
In this document we reply to all comments and suggestions made on our original manuscript submit-
ted on the 24th of January, and list the changes we have implemented in this revised version. The
document is organised by reviewer, where our reply follows each comment in italics. The included
line numbers, text, and figures correspond to the revised version of the manuscript.

Anonymous Referee 1

This manuscript takes random forests as an example to analyze spatial agents such as coordinates
and Euclidean distance fields in environmental modeling, which has positive value for spatial analysis
based on machine learning models. However, there are some significant shortcomings in the work
of this manuscript.

(1) Like other models, random forests require a set of influencing or predictive factors. Therefore,
the proxy of environmental factors in spatial analysis models is not a special case of random forest
models. Therefore, it is recommended that the author provide additional information on this point.

We agree with the reviewer on the fact that the addition of spatial proxies as predictors is not a
special case of a random forest, and in our manuscript we have included this information in the
introduction (lines 40-42):

”The lack of consideration of space in ML models has motivated researchers to try to find ways to account
for spatial autocorrelation to improve model performance. One straightforward approach is to add ”spatial
proxies” as predictors to the ML model without any modification of the algorithm.”

In the revised version of the manuscript, we now also include this information in the abstract (lines
1-3):

”Spatial proxies such as coordinates and distance fields are often added as predictors in Random Forest
(RF) models without any modification of the algorithm to account for residual autocorrelation and improve
predictions; however, their suitability under different predictive conditions encountered in environmental
applications has not yet been assessed.”

(2) The use of coordinates and Euclidean distance fields as spatial factor proxies is undoubtedly due
to the influence of these spatial factors on the target, or the need to use spatial regions to reflect
certain undiscovered factors. This is determined by the specific work, and such a spatial agent is
undoubtedly reasonable. Even if the accuracy obtained in some models may not appear to have
improved numerically. And this important aspect was not taken into account in this manuscript.

As the reviewer, we think that one of the uses of spatial proxies is to account for residual autocor-
relation prompted by the unavailability of relevant yet undiscovered or unmeasured predictors. In
fact, we decided to use the word ”proxy” precisely for this reason, i.e. a predictor that can be be
used as a surrogate for unobserved factors that can cause residual spatial autocorrelation. In order
to clarify this point, we now include the rationale behind the word ”proxy” in the introduction
(lines 42-45):

”We define spatial proxies as a set of spatially-indexed variables with long or infinite autocorrelation ranges
that are not causally related to the response. We use the term ”proxy” since these predictors act as surrogates
for unobserved factors, such as missing predictors or an autocorrelated error term, that can cause residual
autocorrelation.”

Second, we have added a new paragraph in the introduction that discusses the possible sources of
residual autocorrelation, including missing predictors and/or autocorrelated errors (lines 72-73):
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”The second factor is residual autocorrelation, which typically arises when a relevant predictor is not available
for modelling because it is either unmeasured or unknown, or because the error term is autocorrelated
(F. Dormann et al. 2007).”

Third, the situation described by the reviewer is contemplated in our analyses in the ”missing
predictors” simulation scenario, which we now motivate (lines 135-139):

”We generated predictor and response surfaces (Fig. 1.1) according to the different scenarios described in
Table 1: 1) ”autocorrelated error”, where residual autocorrelation is expected due to a spatially autocorrelated
error term; 2) ”complete”, where no spatial autocorrelation is expected and therefore spatial proxies are
assumed to be irrelevant; 3) ”missing predictors”, where residual autocorrelation is present due to missing
predictors; and finally 4) ”proxies only”, where no predictors are available for modelling and only proxies are
used.”

In this case, the addition of proxies can be beneficial for spatial interpolation as the reviewer points
out (lines 252-253):

”On the other hand, in scenarios where residual autocorrelation was expected either due to an autocorrelated
error term or missing predictors, models with spatial proxies showed smaller errors in many instances.”

We also motivate naive models in the two case studies by saying that spatial autocorrelation is due
to missing predictors (lines 225-226):

”Our motivation for the naive model was to examine whether spatial proxies could help explaining residual
spatial autocorrelation due to missing predictors and therefore be used in predictor scarcity settings.”

