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 Abstract 

 This  study  introduces  a  new  approach  to  multi-hazard  risk  assessment,  leveraging  hypergraph  theory  to  model  the 

 interconnected  risks  posed  by  cascading  natural  hazards.  Traditional  single-hazard  risk  models  fail  to  account  for  the 

 complex  interrelationships  and  compounding  effects  of  multiple  simultaneous  or  sequential  hazards.  By  conceptualising 

 risks  within  a  hypergraph  framework,  our  model  overcomes  these  limitations,  enabling  efficient  simulation  of 

 multi-hazard  interactions  and  their  impacts  on  infrastructure.  We  apply  this  model  to  the  2015  M  w  7.8  Gorkha 

 earthquake  in  Nepal  as  a  case  study,  demonstrating  its  ability  to  simulate  the  primary  and  secondary  effects  of  the 

 earthquake  on  buildings  and  roads  across  the  whole  earthquake-affected  area.  The  model  predicts  the  overall  pattern  of 

 earthquake-induced  building  damage  and  landslide  impacts,  albeit  with  a  tendency  towards  over-prediction.  Our 

 findings  underscore  the  potential  of  the  hypergraph  approach  for  multi-hazard  risk  assessment,  offering  advances  in 

 rapid  computation  and  scenario  exploration  for  cascading  geo-hazards.  This  approach  could  provide  valuable  insights 

 for  disaster  risk  reduction  and  humanitarian  contingency  planning,  where  anticipation  of  large-scale  trends  is  often  more 

 important than prediction of detailed impacts. 

 Keywords 

 Cascading  multi-hazards,  multi-hazard  modelling,  earthquake  impacts,  landslides,  Nepal,  network  modelling, 

 hypergraphs 

 1 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

https://doi.org/10.5194/egusphere-2024-1374
Preprint. Discussion started: 15 May 2024
c© Author(s) 2024. CC BY 4.0 License.



 1. Introduction 

 There  is  a  growing  recognition  over  the  last  15  years  that  natural  hazards  can  interact  and  occur  in  conjunction  with 

 each  other,  leading  to  a  potential  compounding  effect  that  is  greater  than  the  sum  of  the  single-hazard  impacts  (Kappes 

 et  al.,  2012;  Terzi  et  al.,  2019).  While  the  global  prevalence  of  cascading  hazards  specifically  is  difficult  to  quantify 

 reliably,  there  are  increasing  calls  for  effective  multi-hazard  risk  assessments  (e.g.,  Ward  et  al.,  2022).  Multi-hazards  are 

 defined  by  UNISDR  (2016)  as  "events  [that]  may  occur  simultaneously,  cascadingly  or  cumulatively  over  time,  and 

 taking  into  account  the  potential  interrelated  effects”.  Multi-hazard  approaches  seek  to  overcome  the  limitations  of  a 

 narrower  focus  on  single-hazard  models,  which  are  unable  to  account  for  the  observed  inter-relationships  between 

 different  hazards  as  well  as  potential  compounding  or  cascading  effects  (e.g.,  Gill  and  Malamud,  2014;  Tilloy  et  al., 

 2019;  Dunant,  2021;  Ming  et  al.,  2022).  Multi-hazard  approaches  to  risk  are  now  widely  encouraged  (e.g.,  UNISDR, 

 2005;  Government  Office  for  Science,  2012)  and  are  increasingly  integrated  into  risk  assessment  (see  recent  reviews  by 

 Gill et al., 2022; Ward et al., 2022). 

 There  remain,  however,  some  important  challenges  and  limitations  with  multi-hazard  risk  assessment.  Because  of  the 

 difficulties  in  recognising,  understanding,  and  defining  the  inter-relationships  between  hazards,  and  the  lack  of  data  on 

 their  co-dependence  (Tilloy  et  al.,  2019;  Hochrainer-Stigler  et  al.,  2023),  most  ‘multi-hazard  risk’  models  simply 

 overlay  single  hazards  without  considering  their  interactions  –  an  approach  that  Gill  and  Malamud  (2014)  termed 

 ‘multi-layer  single  hazard’.  Even  when  hazard-hazard  interactions  are  considered  in  risk  models,  there  is  still  a  lack  of 

 comprehensive  approaches  that  capture  the  intricate  interplay  among  hazards,  exposure,  and  vulnerability  beyond 

 simple  spatial  overlaps  (Mignan  et  al.,  2014;  de  Ruiter  et  al.,  2020).  These  interactions  are  critical  because  of  the 

 possibility  that  risks  may  be  clustered  in  space  and  time  or  may  amplify  each  other,  as  demonstrated  by  Mignan  et  al. 

