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Abstract. Spatial proxies such as coordinates and Euclidean distance fields are often added as predictors in random forest

models
:::::::
Random

::::::
Forest

::::
(RF)

:::::::
models

:::::::
without

:::
any

:::::::::::
modification

::
of

::::
the

::::::::
algorithm

::
to

:::::::
account

:::
for

:::::::
residual

:::::::::::::
autocorrelation

::::
and

:::::::
improve

:::::::::
predictions; however, their suitability in

::::
under

:
different predictive conditions

::::::::::
encountered

::
in

:::::::::::
environmental

:::::::::::
applications

has not yet been thoroughly assessed. We investigated
::::::::
investigate

:
1) the conditions under which spatial proxies are suitable,

::::::::
suitability

::
of

::::::
spatial

::::::
proxies

:::::::::
depending

::
on

:::
the

:::::::::
modelling

::::::::
objective

:::::::::::
(interpolation

:::
vs.

::::::::::::
extrapolation),

:::
the

:::::::
strength

::
of

:::
the

:::::::
residual5

:::::
spatial

:::::::::::::
autocorrelation,

::::
and

::
the

::::::::
sampling

:::::::
pattern; 2) the reasons for such adequacy, and 3) how proxy suitability can be assessed

using cross-validation
:::::
which

::::::::
validation

:::::::
methods

::::
can

::
be

:::::
used

::
as

:
a
::::::
model

::::::::
selection

:::
tool

:::
to

:::::::::
empirically

::::::
assess

:::
the

::::::::
suitability

:::
of

:::::
spatial

:::::::
proxies;

::::
and

::::
show

::
3)

:::
the

:::::
effect

:::
of

::::
using

::::::
spatial

::::::
proxies

:::
in

::::::::
real-world

::::::::::::
environmental

::::::::::
applications.

In a simulation and two case studies
:::
We

:::::::
designed

::
a
:::::::::
simulation

:::::
study

::
to

:::::
assess

:::
the

:::::::::
suitability

::
of

:::
RF

:::::::::
regression

::::::
models

:::::
using

::::
three

:::::::
different

:::::
types

:::
of

:::::
spatial

:::::::
proxies:

:::::::::::
coordinates,

::::::::
Euclidean

::::::::
Distance

:::::
Fields

:::::::
(EDF),

:::
and

::::::::
Random

:::::
Forest

::::::
spatial

:::::::::
prediction10

::::::
(RFsp).

::::
We

::::
also

:::::
tested

:::
the

::::::
ability

:::
of

::::::::::
probability

::::::::
sampling

:::
test

:::::::
points,

:::::::
random

:::::
k-fold

:::::::::::::::
Cross-Validation

:::::
(CV),

::::
and

::::::
k-fold

::::::
Nearest

:::::::::
Neighbour

::::::::
Distance

::::::::
Matching

:::::::::
(kNNDM)

::::
CV

::
to

::::::
reflect

:::
the

::::
true

::::::::
prediction

:::::::::::
performance

::::
and

::::::::
correctly

::::
rank

:::::::
models.

::
As

:::::::::
real-world

:::::
study

:::::
cases,

:::
we

::::::::
modelled

::::::
annual

::::::
average

:::
air

::::::::::
temperature

:::
and

::::
fine

:::::::::
particulate

:::::
matter

:::
air

::::::::
pollution

::
for

::::::::::
continental

:::::
Spain.

:

::
In

:::
the

:::::::::
simulation

:::::
study, we found that adding spatial proxies improved model performance when both residual spatial

:::
RF15

::::
with

:::::
spatial

:::::::
proxies

::::
was

::::::
poorly

:::::
suited

:::
for

::::::
spatial

::::::::::::
extrapolation

::
to

::::
new

:::::
areas

:::
due

:::
to

::::
large

:::::::
feature

:::::::::::
extrapolation.

::::
For

::::::
spatial

:::::::::::
interpolation,

::::::
proxies

::::
were

:::::::::
beneficial

::::
when

::::
both

::::::
strong

:::::::
residual autocorrelation, and regularly or randomly-distributed training

samples, were present. Otherwise, inclusion of proxies was
::
In

::
all

:::::
other

:::::
cases,

:::::::
proxies

::::
were

:
neutral or counterproductiveand

resulted in feature extrapolation for clustered samples. Random k-fold cross-validation systematically
::::::::
generally favoured mod-

els with spatial proxies even when not appropriate,
:::::::
whereas

:::::::::
probability

::::
test

::::::
samples

::::
and

:::::::
kNNDM

::::
CV

:::::::
correctly

::::::
ranked

:::::::
models.20

::
In

:::
the

:::::
study

:::::
cases,

:::
air

::::::::::
temperature

:::::::
stations

:::::
were

::::::::::
well-spread

:::::
within

:::
the

:::::::::
prediction

::::
area

::::
and

::::::::::::
measurements

::::::::
exhibited

::::::
strong

:::::
spatial

:::::::::::::
autocorrelation,

:::::::
leading

::
to

::
an

::::::::
effective

:::
use

::
of

::::::
spatial

:::::::
proxies.

:::
Air

::::::::
pollution

::::::
stations

:::::
were

::::::::
clustered

:::
and

:::::::::::::
autocorrelation

:::
was

:::::::
weaker,

:::
and

::::
thus

::::::
spatial

::::::
proxies

::::
were

::::
not

::::::::
beneficial.
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As the benefits of spatial proxies are not universal, we recommend using spatial exploratory and validation analyses to

determine their suitability, and
::
as

::::
well

::
as considering alternative inherently spatial RF-GLS models

:::::::::
modelling

:::::::::
approaches.25

1 Introduction

Predictive modelling of environmental data is key to produce spatially-continuous information out of
::::
from

:
limited, typically

expensive and hard-to-collect point samples. Research fields as diverse as meteorology (Kloog et al., 2017), soil sciences

(Poggio et al., 2021), ecology (Ma et al., 2021), and environmental epidemiology (de Hoogh et al., 2018) rely on predictive

mapping workflows to produce continuous surfaces, sometimes even at global scale (Ludwig et al., 2023), with products being30

used for decision-making and subsequent modelling.

Spatial data including environmental variables have intrinsic characteristics that impact the way they are modelled (Longley,

2005). One of the most important is spatial autocorrelation, which as stated by Tobler’s first law of geography "Everything

is related to everything else, but near things are more related than distant things" (Tobler, 1970). Modellers have used this

property
::::::::
modellers

::::
have

::::
used

:
to support their spatial interpolation endeavours , which

:::
that evolved from deterministic univariate35

approaches such as inverse distance weighting, to more advanced geostatistical methods that can leverage auxiliary predictor

information such as Regression Kriging (RK) (Heuvelink and Webster, 2022).

::::::::
regression

:::::::
kriging

:::::::::::::::::::::::::
(Heuvelink and Webster, 2022)

:
.
:
With the increasing availability of spatial information

:::
data

:
relevant to

predict environmental variables (e.g. new satellites and sensors, uncrewed autonomous vehicles, climate
:::::::
climatic

:
and atmo-

spheric simulations), Machine Learning (ML) models have gained momentum in environmental applications due to their ability40

to capture complex non-linear relationships in highly multivariate
:::::::::
dimensional

:
datasets (Lary et al., 2016). While standard ML

models can better capture complexity in the trend estimation compared to RK
::::::::
regression

::::::
kriging, they are aspatial, i.e. they ig-

nore the spatial location of the samples and assume independence between observations (Wadoux et al., 2020a). One of the most

popular ML algorithms in the geospatial community is Random Forest (RF), a decision tree ensemble (Breiman, 2001) that

has shown good performance across many applications (Wylie et al., 2019) and centred the attention of many methodological45

studies (e.g. Meyer and Pebesma (2021); Hengl et al. (2018); Sekulić et al. (2020); Georganos et al. (2021); Saha et al. (2023)

)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Meyer and Pebesma, 2021; Hengl et al., 2018; Sekulić et al., 2020; Georganos et al., 2021; Saha et al., 2023).

The lack of consideration of space in ML models has motivated researchers to
::
try

::
to
:
find ways to account for spatial autocor-

relation to improve model performance. One straightforward approach is to add "spatial proxies" as predictors to the ML model

without any modification of the algorithm. We define spatial proxies as a set of spatially-indexed variables with long or infinite50

autocorrelation ranges that are not causally related to the responsevariable.
::::

We
:::
use

:::
the

::::
term

:::::::
"proxy"

:::::
since

:::::
these

:::::::::
predictors

::
act

:::
as

:::::::::
surrogates

:::
for

:::::::::
unobserved

:::::::
factors,

::::
such

:::
as

:::::::
missing

::::::::
predictors

::
or
:::

an
::::::::::::
autocorrelated

:::::
error

:::::
term,

:::
that

::::
can

:::::
cause

:::::::
residual

::::::::::::
autocorrelation. The most prevalent type of proxy are coordinates, where either geographical or projected coordinate fields (Fig.

1.3) are added as two additional predictors in the models (e.g. Cracknell and Reading (2014); Walsh et al. (2017); Wang et al. (2017); de Hoogh et al. (2018)

). Other
::::::::::::::::::::::::::::
(e.g. Cracknell and Reading, 2014).

:::::
Other

::::::
spatial

:::::
proxy approaches include Euclidean Distance Fields (EDF) (Behrens55

et al., 2018) , which, in addition to coordinates, adds five additional
::::::::
additional

:::::::
distance

:::::
fields

::::
with

:::::::
different

:::::::
origins,

::::
such

:::
as
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:::
five EDF with respect to the four corners and

::
the

:
centre of the study area (Fig. 1.3); and

:
.
:::::::::::::::::
Behrens et al. (2018)

::::::::
explained

::::
that

::::
with

::::
EDF

:::
one

:::
can

:::::::
account

:::
for

::::
both

::::::
spatial

::::::::::::
autocorrelation

:::
and

::::::::::::::
non-stationarity

::
by

:::::
using

:::
the

:::::::
partition

::
of

:::
the

:::::::::::
geographical

:::::
space

:::::::::
introduced

::
by

::::
EDF

::::
and

::
its

:::::::::
interaction

::::
with

:::
the

::::::::::::
environmental

:::::::::
predictors.

:::::::
Finally,

::::::::::::::::
Hengl et al. (2018)

:::::::
proposed Random Forest

spatial prediction (RFsp)(Hengl et al., 2018), which adds distance fields to each of the sampling locations (Fig. 1.3), i.e. the60

number of added predictors equals the sample size.

Several advantages of spatial proxy approaches have been discussed by their authors. Hengl et al. (2018) argued that

RFsp can address spatial autocorrelationin RF models by accounting for geographical proximity and spatial relations between

observations and thus mimick RK. Furthermore, Hengl et al. (2018) pointed out that in RFsp, trend and spatial autocorrelation

are modelled ,
::::::
model

::::
trend

:::
and

:::::
error in a single stepwhile avoiding the complexities and assumptionsof RK. Behrens et al. (2018)65

explained that with EDF, one can not only account for spatial autocorrelation but also for non-stationarity by means of the

partitioning of the geographical space introduced by EDF and its interaction with environmental predictors. To sum up, spatial

proxieshave been discussed as a straightforward way to address limitations of standard ML methods leading to more accurate

predictions. ,
:::::::
mimick

:::::::::
regression

::::::
kriging

:::::
while

::::::::
avoiding

::
its

::::::::::
complexity

:::
and

:::::::::::
assumptions,

:::
and

::::::
benefit

:::::
from

:::
the

:::::
ability

:::
of

:::
RF

::
to

::
fit

:::::::
complex

:::::::::::
relationships

:::::::
between

:::
the

:::::::
response

::::
and

:::::::::
predictors.70

Nonetheless, the same authors have also expressed caveats. Hengl et al. (2018) warned about using RFsp with clustered data

which can result in feature extrapolation, i.e. predicting for values
:::::
While

:::::
spatial

:::::::
proxies,

::::
and

::::::::
especially

::::::::::
coordinates,

::::
have

:::::
been

:::::
widely

:::::
used

::
in

:::
the

::::::::
literature

:::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Walsh et al., 2017; Wang et al., 2017; de Hoogh et al., 2018)

:
,
:::
the

::::::::
evidence

::::::::
exploring

:::::
their

::::::::
suitability

::
in

::::::::
different

::::::::
prediction

:::::::
settings

::
is
::::::::::
fragmented

:::
and

:::::::
limited.

:::
In

:::
our

::::::::
literature

::::::
review,

:::
we

::::::::
identified

:::::
three

::::::
factors

::::
that

::::
could

:::::
affect

:::
the

:::::::::::
effectiveness of spatial proxiesnot included in the training data. Indeed, tree-based modelssuch as RF regression75

have been acknowledged to perform poorly in feature extrapolation settings (Meyer and Pebesma, 2021; Hengl et al., 2018).

Finally, Behrens et al. (2018) showed how RF using coordinates as predictors can result in large artefacts with clearly visible

breaks in the predicted surfaces:
:::

1)
:::
the

:::::::
models’

::::::::
objective,

:::
2)

:::
the

:::::::
strength

::
of

::::
the

:::::::
residual

:::::
spatial

::::::::::::::
autocorrelation,

:::
and

:::
3)

:::
the

::::::
sample

:::::::::
distribution.

Other authors have also expressed views regarding spatial proxies. Meyer et al. (2019) argued thathighly autocorrelated80

variables such as coordinates, especially when used with spatially clustered samples
:
In

:::::::
relation

::
to

:::
the

:::
first

::::::
factor,

:::
the

::::::::
objective

::
of

:::
the

::::::
model,

:::
we

:::
can

::::::::::
distinguish:

::::::::::::
interpolation,

:::::
where

:::::
there

::
is

:
a
:::::::::::

geographical
:::::::

overlap
:::::::
between

:::
the

::::::::
sampling

::::
and

:::::::::
prediction

::::
area;

:::::::::::
extrapolation

::
or

::::::
spatial

:::::
model

:::::::
transfer,

:::::
where

:::
the

::::::
model

::
is

::::::
applied

::
to

:
a
::::
new,

:::::::
disjoint

::::
area;

::::
and

::::::::
predictive

::::::::
inference,

::::::
where

:::::::::
knowledge

::::::::
discovery

::
is

:::
the

::::
main

:::::
focus.