Finally, for the temperature study case, we found positive effects of using spatial proxies since the
conditions in terms of residual spatial autocorrelation and sample distribution were appropriate
(lines 370-372):

”We found that a model with only a DEM and spatial proxies managed to account for the residual spatial
autocorrelation, and performed almost as well as a much more comprehensive model which produced similar
predicted surfaces. This highlights the value of spatial proxies for cost-effective predictive modelling as long
as the conditions outlined above are met.”

(3) It is meaningless to evaluate the superiority or inferiority of a certain agent solely based on the
accuracy of the final results, without considering specific issues. In summary, it is recommended to
reject the manuscript.

As the reviewer, we also believe that accuracy is not the only way to evaluate the usefulness of a
model, although in many cases where knowledge discovery is not a priority it may well be. In our
discussion, we acknowledge this point (lines 383-387):

”Second, our analysis was based on the adequacy of spatial proxies from a prediction accuracy point of
view. When using RF for knowledge discovery, variables with long or infinite autocorrelation ranges such as
spatial proxies have been identified to be beyond the prediction horizon (Behrens & Viscarra Rossel 2020,
Wadoux, Samuel-Rosa, Poggio & Mulder 2020, Fourcade et al. 2018) and variable importance statistics in
models including them should be interpreted with extreme caution (Meyer et al. 2019, Wadoux, Minasny &
McBratney 2020).”

However, when the aim is prediction as in our study, we think that accuracy metrics are indeed
meaningful to evaluate the relevance of the predictors. For that purpose, we considered several spe-
cific factors including different sampling patterns, autocorrelation ranges, and simulation scenarios
to analyse in which cases the proxy predictors are relevant.
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Dr. Carsten F. Dormann

This study compares different approaches to address spatial autocorrelation in random forest anal-
yses. Using simulated data, and two case studies, the authors assess prediction error and variable
importance for differently clustered spatial data.

The study finds that clustering of spatial data had a substantial effect on RMSE, and that different
spatial random forest versions differed less than that effect.

There are a few points I do, and a few I do not like about this study. On the plus side, I think the
comparison of the RF-approaches is comprehensive and reflects nicely what people have been doing
in the past. The evaluation against simulated data is how it should be (see caveat below), and I find
the attempts to interpret performance using AOA nice and useful. The case studies illustrate the
application case well, and also the problems, particularly using lat/lon as predictor.

My main criticisms are these:

1. The goal of the study does not become clear in the introduction and is confounded throughout
the papers. To me, the structure should relate to the three “scenarios” one could have in mind for
this study: interpolation, extrapolation and effect estimation (predictive inference). These targets
are very different and need to be assessed differently, too. For example, regression kriging is an
interpolation method (by design), while identifying importance is effect estimation. Extrapolation
(to regions beyond the training data) is explicitly most often the target in the simulations presented
here, but not always. I find the results hence sometimes confounding the different issues and hence
have trouble interpreting them.

This also relates to the CV strategy. For interpolation error, random CV is fine, for extrapolation
it is not. Thus, if the authors find a difference between randomCV and kNNDM-CV, this may or
may not be relevant, depending on the goal of the study.

I think this problem pertains particularly to the introduction and the results and will not require
much work to address.

We reviewed the structure of the manuscript and confirmed that it can be improved to enhance the
narrative and avoid confusion of the different elements we investigated. The first key element we
changed are the objectives, which we have now structured in three main points and one additional
secondary objective (lines 118-127):

”In this work, we investigate several RF models with spatial proxies, namely coordinates, EDF, and RFsp,
with the following objectives:

1. To assess the suitability of spatial proxies depending on different factors: the modelling objective
(interpolation vs. extrapolation), the strength of the residual spatial autocorrelation, and the sampling
pattern.

2. To investigate which validation methods can be used as a model selection tool to empirically assess
the suitability of spatial proxies and select the most appropriate proxy configuration.