 (2014).  Zschau  (2017)  extended  the  ideas  of  Gill  and  Malamud  (2014)  to  risk  assessment,  distinguishing  between  risk 

 from  single  hazards,  risk  from  multi-layer  single  hazards,  and  risk  from  multi-hazards  –  the  latter  allowing  for  dynamic 

 hazard  interactions,  but  no  dynamic  interactions  between  hazard  and  exposure  or  vulnerability).  Hochrainer-Stigler  et 

 al.  (2023)  noted  that  hazard-exposure  relationships  and  changes  in  exposure  over  time,  as  well  as  vulnerability,  are  also 

 critical  to  fully  characterise  multi-risks.  This  complexity  means  that  multi-hazard  risk  modelling  can  be  both 

 computationally  expensive  and  extremely  demanding  of  quality  input  data  (e.g.,  Kappes  et  al.  2012).  Multi-hazard  risk 

 models  may  also  be  limited  by  the  diversity  of  hazard  types  that  can  be  incorporated,  mismatches  in  the  appropriate 

 spatial  and  temporal  scale  of  analyses,  and  complex  data  requirements  (e.g.,  Kappes  et  al.,  2012;  Tilloy  et  al.,  2019; 

 Dunant, 2021). 

 A  further  complication  is  the  growing  need  for  national,  regional,  or  even  global-scale  risk  assessments,  in  order  to 

 understand  potential  patterns  of  impacts,  provide  science-based  evidence  for  disaster  risk  reduction  and  advocacy,  and 

 allow  coordinated  planning  (see  review  by  Ward  et  al.,  2020).  At  the  same  time,  data  are  available  at  ever-increasing 

 spatial  and  temporal  resolution,  including  information  on  populations,  building  stock,  and  topography,  as  well  as 

 datasets  on  hazard  drivers  such  as  rainfall  forecasts  or  observed  precipitation.  While  these  are  welcome  developments, 

 the  combination  of  demands  for  increasing  scale  and  increasingly-fine  spatial  and  temporal  resolution  data  leads  to  a 

 much  higher  computational  burden.  Addressing  the  need  for  both  larger  spatial  scales  and  finer  spatio-temporal 

 resolutions  is  a  growing  challenge  for  the  assessment  of  multi-hazard  risks.  The  distribution  of  risk  may  also  be  highly 

 spatially  imbalanced  if  exposed  elements  are  concentrated  in  specific  areas,  meaning  that  grid-based  or  GIS-based 

 approaches to risk modelling may expend much computational effort on areas where risk is low or negligible. 
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 To  address  these  concerns,  Dunant  et  al.  (2021a)  proposed  a  novel  approach  to  multi-hazard  risk  modelling  using  graph 

 theory.  In  this  framework,  both  the  hazards  and  the  elements  at  risk  are  modelled  as  a  set  of  interconnections  between 

 nodes.  For  example,  a  house  can  be  linked  to  ground  accelerations  in  an  earthquake,  or  a  hillslope  to  rainfall  in  a  storm. 

 This  framework  can  then  be  used  to  generate  many  disaster  scenarios  by  cascading  from  node  to  node  according  to  a  set 

 of  rules  (e.g.,  a  threshold  earthquake  shaking  value  for  slope  failure).  The  resulting  network  model  is  highly 

 computationally  efficient,  and  the  network  structure  is  a  natural  fit  to  the  simulation  of  coincident  or  cascading  events 

 and  their  propagation  through  exposure  networks  (Dunant  et  al.,  2021a)  because  network  structures  are  purposefully 

 designed  to  capture  the  interdependencies  and  feedbacks  among  different  elements.  The  framework  is  agnostic  to  the 

 types  of  objects  that  can  be  included,  so  it  can  be  easily  adapted  to  include  hazard-hazard,  hazard-exposure,  and 

 hazard-vulnerability  relationships.  It  is  also  highly  flexible,  so  that  the  links  between  objects  can  be  represented  via 

 different  interactions  depending  on  the  level  of  understanding  and  data  availability,  including  threshold  values, 

 empirical functions, fuzzy distributions, process models, or other approaches (e.g., Tilloy et al., 2019). 