:::::::::
Regarding

:::::::::::
interpolation,

::::::
several

::::::
studies

:::::::
indicate

::::
that, can result in

::::
when

:::::::
samples

:::::
cover

::
the

::::::
entire

::::::::
prediction

:::::
area,

:::
the

:::::::
addition

::
of

::::::
spatial

:::::::
proxies

::
to

:::
RF

::::
may

:::
be

::::::::
beneficial

::
in

:::::
terms

:::
of

::::::::
predictive

::::::::
accuracy

:::
and

::::::
might85

:::::::::
outperform

:::::::::::
geostatistical

:::
or

::::::
hybrid

:::::::
methods

::::::::::::::::::::::::::::::::::::::::::::::::
(Behrens et al., 2018; Hengl et al., 2018; Saha et al., 2023)

:
.
::::
The

:::
use

:::
of

::::::
spatial

::::::
proxies

:::
for

:::::::::::
extrapolation

:::::::
remains

::
to

::
be

::::::::
explored

:::
but

:::::::
appears

::
to

::
be

:::::::::::
problematic:

:::::
since

:::
the

::::::
spatial

::::::::::::
representation

::
is

:::::::::
introduced

::
via

::::::::::
predictors,

:::
and

:::
the

:::::::::
prediction

::::
area

::
is,

:::
by

::::::::
definition,

::::::::
different

::::
than

:::
the

::::::::
sampling

::::
area,

::::::
feature

:::::::::::
extrapolation

::::
will

::
be

:::::::
present

::::
when

:
spatial overfitting leading to poor generalization only detected when using an appropriate spatial Cross-Validation (CV)

strategy. Meyer et al. (2019) also
::::::
proxies

:::
are

:::::
used,

::::::
which

::
is

::::::::::
problematic

:::
for

::::::
models

:::::
with

::::
poor

:::::::::::
extrapolation

::::::
ability

::::
such

:::
as90

::
RF

:::::::::::::::::::::::::::::::::::::::
(Meyer and Pebesma, 2021; Hengl et al., 2018).

:::::::
Finally,

::::::::
regarding

::::::::
predictive

:::::::::
inference,

:::
the

:::::::
inclusion

:::
of

:::::
spatial

:::::::
proxies

:::
has
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::::
been

:::::::::::
discouraged:

::::::::::::::::
Meyer et al. (2019) showed how spatial proxies typically rank high in variable importance statistics in RF

models, especially when they lead to overfitting. Following this, Wadoux et al. (2020a) discussed how high proxy variable

importance could hinder correct interpretation of importance statistics for the rest of predictors, which could undermine the

possibility to derive hypotheses from the model . Wadoux et al. (2020a) also argued that spatial proxies may hamper residual95

analysis
:::
and

:::::::
hamper

:::::::
residual

:::::::
analysis.

:

:::
The

::::::
second

:::::
factor

::
is
:::::::
residual

:::::::::::::
autocorrelation,

:::::
which

::::::::
typically

:::::
arises

:::::
when

:
a
:::::::
relevant

::::::::
predictor

::
is

:::
not

:::::::
available

:::
for

:::::::::
modelling

::::::
because

::
it
::
is

:::::
either

::::::::::
unmeasured

:::
or

::::::::
unknown,

:::
or

::::::
because

::::
the

::::
error

::::
term

::
is
::::::::::::
autocorrelated

:::::::::::::::::::::
(F. Dormann et al., 2007)

:
.
:::::
Since

:::
the

:::
goal

:::
of

:::::::::
introducing

::::::
spatial

::::::
proxies

::
is

::
to

::::::
account

:::
for

:::::::
residual

:::::::::::::
autocorrelation,

:
a
:::::
better

:::::::::::
performance

::
of

::::::
models

::::
with

:::::
spatial

:::::::
proxies

:
is
::::::::
expected

:::::
when

::::::
residual

::::::::::::
dependencies

:::
are

::::::
strong.

::::
This

:::::::
intuition

::
is

::::::::
confirmed

:::
by

::
the

::::::
results

::
of

:::::::::::::::
Saha et al. (2023),

::::
who

:::::::
showed100

:::
how

:::
RF

:::::
with

::::::
spatial

:::::::
proxies,

:::
and

:::::::::
especially

:::::
those

::::::
adding

:
a
:::::
large

::::::
number

:::
of

:::::
proxy

:::::::::
predictors

::::
such

::
as

::::::
RFsp,

::::
were

:::::::::
especially

:::::
useful

:::::
when

:::
the

::::::::
covariate

:::::
signal

::
to

::::::
spatial

:::::
noise

::::
ratio

::::
was

:::
low

::::
(i.e.

::::
large

:::::::::::::
autocorrelated

::::
error

::::
term

:::::::::
compared

::
to

:::
the

::::::::
covariate

::::::
signal),

:::
yet

:::
led

::
to

::::
poor

::::::
results

:::::
when

:::
the

:::::
spatial

:::::
error

:::
was

::::::
small.

:::::::::::
Nonetheless,

::::::
whether

:::::::
proxies

:::
can

:::::::
address

:::::::
different

:::::::
sources

::
of

::::::
residual

:::::::::::::
autocorrelation,

::::
i.e.

::::::
missing

:::::::::
predictors

::
or

::::::::::::
autocorrelated

:::::
error,

::
as

::::
well

::
as

:::
the

::::::::
influence

::
of
:::

the
:::::::

strength
:::

of
::::
their

::::::
spatial

:::::::
structure,

:::::::
remains

::
to
:::
be

::::::
studied.105

Given this complexity, simulation studies that enable a systematic model evaluation in different controlled environments

are needed
:::
The

::::
third

::::::
factor

::
is

:::
the

::::::::
sampling

:::::::
pattern,

::::
with

::::::::
clustered

:::::::
samples

:::::::::
frequently

::::::
argued

:::
to

::
be

:::::::::
potentially

:::::::::::
problematic

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Cracknell and Reading, 2014; Hengl et al., 2018; Meyer et al., 2019).

::::::
Indeed,

:::
the

:::::::
problem

::::
with

::::::::
clustered

::::
data

:
is
::::::
similar

::
to

::::
that

::
of

:::::
spatial

::::::
model

::::::::::::
transferability:

:::::
even

:
if
:::
the

::::::::
sampling

::::
and

:::
the

::::::::
prediction

::::
area

::::::::
coincide,

:::::
there

:::
will

:::
be

::::
some

:::::::
regions

:::
not

:::::::
covered

::
by

:::
the

:::::::
training

::::
data

:::
and

::::::::
therefore

::::::
spatial

:::::::::::
extrapolation

::::
will

:::::
occur

::
to

::::
some

:::::::
degree.

:::::::::::::::::::::::::
Cracknell and Reading (2014)

::::::
showed

::::
that110

::::
using

::::::::::
coordinates

:::::
with

::::::::
clustered

::::
data

:::
led

::
to

::::::::::
unplausible

::::::
results

:::::
with

:::::::::
significant

:::::::
artifacts.

:::::::::::::::::
Hengl et al. (2018)

::::::
warned

:::::
about

::::
using

:::::
RFsp

::::
with

::::::::
clustered

::::
data

::::::
which

:::
can

:::::
result

::
in

::::::
feature

:::::::::::
extrapolation

:::
for

::
a
:::::
subset

:::
of

:::
the

::::
area,

:::
i.e.

:::::::::
predicting

:::
for

:::::
values

:::
of

:::::
spatial

:::::::
proxies

:::
not

:::::::
included

::
in

:::
the

:::::::
training

::::
data.

:::::::::::::::::
Meyer et al. (2019)

:::::
added

:::
that

::::::::
including

::::::
highly

::::::::::::
autocorrelated

::::::::
variables

::::
such

::
as

:::::::::
coordinates

::::
with

::::::::
clustered

:::::::
samples

:::
can

:::::
result

::
in

::::::
spatial

:::::::::
overfitting.

::
In

::::
spite

::
of

::::
this

::::::::
evidence,

::
the

:::::
effect

::
of

:::
the

::::::::
sampling

::::::
design

:::
has

::::
only

::::
been

:::::::
explored

:::::::
through

:::::::
specific

:::::
study

::::
cases

::::
and

:
a
:::::::::
systematic

:::::::::
evaluation

::
is

:::
still

:::::::
missing.

:
115

::
In

:::::::
addition

::
to

::
the

::::::
factors

::::::::::
influencing

::
the

:::::::::
suitability

::
of

::::::
spatial

::::::
proxies,

::
it

::
is

::::::::
important

::
to

::::
have

::::::::
validation

:::::::
methods

::
to

::::::::::
empirically

:::::
assess

:::::::
whether

::
a
::::::
spatial

::::::
proxy

::::::::
approach

::
is

::::::::
advisable

:::
in

:
a
::::::

given
:::::::::
prediction

::::
task. To our knowledge, the only simulation

study investigating RF with spatial proxies (among other models) is that of Saha et al. (2023), which concluded that RF

with coordinates and RFsp performed better than a standard RF. However, their simulation
:::::::
evidence

::::::::
regarding

::::
this

:::::
point

::
is

:::
that

::
of

::::::::::::::::
Meyer et al. (2019)

:
,
::::
who

:::::::
showed

:::
that

::::::
spatial

:::::::::
overfitting

::::
with

::::::
highly

::::::::::::
autocorrelated

::::::::
variables

:::
was

::::
only

::::::::
detected

:::::
when120

::::
using

:::
an

::::::::::
appropriate

:::::::::
validation

:::::::
strategy.

::::::::
Amongst

:::::::::
validation

::::::::
methods,

::::::::::
probability

:::
test

::::::::
sampling

::
is
::::

the
::::::::
preferred

::::::::
approach

::
as

::
it

:::::
offers

::::::::
unbiased

::::::::
estimates

:::::::::::::::::::
(Wadoux et al., 2021)

:::
that

:::
can

:::
be

::::
used

:::
for

::::::
model

::::::::
selection.

:::::::::::::
Unfortunately,

::::::::::
independent

::::
test

::::::
samples

:::
are

:::::
rarely

::::::::
available

::
in

:::
the

::::
field

::
of

::::::::::::
environmental

::::::::
sciences,

:::
and

:::::::::
alternative

::::::::
validation

::::::::
methods

::::
such

::
as

::::::::::::::
Cross-Validation

::::
(CV)

:::::
must

::
be

:::::
used.

:::::
While

:::::::
standard

::::
CV

:::::::
methods

::::
that

::::::
assume

::::::::::::
independence

:::::::
between

::::
train

::::
and

:::
test

::::
data

::::
such

::
as

::::::::::::
leave-one-out

:::
and

:::::
k-fold

::::
CV

::::
have

:::::
been

::::::::::::
acknowledged

::
to

:::::
offer

::::
good

::::::::
accuracy

::::::::
estimates

:::
for

::::::
spatial

:::::::::::
interpolation

::::
with

::::::
regular

::::
and

:::::::
random125

::::::
samples

:::::::::::::::::::::::::::::::::::::::::::::::::::::
(Wadoux et al., 2021; Milà et al., 2022; Linnenbrink et al., 2023),

::::
they

:::::::::
generally

:::
lead

:::
to

::::::::::::
overoptimistic

::::::::
estimates

:::
for
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:::::
spatial

::::::
model

:::::::
transfer

:::
and

:::::::::::
interpolation

::::
with

::::::::
clustered

::::::::
samples.

::::::
Several

::::::
spatial

::::
CV

:::::::
methods

::::
have

:::::
been

::::::::
proposed

::
to

:::::::
address

::
the

::::::::::
limitations

::
of

:::::::
standard

:::::::::
validation

::::::::::
approaches

:::::::::::::::::::::::::::::::::::::::::::::::::::::
(Roberts et al., 2017; Ploton et al., 2020; Kattenborn et al., 2022)

::::
using

::::
CV

:::::
based

::
on

::::::
spatial

:::::::
blocking

:::::::::::::::::::::::::::::::::::::
(Wenger and Olden, 2012; Valavi et al., 2019)

:
,
:::::::
buffering

::::::::::::::::::::::::::::::::::::::
(Telford and Birks, 2009; Le Rest et al., 2014)

:
,
::::::::
clustering

:::::::::::::::
(Wang et al., 2023)

:
,
::
as

::::
well

::
as

:::::::::::::::
sampling-intensity

::::::::
weighted

:::
CV

:::
and

:::::::::::
model-based

:::::::::::
geostatistical

:::::::::
approaches

::::::::::::::::::
(de Bruin et al., 2022)130

:
.
::::::
Among

:::::
those,

::::
CV

:::::::
methods

::::
that

:::::::
consider

:::
the

:::::::::
prediction

::::::::
objective

::
of

:::
the

::::::
model

::::
such

:::
as

:::::
k-fold

:::::::
Nearest

:::::::::
Neighbour

::::::::
Distance

::::::::
Matching

:::::::::
(kNNDM)

::::::::::::::::::::::
(Linnenbrink et al., 2023)

::
are

:::::::::
especially

:::::::::
interesting

:::::::
because

::::
they

::::
have

:::
the

::::::::
potential

::
to

:::::::
discern

:::::::
whether

::::::
proxies

:::
are

:::::
useful

:::
for

:::::::
different

:::::::::
prediction

:::::::::
objectives,

:::
i.e.

:::::::::::
interpolation

::
vs.

::::::::::::
extrapolation.