3. To provide guidance to practitioners regarding the use of spatial proxies in real-world applications.

We address the first two objectives in a simulation study, while for the third objective we carry out two case
studies where we model air temperature and particulate air pollution in Spain. We further compare and
discuss the findings in the context of the recently developed RF-GLS model to benchmark the performance
of this alternative modelling approach.”
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The new objectives now drive the structure of the abstract, introduction, results, and discussion
sections. In the abstract, the new objectives are listed (lines 3-7):

”We investigate 1) the suitability of spatial proxies depending on the modelling objective (interpolation
vs. extrapolation), the strength of the residual spatial autocorrelation, and the sampling pattern; 2) which
validation methods can be used as a model selection tool to empirically assess the suitability of spatial proxies;
and show 3) the effect of using spatial proxies in real-world environmental applications.”

In the introduction section, we have restructured the text according to the new objective list (we
do not include all text here because it comprises most of the introduction):

• Paragraphs 4-7 address the first objective as follows: paragraph 4 presents the factors that
can affect the suitability of spatial proxies (lines 55-58), paragraph 5 addresses the first factor,
the model’s objective (lines 59-71), paragraph 6 addresses the second factor, the origin and
strength of the spatial autocorrelation (lines 72-80), and paragraph 7 addresses the third
factor, the sampling pattern (lines 81-89).

• Paragraph 8 introduces objective 2, i.e. validation methods for model selection (lines 90-105).
• Paragraph 9 addresses the additional objective by listing alternative models to RF with spatial
proxies including RF-GLS (lines 106-115).

In the results section, we now use subsection indicators that directly map to the study objectives:

• Section ”3.1.1 Suitability of spatial proxies” refers to the first objective, where now the results
of each factor (models’ objective, autocorrelation, sampling pattern) are listed one at a time
in separate paragraphs.

• Section ”3.1.2 Validation methods for proxy selection” refers to the second objective.
• Section ”3.1.3 Comparison of spatial proxies with RF-GLS” refers to the additional objective.
• Section ”3.2 Case studies” refers to the third objective.

Finally, in the discussion section, we have structured the text as follows:

• Paragraphs 1-3 discuss the first objective regarding the suitability of spatial proxies, where
paragraph 1 is devoted to the model’s objective (lines 314-322), paragraph 2 delves into spatial
autocorrelation (lines 323-336), and paragraph 3 discusses the effect of the sampling pattern
(lines 337-349).

• Paragraph 4 discusses the second objective regarding the validation methods for proxy variable
selection (lines 350-358).

• Paragraph 5 discusses the additional objective regarding the performance of RF-GLS (lines
359-367).

• Paragraph 6 discusses the third objective regarding the real-world examples (lines 368-379).

2. Spatial autocorrelation is entirely related to environmental variables, when in the real world it
is also related to mass effects (dispersal, diffusion, contagion): the error is spatially autocorrelated,
too. In my understanding, the authors did not address that. That is problematic, as Table 1’s second
row is thus a model WITHOUT spatial autocorrelation in the residuals, as all predictors are present
to correct for it. This is, from a statistical point of view, a no-problem data set. While that does
in no way invalidate the simulations, it must be clearly communicated that this is NOT a situation
one would even consider using spatial representation for: no residual SA, no problem.

Spatial error in the residuals has been simulated in previous such studies (since Dormann et al.
2007 Ecography), and is a bit annoying to fine-tune; it can be done, though, and I think it should
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be done (see also simData here: https://github.com/biometry/FReibier/tree/master).

On the back of such simulation, a GLS fitted to the correct model would give the best possible
reference analysis; anything better than that would be a biased assessment of error.