 Despite  its  advantages,  however,  the  network  model  suffers  from  some  important  limitations.  Most  critically,  because 

 the  interactions  in  a  network  model  are  modelled  as  pairs,  the  computational  burden  grows  substantially  as  the  number 

 of  components  (nodes  and  edges)  of  the  model  increases.  Prior  applications  focused  on  the  epicentral  area  of  the  2016 

 M  w  7.8  Kaikōura  earthquake  (Dunant  et  al.,  2021a)  and  the  area  around  Franz  Josef  township  (Dunant  et  al.,  2021b), 

 both  in  New  Zealand  and  containing  on  the  order  of  hundreds  of  nodes.  Expanding  the  network  model  to  a  national 

 scale  at  a  similar  resolution  would  increase  the  model  size  by  several  orders  of  magnitude.  Similarly,  increasing  the 

 number  of  hazards  that  are  considered  would  lead  to  a  combinatorial  increase  in  interactions  and  rapid  growth  in 

 computation time. 

 Here  we  propose  a  new  approach  to  modelling  the  impacts  of  multi-hazards  using  hypergraphs  –  two-dimensional 

 surface  equivalents  of  the  pairwise  links  found  in  the  graph-theory  network  model  of  Dunant  et  al.  (2021a).  The 

 hypergraph  model  retains  the  advantages  of  the  network  approach  while  simultaneously  reducing  the  model  complexity. 

 Below,  we  first  present  a  brief  review  of  graphs  and  hypergraphs  and  outline  the  benefits  of  using  hypergraphs  in  a 

 multi-hazard  risk  modelling  framework.  We  describe  the  structure  of  the  multi-hazard  impact  model,  including  its 

 components  and  the  interactions  between  nodes.  We  illustrate  its  application  by  simulating  the  impacts  from  the  2015 

 M  w  7.8  Gorkha  earthquake  in  Nepal,  as  an  exemplar  of  a  large-scale  event  that  had  cascading  effects  on  people  and 

 infrastructure  due  to  both  primary  and  secondary  hazards.  We  close  by  considering  wider  potential  applications  of  the 

 hypergraph  model,  including  national-  or  regional-scale  disaster  scenario  ensembles  and  how  they  might  be  used  to 

 support humanitarian contingency planning (e.g., Robinson et al., 2018). 

 2. Summary of graph and hypergraph approaches 

 A  graph  is  essentially  a  mathematical  representation  of  a  network.  The  term  was  originally  introduced  by  Sylvester 

 (1878)  but  graph  theory  had  been  used  more  than  a  hundred  years  before  by  Euler  (1736)  to  solve  the  Seven  Bridges  of 

 Königsberg  problem.  Since  then,  graph  theory  has  been  used  in  a  wide  variety  of  fields  such  as  geography,  computer 

 science,  social  science,  and  biology  (e.g.,  Buzna  et  al.,  2006;  Chorley  &  Kennedy,  1971;  Dezső  &  Barabási,  2002; 

 Dorogovtsev & Mendes, 2003)  . 
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 A  graph  comprises  a  set  of  nodes  connected  by  edges.  In  the  context  of  risks  posed  by  environmental  hazards,  such 

 nodes  may  represent  a  geographical  location  (spatially  explicit;  e.g.,  a  fault  segment,  or  a  house)  or  a  nominal  property 

 (spatially  implicit;  e.g.,  the  occurrence  of  an  earthquake)  and  the  edges  represent  the  relations  between  the  nodes  (e.g., 

 earthquake shaking affecting exposed houses) (  Fig.  1A). 

 Figure  1:  Graph  (A)  and  hypergraph  (B)  representations  of  a  hypothetical  set  of  hazard  and  exposure  interactions.  The  same 

 set  of  elements  are  represented  in  both  graphical  form  (top)  and  tabular  form  as  incidence  matrices  (bottom).  In  the  tables,  a 

 blank cell means no interaction between the nodes, and a value of 1 means that interactions are possible between the nodes. 

