consider closer cooperation with the neighbouring

country Poland to develop and implement joint management strategies.

4.4 Shortcomings and future perspectives

Analysing FFS on a local scale ideally requires climatic data at both high spatial and temporal resolution. High temporal res-

olution meteorological data better reflects extreme weather events such as droughts. Consequently, the availability of climatic470

data at both high spatial and temporal resolution may significantly enhance the quality of future FFS assessments. Ideally, fu-

ture FFS analysis should incorporate projected climate data with a monthly temporal resolution to reflect future drought events

more effectively. Similarly, high spatial and temporal resolution forest fire products based on remote sensing data
:::
with

::
a

::::
high

:::::
spatial

::::
and

:::::::
temporal

:::::::::
resolution would strongly improve forest fire assessments on smaller scales. However, this type of data is

not available yet and its development is limited by the fact that current satellites used for meteorological observations are not475

able to create images both at high spatial and temporal resolution due to technical restrictions (Kussul et al., 2023). Forest fire

data providers such as the European Forest Fire Information System (EFFIS) supply frequently updated burnt areas for Europe,

the Middle East, and North Africa, which is helpful for forest fire analysis on national or international scales. However, the

EFFIS burnt areas product is based on the 250 m spatial resolution of MODIS’ optical scanner, resulting in smaller forest fires

not being included (Achour et al., 2022). Thus, this product is not appropriate for the assessment of FFS at smaller scales.480

In a similar vein, an analysis of forest fire detection systems by Barmpoutis et al. (2020) underlines the limitations of satellites

in providing both high temporal and spatial resolution. Although satellites such as MODIS or Landsat have thermal infrared

bands that can serve for active fire detection, those satellites have their limitations. MODIS has a high temporal resolution, but

a spatial resolution of only 1 km for the thermal infrared bands. Landsat satellites, on the other hand, provide higher spatial

resolution data (e.g., 100 m for the thermal infrared band for Landsat 8 and 9), but are limited to a temporal resolution of485

16 days (Acharya and Yang, 2015; Chanthiya and Kalaivani, 2021; Fu et al., 2020). However, new developments of real time

detection and life tracking of wildfires based on a set of over 20 satellites such as provided by OroraTech (OroraTech, 2021)

show the potential of future analysis of forest fires.

Nevertheless, it is crucial that local forest fire management institutions provide data on smaller fires as well. However, in the

case of the Lower Forestry Authority of the State of Brandenburg, forest fire data was not provided in the form of polygons of490

burnt areas, but in the form of fire ignition points. Despite the fact that the burnt area (ha) was provided, the exact extent of it

could only be assumed. Consequently, model results of FFS prediction might have been more accurate if the actual extent of

the forest fires had been available. Nevertheless, with continuous advances in remote sensing, forest fire data may be openly

available at higher spatial resolutions in the future, which represents a significant potential for future FFS predictions on a local

scale.495

Furthermore, future LULC changes were not considered for
::::
Apart

:::::
from

:::
the

::::::
spatial

:::::::::
resolution

::
of
::::::

forest
:::
fire

::::::::
products,

::::
the

::::::::
modelling

::::::::
approach

::
to

::::::
predict

::::
FFS

::::::
should

:::
be

:::::::
carefully

::::::::
selected.

:::
As

:::::::::
previously

::::::::
discussed,

:::::::::::::
meteorological

:::::::::
parameters

::::
did

:::
not

::::
have

:
a
:::::::::

significant
:::::::::

influence
::
on

::::
the

::::::
model.

:::::::::
Therefore,

::::::
future

:::::::
research

::::
may

::::::::
consider

:::::::
applying

::
a
:::::
Long

::::::::::
Short-Term

::::::::
Memory

:::::::
(LSTM)

:::::
model

::
to

:::::
better

::::::::::
incorporate

:::::::::::::
meteorological

:::::
trends

:::
and

:::
to

:::::::
improve

:::
the

::::::::::::
understanding

::
of

::::
how

::::::
forests

::::
react

::
to

::::::::
droughts
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:::
and

::::
heat

:::::
waves

:::::::::::::::::::::::::::::::::
(Burge et al., 2021; Natekar et al., 2021).