As the reviewer points out, we did not consider the case of autocorrelated errors in our simulation
study, where all the spatial structure in the outcome generation was introduced via covariates. To
address this point, we have added an additional scenario ”autocorrelated error” where the response
generation equation includes an autocorrelated error term (lines 135-136):

”We generated predictor and response surfaces (Fig. 1.1) according to the different scenarios described in
Table 1: 1) ”autocorrelated error”, where residual autocorrelation is expected due to a spatially autocorrelated
error term”

The results of this new scenario are available in the revised manuscript and included in all relevant
figures, one of which we include in this report (report figure 1).
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Figure 1: True RMSE in the interpolation area of each model type by scenario, autocorrelation
range, and sampling pattern. The dashed line indicates the minimum possible RMSE for each
scenario. RMSE for the baseline model in the ”proxies only” scenario uses a constant prediction
calculated as the average response value in the training data. Outliers larger than 3 are not shown
for visualization purposes.

With these new results, we can confirm the intuition of the reviewer that a GLS-like model such as
RF-GLS provides the best results in the new scenario (lines 284-287):

”RF-GLS outperformed or was on a par with the best-performing standard RF model with and without
proxies for all parameter combinations in both the interpolation (Fig. 7) and extrapolation (supporting Fig.
11) areas in the simulation study. The most relevant gains in performance when comparing RF-GLS to RF
with and without proxies were in the ”autocorrelated error” scenario for the interpolation area with regular
and random samples, for which RMSE were substantially lower.”
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Regarding the ”complete” scenario where indeed no spatial representation is needed, we now high-
light that spatial proxies are unnecessary in the simulation methods section (lines 136-137):

”2) ”complete”, where no spatial autocorrelation is expected and therefore spatial proxies are assumed to be
irrelevant”

We discuss it in more detail it in the discussion section (lines 328-333):

”However, in complete models with no residual autocorrelation, the similar or sometimes worse performance
is due to adding an irrelevant set of predictors that are noise to the model. Unlike regression kriging, where
spatial autocorrelation is modelled in the residuals and in its absence would result in a pure nugget effect, i.e.
a flat variogram leading to an ordinary least squares estimation (Hengl 2007), in a ML model the irrelevant
proxies are still included. Even though RF is fairly robust to the addition of irrelevant predictors (Kuhn &
Johnson 2019), a decrease in performance was sometimes observed.”

3. Minimum RMSE according to simulations should be indicated in Fig. 3. Since the authors use
the standard normal as error distribution, the best possible RMSE should also be 1. On average, it
is closer to 2, but for the “complete, range 40” it looks as if it was below 1. That would be, well,
surprising and important for interpretation: a fit into the spatial noise.

We have added a dashed horizontal line indicating the minimum RMSE by scenario in all relevant
figures, see for example report Figure 1. We explain the origin of the expected minimum RMSE in
the methods section (lines 159-161):

”The expected minimum possible RMSE for scenarios 2-4 was equal to 1 (standard deviation of the random
error), whereas it was equal to 0 for scenario ”autocorrelated error” as the error could potentially be explained
by the proxies.”

4. While I read about and like the kNNDM, I still prefer a truly independent test data set. Since
the authors have invented the data, they could simply extend the area by doubling it to one side, and
use that second half for validation in the sense of a true extrapolation. My feeling is that kNNDM
will work well if the range of data is much larger than the spatial autocorrelation, but not if SA is
large relative to the spatial extent. An extent of 100x100 is “only” 2.5 times larger than the range
of 40. Thus, the sampled data points will fall within the SA-range virtually always (Fig. 1.2). I am
not convinced that this is an independent-enough test case.

We thank the reviewer for his suggestions. We have expanded our simulation study to now in-
clude both the extrapolation model objective, as well as probability test samples (see the updated
simulation workflow in report Figure 2).

Regarding the independent test data, we agree with the reviewer on that an independent test
dataset is always preferable to any type of cross-validation, which is something we discussed in our
other works (Milà et al 2022, Linnenbrink et al 2023) but not here. In the revised version of the
manuscript, we have included this information in the introduction (lines 93-96):

”Amongst validation methods, probability test sampling is the preferred approach as it offers unbiased esti-
mates (Wadoux et al. 2021) that can be used for model selection. Unfortunately, independent test samples
are rarely available in the field of environmental sciences, and alternative validation methods such as Cross-
Validation (CV) must be used.”