 A  defining  characteristic  of  graphs  is  the  set  of  pairwise  connections  or  edges  between  nodes  that  define  the 

 relationships  between  these  nodes.  For  example,  we  would  represent  earthquake  shaking  on  a  set  of  hillslopes  as  edges 

 between  the  earthquake  and  each  hillslope  that  is  affected.  In  tabular  form,  each  edge  is  represented  by  a  row  in  a 

 relational  database,  called  an  incidence  matrix  (Fig.  1A).  The  edges  are  directional,  so  a  two-way  relationship  –  for 

 example,  a  hillslope  potentially  affecting  a  road  via  landslides,  and  a  road  potentially  affecting  a  hillslope  via  excavation 

 and steepening – would be represented by two separate rows. 

 As  summarised  by  Dunant  et  al.  (2021a),  here  we  consider  relationships  between  nodes  that  are  observed  or  felt  –  that 

 is,  via  shaking,  mass  movement,  or  water  flow.  We  also  consider  that  nodes  are  connected  if  (1)  the  geographical  effect 

 of  one  node  overlaps  that  of  another,  and  (2)  that  effect  is  relevant  to  considering  impacts  from  hazards.  For  example, 

 earthquake  ground  shaking  might  affect  a  hillslope  and  trigger  a  new  landslide  or  the  mobilisation  of  loose  material  in  a 

 debris  flow;  to  allow  for  these  effects,  we  would  represent  the  relationship  between  earthquake  and  the  hillslope  as  an 

 edge,  and  the  relationship  between  the  hillslope  and  any  houses  or  road  segments  on  it  as  a  series  of  additional  edges 

 (Fig.  1A).  If  we  were  to  assume  that  the  earthquake  ground  motion  can  potentially  cause  direct  impacts  on  houses  but 

 not roads, then the earthquake would be connected to the houses by edges but not to the road segments (Fig. 1A). 
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 In  contrast,  a  hypergraph  is  a  special  type  of  graph  where  the  edges,  called  hyperedges,  can  link  one  or  more  nodes  (Fig. 

 1B).  This  allows  us  to  represent  interactions  that  extend  beyond  a  single  pair  of  nodes  (Wolf  et  al.,  2016)  .  Compared  to 

 pairwise  edges,  which  only  connect  two  nodes,  hyperedges  can  connect  multiple  nodes  and  provide  a  more  natural 

 representation  for  the  spatial  overlap  between  exposed  elements,  like  houses,  and  geographical  hazard  footprints. 

 Hyperedges  can  thus  represent  nested  information  between  the  nodes  of  the  system,  such  as  their  properties  or  locations, 

 with  far  fewer  tabular  entries  (Fig.  1B).  The  hypergraph  uses  fewer  edges  to  represent  the  same  number  of  interactions 

 for  a  given  number  of  nodes;  this  size  difference  (e.g.,  for  the  example  in  Figure  1,  11x8=88  entries  for  the  graph 

 framework and 3x8=24 for the hypergraph framework) highlights the efficiency of the hypergraph approach. 

 The  increased  efficiency  enabled  by  hypergraphs  becomes  more  apparent  when  dealing  with  large,  interconnected 

 datasets  and  when  iterative  data  manipulation  is  required.  For  example,  we  can  run  hundreds  or  thousands  of  separate 

 simulations  on  the  same  hypergraph,  choosing  different  events  or  altering  input  parameters  within  a  Monte  Carlo 

 framework  (e.g.,  Dunant  et  al.,  2021a)  to  generate  ensemble  distributions  of  scenario  outcomes  (Robinson  et  al.,  2018). 

 The  improvement  in  computation  time  allows  the  hypergraph  framework  to  be  applied  to  multi-hazards  risk  assessment 

 over  larger  extents,  over  longer  time  periods,  and  with  more  complex  interactions  than  would  be  feasible  using  a 

 GIS-based approach or standard graph framework. 