:
500

::::::::::
Furthermore,

::::
the

:::::
future

:::::
land

:::::
cover

::::::
change

::::
data

:::
set

::::::::::::::::::::::
(Esri Environment, 2021)

:::
had

:::::
some

::::::::::
limitations.

:::::
First,

::
it

::::
only

::::::::
included

:::::::::
information

:::
on

:::::::::
"Artificial

::::::
Surface

:::
or

:::::
Urban

::::::
Area".

::::::::::::
Consequently,

:
a
::::::::::::
differentiation

:::
of

:::::::
different

::::::::::::
anthropogenic

::::
land

::::
uses

:::::
(e.g.,

::::::::
campsites,

:::::::
streets,

:::::
urban

::::::::::
settlements,

:::
or

::::::::
railways)

:::
for

:::
the

:::::
future

:::::::::
scenarios

:::
was

::::
not

:::::::
possible.

:::::::
Instead,

::::
the

::::
data

:::
set

:::
was

:::::
only

::::
used

::
to

::::::
project

:::
the

::::::
future

:::::::
distance

::
to

:::::
urban

::::::::::
settlements.

::::::::
Second,

:::
the

::::::::
projection

:::
of

:::
the

::::
data

:::
set

::::
was

::::
only

::::::::
available

:::
for

:::::
2050.

::::::
Ideally,

:
a
::::

data
:::

set
:::::::::

reflecting
:::
the

::::
land

:::
use

:::::::
changes

:::::
until

:::
the

:::
end

::
of
:

the scope of this study. However, the
:::
21st

:::::::
century

::::::
would505

::::
have

:::
led

::
to

::::
more

::::::::
accurate

::::::
results.

:::::
Third,

:::::::::
compared

::
to

:::
the

::::
other

::::
land

:::
use

::::
and

::::
land

:::::
cover

::::
data

:::
sets

::::
used

::
in
::::
this

:::::
study,

:::
the

::::::
spatial

::::::::
resolution

::
of

::::
the

:::::
future

::::
land

:::::
cover

:::::::
change

::::
data

:::
set

::::::::::::::::::::::
(Esri Environment, 2021)

:::
was

::::::::
relatively

::::::
coarse.

:::::::::
Therefore,

::::
the

::::
data

:::
set

:::
may

:::::::
contain

:::::
some

:::::::::::
inaccuracies,

::::
thus

:::::::::
potentially

:::::::::
decreasing

:::
the

::::::::
accuracy

::
of

:::
the

::::::
future

::::
FFS

::::::::::
projections.

:::::::::::
Nevertheless,

::
to
::::

our

:::::::::
knowledge,

::::
this

::::
data

::
set

::::
had

:
a
::::::::
relatively

::::
high

::::::
spatial

:::::::::
resolution

::::::::
compared

::
to
:::::

other
::::
data

::::
sets,

::::::
which

:
is
::::

why
::

it
::::
was

:::::::
selected

:::
for

::
the

::::::
study.

::
In

:::
the

::::
end,

::::
the expansion of renewable energies (Hilker et al., 2024), the settlement of new companies and fac-510

tories (e.g., Tesla gigafactory in Grünheide) (Kühn, 2023), as well as suburbanization around Berlin due to
:::::::::::::
suburbanization

::::::::
processes

::::::
around

::::::
Berlin

:::::
driven

:::
by

:
rising housing prices (Leibert et al., 2022)may

:
,
:::
and

::::::
finally

:::
the

::::::::::::
abandonment

::
of

:::::::
smaller

::::::
villages

::::
due

::
to

::::::
ageing

:::
and

:::::::::
population

:::::::
decline

::
is

:::::
likely

::
to

:
lead to future land cover changes , implying additional pressure on

forestsby the population
:::
and

:::::
either

::::::::::
heightened

::
or

::::::::
decreased

::::::::
pressures

:::
on

::::::
forests.