::
As

:::
an

:::::::::
alternative

::
to

:::::::::
modelling

::::
with

::::::
spatial

::::::::
proxies,

::::
other

::::::::
methods

::::
that

:::
do

::::::
involve

::::::::::
algorithmic

::::::::::::
modifications

::::
have

:::::
been

::::::::
proposed,

::::::::
including

:::::
mixed

::::::
effects

::::::::
tree-based

:::::::
models

:::
that

:::::::
account

::
for

:::::::::
correlated

:::
data

::::::::::::::::::::::
(Hajjem et al., 2011, 2014)

:
,
::::::::::::
spatially-aware135

:::::::::
resampling

:::::::
methods

:::::::::::::
(Li et al., 2019),

::
as
::::
well

::
as

:::::::::::::
geographically

:::::::
weighted

::::
ML

:::::::::
algorithms

::::::::::::::::::::::::::::::::::
(Georganos et al., 2021; Zhan et al., 2017)

:
.
::::::
Among

::::::
those,

:::
the

:::::::
Random

::::::::::::::::
Forest-Generalized

:::::
Least

:::::::
Squares

:::::::::
(RF-GLS)

::::::
model

:::::::
recently

::::::::
proposed

:::
by

:::::::::::::::
Saha et al. (2023)

::
is

::::::::
especially

:::::::::
interesting

:::::::
because

:
it
:::::::
relaxes

::
the

::::::::::::
independence

::::::::::
assumption

::
of

:::
the

:::
RF

:::::
model

:::
by

:::::::::
accounting

:::
for

:::::
spatial

::::::::::::
dependencies

::
in

::::::
several

:::::
ways:

::
1)

:
a
::::::
global

::::::::::
dependence

::::
split

:::::::
criterion

:::
and

:::::
node

::::::::::::
representatives

::::::
instead

::
of

:::
the

::::::
CART

:::::::
criterion

::::
used

::
in
::::::::
standard

::
RF

:::::::
models;

:::
2)

:::::::
contrast

:::::::::
resampling

::::::
rather

::::
than

::::::::
bootstrap

::::
used

::
in

::::::::
standard

:::
RF;

:::
3)

:::::::
residual

::::::
kriging

::::
with

::::::::::
covariance

::::::::
modelled140

::::
using

::
a

:::::::
Gaussian

:::::::
process

:::::::::
framework

:::::::::::::::
(Saha et al., 2023).

::
In

::::
their

::::::::::
simulations,

:::::::::::::::
Saha et al. (2023)

:::::::
showed

:::
how

::::::::
RF-GLS

:::::::::::
outperformed

::
RF

:::::
with

:::
and

:::::::
without

::::::
spatial

:::::::
proxies;

::::::::
however,

:::::
their

::::::::::
simulations

:
did not reflect the range of characteristics typical

::::::
typical

:::::::::::
characteristics

:
of environmental applications as they only explored random sampling designs and did not use spatially-structured

predictors. Among other results, Saha et al. (2023) pointed out that methods that add a substantial amount of distance-based

predictors such as RFsp will bias the selection of the node-splitting variables toward spatial proxies, leading to poor results145

when the spatial noise is small compared to the predictor signal.

Even though
::::
Even

::::::
though

::::
their

:
strengths and weaknesses of spatial proxies have been discussed, a comprehensive assessment

of their suitability under different predictive conditions typically found in environmental modelling is still missing. This

assessment is important given the broad use of spatial proxies , where
:::::
spatial

::::::
proxies

::::::::
continue

::
to

::
be

::::::
widely

::::
used

:::
and

:
coordinates

are typically added to the set of predictors by default . We aim to address this knowledge gap by investigating
::::::
without

::::::
further150

:::::::::::
consideration.

::::::
Hence,

::
a

::::::::::::
comprehensive

:::::::::::
investigation

:
is
:::::::
required

::
to
:::::::::::
complement

:::
the

:::::::::
fragmented

::::::::
evidence,

::::::
mostly

:::::::
available

:::::
from

::::
study

:::::
cases,

::::
that

::
is

:::::::
currently

::::::::
available.

:::
In

:::
this

:::::
work,

:::
we

:::::::::
investigate several RF models with spatial proxies, namely coordinates,

EDF, and RFsp, with the following objectives:

:::::::
-0.25em To assess the suitability of spatial proxies in different scenarios regarding

::::::::
depending

:::
on

:::::::
different

:::::::
factors:

:::
the

::::::::
modelling

::::::::
objective

::::::::::::
(interpolation

::
vs.

:::::::::::::
extrapolation), the strength of the

::::::
residual

:
spatial autocorrelation,

:::
and

:
the sam-155

pling pattern, and predictor availability. To investigate the reasons of such suitability in the different scenarios. To

explore whether CV
:::::
which

:::::::::
validation

::::::::
methods can be used as a model selection tool to guide the choice of spatial

proxy
:::::::::
empirically

:::::
assess

:::
the

:::::::::
suitability

::
of

:::::
spatial

:::::::
proxies

:::
and

:::::
select

:::
the

::::
most

::::::::::
appropriate

:::::
proxy

::::::::::::
configuration.

::
To

:::::::
provide

:::::::
guidance

::
to

:::::::::::
practitioners

::::::::
regarding

:::
the

:::
use

::
of

::::::
spatial

::::::
proxies

::
in

:::::::::
real-world

::::::::::
applications.
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We address these
:::
We

:::::::
address

:::
the

:::
first

::::
two objectives in a simulation studyas well as in two real-world ,

:::::
while

:::
for

:::
the

:::::
third160

:::::::
objective

:::
we

:::::
carry

:::
out

::::
two case studies where we modelled

:::::
model air temperature and

::::::::
particulate

:::
air pollution in Spain.

:::
We

:::::
further

::::::::
compare

:::
and

::::::
discuss

:::
the

:::::::
findings

::
in

:::
the

::::::
context

::
of

:::
the

:::::::
recently

::::::::
developed

::::::::
RF-GLS

:::::
model

::
to

:::::::::
benchmark

:::
the

:::::::::::
performance

::
of

:::
this

:::::::::
alternative

:::::::::
modelling

::::::::
approach.

2 Methods

2.1 Simulation study165

We designed a simulation study on a virtual 100x100 square
:::::::
300x100 grid to assess, in different prediction settings, the

suitability of RF regression models using three different types of spatial proxies: spatial coordinates, EDF, and RFsp (Fig.

1). Our
:::::
Within

:::
the

:::::
grid,

:::
two

::::::::
separate

:::::
areas

::::
were

:::::::
defined

::::
(Fig.

:::::
1.1):

::::::::
sampling,

:::::
from

:::::
where

:::::::::::
observations

:::::
were

:::::::
sampled

::::
and

:::::
which

::::::::
coincided

::::
with

::::
the

::::::::::
interpolation

:::::::::
prediction

:::::
area;

:::
and

:::
the

:::::::::::
extrapolation

:::::::::
prediction

:::::
area,

::::
used

::
to

:::::::
evaluate

::::::
spatial

::::::
model

::::::::::::
transferability.

:::
The

:
simulation consisted of the following steps:170

:::::::
-0.25em We generated predictor and response surfaces (Fig. 1.1) for

:::::::
according

::
to
:::
the

:
different scenarios described in Ta-

ble 1: partial, where only a subset of the predictorswas available; and complete, where all predictors used in the response

generation were
:
1)

:::::::::::::
"autocorrelated

::::::
error",

::::::
where

:::::::
residual

::::::::::::
autocorrelation

::
is
::::::::
expected

:::
due

:::
to

:
a
::::::::
spatially

::::::::::::
autocorrelated

::::
error

:::::
term;

::
2)

::::::::::
"complete",

::::::
where

:::
no

::::::
spatial

:::::::::::::
autocorrelation

::
is

:::::::
expected

::::
and

::::::::
therefore

::::::
spatial

:::::::
proxies

:::
are

:::::::
assumed

:::
to

::
be

:::::::::
irrelevant;

::
3)

::::::::
"missing

::::::::::
predictors",

:::::
where

:::::::
residual

:::::::::::::
autocorrelation

::
is

::::::
present

::::
due

::
to

:::::::
missing

:::::::::
predictors;

::::
and

::::::
finally175

::
4)

:::::::
"proxies

::::::
only",

:::::
where

:::
no

:::::::::
predictors

:::
are

:
available for modelling . First

:::
and

:::::
only

::::::
proxies

:::
are

:::::
used.

:::
To

::::::::
generate

:::
the

:::::::
surfaces, unconditional sequential Gaussian simulation (Gebbers and de Bruin, 2010) was used to generate six indepen-

dent random
:::::::
predictor

:
fields X with 0 mean and a spherical variogram with sill=1, nugget=0, and range equal to 10

or 40 (see examples in supporting Fig. A1) to be used in response Y generation. Additionally, a noise surface with no

spatial autocorrelation was simulated using a standard Gaussian distribution (
:::
we

::::::::
simulated

::::::::::::
autocorrelated

:
(E , ,

:::::::
random180

::::
field

::::
with

:
0
:::::
mean

::::
and

:
a
::::::::
spherical

::::::::
variogram

:::::
with

:::::
sill=1,

:::::::::
nugget=0,

:::
and

:::::::::
range=25)

::::
and

::::::
random

::::
(E ′,

:::::::
standard

:::::::::
Gaussian)

::::
error

:::::::
surfaces

:
(Fig. A1). We generated a response surface using the equation

:::::::
response

:::::::
surfaces

:::::
using

:::
the

:::::::::
equations in

Table 1. We simulated four sets of training samples
:::::
points

::
in

:::
the

::::::::
sampling

::::
area

:
(Fig. 1.2) with a sample size of 200

following different distributions: regular samples were drawn by adding random noise (uniform distribution with param-

eters U(−2,2)) to a regular grid, random samples were simulated via uniform random sampling, clustered samples were185

obtained by simulating 25 (weak clustering) or 10 (strong clustering) randomly-distributed parent points in a first step

and 7 (weak) or 19 (strong) offspring points within a 8-unit (weak) or 6-unit (strong) buffer of each parent. For each

set of samples, we extracted the corresponding values of the response and predictors, deleted duplicate observations (i.e.

two or more points intersecting with the same cell), and fitted a baseline
::
RF

:
model, which used predictors according to

the corresponding scenario (Table 1). We also fitted coordinates, EDF, and RFsp models (see introduction for details)190

which included the predictors in
::::
from the baseline model plus the spatial proxies (Fig. 1.3). We fixed

:::
kept

:
the number of
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trees to
::
at

:
a
:::::::
constant

:::::
value

::
of

:
100 and tuned the hyperparameter mtry using out-of-bag samples and an equally-spaced

grid of length 5 ranging from 2 to the maximum number of predictors. We used each of the fitted models to compute

predictions for the entire area and calculated the "true" Root Mean Square Error (RMSE) by comparing the simulated

and predicted response surfaces
:
in
:::

all
:::
the

:::::::::::
interpolation

::::
and

:::::::::::
extrapolation

:::::
areas

:::::::::
separately

:
(Fig. 1.4).

:
In

:::
the

::::::::
baseline195

:::::
model

:::
for

:::
the

::::::
"proxy

:::::
only"

:::::::
scenario

::::::
where

::
no

:::::::::
predictors

:::::
were

::::::::
available,

:::
the

:::::
mean

::
of

:::
the

::::::::
response

::
in

:::
the

:::::::
training

::::
data

:::
was

::::
used

:::
as

:
a
:::::::
constant

::::::::::
prediction.

:::
The

::::::::
expected

:::::::::
minimum

:::::::
possible

::::::
RMSE

:::
for

::::::::
scenarios

:::
2-4

::::
was

:::::
equal

::
to

::
1

::::::::
(standard

:::::::
deviation

:::
of

::
the

:::::::
random

:::::
error),

:::::::
whereas

::
it
::::
was

::::
equal

::
to

::
0

:::
for

:::::::
scenario

::::::::::::
"autocorrelated

:::::
error"

:::
as

:::
the

::::
error

:::::
could

:::::::::
potentially

::
be

::::::::
explained

:::
by

:::
the

:::::::
proxies.

:
We

::::
Since

:::
the

::::
true

::::::
RMSE

::
is
::::::::
unknown

:::
in

:::::::::
real-world

::::::::::
applications,

:::
we

:
also estimated the

RMSE using two k-fold CV
::::::::
additional

::::::::
validation

:
methods (Fig. 1.5):

:
.
::::
First,

::
a
:::::::::
probability

:::::::
sample

::
of

::::
100

::::::
random

::::
test200

:::::
points

::::
was

:::::
drawn

::::
and

::::
used

::
to

::::::::
estimate

:::
the

::::::
RMSE

::
in

:::
the

:::::::::::
interpolation

:::
and

:::::::::::
extrapolation

:::::
areas

:::::::::
separately.

:::::::::
Moreover,

::
a

5-fold random CV and 5-fold Nearest Neighbour Distance Matching (kNNDM ) CV
:::::::
kNNDM

:::
CV

::::
were

:::::
used

::
to

:::::::
estimate

::
the

::::::
RMSE. Briefly, kNNDM is a prediction-oriented method that provides predictive conditions in terms of geographi-

cal distances during CV similar to those encountered when using a model to predict a defined area (Linnenbrink et al.,

2023; Milà et al., 2022). kNNDM has been shown to provide a better estimate for map accuracy than random k-fold CV205

when used with clustered samples, while returning fold configurations equivalent to random k-fold CV for regularly and

randomly-distributed samples. Estimation of RMSE was done globally to account for the different fold sizes in kNNDM

(Linnenbrink et al., 2023), i.e. we stacked all predictions in the different folds and computed the RMSE from all sam-

ples simultaneously, rather than computing the RMSE within each fold and then averaging.
::
As

::::::::
kNNDM

::
is

:::::::::
dependent

::
on

:::
the

:::::::::
prediction

::::::::
objective,

:::
two

::::::::
different

::::::::
kNNDM

:::::::::::
configurations

:::::
were

::::
used

::
to

:::::::
estimate

::::::
RMSE

:::
in

:::
the

::::::::::
interpolation

::::
and210

:::::::::::
extrapolation

::::
areas

::::
(Fig.

:::::
1.5). We computed two additional metrics to understand the feature extrapolation potential and

the variable importance of spatial proxies (Fig. 1.6). We calculated the percentage of the study area subject to feature

extrapolation as per the Area of Applicability (AOA) (Meyer and Pebesma, 2021) using all training samples. AOA is

defined as the area with feature values similar to those of the training data, and is computed based on distances in the

predictor space. Unlike feature extrapolation metrics based on variable range or convex hulls, AOA takes into account215

predictor sparsity within the predictor range and weights variables by their importance in the models
:::::
model. Regarding

variable importance, we used the mean decrease impurity method (Breiman, 2002) to quantify the percentage of the total

average impurity decrease attributable to spatial proxies.