 3. Methodology 

 Below  we  describe  the  setup  and  operation  of  the  multi-hazard  hypergraph  model  and  describe  its  application  to  the 

 2015 Gorkha earthquake. 

 3.1 Model overview and setup 

 The  model  is  based  around  a  set  of  interactions  between  elements  in  Nepal  that  are  drawn  from  experience  in  both  the 

 annual  monsoon  (Kincey  et  al.,  2022;  Jimee  et  al.,  2019;  Goda  et  al.,  2015;  Rosser  et  al.,  2021;  Kargel  et  al.,  2016)  and 

 recent  earthquakes,  including  the  2015  Gorkha  event  (e.g.,  Roback  et  al.,  2018;  Milledge  et  al.,  2019;  Kincey  et  al., 

 2021).  For  the  simulations  in  this  paper,  the  model  is  driven  only  by  earthquakes  (Fig.  2)  and  seeks  to  assess  the  risk  to 

 buildings  and  roads  at  a  national  scale.  Earthquake  shaking  is  simulated  as  a  spatial  distribution  of  peak  ground 

 acceleration  (PGA)  values;  these  could  be  derived  from  measurements  or  generated  for  a  potential  scenario  earthquake 

 via  a  shaking  model.  For  the  experiments  shown  here,  we  use  empirical  PGA  values  estimated  by  the  US  Geological 

 Survey  Shakemap  for  the  2015  Gorkha  earthquake 

 (  https://earthquake.usgs.gov/earthquakes/eventpage/us20002926/shakemap/pga  ).  Earthquake  shaking  can  affect 

 infrastructure  either  directly  (described  via  a  set  of  fragility  functions)  or  by  triggering  landslides.  Landslides,  in  turn, 

 may  affect  both  buildings  and  roads.  In  this  version  of  the  model,  other  hazards  such  as  rainfall  and  floods  are  not 

 considered, but they could be added via additional sets of hyperedges and interactions. 
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 Figure  2:  Driving  stimuli  and  important  process  interactions  for  the  area  affected  by  the  2015  Gorkha  earthquake  in  Nepal. 

 The elements that are included in the multi-hazard impact experiments documented here are shown in bold text. 

 To  model  coseismic  landslides,  we  subdivide  the  landscape  into  discrete  units  and  consider  the  characteristics  of  the 

 topography  as  well  as  the  driving  mechanisms  within  those  subdivisions.  Here  we  divide  the  landscape  into  slope  units 

 that  are  bounded  by  drainages  and  divide  lines  (Alvioli  et  al.,  2016;  Woodard  et  al.,  2024)  (see  Supplemental 

 Information  and  Fig.  S1).  Woodard  et  al.  (2024)  demonstrated  that  slope  units  are  preferable  to  gridded  topography 

 when  representing  landslide  susceptibility,  especially  for  input  landslide  data  that  are  imprecise  or  highly  spatially 

 variable in quality. 

 The  hyperedges  are  constructed  based  on  the  interactions  in  Figure  2.  A  hyperedge  connects  the  earthquake  node  with 

 all  of  the  slope  units  and  buildings  within  the  ‘footprint’  of  the  earthquake,  defined  by  the  extent  of  a  minimum  PGA  (X 

 g)  contour.  Similarly,  hyperedges  connect  each  slope  unit  with  the  buildings  and  roads  (divided  into  100  m  segments) 

 within  it;  we  therefore  assume  that  landslides  from  one  slope  unit  cannot  impact  elements  in  another.  Attributes  for  each 

 building,  road  segment,  and  slope  unit,  such  as  location,  PGA,  building  type,  landslide  susceptibility,  are  stored  on  the 

 hyperedges and can be displayed as continuous values in a tabular form. We describe each of these attributes below. 

 We  use  building  locations  and  roads  taken  from  the  Humanitarian  OpenStreetMap  Team,  covering  the  whole  of  Nepal, 

 and  available  at  https://data.humdata.org/dataset/hotosm_npl_buildings  and 

 https://data.humdata.org/dataset/hotosm_npl_roads  ,  respectively  (accessed  1  January  2021).  The  datasets  contain  c.  7.1 

 million  building  polygons  and  c.  3  million  road  segments.  Because  we  lack  specific  information  on  the  construction 

 type  of  each  building  to  assess  its  fragility,  we  instead  use  exposure  data  from  the  Modeling  Exposure  Through  Earth 

 Observation  Routines  (METEOR)  project  (  https://maps.meteor-project.org/map/building-exposure-map-of-  nepal  ) 

 (version  2020-02-15)  ,  which  includes  a  list  of  building  types  and  the  number  and  value  of  each  type  within  each  cell  of 

 a  90  x  90  m  grid  across  Nepal.  The  PGA  value  of  the  2015  Gorkha  earthquake  is  extracted  at  the  centroid  of  each 