Furthermore, we have included random probability test samples as an additional validation method
in our simulations (lines 162-164):
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Figure 2: Workflow of the simulation study.

”Since the true RMSE is unknown in real-world applications, we also estimated the RMSE using additional
validation methods (Fig. 1.5). First, a probability sample of 100 random test points was drawn and used to
estimate the RMSE in the interpolation and extrapolation areas separately.”

Results for the new accuracy estimation method have been included in the relevant sections, see
for example report Figure 3. As expected, results for probability test samples indicate that it is a
good method to estimate performance as well as for model selection both in the interpolation and
extrapolation areas (lines 351-355):

”we showed that random CV underestimates map accuracy when assessing extrapolation performance or
interpolation with clustered samples, which has been shown before (Linnenbrink et al. 2023, Wadoux et al.
2021). Perhaps even more important, random CV incorrectly ranks models in those instances, systematically
favouring models with proxies even though those are not always appropriate. On the other hand, probability
test samples and kNNDM CV did provide correct model ranks.”

Regarding extrapolation, we agree on the fact that the way we designed our simulation study did
not allow to isolate extrapolation effects and explore their impact on the CV results. While in
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Figure 3: True and estimated RMSE in the interpolation area and the ”autocorrelated error”
scenario by evaluation method, autocorrelation range, and sampling pattern. Values larger than 3.5
are not shown for visualization purposes.

some cases we will indeed have some extrapolation when predicting (e.g. with clustered samples),
there will always be interpolation as well. Following the reviewer’s suggestion, we have modified
the dimensions of the simulation area following a similar approach to our previous work (Milà et al.
2022). Briefly, we have simulated in a 300x100 grid where samples are drawn in the 100x100 left
window while the 100x100 right window is used to evaluate extrapolation (lines 130-133):

”We designed a simulation study on a virtual 300x100 grid to assess, in different prediction settings, the
suitability of RF regression models using three different types of spatial proxies: coordinates, EDF, and RFsp
(Fig. 1). Within the grid, two separate areas were defined (Fig. 1.1): sampling, from where observations
were sampled and which coincided with the interpolation prediction area; and the extrapolation prediction
area, used to evaluate spatial model transferability.”

New results for extrapolation indicate that, as expected, RF with spatial proxies are always detri-
mental (report Figure 4).

5. More as a suggestion: The problem of using spatial coordinates or proxies is that they replace
the causal predictors in a random forest due to collinearity. As a consequence, the importances
are wrongly estimated. One can, for the simulated X, compute how well each predictor can be
represented by the specific spatial predictors used. If X1 can be predicted by lat/lon or the EDFs or
distances with an r of 0.8 (or so), then clearly they will compete for explanation and substantially
bias importance estimates. That is the reason why the ME-approach in spdep adds the PCNMs only
to explain the RESIDUALs of the model, after fitting the non-space-variables X1-X6.

So, I would be interested in seeing how well space can replace actual predictors. Either by reporting
such “predictability of predictors by space” in the appendix, or by having another model entirely
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Figure 4: True RMSE in the extrapolation area of each model type by scenario, autocorrelation
range, and sampling pattern. The dashed line indicates the minimum possible RMSE for each
scenario. RMSE for the baseline model in the ”proxies only” scenario uses a constant prediction
calculated as the average response value in the training data. Outliers larger than 5 are not shown
for visualization purposes.

without X1-X6 in the comparison.

This would also tie in nicely with the difference between inter/extrapolation: space-only should work
fine for inter-, but fail for extrapolation.

Following the reviewer’s recommendation, we have added the additional ”proxies only” scenario
where only spatial proxies are used to predict the outcome (lines 135-139):

”We generated predictor and response surfaces (Fig. 1.1) according to the different scenarios described in
Table 1: 1) ”autocorrelated error”, where residual autocorrelation is expected due to a spatially autocorrelated
error term; 2) ”complete”, where no spatial autocorrelation is expected and therefore spatial proxies are
assumed to be irrelevant; 3) ”missing predictors”, where residual autocorrelation is present due to missing
predictors; and finally 4) ”proxies only”, where no predictors are available for modelling and only proxies are
used.”