We ran 100 iterations of each simulation configuration, i.e. we fitted a total of 100 iterations × 2
:
4 prediction scenarios ×

2 autocorrelation ranges × 4 sample distributions × 4 model types = 6,400
:::::
12,800

:
models (without counting the CV fits). We220

analysed the results of the simulations by plotting
:::::::::
examining the distributions of 1) the true RMSE, 2) the percentage of variable

importance attributable to spatial proxies
:::
the

:::::
study

::::
area

::::::
subject

::
to
:::::::

feature
:::::::::::
extrapolation, 3) the percentage of the study area

subject to feature extrapolation
:::::::
variable

:::::::::
importance

::::::::::
attributable

::
to

::::::
spatial

::::::
proxies, and 4) the CV-estimated RMSEs

::::::::
estimated

:::::
RMSE; by each combination of

::::::::
simulation

:
parameters and model type.
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1. Simulate predictor and error 

surfaces and generate response

3. Fit RF models

2. Simulate training samples

4. Compute true RMSE 5. Estimate RMSE 6. Additional metrics

% of the study area subject to 

feature extrapolation as per the 

area of applicability

% of total impurity decrease 

attributable to spatial proxies

Baseline

Only simulated 

predictors

Coordinates

Baseline+X+Y

EDF

Baseline+X+Y+distance to 

corners and centre

RFsp

Baseline+

distance to samples

For each combination of autocorrelation range (10, 40) and

prediction scenario (autocorrelated error, complete, missing predictors, proxies only)

Figure 1. Workflow of the simulation study.

2.2
::::::::::

Comparison
::
of

::::::
spatial

:::::::
proxies

::::
with

::::::::
RF-GLS225

::
As

:::
an

:::::::::
alternative

::
to

::::::
spatial

:::::
proxy

:::::::::::
approaches,

:::
we

::::
also

:::::
tested

:::
the

:::::::::::
performance

::
of

::::
the

:::::::
RF-GLS

::::::
model

:::::::
recently

::::::::
proposed

:::
by

::::::::::::::
Saha et al. (2023)

:
,
::
an

::::::::
extension

:::
of

:::
RF

:::::
which

::::::
relaxes

:::
its

::::::::::::
independence

:::::::::
assumption

:::
by

:::::::::
accounting

:::
for

::::::
spatial

::::::::::::
dependencies

::
in

::::::
several

::::
ways

::::
(see

:::::::::::
introduction

:::
for

::::
more

:::::::
details).

:::
To

:::
test

::::
the

::::::::::
performance

:::
of

::::::::
RF-GLS,

:::
we

:::::::
included

::
it
::
in

:::
the

:::
set

::
of

:::::::::
candidate

::::::
models,

:::::::
together

::::
with

:::::::
baseline

::::
and

:::
the

::::
three

::::::
spatial

:::::
proxy

:::::::
models,

::
in

:::
the

:::::::::
simulations

::::::::
presented

::
in
:::::::
section

:::
2.1,

::::
used

::
it

::
to

::::::
predict

::
the

::::::
entire

::::
area,

::::
and

::::::::
computed

:::
the

:::::
"true"

:::::::
RMSE

::
in

:::
the

:::::::::::
interpolation

:::
and

:::::::::::
extrapolation

:::::
areas

:::
by

:::::::::
comparing

:::
the

::::::::
simulated

::::
and230

:::::::
predicted

::::::::
response

:::::::
surfaces.

:
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2.3 Case studies

We modelled annual average air temperature and
:::
fine

:::::::::
particulate

:
air pollution for continental Spain in 2019 to examine the use

of RF models with spatial proxies in real-word examples. For the first case study, we collected daily average air temperature

data using the API of the Agencia Española de Meteorología, calculated station-based annual averages, and retained 195235

stations with a temporal coverage of 75% or higher (Fig. 2). For the second, we collected data on concentrations of Particulate

Matter with a diameter of 2.5 microns or less (PM2.5) from the Ministerio para la transición ecológica. For PM2.5 stations with

hourly resolution, we first computed daily averages whenever at least 75% of the observations for a given day were available.

Then, we computed annual averages and retained 124 stations with an annual temporal coverage of 75% or higher (Fig. 2).

8°W 6°W 4°W 2°W 0° 2°E

35°N

36°N

37°N

38°N

39°N

40°N

41°N

42°N

43°N

Temp. (ºC)
6.0 to 8.9
8.9 to 11.7
11.7 to 14.5
14.5 to 17.3
17.3 to 20.2

8°W 6°W 4°W 2°W 0° 2°E

35°N

36°N

37°N

38°N

39°N

40°N

41°N

42°N

43°N

PM2.5 (µg m3)
3.2 to 6.8
6.8 to 10.4
10.4 to 14.0
14.0 to 17.6
17.6 to 21.3

Figure 2. Spatial distribution of the reference station data for the air temperature and air pollution case studies.

We generated a 1 km × 1 km grid covering continental Spain as prediction area. Details of all data used for predictor240

generation are included in Table A1; while code for all pre-processing steps and processed data used for modelling are publicly

available (see code and data availability section below). Briefly, we collected a Digital Elevation Model (DEM), an impervious

density product, gridded population counts, land cover data, coastline geometries, road geometries by type, a satellite-based

Normalized Difference Vegetation Index (NDVI) from the MODIS Aqua 16-day NDVI product (MYD13A1) and 8-day Land

Surface Temperature (LST, MYD11A2) products, annual NightTime Lights (NTL) from VIIRS, and European atmospheric245

composition reanalyses for PM2.5 from Copernicus Atmosphere Monitoring Service (CAMS). We derived population density

from the georeferenced population data; we computed % of different land cover classes (urban, industrial, agricultural, natural)

in each 1km grid cell; we measured distances from each cell centroid to the nearest coastline; we calculated primary (highway

and primary roads) and secondary (all other vehicle roads) road density as the length of the road segments within each 1km

:
1
:::
km

::
×

::
1
:::
km

:
cell; we computed annual average composites of the NDVI, LST, and CAMS data. We regridded predictors to250

the target 1km
:
1
:::
km

::
×

::
1

:::
km grid using bilinear interpolation (downscaling) or averaging (upscaling) depending on the source

resolution. We extracted predictor values at the station locations for subsequent modelling.
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Unlike the simulation study, in these real-world case studies the extent
:::::::
strength of the spatial autocorrelation of the response

and the sample spatial distribution were unknown. To understand how these factors may affect the performance of the different

models, we performed an exploratory analysis for each response. First, we assessed the spatial distribution of the monitoring255

stations using exploratory spatial point pattern analyses. Namely, we estimated the empirical Ĝ, F̂ , and K̂ functions; Monte

Carlo simulation (n=99) was used to construct simultaneous envelopes to assess departure from complete spatial randomness

(Baddeley et al., 2015). Secondly, we computed empirical variograms of the response variables to assess the strength of the

spatial autocorrelation.

For each response, we considered two different sets of variables to be included in the models. First, a naive model, where260

only one predictor, known a priori to be a strong driver of the response, was used: elevation for temperature and primary road

density for PM2.5. Second, a complete model, where a much more comprehensive set of predictors was used (see list in sup-

porting Table A1). Our motivation for the naive scenario
:::::
model was to examine whether spatial proxies could help explaining

residual spatial autocorrelation due to missing predictors and therefore be used in predictor scarcity settings. Similarly to the

simulation study, we used a RF regression baseline model with the selected predictors, as well as coordinates, EDF, and RFsp as265

additional proxy predictors. We fixed the number of trees to 300 and tuned the parameter mtry using out-of-bag samples and

an equally-spaced grid of length 10 ranging from 1 to the maximum number of predictors. Using the same methods as in the

simulation study, we estimated the performance in terms of global (i.e. calculated in all stacked predictions simultaneously)
::
by

::::::::
estimating

:::
the

:
RMSE and R2 using 10-fold random and kNNDM CV

:::
(no

:::::::::
probability

::::
test

:::::::
samples

::::
were

:::::::::
available), calculated

the percentage of the study area subject to extrapolation, and estimated the relative importance of spatial proxies. We plot-270

ted the predicted surfaces and presented the computed statistics. We assessed residual spatial autocorrelation using empirical

variograms of the residuals of each model to evaluate whether spatial dependencies in the data had been captured.

2.4 Comparison with RF-GLS

As an alternative to spatial proxy approaches, we also tested the performance of the Random Forest-Generalized Least Squares

(RF-GLS) model recently proposed by Saha et al. (2023). RF-GLS is an extension of RF which relaxes its independence275

assumption by accounting for spatial dependencies in the data in several ways: 1) they propose a new global dependence

split criterion and node representatives to be used during tree construction instead of the CART criterion used in standard

RF models; 2) they use contrast resampling rather than bootstrap used in standard RF; 3) they apply residual kriging with

covariance modelled using a Gaussian process framework (Saha et al., 2023).

To test the performance of RF-GLS, we included it in the set of candidate models (together with baseline and the three280

spatial proxy models) in the simulations presented in section 2.1, used it to predict the entire area, and computed the "True"

RMSE by comparing the simulated and predicted response surfaces.

2.4 Implementation

Our analyses were carried out in R version 4.2.1
:
.2

:
(R Core Team, 2022) using several packages: sf (Pebesma, 2018) and

terra (Hijmans, 2022) for spatial data management; caret (Kuhn, 2022), randomForest
:::::::
ranger (Liaw and Wiener, 2002)285
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::::::::::::::::::::::
(Wright and Ziegler, 2017), RandomForestsGLS (Saha et al., 2022), and CAST (Meyer et al., 2023) for spatial modelling;

gstat (Pebesma, 2004) for random field simulation; and ggplot2 (Wickham, 2016) and tmap (Tennekes, 2018) for graph-

ics and cartographic representations. Additional packages were used for other minor tasks.

3 Results

3.1 Simulation study290

Spatial proxiesprovided little value compared to the corresponding baseline model for the short autocorrelation range, with

RMSEs

3.1.1
:::::::::
Suitability

::
of

::::::
spatial

:::::::
proxies

:::
The

:::::::::
prediction

:::::::
objective

::::
was

:
a
::::
clear

::::::::::
determinant

::
of

:::
the

:::::::::
suitability

::
of

:::::
spatial

:::::::
proxies.

:::::
When

::::::
aiming

::
to

::::::
predict

::
in

:::
the

:::::::::::
extrapolation

:::
area

:::::
(Fig.

::
3),

::::::::
baseline

::::::
models

::::::
always

::::::::::::
outperformed

:::::
spatial

::::::
proxy

::::::
models

:::::::::
regardless

::
of

:::
the

::::
other

::::::::::
parameters,

:::::::::::
highlighting

:::
the295

:::
lack

:::
of

:::::
ability

::
of
:::::::

proxies
::
to

::::::::::
successfully

:::::::
transfer

::
to

::::
new

:::::
areas

:::::::
different

::
to

:::::
those

:::::
where

::::
they

:::::
were

::::::
trained.

:::::
This

:::
was

:::::::::
supported

::
by

::::::
feature

:::::::::::
extrapolation

::::::::
statistics

::
of

:::::
proxy

:::::::
models

:::::::::
(supporting

::::
Fig.

::::
A2),

::::::
which

::::::::
indicated

:::
that

::
a
::::
very

:::::
large

:::
part

:::
or

::::
even

::
all

:::
of

::
the

:::::::::::
extrapolation

::::
area

::::
had

::::::
feature

:::::
values

:::
not

:::::::
covered

:::
by

:::
the

::::::
training

:::::
data.

:::
The

:::::::::
suitability

::
of

:::::
spatial

::::::
proxies

:::
for

:::::::::::
interpolation

:::
was

:::::
more

:::::::
complex

:::
and

::::::::
depended

:::
on

:
a
:::::
series

::
of

::::::::
additional

:::::::
factors,

::::::::
including

::
the

::::::::
strength

::
of

:::::::
residual

:::::::::::::
autocorrelation

:::::
(Fig.

::
4).

:::
In

:::
the

::::::::::
"complete"

:::::::
scenario

::::::
where

:::::::
residual

::::::
spatial

:::::::::::::
autocorrelation

:::
was

::::
not300

::::::::
expected,

::::::
models

::::
with

::::::
spatial

::::::
proxies

::::::
yielded

::::::
RMSE

::::::
values that were similar in the partial scenario with regular, random, and

weakly clustered samples ; or slightly larger in the complete scenario and for strongly clustered samples (Fig. 4). Nevertheless,

for the long range
::
or

:::::
larger

::::
than

:::
the

:::::::::
respective

:::::::
baseline

::::::
models.

:::
On

:::
the

:::::
other

:::::
hand,

::
in

::::::::
scenarios

:::::
where

:::::::
residual

:::::::::::::
autocorrelation

:::
was

::::::::
expected

:::::
either

::::
due

::
to

:::
an

::::::::::::
autocorrelated

::::
error

:::::
term

::
or

:::::::
missing

:::::::::
predictors,

:::::::
models

::::
with

::::::
spatial

::::::
proxies

:::::::
showed

:::::::
smaller

:::::
errors

::
in

:::::
many

::::::::
instances.

:::::::::
Regarding

::::
the

:::::
extent

::
of

::::
the

:::::
spatial

::::::::::::::
autocorrelation,

::::::
spatial

:::::
proxy

::::::
models

:::::::
offered

:::::
more

::::::
benefits

:::
in305

::::::::
situations

::
in

:::::
which

:::
the

::::::
spatial

:::::::
structure

::
of

:::
the

:::::::::
predictors

:::
and

::::::::
response,

:::::::::
expressed

::
as

:::
the

::::::::::::
autocorrelation

::::::
range,

:::
was

::::::::
stronger.

:::
The

:::::::::
suitability

::
of

::::::
spatial

:::::::
proxies

:::
for

::::::::::
interpolation

::::
was

::::
also

:::::::::
influenced

:::
by

:::
the

::::::::
sampling

:::::::
pattern.

::::
With

:::::::
random

:::
and

:::::::
regular

::::::
samples

:::::
(Fig.

:::
4),

:::
the

:::::::
addition

::
of

::::::
spatial

:::::::
proxies

::::::
tended

::
to

:::::::
decrease

:::::
errors

:::
in

::::::::
scenarios

:::::
where

:::::::
residual

::::::
spatial

:::::::::::::
autocorrelation

:::
was

::::::::
expected,

:::::
while

::::::::
yielding

::::::::::
comparable

::
or

::::
only

:::::::
slightly

:::::
worse

::::::
results

::
in

:::
the

::::::::::
"complete"

::::::::
scenario.