::::::::::::
Consequently,

::::::::
including

::::
this

:::
data

:::
set

::::
into

:::
the

::::::
analysis

::::::::
provides

:::::::
valuable

::::::::::
information

:::
on

::::::::
potential

::::
land

:::::
cover

:::::::
changes. Future research may benefit from considering these515

developments
:::::::
consider

::::::::
including

::::::::::::::::::::
higher-spatial-resolution

::::
land

:::::
cover

::::::
change

::::
data

::
to

:::::
model

::::
FFS.

Finally, future FFS research may integrate further predictors, dynamic predictors in particular, into their analysis. Following

Rad et al. (2021), key variables shaping drought conditions are precipitation, soil moisture, and stream flow. Thus, it may be

beneficial to include soil moisture, which is particularly relevant to forest fire risk,
::::::::
especially

::::
soil

::::::::
moisture

::::
data into future

analyses. However, due to a lack of soil moisture projections, this parameter was not integrated into this study. Integrating520

more dynamic predictors into the current and future analysis of FFS may also influence the future modelled FFS, which is only

based on changing climatic datasets, whereas all other static predictors remain unchanged in the future predictions.

5 Conclusions

This study successfully predicted FFS on a regional scale in the federal state of Brandenburg under different scenarios with the

RF ML algorithm. The FFS maps show a high FFS in the south and south-east of the federal state. Future
::::::::::
Considering

::::
only525

:::::
future

::::::::::::
meteorological

::::::::::
conditions,

:::::
future FFS is expected to increase compared to the 2016 reference scenario. Extreme events

such as droughts can significantly intensify FFS, which was demonstrated by the higher mean FFS value of 2022 compared

to the other scenarios.
::::::::
However,

:::::::::
including

::::
both

::::::::
projected

::::
land

:::::
cover

:::::::
change

:::
and

::::::
future

::::::::::::
meteorological

::::
data

::::
into

:::
the

::::::
future

:::::::::
projections

:::::::
showed

:
a
::::::::
decrease

::
in

::::
FFS.

::::
This

:::::
trend

:::::
might

:::
be

:::::
driven

:::
by

:::::::::::
demographic

:::::::
changes

:::::::::
ultimately

::::::
leading

::
to

::::::
future

::::
land

:::
use

:::::::
changes.

:
530

:::
The

::::::::
selection

::
of

::
a
:::::::::::
three-month

::::::::
temporal

::::::::::
aggregation

::
of

:::
the

:::::::::::::
meteorological

::::
data

::::
sets

::::
was

::::::::::
appropriate

::
to

::::::
reflect

:::::::::
long-term

::::::::::::
meteorological

::::::
trends.

::::::
Using

::::::
climate

::::
data

::
at

::
a
::::::
higher

:::::::
temporal

:::::::::
resolution

::::::
would

::::
have

::::::
shown

:::
the

:::::
effect

:::
of

:::::::
extreme

:::::::
weather
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:::::
events

:::::
more

:::::::::
adequately.

:::::::::
Therefore,

::::::
future

:::::::
research

:::::
could

::::
aim

::
at

:::::::::
integrating

:::::::
climate

::::
data

::
at

::::::
higher

:::::::
temporal

:::::::::
resolution

:::::
(e.g.,

::::::
weekly)

::
to
::::::::
integrate

:::
the

:::::
effect

::
of

:::::::
extreme

:::::::
weather

:::::
events

::::
into

:::
the

:::::::::
predictions.

Our study emphasised the importance of anthropogenic predictors such as distance to urban settlements, railways or campsites.535

Thus, it is crucial to protect forests from anthropogenic influences to reduce the occurence of forest fires, especially during

drought events. Furthermore, we showed the higher resilience of mixed forests in contrast to monocultural forests, confirming

previous literature. Forest managers should therefore prioritise the growth of broadleaf trees. Soil parameters such as percent-

age of silt and sand had a medium to high importance, suggesting that pore sizes and the consequent capacity of the soil to

carry and maintain water restricts the availability of water for trees. Finally, topographic parameters such as slope or TWI had540

a rather low importance for predicting FFS in Brandenburg, which is likely due to the overall rather flat topography of the

federal state.

This study and FFS maps can serve local forest managers and firefighters in the prevention of forest fires in the region. Fur-

thermore, the identification of contributing variables can support the development of forest fire management strategies adapted

to local circumstances.545
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