In this new analysis, we confirmed the reviewer’s intuition that only using spatial proxies for ex-
trapolation is a very bad idea, as it results in larger errors compared to a constant mean prediction
(see report Figure 4), whereas for interpolation it may actually perform almost as well as a model
with the causal predictors (lines 264-266 and report figure 1):

”Finally, interpolation models using only spatial proxies as predictors performed nearly as well as models
with all (scenario: complete) or a subset (scenario: missing predictors) of predictors provided samples were
regularly or randomly distributed and the autocorrelation range was 40 (Fig. 4).”

Beyond this, however, we have not further investigated the impact of spatial proxies on predictive
inference, as we think this would require a different simulation study design targeting the ability
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of the models to estimate the true variable importance as acknowledged in the discussion section
(lines 383-387):

”Second, our analysis was based on the adequacy of spatial proxies from a prediction accuracy point of
view. When using RF for knowledge discovery, variables with long or infinite autocorrelation ranges such as
spatial proxies have been identified to be beyond the prediction horizon (Behrens & Viscarra Rossel 2020,
Wadoux, Samuel-Rosa, Poggio & Mulder 2020, Fourcade et al. 2018) and variable importance statistics in
models including them should be interpreted with extreme caution (Meyer et al. 2019, Wadoux, Minasny &
McBratney 2020).”

Overall, I think this is a nice paper almost as it is and with a little bit more integration of WHY
we would expect which approach to work better and a clearer structuring of the purposes of the
analysis it will be just fine. IMHO it could be a greater paper, if the authors would allow for spatial
autocorrelation in the error term and try to get at the bottom of WHEN space affects inference (i.e.
here: importance) of predictors (that is, investigate the effect of collinearity on the intrapolation,
extrapolation, variable importance).

We thank the reviewer for the acknowledgement. As a wrap-up of the major comments, we list
again the action points we have taken to address the reviewer’s concerns:

• We have changed the study objectives to improve the narrative of the study.

• We have changed the structure of the abstract, introduction, results, and discussion sections
based on the new objectives so that the different elements do not get confused.

• We have added probability test samples as a validation method.

• We have extended the area of the simulation study to 300x100 and evaluated extrapolation.

• We have added the simulation scenario ”autocorrelated error”.

• We have added the simulation scenario ”proxies only”.

Minor points: L56: Also cite other people’s work here, much earlier, e.g. Le Rest et al. 2014 and
whatever else we cited in Roberts et al. (2017 Ecography) on that topic.

We have extended the list of references for cross-validation with the works mentioned by the reviewer
as well as the earlier literature regarding block-based and buffer-based spatial cross-validation (lines
99-103):

”Several spatial CV methods have been proposed to address the limitations of standard validation approaches
(Roberts et al. 2017, Ploton et al. 2020, Kattenborn et al. 2022) using CV based on spatial blocking (Wenger
& Olden 2012, Valavi et al. 2019), buffering (Telford & Birks 2009, Le Rest et al. 2014), clustering (Wang
et al. 2023), as well as sampling-intensity weighted CV and model-based geostatistical approaches (de Bruin
et al. 2022).”

L57: I find the restriction to RF too narrow. This is a logical and fundamental problem, not one
specific to RF. Ploton et al. (2020) showed it for random forest, Kattenborn et al. (2022) for CNNs.
It is the same problem of extrapolation in space with poor design for the CV.

In our new version of the introduction, the accuracy estimation text is now more general and does
not only refer specifically to random forest (lines 90-105). That said, our manuscript focused on
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RF because it is 1) the algorithm with which spatial proxies have been mostly used, and 2) one of
the most widely used models in the geosciences (lines 36-39):

”One of the most popular ML algorithms in the geospatial community is Random Forest (RF), a decision
tree ensemble (Breiman 2001) that has shown good performance across many applications (Wylie et al. 2019)
and centred the attention of many methodological studies (e.g. Meyer & Pebesma 2021, Hengl et al. 2018,
Sekulić et al. 2020, Georganos et al. 2021, Saha et al. 2023).”