::::
This

::
is

::::::::
connected

:::
to

:::
the

:::
low

::::::
feature

:::::::::::
extrapolation

::::::::
observed

:::
for

:::::::
random

::::
and

::::::
regular

::::::::
sampling

:::::::
patterns

::::::::::
(supporting

::::
Fig.

:::::
A3):

:::::
since

:::::::
samples

:::::::
covered310

::
the

::::::
whole

:::::
extent

:::
of

:::
the

:::::::::::
interpolation

::::
area,

::::::
adding

::::::
spatial

:::::::
proxies

:::
did

:::
not

::::::
impact

::::::
feature

::::::::::::
extrapolation,

::::::
which

::::::::
remained

::::
low.

::::::::::
Nonetheless,

:::::
when

:::::::
samples

:::::
were

::::::::
clustered, the addition of spatial proxies resulted in significant reductions in RMSE in the

partial scenario except for strongly clustered samples . For the long range and the complete scenario, spatial proxies were

irrelevant in terms of performance for regular and random whereas they had a lower performance for clustered samples .

::::::::
increased

::::::
feature

:::::::::::
extrapolation

::::::::::
(supporting

::::
Fig.

:::
A3)

:::::::
leading

::
to

:::::::
models

::::
with

:
a
::::::::
generally

::::::
larger

::::::
RMSE

::::::::
compared

:::
to

:::::::
baseline315

::::::
models,

::::::
except

:::
in

:::::
cases

:::::
where

::::
the

:::::::
residual

::::::
spatial

:::::::::::::
autocorrelation

::::
was

:::::
strong

::::
and

:::
the

:::::::::
sampling

::::::
pattern

::::
was

::::
only

:::::::
weakly
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Figure 3.
:::
True

:::::
RMSE

::
in
:::

the
::::::::::
extrapolation

::::
area

::
of

::::
each

:::::
model

:::
type

:::
by

:::::::
scenario,

:::::::::::
autocorrelation

:::::
range,

::::
and

:::::::
sampling

::::::
pattern.

:::
The

::::::
dashed

:::
line

:::::::
indicates

::
the

::::::::
minimum

::::::
possible

::::::
RMSE

::
for

::::
each

:::::::
scenario.

:::::
RMSE

:::
for

:::
the

::::::
baseline

:::::
model

::
in

:::
the

::::::
"proxies

:::::
only"

::::::
scenario

::::
uses

:
a
:::::::
constant

:::::::
prediction

::::::::
calculated

::
as

:::
the

::::::
average

::::::
response

:::::
value

::
in

::
the

::::::
training

::::
data.

::::::
Outliers

:::::
larger

::::
than

:
5
:::
are

::
not

:::::
shown

:::
for

::::::::::
visualization

:::::::
purposes.

:::::::
clustered

::::
(see

::::::::
"missing

::::::::::
predictors"

:::::::
scenario

::::
with

:::::::
weakly

::::::::
clustered

:::::::
samples

::::
and

:::::
range

:::
40

::
in

::::
Fig.

:::
4).

:::::::
Finally,

:::::::::::
interpolation

::::::
models

:::::
using

::::
only

::::::
spatial

::::::
proxies

::
as

:::::::::
predictors

:::::::::
performed

::::::
nearly

::
as

::::
well

::
as

:::::::
models

::::
with

::
all

:::::::::
(scenario:

::::::::
complete)

:::
or

:
a
::::::
subset

::::::::
(scenario:

:::::::
missing

:::::::::
predictors)

::
of

:::::::::
predictors

::::::::
provided

:::::::
samples

::::
were

::::::::
regularly

::
or

::::::::
randomly

:::::::::
distributed

::::
and

:::
the

:::::::::::::
autocorrelation

::::
range

::::
was

:::
40

::::
(Fig.

:::
4).320

Comparing the different types of spatial proxy models
::::::
proxies, whenever their use was not appropriate

::
for

:::::
either

:::::::::::
interpolation

::
or

:::::::::::
extrapolation, RFsp tended to give worse results than coordinates; nonetheless, together with EDF, it also yielded the largest

benefits in partial models with long spatial autocorrelation and regular and random samples.

True RMSE (i.e. calculated comparing the entire simulated and predicted surfaces) of each model type by prediction

scenario, spatial autocorrelation range, and sampling pattern.325

The relative importance of spatial proxies was most influenced by model type, with spatial proxies having larger importance

in models with a higher number of added proxy predictors (
:::::
gains

:::::
when

:::
the

:::
use

::
of

:::::::
proxies

::::
was

:::::::::
beneficial.

:::
We

:::::::
attribute

::::
this

::
to

:::
the

:::::
larger

::::::
number

:::
of

:::::
spatial

::::::
proxy

::::::::
predictors

::
in
:::::
RFsp

::::
and

::::
EDF

::::::
models

:::::::::
compared

::
to

::::::::::
coordinates,

:::::::
leading

::
to

:
a
:::::
larger

::::::
proxy

::::::
feature

:::::::::
importance

::::::::::
(supporting Fig. A4). As an example, spatial proxy splits represented a median (IQR) 34% (8.4) of the total

impurity decreases for models with coordinates vs. a 84.7% (12.1) for RFsp in the partial scenario with random samples and330

range=40. Other than that, the relative
::::::
Feature importance of spatial proxies was greater when samples were strongly clustered
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Figure 4.
:::
True

:::::
RMSE

::
in
:::

the
::::::::::
interpolation

::::
area

::
of

::::
each

:::::
model

:::
type

:::
by

:::::::
scenario,

:::::::::::
autocorrelation

:::::
range,

::::
and

:::::::
sampling

::::::
pattern.

:::
The

::::::
dashed

:::
line

:::::::
indicates

::
the

::::::::
minimum

::::::
possible

::::::
RMSE

::
for

::::
each

:::::::
scenario.

:::::
RMSE

:::
for

:::
the

::::::
baseline

:::::
model

::
in

:::
the

::::::
"proxies

:::::
only"

::::::
scenario

::::
uses

:
a
:::::::
constant

:::::::
prediction

::::::::
calculated

::
as

:::
the

::::::
average

::::::
response

:::::
value

::
in

::
the

::::::
training

::::
data.

::::::
Outliers

:::::
larger

::::
than

:
3
:::
are

::
not

:::::
shown

:::
for

::::::::::
visualization

:::::::
purposes.

,
:::::
larger

:::
for

:::::::
clustered

:::::::
samples

:::::::::
compared

::
to

::::::
regular

:::
and

:::::::
random

:::::::
patterns,

:::
as

::::
well

::
as for the long autocorrelation range , and for

the partial scenario
:::::::::
(supporting

::::
Fig.

::::
A4).

Variable importance of spatial proxies expressed as the percentage of total mean impurity decrease attributable to those

variables for each model type by prediction scenario, spatial autocorrelation range, and sampling pattern.335

3.1.2
:::::::::
Validation

::::::::
methods

:::
for

:::::
proxy

::::::::
selection

Feature extrapolation was present when samples were clustered whereas it was always low for regular or randomly-distributed

samples
:
In
:::
the

:::::::::::
extrapolation

::::
area

:::
and

:::
for

:::
the

::::::::::::
"autocorrelated

:::::
error"

::::::::
scenario,

::::::
random

::::::
5-fold

:::
CV

:::
did

:::
not

::::
only

:::::::
severely

:::::::::::
underestimate

::
the

::::
true

::::::
RMSE,

:::
but

::::
also

::::::::::::
systematically

:::
and

::::::::::
erroneously

::::::::
suggested

:::
that

::::::
models

::::
with

:::::::
proxies

:::
had

:
a
::::::
similar

::
or

:::::::
superior

:::::::::::
performance

::::::::
compared

::
to

:::::::
baseline

:::::::
models (Fig. ??). As an example, the median (IQR) percentage of the study area outside the AOA was340

60.4 % (15.5) for strongly clustered samples vs. 2.1 % (1.3)for regular samples in partial EDF models with range=10. Within

clustered samples, we observed larger feature extrapolation in models with a greater number of spatial proxies (i. e. EDF and

RFsp)and a long autocorrelation range
::
5).

:::
On

:::
the

:::::
other

:::::
hand,

::::
both

:::::::::
probability

::::
test

:::::::
samples

:::
and

::::::::
kNNDM

:::
CV

::::::::
correctly

::::::
ranked

::::::
models

::::::::
according

:::
to

::::
their

::::
true

::::::
RMSE.

:::::::
Results

::
in

:::
the

:::::::::::
extrapolation

::::
area

:::
for

:::
the

::::
rest

::
of

::::::::
scenarios

:::
are

::::::::
available

:::
in

:::::::::
supporting

::::
Figs.

::::::
A5-A7

::::
and

:::::::
showed

::::::
similar

:::::::
patterns.

:
345
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Figure 5.
::::
True

:::
and

:::::::
estimated

::::::
RMSE

:
in
:::
the

::::::::::
extrapolation

:::
area

::::
and

::
the

::::::::::::
"autocorrelated

::::
error"

:::::::
scenario

::
by

::::::::
evaluation

::::::
method,

::::::::::::
autocorrelation

::::
range,

:::
and

::::::::
sampling

:::::
pattern.

:::::::
Outliers

::::
larger

::::
than

:
5
:::
are

:::
not

:::::
shown

::
for

::::::::::
visualization

:::::::
purposes.

::
In

:::
the

:::::::::::
interpolation

::::
area

:::
and

:::
the

:::::::::::::
"autocorrelated

::::::
error"

:::::::
scenario

:::::
(Fig.

:::
6),

::
all

:::::::::
validation

:::::::
methods

::::::::
correctly

::::::
ranked

:::::::
models

:::::
under

::::::
regular

:::
and

:::::::
random

::::::::
sampling

::::::::
patterns.

::::::::
However,

:::::
under

::::::::
clustered

::::::::
sampling

:::::::
patterns,

:::::::
random

::::::
k-fold

:::
CV

::::::::
indicated

::::
that

::::::
models

::::
with

::::::
spatial

::::::
proxies

:::::
were

:::::::
superior

:::::
when

::
in

:::
fact

::::
they

:::::
were

::::::
similar

::
or

::::::
worse.

::::::
Similar

::::::
results

:::::
were

:::::::
observed

:::
for

:::
the

::::
rest

::
of

::::::::
scenarios

::
in

:::
the

::::::::::
interpolation

::::
area

::::::::::
(supporting

::::
Figs.

::::::::
A8-A10).

The two CV methods differed in their ability to estimate the true RMSE as well as in indicating the most suitable model350

type when samples were clustered. In the partial scenario (Fig. ??) with clustered samples, random 5-fold CV returned

underestimated RMSEs and systematically favoured models with spatial proxies although those were not an appropriate choice

as indicated by the true RMSE. On the other hand, kNNDM 5-fold CV yielded comparable errors and returned the same model

rankings as the ranking based on the true RMSE on median. For

3.1.3
:::::::::::
Comparison

::
of

::::::
spatial

:::::::
proxies

::::
with

::::::::
RF-GLS355

:::::::
RF-GLS

:::::::::::
outperformed

::
or

::::
was

::
on

::
a
:::
par

::::
with

:::
the

:::::::::::::
best-performing

:::::::
standard

:::
RF

::::::
model

::::
with

:::
and

:::::::
without

::::::
proxies

:::
for

::
all

:::::::::
parameter

:::::::::::
combinations

::
in

::::
both

:::
the

::::::::::
interpolation

:::::
(Fig.

::
7)

:::
and

:::::::::::
extrapolation

::::::::::
(supporting

::::
Fig.

::::
A11)

:::::
areas

::
in

:::
the

:::::::::
simulation

:::::
study.

:::
The

:::::
most

::::::
relevant

:::::
gains

::
in
:::::::::::

performance
:::::
when

:::::::::
comparing

::::::::
RF-GLS

::
to

:::
RF

:::::
with

:::
and

:::::::
without

:::::::
proxies

::::
were

::
in

:::
the

:::::::::::::
"autocorrelated

::::::
error"

:::::::
scenario

:::
for

:::
the

:::::::::::
interpolation

:::
area

:::::
with regular and random samples, the two CV methods resulted in very similar estimates
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Figure 6. Model feature extrapolation expressed as the percentage of
:::
True

::::
and

:::::::
estimated

:::::
RMSE

::
in
:

the study
:::::::::
interpolation

:
area outside of

:::
and the Area of Applicability (AOA) by prediction

:::::::::::
"autocorrelated

:::::
error"

:
scenario

::
by

::::::::
evaluation

::::::
method, spatial autocorrelation range, and

sampling pattern.
::::::
Outliers

::::
larger

::::
than

:::
3.5

::
are

:::
not

:::::
shown

:::
for

:::::::::
visualization

::::::::
purposes.

that were generally well aligned with the true RMSE . Similar findings but with smaller differences were obtained in the360

complete scenario (supporting Fig. ??)
::
for

::::::
which

::::::
RMSE

::::
were

:::::::::::
substantially

:::::
lower.
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Figure 7. True and estimated (random and kNNDM 5-fold CV) RMSE in the partial
:::::::::
interpolation

::::
area

::
of

::
the

::::::::::::
best-performing

:::::::
standard

:::
RF

::
for

::::
each

:::::::
parameter

::::::::::
combination

:::
(i.e.

:::
the

::::::
standard

:::
RF

:::::
model

:::::::::
with/without

::::::
proxies

::::
with

::
the

:::::
lowest

::::::
median

::::::
RMSE)

:::
and

:::::::
RF-GLS,

::
by prediction

scenarioby model type, spatial autocorrelation range, and sampling pattern.
:::
The

::::::
dashed

:::
line

:::::::
indicates

::
the

::::::::
minimum

::::::
possible

:::::
RMSE

:::
for

::::
each

::::::
scenario.

3.2 Case studies

Air temperature meteorological stations were well spread within
:::
over

:
the study area (Fig. 2) and our

::
the

:
point pattern ex-

ploratory analysis did not suggest a major departure from complete spatial randomness, although there was some evidence of

a regular pattern (supporting Fig. A12). Aligned with these results, kNNDM generalised to a random 10-fold CV (supporting365

Fig. A13).

Results for the naive temperature model indicated substantial gains in performance when using spatial proxies, which yielded

only slightly worse results than complete models (Table 2). Performance of all complete models was similar. Feature extrap-

olation was similar in all cases and lower
::::::
smaller than 10% of the study area. The importance of spatial proxies was larger in

naive models vs. complete models. We detected strong spatial autocorrelation in the response and the residuals of the naive370

baseline model, which mostly disappeared when adding the whole set of predictors and/or spatial proxies (supporting Fig.

A14). Examination of the predicted temperature surfaces indicated that adding
::::::
Adding

:
spatial proxies to the baseline naive

model resulted in similar but somewhat smoother predicted spatial patterns than
::::
with

::::
only

:
a
:::::
DEM

:::::::
resulted

::
in

:::::::
different

:::::::
patterns

:::
and

::::::::
smoother

::::::::
predicted

:::::::
surfaces

::::
(Fig.

:::
8).

:::::::::
Comparing

:::::
naive

:::::::
models

::::
with

:::::
spatial

:::::::
proxies

:::
and

:
complete models, while complete
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models ’ predictions were almost indistinguishable (Fig. 8)
:::::
spatial

:::::::
patterns

::::
were

:::::
quite

::::::
similar

:::
but

:::::
more

::::
local

:::::::
variation

:::::
could

:::
be375

:::::::::
appreciated

::
in

:::
the

:::::
latter.

::::::::::
Differences

:::::::
between

:::::
maps

::::::
derived

:::::
from

::::::::
complete

::::::
models

::::
with

:::
and

:::::::
without

::::::
proxies

:::::
were

:::::
minor.

A) Naive model
Baseline Coordinates EDF RFsp

B) Complete model
Baseline Coordinates EDF RFsp

     Predicted air temperature (ºC)

6 to 8 8 to 10 10 to 12 12 to 14 14 to 16 16 to 18 18 to 20

Figure 8. Predicted air temperature using A) naive (DEM only) and B) complete predictors by model type.

The distribution of PM2.5 stations visually appeared to be spatially clustered (Fig. 2), which was confirmed in our
::
by

:::
the

exploratory spatial point pattern analysis with a clear departure from complete spatial randomness (supporting Fig. A15).

Reflecting the clustering pattern, the resulting kNNDM had a distinct spatial configuration (supporting Fig. A16).

According to random 10-fold CV, the estimated performance of the baseline naive model in terms of R2 was
::::::
almost null, but380

it improved substantially when adding spatial proxies. Nonetheless, when using kNNDM CV, the estimated performance was

similarly low
:::
null

:
in all cases , thus suggesting significant overfitting (Table 3). Estimated RMSEs of complete models were

still lower when using random vs. kNNDM CV, however, the ;
::::::::
however, statistics across the different model types were much

more similar. Feature extrapolation was the highest in naive models, where proxies had a larger importance that translated

into
:::::::
mapping artefacts that were especially evident in the coordinates model (Fig. 9). Predictions

::::::
Unlike

:::
the

::::::::::
temperature

::::
case385

:::::
study,

:::
the

::::::::
predicted

:::::::
surfaces

::
of

:::::
naive

::::::
models

::::
with

::::::
proxies

::::
and

:::::::
complete

:::::::
models

::::
were

::::
very

::::::::
different,

:::::::::
suggesting

::::
that

::
the

::::::
added

::::::::::
geographical

:::::::::
predictors

:::::
could

:::
not

::::::::::
successfully

:::::::
account

:::
for

:::
the

:::::::
missing

:::::::::
predictors.

:::::::::
Prediction

::::
maps

:
for complete models with

different spatial proxies were
::::
much

:
more similar. Inspection of the empirical variograms for the response and residuals of

the naive baseline model indicated presence of spatial autocorrelation that was weaker than for air temperature, and which

disappeared in complete and spatial proxy models (supporting Fig. A17).390
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A) Naive model
Baseline Coordinates EDF RFsp

B) Complete model
Baseline Coordinates EDF RFsp

Predicted PM2.5 (µg m3)

4 to 6 6 to 8 8 to 10 10 to 12 12 to 14 14 to 16 16 to 18 18 to 20

Figure 9. Predicted PM2.5 using A) naive (primary road density only) and B) complete predictors by model type.

3.3 Comparison with RF-GLS

4
:::::::::
Discussion

Additional analyses investigating the performance of RF-GLS in the simulation study showed that it outperformed or was on

a par with the best-performing standard RF model with and without proxies for all parameter combinations (Fig. ??). While

in the complete scenario the performance of RF-GLS was similar to the best-performing standard RF modelon median, for the395

partial scenario
:::
Our

::::
first

::::::::
objective

::::
was

::
to

:::::
assess

:::
the

:::::::::
suitability

::
of

::::::
spatial

:::::::
proxies

:::::::::
depending

::
on

:::
the

:::::::::
modelling

:::::::::
objective,

:::
the

::::::
strength

:::
of

:::
the

:::::::
residual

:::::
spatial

::::::::::::::
autocorrelation,

:::
and

:::
the

::::::::
sampling

:::::::
pattern.

::::::::
Regarding

::::
the

::::::::
modelling

:::::::::
objective,

::
we

::::::
found

:::
that

::
a

::
RF

:::::
with

:::::
spatial

:::::::
proxies

::
is

:::::
never

::::::::
beneficial

:::::
when

:::
the

::::
goal

::
is

:::::
spatial

::::::
model

:::::::
transfer

::
to

:
a
::::
new

::::
area.

:::
By

::::::
adding

::::::
spatial

:::::::
proxies

::
to

::
the

::::::::
predictor

:::
set

::::
that

::::::
identify

:::::::
specific

::::::::
locations

::
of

:::
the

::::::::
sampling

::::
area,

:::
we

:::::::::
inevitably

::::
face

::::::
feature

:::::::::::
extrapolation

::
in

:::
the

::::
new

::::
area

::
as

:::::
values

::
of

::::::
proxy

::::::::
predictors

::::
will

::
be

:::::::::
completely

::::::::
different.

::::
Not

::::
only

::::
that,

:::
but

:::::
when

::::::
proxies

:::
are

::::
used

::
as

::::::::::::
node-splitting

::::::::
variables400

::
in

:::
the

:::
RF,

:::
we

::::
end

::
up

::::
only

:::::
using

:::::::::::
observations

::::::
placed

::
on

::::
the

::::
edge

::
of

:::
the

::::::::
sampling

::::
area

:::::::::
regardless

::
of

:::
the

::::::::
distance

::
to

:::
the

::::
new

::::::::
prediction

::::
area,

::::::
unlike

:::::::
methods

::::
such

:::
as RF-GLS was always the superior choice leading to a smaller RMSE.

True RMSE (i.e. calculated comparing the entire simulated and predicted surfaces) of the best-performing standard RF for

each simulation parameter combination (i.e. the standard RF model with/without proxies with the lowest median RMSE) and

RF-GLS, by prediction scenario, spatial autocorrelation range, and sampling pattern.
:
or

:::::::::
regression

:::::::
kriging

:::
that

::::
can

:::::::
account405
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::
for

:::
the

:::::::::::::
autocorrelation

::::::
decay

::::
with

:::::::::
increasing

::::::::
distances.

:::::::::
Therefore,

:::::
these

::::::::
variables

::::::
should

:::
not

::
be

:::::
used

:::
for

:::::::::
prediction

::
in

::::
new

::::::::::
geographical

:::::
areas

:::
and

:::
the

:::::
focus

::::::
should

::
be

::::::
placed

:::
on

:::::
causal

:::::::::
predictors.

:

5 Discussion

:::
For

::::::::::
interpolation

:::::::::
purposes,

:::::::
however,

:::::::
proxies

::::
may

::
be

::::::::
beneficial

:::::::::
depending

:::
on

::::::::
additional

:::::::
factors.

:::
We

:::::::::
discovered

:::
that

::::
one

::
of

:::
the

::::::::
conditions

::::
that

::::
make

:::
the

::::::::
inclusion

::
of

::::::
spatial

::::::
proxies

::
in

:::
RF

::::::
models

::
to

::
be

::::::::
beneficial

::
is

:::
the

:::::::
presence

::
of

:::::::
residual

::::::::::::
autocorrelation

::::
due410

::
to

::::::
missing

:::::::::
predictors

::
or

:::
an

::::::::::::
autocorrelated

::::
error.

::::::
These

:::::::
potential

:::::::
benefits

::::
can

::
be

:::::::::
understood

:::
by

:::
the

:::::::
capacity

::
of
::::::

spatial
:::::::
proxies

::
to

::::::
account

:::
for

:::::::
residual

::::::
spatial

:::::::::::::
autocorrelation

:::::::::::::::::::::::::::::::::
(Hengl et al., 2018; Behrens et al., 2018)

:
,
:::::
which

::::
our

::::::
results

::::::::
confirmed

:::::
both

::
in

::::
terms

:::
of

::::::::
improved

::::::::::
performance

::::
and

:::::::
removed

:::::::
residual

:::::::::::::
autocorrelation,

:::::::::
especially

::::
when

:::::
using

::
a

:::::
larger

::::::
number

::
of

:::::::
proxies

:::::
(EDF

::
or

::::::
RFsp).

::::::::
However,

::
in

::::::::
complete

::::::
models

::::
with

:::
no

:::::::
residual

:::::::::::::
autocorrelation,

:::
the

::::::
similar

::
or

:::::::::
sometimes

::::::
worse

::::::::::
performance

::
is
::::
due

::
to

::::::
adding

::
an

::::::::
irrelevant

:::
set

::
of

::::::::
predictors

::::
that

:::
are

:::::
noise

::
to

:::
the

::::::
model.

::::::
Unlike

::::::::
regression

:::::::
kriging,

::::::
where

:::::
spatial

:::::::::::::
autocorrelation

::
is415

:::::::
modelled

::
in
:::
the

::::::::
residuals

:::
and

::
in

::
its

:::::::
absence

::::::
would

::::
result

::
in
::
a
::::
pure

::::::
nugget

:::::
effect,

:::
i.e.

:
a
:::
flat

:::::::::
variogram

::::::
leading

::
to

::
an

::::::::
ordinary

::::
least

::::::
squares

:::::::::
estimation

:::::::::::
(Hengl, 2007)

:
,
::
in

:
a
::::
ML

:::::
model

:::
the

::::::::
irrelevant

::::::
proxies

:::
are

::::
still

::::::::
included.

::::
Even

::::::
though

:::
RF

::
is

::::
fairly

::::::
robust

::
to

:::
the

:::::::
addition

::
of

::::::::
irrelevant

:::::::::
predictors

::::::::::::::::::::::
(Kuhn and Johnson, 2019),

::
a

:::::::
decrease

::
in

:::::::::::
performance

::::
was

:::::::::
sometimes

::::::::
observed.

:::
In

:::::::
addition

::
to

:::
the

:::::::
presence

::
of

::::::
spatial

:::::::::::::
autocorrelation,

:::
the

:::::::
strength

::
of

:::
the

::::::
spatial

::::::::
structure

::
as

::::::
defined

:::
by

:::
the

::::::::::::
autocorrelation

:::::
range

::::
was

::::
also

::::::::
important.

::::::
When

:::::
ranges

:::::::
become

::::::
shorter,

:::
we

:::
get

:::::
closer

::
to

:::
the

:::::::::::
independence

::::::::::
assumption

::
of

:
a
::::::::::
non-spatial

:::::
model

::::
and

:::
thus

:::::::
proxies420

:::
start

::
to
:::::::
become

:::::::::
irrelevant.

::::::::::
Experiments

:::
for

::::::::
response

:::::::
variables

::::
with

:::::::
weaker

:::::
spatial

:::::::::::::
autocorrelation

::::
such

::
as

::::
land

:::::
cover

:::::
would

:::
be

::::::::
interesting

:::::::::
follow-up

::::::
studies

::
to

::::::
further

::::::
clarify

:::
this

:::::
point.

:

Our first two objectives were to identify in which situations RF models with spatial proxies are suitable, and to investigate the

reasons behind the observed patterns. Our simulations indicated
:
In

:::::::
addition

::
to

:::
the

:::::::
presence

::
of

:::::::::
significant

::::::
spatial

:::::::::::::
autocorrelation,

::
we

::::::
found that an almost necessary condition for proxies to be beneficial

::
for

:::::::::::
interpolation

:
is to have regular or randomly-425

distributed samplesover the entire prediction area. This is not surprising since the feature extrapolation potential of spatial prox-

ies with clustered samples has been stressed before (Meyer et al., 2019; Hengl et al., 2018)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Meyer et al., 2019; Hengl et al., 2018; Cracknell and Reading, 2014)

. The more proxies used in the models(e.g. RFsp), the larger the feature extrapolation was. Given these results, although it would

be required that spatial proxies had a lower importance when used with clustered samples vs. regular or random, we actually

observed the opposite. This is likely a sign of overfitting, where the model uses the proxies to determine the position of the430

sampling clusters (Meyer et al., 2019), a hypothesis that the difference between the estimated random CV
:
,
:::
and

::::::::::
probability

:::
test

:::::::
samples and kNNDM CV

:
,
:
supported. Our results are consistent with spatial sampling recommendations for ML models

such as RF, which suggest using designs that ensure a good spread in the most important predictors to optimise performance

(Wadoux et al., 2019). Hence, spatial proxies are expected to be ill-suited
:::::
poorly

:::::
suited

:
for modelling with clustered samples

by design. Even though our simulations indicate that weakly clustered data may sometimes also
::::::
slightly

:
benefit from spatial435

proxiesin presence of strong residual autocorrelation, we recommend to proceed with caution should this be the case because

it may be
::::::
because

::
it

::
is challenging to define the degree of clustering for which spatial proxies

::
at

:::::
which

::::
they

:
start to be harmful.
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Another condition for the proxies to be beneficial is to have a response variable with a long autocorrelation range, reflecting

a strong spatial structure. When ranges become shorter, we get closer to the independence assumption of a non-spatial model

and thus proxies start to become irrelevant. This is supported by variable importance results, which showed smaller proxy440

importance for short ranges. Regarding this point, Behrens and Viscarra Rossel (2020) argued that "spatial modeling using a

sufficient number predictors (of any kind) with similar or longer ranges (or with coarser scales) than the response variable

will produce accurate evaluation statistics, no matter how long the ranges of the predictors are (towards infinity)". Our results

suggest that this will be true as long as the spatial structure in the response is strong enough, and samples are randomly or

regularly-distributed (see previous paragraph). Experiments for response variables with weaker spatial autocorrelation such as445

land cover would be interesting follow-up studies to further clarify this point.