In the discussion section, we acknowledged the fact that although our analysis was restricted to RF,
it will possibly also apply to other algorithms as well (lines 381-383):

”First, we focused on RF regression and, while we think that our results likely extend to other ML algorithms,
the extrapolation behaviour and sensitivity to irrelevant predictors differs by algorithm and might limit the
ability to generalize our results.”

L73: “scenarios” are what I called “target”, “goal” or “purpose”: Make clear what the goals are in
the intro!

Please see response to major comment 1 to check the new structure we implemented to clarify this
point.

L178: Why would anybody use randomForest and not ranger? Much faster and hence less energy
consumption.

We used the package randomForest rather than ranger because, when running our simulations in an
HPC environment, we faced threading issues when using the ranger package. In this new version,
however, we have been able to solve them and use ranger instead (lines 336-240):

”Our analyses were carried out in R version 4.2.2 (R Core Team 2022) using several packages: sf (Pebesma
2018) and terra (Hijmans 2022) for spatial data management; caret (Kuhn 2022), ranger (Wright &
Ziegler 2017), RandomForestsGLS (Saha et al. 2022), and CAST (Meyer et al. 2023) for spatial modelling;
gstat (Pebesma 2004) for random field simulation; and ggplot2 (Wickham 2016) and tmap (Tennekes 2018)
for graphics and cartographic representations. Additional packages were used for other minor tasks.”

What is the point of Fig. 7? I can see neither RMSEs or biases or anything, so why look at these
maps? Also, we are typically more impressed by high-resolution maps, even if they are completely
wrong; map visualisation is thus either uninformative and misleading in many cases.

What is the point of Fig. 8, apart from the funny lines in “A Coordinates”?

We think that the figures mentioned by the reviewer are relevant since they allow us to assess 1)
the differences in predicted surfaces between baseline and proxy models, 2) the sensitivity to the
different proxies used, and 3) whether naive models with spatial proxies can approximate the spatial
patterns of complete models. To highlight these, we have extended the text regarding those points
in the results section (lines 296-299 and 306-310):

”Adding spatial proxies to the baseline naive model with only a DEM resulted in different patterns and
smoother predicted surfaces (Fig. 8). Comparing naive models with spatial proxies and complete models,
spatial patterns were quite similar but more local variation could be appreciated in the latter. Differences
between maps derived from complete models with and without proxies were minor.”

”Feature extrapolation was the highest in naive models, where proxies had a larger importance that translated
into mapping artefacts that were especially evident in the coordinates model (Fig. 9). Unlike the temperature
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case study, the predicted surfaces of naive models with proxies and complete models were very different,
suggesting that the added geographical predictors could not successfully account for the missing predictors.
Prediction maps for complete models with different spatial proxies were much more similar.”

Table 2 and 3: Where are the standard errors on these estimates? (Yes, I understood that some of
them are a bit a pain to compute for one of the models. Still, without an estimate of the error, how
can the reader interpret a value of “0.92” vs “0.87”? Might well be the same value if SD=0.4.)

We agree with the reviewer on the importance of showing the standard deviation of the statistics to
be able to ascertain whether the differences are relevant. In the revised version of the manuscript, we
have computed these for random k-fold cross-validation. For kNNDM, however, we computed statis-
tics by stacking all out-of-sample predicted and observed values, so these could not be calculated
(lines 169-171):

”Estimation of RMSE was done globally to account for the different fold sizes in kNNDM (Linnenbrink
et al. 2023), i.e. we stacked all predictions in the different folds and computed the RMSE from all samples
simultaneously, rather than computing the RMSE within each fold and then averaging.”

I missed the discussion of some existing approaches to manage space into ML.