Provided that samples are not clustered and response autocorrelation is strong, RF with spatial proxies is beneficial in

presence of residual autocorrelation. These potential benefits can be understood by the capacity of spatial proxies to explain

residual spatial autocorrelation (Hengl et al., 2018; Behrens et al., 2018), which our results confirmed both in terms of improved

performance and removed residual autocorrelation, especially when using a larger number of proxies (EDF or RFsp). However,450

in the complete scenario where no residual autocorrelation was expected, we hypothesise that the similar or sometimes worse

performance is due to adding an irrelevant set of predictors that are noise to the model. Unlike RK, where spatial autocorrelation

is modelled in the residuals and in its absence would result in a pure nugget effect, i.e. a flat variogram leading to an ordinary

least squares estimation (Hengl, 2007), in a ML model the irrelevant proxies are still included in the trend model. Even though

RF is fairly robust to the addition of irrelevant predictors (Kuhn and Johnson, 2019), a decrease in performance was sometimes455

observed. This idea is supported by the results of Saha et al. (2023), who showed how spatial proxy models such as RFsp

perform worse when the spatial noise is small relative to the predictor signal.

Our simulations allow us to give general guidelines on the adequacy of spatial proxies; however, it is important to have a

way to confirm them empirically. This was the focus of our third objective, which
:::
the

::::::
second

::::::::
objective,

:::
for

:::::
which

:::
we

:
showed

that random CV underestimates map accuracy when used
:::::::
assessing

:::::::::::
extrapolation

:::::::::::
performance

::
or

:::::::::::
interpolation with clustered460

samples, which has been shown before (Linnenbrink et al., 2023; Wadoux et al., 2021). Perhaps even more important, it
::::::
random

:::
CV incorrectly ranks models

:
in

:::::
those

::::::::
instances, systematically favouring models with a large number of proxies even though

those are not always appropriate. On the other hand, kNNDM
:::::::::
probability

:::
test

:::::::
samples

::::
and

:::::::
kNNDM

::::
CV did provide correct

model ranks. We think this is related to overfitting , as,
:::
and

:::
the

:::::::
inability

::
of

:::::::
random

:::::
k-fold

::::
CV

::
to

:::::
reflect

:::::::::
predictive

:::::::::
conditions

:::::::::::::::::::::::
(Meyer and Pebesma, 2022):

:
in the presence of clustered sampling, adding spatial proxies may actually help the model to465

predict at locations geographically close to the samples , as reflected by random CV. Yet, it fails
:
,
:::
yet

:::
fail to generalise to the

entire prediction area as shown by
:::::::
measured

:::
by

:::::::::
probability

::::
test

::::::
samples

::::
and kNNDM.

Our
::::::::
additional

:::::::
analyses

::::::::
regarding

:::
the

::::::::
RF-GLS

::::::
model

:::::::
proposed

:::
by

:::::::::::::::
Saha et al. (2023)

:::::::
indicate

:::
that

::
it
:::::::::
performed

::::::
equally

:::
or

:::::
better

::::
than

:::
the

:::::::::::::
best-performing

::::::::
standard

:::
RF

:::::::::::
with/without

:::::
spatial

:::::::
proxies

::
in

:::
all

::::::::
parameter

:::::::::::::
configurations,

:::::
which

:::
we

::::::::
attribute

::
to

::::::
several

:::::::
reasons.

:::::
First,

::
in
::::::::

RF-GLS
:::::::
residual

:::::::::
variability

::
is
::::::::
modelled

:::
as

:
a
:::::::::

Gaussian
::::::
process

::::::
rather

::::
than

::::
with

::::::
spatial

::::::
proxy470

::::::::
predictors

::
in

:::
the

:::::
mean

:::::
term,

:::::
which

:::::::::
minimizes

::::::
feature

:::::::::::
extrapolation

::::
and

::::::
spatial

:::::::::
overfitting

::::::::
problems

::
in

:::::
spatial

::::::
model

:::::::
transfer

::
or

:::::::::::
interpolation

::::
with

::::::::
clustered

:::::::
samples.

::::::::::::
Furthermore,

::
in

::::::::
RF-GLS

:::
the

:::::::::::
independence

::::::::::
assumption

:::
of

:::
RF

::
is

::::::
relaxed

:::
as

::::::
spatial

20



::::::::::::
autocorrelation

::
is

:::::::::
accounted

:::
for

::::::
during

:::
the

:::::
model

::::::
fitting.

:::::::
Finally,

:::::::
RF-GLS

::::
can

::::
adapt

::::::
better

::
to

::::::
settings

::::::
where

:::::::
residual

::::::
spatial

::::::::::::
autocorrelation

::
is

:::::
weak

::
or

::::::
absent

::::
since

:::
the

:::::::::
estimation

:::
of

:::
the

:::::::::
covariance

:::::::
function

:::
can

::::
take

:::
the

:::::::
absence

::
of

:::::::::::::
autocorrelation

::::
into

:::::::
account.

::::::
Hence,

:::
we

::::
think

::::
that

:::::::
RF-GLS

::
is
::
a

:::
step

:::::::
forward

::
in

:::::::
creating

:::::
truly

:::::
spatial

::::
ML

:::::::
models,

:::
and

::
it

::::::
should

::
be

:::::::::
considered

::
as

::
a475

::::::::
candidate

::::::::
algorithm

:::
for

:::::
spatial

:::::::::
prediction

:::::
tasks.

:

::
As

:::
the

:::::
third

::::::::
objective,

:::
we

:::::::::
presented

:
two case studies had

::::
with

:
distinct characteristics that impacted the performance of

spatial proxy models. Air temperature
:::::
reflect

:::::::
different

:::::::::
real-world

:::::::
settings.

:::
For

:::
air

:::::::::::
temperature, stations were spread across all

the prediction area and measurements exhibited strong spatial autocorrelation. We found that a model with only a DEM and a

set of spatial proxies managed to account for the residual spatial autocorrelation
:
, and performed almost as well as a much more480

comprehensive model
:::::
which

::::::::
produced

::::::
similar

::::::::
predicted

:::::::
surfaces. This highlights the value of spatial proxies for cost-effective

predictive modelling as long as the conditions outlined above are metand the main goal is prediction and not advancing system

understanding. For the complete model with a large set of predictors, the inclusion of proxies did neither harm nor benefit the

temperature model performance, with predicted surfaces that were very similar.

:
. Regarding air pollution, samples were clustered and the response autocorrelation was weaker. In both naive and complete485

models, spatial proxies did not improve the performance and large differences in the CV approaches were revealed, highlighting

the aforementioned risk of spatial overfitting and wrong conclusions when inappropriate validation practices are used. In the

two case studies, we showed the importance of performing a comprehensive spatial exploratory analysis to determine the

sample distribution and the response and residual spatial autocorrelation in the baseline model (i.e. without proxies). The

results of this analysis can help us determine whether a spatial proxy approach is advisable a priori, which can be confirmed a490

posteriori using model selection tools such as kNNDM CV.

Our additional analyses regarding the RF-GLS model proposed by Saha et al. (2023) indicated that RF-GLS performed

equally or better than the best-performing standard RF with and without spatial proxies in all parameter configurations we

considered, while avoiding the complexity of choosing the best set of proxies to be used in each case. We attribute the improved

performance of RF-GLS to several reasons; first, in RF-GLS residual variability is modelled as a Gaussian process rather than495

with spatial proxy predictors in the mean term, which minimizes extrapolation and overfitting problems when spatial proxies

are used with clustered samples . Furthermore, in RF-GLS the RF independence assumption is relaxed as spatial autocorrelation

is accounted for during the model fitting. Finally, RF-GLS can adapt better to settings where residual spatial autocorrelation

is weak or absent since estimation of the covariance function will take the absence of autocorrelation into account, whereas in

spatial proxy models all the set of geographical proxies would still be included in the model. All in all, we think that RF-GLS500

is a step forward in creating truly spatial ML models, and it should be considered as a candidate model in spatial prediction

endeavours
:::::::::
probability

:::
test

:::::::
samples

::
or

::::::::
kNNDM

:::
CV.

In this study, we included a wide range of predictive scenarios
::::::::
conditions

:
typically encountered in environmental spatial

modelling. Nonetheless, there are several points for future work. First, we focused on RF regression and, while we think that

our results are likely to
::::
likely

:
extend to other ML algorithms, the extrapolation behaviour and sensitivity to irrelevant predictors505

differs by algorithm and might limit the ability to generalize our results. Second, our analysis was based on the adequacy of

spatial proxies from a prediction accuracy point of view. When using RF for knowledge discovery, variables with long or
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infinite autocorrelation ranges such as spatial proxies have been identified to be beyond the prediction horizon (Behrens and

Viscarra Rossel, 2020; Wadoux et al., 2020b; Fourcade et al., 2018) and variable importance statistics in models including

them should be interpreted with extreme caution (Meyer et al., 2019)
::::::::::::::::::::::::::::::::::
(Meyer et al., 2019; Wadoux et al., 2020a). Third, feature510

selection based on an appropriate CV scheme has been shown to be helpful to discard irrelevant features prone to overfitting that

generalise poorly to new locations such as coordinates (Meyer et al., 2019). In future work, it would be interesting to explore

whether feature selection could help to identify irrelevant spatial proxy featuresin cases where they are not helpful
:
.
::::::
Fourth,

:::
we

::::::
focused

:::
our

:::::::::::
investigation

:::
on

:::
the

:::::::
potential

:::
of

:::::
spatial

:::::::
proxies

::
to

:::::::
account

:::
for

:::::
spatial

:::::::::::::
autocorrelation

:::::
while

::
it

:::
has

::::
been

:::::::::
suggested

:::
that

:::::::::
coordinate

::::
and

:::::::
distance

:::::
fields

::::
can

::::
also

:::
be

:::::
useful

:::
to

:::::::
account

:::
for

:::::::::::::
non-stationarity

::::::::::::::::::::::::::::::
(Behrens and Viscarra Rossel, 2020)

:
,515

:::::
which

:::::::
remains

::
to

::
be

::::::::
explored. Finally, the scope of our study was limited to spatial proxies approaches and RF-GLS; however,

our analyses could be extended to other models proposed in the literature. Examples include
:
,
:::
e.g.

:
models including spatial

lags of the response as prediction features (Sekulić et al., 2020)or geographically-weighted RF (Georganos et al., 2021).

5 Conclusions

We recommend RF with spatial proxies in cases where both
::
all

::
of

:::::
these

:::::::::
conditions

::::::
apply: 1)

::
the

::::::::
sampling

::::
and

:::::::::
prediction520

::::
areas

:::::::
overlap

:::
(i.e.

::::::
spatial

::::::::::::
interpolation),

:::
2) there is presence of

::::::::
significant

:
residual spatial autocorrelation , 2

:::
due

::
to

:::::::
missing

::::::::
predictors

::
or

:::
an

:::::::::::
autocorrelated

:::::
error

:::::
term,

:::
and

:
3) samples are regularly or randomly distributed over the study

::::::::
prediction

:
area.

In such cases, the addition of spatial proxies is
::::
very likely to be beneficial in terms or performance. If samples are regular or

randomly-distributed but no residual autocorrelation is present, the addition of spatial proxies will have little impacton model

performance. Finally, in the presence of clustered samples, using spatial proxies in RF models is
::::::::
generally not recommended525

since their inclusion can degrade model performance especially if residual autocorrelation is weak
:::
and

:::
the

::::::::
clustering

::
is

::::::
strong.

::::::
Proxies

::::::
should

:::
not

::
be

::::
used

:::
for

::::::
spatial

:::::
model

:::::::
transfer.

More generally, we have shown that the benefits of
:::
RF

::::
with

:
spatial proxies are not universal and therefore RF modelling

with spatial proxies
:
it
:
should not be taken as a default approach without careful consideration. Spatial exploratory analysis of

the sample distribution and the response and residual autocorrelation are recommended as preliminary steps to evaluate the530

suitability of spatial proxies, while
:::::::::
probability

:::
test

:::::::
samples

::::
and kNNDM CV can be used as a model selection tool to confirm

such suitability by comparing models with and without them, as well as to
:::::
model

:::::::
selection

:::::
tools

::
to

:::::::
confirm

:
it
::::
and choose the

best set of proxies. Random k-fold CV should not be used for model selection with clustered samplessince it systematically
:
if

::
the

::::::::
objective

::
is

::::::
spatial

:::::
model

:::::::
transfer

::
or

::
in

:::
the

::::::::
presence

::
of

::::::::
clustered

:::::::
samples,

:::::
since

:
it
::::::::::
erroneously

:
favours models with spatial

proxies. RF-GLS should be considered as a candidate model
::::::::
modelling

::::::::
algorithm

:
for spatial prediction as it performed on a535

par with or better than standard RF with and without spatial proxies
::::
tasks.

1.2.3.4.1.2.3.4.5.6. Code and data availability. The code for the analysis and the presentation of the results, as well as the data used in the case studies, are

available at Milà (2024).

22



Scenario Description Response generation equation Predictors available for modelling

Partial
:::::::::::
Autocorrelated

::::
error

:
All

pre-

dic-

tors

are

avail-

able,

au-

to-

cor-

re-

lated

er-

ror

Y =X1 +X2 ·X3 +X4 +X5 ·X6 +E X1,X2,X3 ::::::::::
X1,X2,X3, :::::::::

X4,X5,X6:

Complete All

pre-

dic-

tors

are

avail-

able,

ran-

dom

er-

ror

Y =X1 +X2 ·X3 +X4 +X5 ·X6 +E
::::::::::::::::::::::::::::::::
Y =X1 +X2 ·X3 +X4 +X5 ·X6 +E ′ X1,X2,X3,X4,X5,X6

::::::
Missing

::::::::
predictors A

sub-

set

of

pre-

dic-

tors

are

avail-

able,

ran-

dom

er-

ror

::::::::::::::::::::::::::::::::
Y =X1 +X2 ·X3 +X4 +X5 ·X6 +E ′

:::::::::
X1,X2,X3:

::::::
Proxies

:::
only

:
No

pre-

dic-

tors

are

avail-

able,

ran-

dom

er-

ror

::::::::::::::::::::::::::::::::
Y =X1 +X2 ·X3 +X4 +X5 ·X6 +E ′

::::
None

Table 1. Description of the scenarios considered in
:
of
:
the simulation study.

:
E

:::::::::
corresponds

::
to

:
a
:::::::
spatially

:::::::::::
autocorrelated

::::
error

::::
while

:::
E ′

:
is
::

a

:::::
random

:::::
error.
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Model RMSErandom (ºC) R2
random RMSEkNNDM (ºC) R2

kNNDM Extrapolation (%) Proxy importance (%)

Naive

Baseline 2.04
:::
2.02

:::::
(0.27) 0.49

:::
(0.2)

:
2.01

:::
2.02 0.51 8.47 0.00

Coordinates 0.97
:::
0.93

:::::
(0.29) 0.88

::::
(0.07) 0.91 0.90 6.01

:::
5.29 50.68

::::
49.86

:

EDF 0.97
:::
0.93

:::::
(0.29) 0.88

:::
0.89

:::::
(0.07) 0.92 0.89 7.27

:::
6.00 50.53

::::
53.56

:

RFsp 1.07
:::
1.03

::::
(0.3)

:
0.86

:::
0.87

:::::
(0.07) 1.03

:::
1.01 0.87 7.91

:::
6.40 65.78

::::
63.33

:

Complete

Baseline 0.84
:::
0.81

:::::
(0.21) 0.91

:::
0.92

:::::
(0.04) 0.81

:::
0.82 0.92 6.98

:::
7.25 0.00

Coordinates 0.81
:::
0.77

:::::
(0.28) 0.92

:::
0.93

:::::
(0.04) 0.80

:::
0.79 0.92

:::
0.93 6.67

:::
8.80 19.33

::::
19.14

:

EDF 0.83
:::
0.8

::::
(0.27)

:
0.92

::::
(0.05) 0.82

:::
0.80 0.92 5.44

:::
6.33 20.69

::::
22.89

:

RFsp 0.87
:::
0.85

:::::
(0.23) 0.91

:::
0.92

:::::
(0.04) 0.87

:::
0.86 0.91 4.89

:::
6.91 22.29

::::
29.65

:

Table 2. Results of the temperature case study. Subscripts for RMSE and R2 indicate the type of 10-fold CV used to compute the statistics.

::::::
Random

::::::
10-fold

:::
CV

:::::::
statistics

:::
are

::::::::
computed

::
as

::
the

:::::
mean

::::
(SD)

::
of

:::
the

::::::
statistic

::::::::
calculated

::
in

::::
each

::::
fold,

:::::
while

:::::::
kNNDM

:::
CV

:::::::
statistics

::::
were

:::::::
computed

::
by

:::::::
stacking

::
all

:::::::
observed

:::
and

:::::::
predicted

:::::
values

::::
(see

:::::::
methods).

Model RMSErandom (µµg/m3) R2
random RMSEkNNDM (µµg/m3) R2

kNNDM Extrapolation (%) Proxy importance (%)

Naive

Baseline 3.67
::
3.6

:::::
(1.03)

:
0.06

:::
0.13

:::::
(0.18) 3.78

::::
3.76 0.02 1.54 0.00

Coordinates 2.74
:::
2.69

:::::
(0.52) 0.41

:::
0.37

:::::
(0.26) 3.66

::::
3.60 0.03

:::
0.04 11.14

::::
13.52 78.45

::::
78.85

:

EDF 2.65
::
2.6

:::::
(0.63)

:
0.45

:::
0.43

:::::
(0.27) 3.68

::::
3.65 0.03

:::
0.04 19.76

::::
17.42 90.84

::::
90.11

:

RFsp 2.72
:::
2.64

:::::
(0.75) 0.43

:::
0.44

:::::
(0.28) 3.92

::::
3.94 0.01 19.38

:::
9.58

:
95.02

::::
94.76

:

Complete

Baseline 2.57
::
2.5

:::::
(0.51)

:
0.48

:::
0.46

:::::
(0.22) 3.02

::::
3.00 0.29

:::
0.30 0.60

:::
0.65 0.00

Coordinates 2.47
:::
2.41

:::::
(0.54) 0.52

:::
0.49

:::::
(0.23) 2.96

::::
2.99 0.32

:::
0.31 4.64

:::
7.03 23.15

::::
22.88

:

EDF 2.50
:::
2.43

:::::
(0.55) 0.51

:::
0.48

:::::
(0.24) 3.09

::::
3.04 0.27

:::
0.29 6.00

:::
9.41 38.69

::::
36.16

:

RFsp 2.46
:::
2.39

:::::
(0.59) 0.53

:::
0.49

:::::
(0.26) 3.22

::::
3.33 0.21

:::
0.17 8.65

:::
3.39 46.89

::::
58.90

:

Table 3. Results of the PM2.5 case study. Subscripts for RMSE and R2 indicate the type of 10-fold CV used to compute the statistics.
::::::
Random

:::::
10-fold

:::
CV

:::::::
statistics

:::
are

:::::::
computed

::
as

:::
the

::::
mean

::::
(SD)

::
of

:::
the

::::::
statistic

::::::::
calculated

:
in
::::
each

::::
fold,

::::
while

:::::::
kNNDM

:::
CV

:::::::
statistics

::::
were

:::::::
computed

:::
by

::::::
stacking

::
all

:::::::
observed

:::
and

:::::::
predicted

:::::
values

::::
(see

:::::::
methods).
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Appendix A: Supplementary figures and tables

Figure A1. Example realizations of random fields used in the simulation study. The first two panels
::
All

::::::
random

:::::
fields have µ= 0

:
a

:
0
:::::
mean;

::::::
predictor

:
and

::::::::::
autocorrelated

::::
error

:::::::
surfaces

::::
were

:::::::
generated

::::
using

:::::::::::
unconditional

::::::::
simulation

:::
with

:
a spherical variogram with sill=1, nugget=0,

and range indicated in the panel; random noise
::::
error was generated using a standard Gaussian distribution without spatial autocorrelation.

Random error

Autocorrelated error with range = 25
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Figure A2. True and estimated (random and kNNDM 5-fold CV) RMSE in
:::::
Feature

::::::::::
extrapolation

::::::::
expressed

::
as the complete

::::::::
percentage

::
of

::
the

::::::::::
extrapolation

:
prediction scenario by

:::
area

::::::
outside

::
of

:::
the

::::
Area

::
of

::::::::::
Applicability

:::::
(AOA)

::
of

::::
each model type

::
by

::::::::
prediction

::::::
scenario, spatial

autocorrelation range, and sampling pattern.
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Figure A3.
:::::
Feature

::::::::::
extrapolation

:::::::
expressed

::
as

:::
the

::::::::
percentage

::
of

:::
the

:::::::::
interpolation

::::::::
prediction

:::
area

::::::
outside

::
of

:::
the

::::
Area

:
of
::::::::::
Applicability

::::::
(AOA)

:
of
::::

each
:::::
model

::::
type

::
by

::::::::
prediction

:::::::
scenario,

:::::
spatial

:::::::::::
autocorrelation

:::::
range,

:::
and

:::::::
sampling

::::::
pattern.
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Figure A4.
::::::
Variable

::::::::
importance

::
of

:::::
spatial

::::::
proxies

:::::::
expressed

::
as

:::
the

::::::::
percentage

::
of

::::
total

::::
mean

:::::::
impurity

::::::
decrease

:::::::::
attributable

::
to

::::
those

:::::::
variables

::
for

::::
each

:::::
model

:::
type

:::
by

:::::::
prediction

:::::::
scenario,

:::::
spatial

::::::::::::
autocorrelation

:::::
range,

:::
and

:::::::
sampling

::::::
pattern.
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Figure A5.
:::
True

:::
and

::::::::
estimated

:::::
RMSE

::
in

:::
the

::::::::::
extrapolation

:::
area

::::
and

::
the

:::::::::
"complete"

:::::::
scenario

::
by

::::::::
evaluation

::::::
method,

::::::::::::
autocorrelation

:::::
range,

:::
and

:::::::
sampling

::::::
pattern.

::::::
Outliers

::::
larger

::::
than

:
4
:::
are

:::
not

:::::
shown

::
for

::::::::::
visualization

:::::::
purposes.
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Figure A6.
:::
True

:::
and

:::::::
estimated

::::::
RMSE

::
in

::
the

::::::::::
extrapolation

::::
area

:::
and

::
the

:::::::
"missing

::::::::
predictors"

:::::::
scenario

::
by

::::::::
evaluation

::::::
method,

::::::::::::
autocorrelation

::::
range,

:::
and

::::::::
sampling

:::::
pattern.

:::::::
Outliers

::::
larger

::::
than

:
5
:::
are

:::
not

:::::
shown

::
for

::::::::::
visualization

:::::::
purposes.
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Figure A7.
:::
True

:::
and

:::::::
estimated

::::::
RMSE

:
in
:::
the

::::::::::
extrapolation

:::
area

:::
and

:::
the

::::::
"proxies

:::::
only"

::::::
scenario

::
by

::::::::
evaluation

:::::::
method,

:::::::::::
autocorrelation

:::::
range,

:::
and

:::::::
sampling

::::::
pattern.
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Results
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for
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the
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baseline
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model
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were
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not
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Figure A8.
:::
True

:::
and

::::::::
estimated

:::::
RMSE

::
in
:::
the

::::::::::
interpolation

:::
area

::::
and

::
the

:::::::::
"complete"

::::::
scenario

:::
by
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evaluation
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method,

::::::::::::
autocorrelation

:::::
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:::
and

:::::::
sampling
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Figure A9.
:::
True

:::
and

:::::::
estimated

::::::
RMSE

::
in

::
the

::::::::::
interpolation

:::
area

::::
and

::
the

:::::::
"missing

::::::::
predictors"

:::::::
scenario

::
by

::::::::
evaluation

::::::
method,

::::::::::::
autocorrelation

::::
range,

:::
and

::::::::
sampling

:::::
pattern.
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Outliers
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larger
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than
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3.5
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are
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not
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shown
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for
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visualization
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Figure A10.
::::
True

:::
and

:::::::
estimated

:::::
RMSE

::
in

:::
the

:::::::::
interpolation

::::
area

:::
and

::
the

:::::::
"proxies

::::
only"

::::::
scenario

:::
by
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evaluation
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method,
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autocorrelation
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and
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::::::
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Results
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were
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Figure A11.
:::
True

:::::
RMSE

::
in
:::
the

::::::::::
extrapolation

::::
area

::
of

::
the

::::::::::::
best-performing

:::::::
standard

:::
RF

::
for

::::
each

::::::::
simulation

::::::::
parameter

::::::::::
combination

:::
(i.e.

:::
the

::::::
standard

:::
RF

:::::
model

:::::::::
with/without

::::::
proxies

::::
with

::
the

::::::
lowest

:::::
median

::::::
RMSE)

:::
and

:::::::
RF-GLS,

:::
by

:::::::
prediction

:::::::
scenario,

:::::
spatial
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autocorrelation
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range,
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and

:::::::
sampling
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pattern.
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Figure A12. Empirical nearest neighbour distance distribution Ĝ function (A), empty space F̂ function (B), and Ripley’s K̂ pairwise distance

function (C) for the air temperature study case. The dashed red line indicates the theoretical function under complete spatial randomness

(i.e. a homogeneous Poisson process) with its global envelope computed using 99 Monte Carlo simulations in grey. Empirical functions

calculated from the data are in black.
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Figure A13. 10-fold assignment according to a random CV method (top left) and the kNNDM method (top right) for the air temperature study

case. Figures at the bottom row display the corresponding Empirical Cumulative Distribution Functions (ECDF) of the geographical sample-

to-sample, prediction-to-sample, and CV nearest neighbour distances. Ideally, CV-distances should match prediction-to-sample ECDF as

much as possible.
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Figure A14. Empirical variograms for the air temperature response and residuals from all temperature models. Variogram models were fitted

for illustrative purposes unless the fit did not converge.
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Figure A15. Empirical nearest neighbour distance distribution Ĝ function (A), empty space F̂ function (B), and Ripley’s K̂ pairwise

distance function (C) for the PM2.5 study case. The dashed red line indicates the theoretical function under complete spatial randomness

(i.e. a homogeneous Poisson process) with its global envelope computed using 99 Monte Carlo simulations in grey. Empirical functions

calculated from the data are in black.
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Figure A16. 10-fold assignment according to a random CV method (top left) and the kNNDM method (top right) for the PM2.5 study case.

Figures at the bottom row display the corresponding Empirical Cumulative Distribution Functions (ECDF) of the geographical sample-to-

sample, prediction-to-sample, and CV nearest neighbour distances. Ideally, CV-distances should match prediction-to-sample ECDF as much

as possible.
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Figure A17. Empirical variograms for the PM2.5 response and residuals from all PM2.5 models. Variogram models were fitted for illustrative

purposes unless the fit did not converge.
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Table A1. List of products and their data source, original spatiotemporal resolution, and use in the complete air temperature and pollution

:::::
PM2.5 models.

Product Source Original resolution Temperature PM2.5

Station air temperature Agencia Estatal de Meteorología Daily Response

Station PM2.5 Ministerio para la transición ecológica Hourly/daily Response

Digital elevation model CLMSa: EU-DEM v1.1 25 m Predictor Predictor

Distance to coast CLMS: EU-HYDRO Imagery interpretation Predictor Predictor

Impervious density CLMS: IMD (2018) 100 m Predictor Predictor

Land Cover CLMS: CORINE Land Cover (2018) 100 m Predictor

Population density Eurostat: GEOSTAT (2018) 1 km Predictor

Road density OpenStreetMap Imagery interpretation Predictor

NDVI (MYD13A1 v006) MODIS Aqua Vegetation Indices 16-Day, 500 m,
::::::
16-Day

:
Predictor Predictor

Nighttime Lights VIIRS 2019 annual VNL V2 (median) 15arc second
:
”, annual Predictor

PM2.5 reanalysis CAMS European air quality reanalysis (2019) 0.1º, hourly Predictor

LST (MYD11A2 v006) MODIS Aqua Land Surface Temperature 8-Day, 1 km
:
,
:::::
8-Day Predictor

a Copernicus Land Monitoring Service.
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