Hajjem, A., Bellavance, F., & Larocque, D. (2011). Mixed effects regression trees for clustered data.
Statistics & Probability Letters, 81(4), 451–459. https://doi.org/10.1016/j.spl.2010.12.003

Hajjem, A., Bellavance, F., & Larocque, D. (2014). Mixed-effects random forest for clustered
data. Journal of Statistical Computation and Simulation, 84(6), 1313–1328. https://doi.org/
10.1080/00949655.2012.741599

Li, L., Girguis, M., Lurmann, F., Wu, J., Urman, R., Rappaport, E., Ritz, B., Franklin, M.,
Breton, C., Gilliland, F., & Habre, R. (2019). Cluster-based bagging of constrained mixed-effects
models for high spatiotemporal resolution nitrogen oxides prediction over large regions. Environment
International, 128, 310–323. https://doi.org/10.1016/j.envint.2019.04.057

Li, L., Lurmann, F., Habre, R., Urman, R., Rappaport, E., Ritz, B., Chen, J.-C., Gilliland, F. D.,
& Wu, J. (2017). Constrained mixed-effect models with ensemble learning for prediction of nitro-
gen oxides concentrations at high spatiotemporal resolution. Environmental Science & Technology,
51(17), 9920–9929. https://doi.org/10.1021/acs.est.7b01864

Zhan, Y., Luo, Y., Deng, X., Chen, H., Grieneisen, M. L., Shen, X., Zhu, L., & Zhang, M.
(2017). Spatiotemporal prediction of continuous daily PM2.5 concentrations across China us-
ing a spatially explicit machine learning algorithm. Atmospheric Environment, 155, 129–139.
https://doi.org/10.1016/j.atmosenv.2017.02.023

Kattenborn, T., Schiefer, F., Frey, J., Feilhauer, H., Mahecha, M. D., & Dormann, C. F. (2022).
Spatially autocorrelated training and validation samples inflate performance assessment of convolu-
tional neural networks. ISPRS Open Journal of Photogrammetry and Remote Sensing, 5, 100018.
https://doi.org/10.1016/j.ophoto.2022.100018

Le Rest, K., Pinaud, D., Monestiez, P., Chadoeuf, J., & Bretagnolle, V. (2014). Spatial leave-one-
out cross-validation for variable selection in the presence of spatial autocorrelation. Global Ecology
and Biogeography, 23, 811–820. https://doi.org/10.1111/geb.12161
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Ploton, P., Mortier, F., Réjou-Méchain, M., Barbier, N., Picard, N., Rossi, V., Dormann, C.,
Cornu, G., Viennois, G., Bayol, N., Lyapustin, A., Gourlet-Fleury, S., & Pélissier, R. (2020).
Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Na-
ture Communications, 11(1), Article 1. https://doi.org/10.1038/s41467-020-18321-y

In the introduction we now devote a paragraph to alternative modelling approaches, where these
references have been included (lines 106-109):

”As an alternative to modelling with spatial proxies, other methods that do involve algorithmic modifications
have been proposed, including mixed effects tree-based models that account for correlated data (Hajjem
et al. 2011, 2014), spatially-aware resampling methods (Li et al. 2019), as well as geographically weighted
ML algorithms (Georganos et al. 2021, Zhan et al. 2017).”

Validation references have been included in the validation and model selection paragraph of the
introduction (lines 99-103):

”Several spatial CV methods have been proposed to address the limitations of standard validation approaches
(Roberts et al. 2017, Ploton et al. 2020, Kattenborn et al. 2022) using CV based on spatial blocking (Wenger
& Olden 2012, Valavi et al. 2019), buffering (Telford & Birks 2009, Le Rest et al. 2014), clustering (Wang
et al. 2023), as well as sampling-intensity weighted CV and model-based geostatistical approaches (de Bruin
et al. 2022).”
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A., Jetz, W., Daniel Kissling, W., Kühn, I., Ohlemüller, R., R. Peres-Neto, P., Reineking, B., Schröder,
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Linnenbrink, J., Milà, C., Ludwig, M. & Meyer, H. (2023), ‘knndm: k-fold nearest neighbour distance
matching cross-validation for map accuracy estimation’, EGUsphere 2023, 1–16.
URL: https://egusphere.copernicus.org/preprints/2023/egusphere-2023-1308/
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