 METEOR  grid  cell.  To  account  for  variability  in  construction  detail  and  quality  within  these  broad  types,  we  adopt  low, 
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 middle,  and  high  fragility  functions  for  the  ‘complete  damage’  state  for  typical  building  types  in  Nepal  from  the 

 METEOR  dataset  (Fig.  3).  We  take  the  definition  of  ‘complete  damage’  from  the  Hazus  framework  of  the  US  Federal 

 Emergency  Management  Agency  (FEMA,  2020).  We  generate  a  weighted-average  fragility  function  for  the  buildings 

 within  each  90  x  90  m  grid  cell  based  on  the  proportion  of  different  building  types;  thus,  in  the  absence  of  any 

 national-scale  building-specific  information,  all  buildings  within  that  cell  are  assumed  to  have  the  same  average 

 fragility.  We  assess  the  likelihood  of  ‘complete  damage’  because  this  implies  loss  of  usability  or  habitability,  with 

 consequences  for  displacement  and  disruption  to  life  and  livelihoods,  and  is  typically  used  to  estimate  fatality  and  injury 

 rates (FEMA, 2020). 
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 Figure  3:  Fragility  functions  used  in  the  hypergraph  network  modelling.  Each  panel  shows  fragility  curves  for  a  different 

 building  type  in  the  METEOR  dataset,  and  which  relate  the  peak  ground  acceleration  (PGA,  in  g)  to  the  probability  of  being 

 reduced  to  a  complete  damage  state.  Note  that  each  sigmoidal  fragility  curve  is  defined  by  two  parameters:  a  mean  or  scale 

 parameter  that  sets  the  PGA  value  for  a  50%  probability  of  complete  damage,  and  a  standard  deviation  (std)  that  defines  the 

 spread of the curve. Parameter values and sources for the fragility curves are included in the plots. 

 We  estimate  landslide  susceptibility  based  on  topographic  factors  alone,  using  a  seven-parameter  static  susceptibility 

 model  that  incorporates  elevation,  hillslope  aspect,  distance  to  rivers,  plan-view  curvature,  regional  relief,  local  hillslope 

 gradient,  and  a  terrain  ruggedness  index.  These  factors  are  derived  from  a  10  m  digital  elevation  model  (DEM)  that  was 

 downsampled  from  the  5  m  Advanced  Land  Observing  Satellite  World  3D  DEM 

 (  https://www.aw3d.jp/en/products/standard/  ).  We  generate  the  susceptibility  model  using  a  gradient  boosting  machine 

 learning  approach,  XGBoost,  implemented  in  Python.  For  the  experiments  shown  here,  the  susceptibility  model  is 

 trained  on  the  locations  of  coseismic  landslides  triggered  by  the  2015  Gorkha  earthquake  as  mapped  by  Kincey  et  al. 

 (2021),  yielding  an  area  under  the  receiver  operating  characteristic  (ROC)  curve  of  0.75  (Fig.  S2).  We  stress  that  this 

 susceptibility  layer  is  used  simply  as  an  exemplar  which  is  optimised  for  the  2015  Gorkha  earthquake;  for  other  model 

 applications,  susceptibility  data  generated  with  other  approaches  (see  review  in  Reichenbach  et  al.,  2018),  or  trained  on 

 different  inventories,  could  be  substituted.  Because  landslide  susceptibility  is  modelled  on  a  10  x  10  m  grid,  each  slope 

 unit  contains  a  unique  distribution  of  cell-wise  susceptibility  values  in  the  range  [0,1],  and  each  building  polygon  or 

 road  segment  overlaps  with  one  or  more  cellwise  susceptibility  values.  Importantly,  because  the  multi-hazard  model  is 

 intended  to  simulate  dynamic  cascading  scenarios,  we  choose  not  to  include  earthquake  shaking  as  a  determining  factor 

 in  the  static  landslide  susceptibility  model.  This  choice  preserves  independence  between  shaking,  landslide  triggering, 

 and the propagation of hazards along the hyperedges within the model. 

 We  extract  the  mean  and  standard  deviation  of  susceptibility  for  each  slope  unit,  building  and  road  segment,  although 

 other  measures  of  the  distribution  could  also  be  used.  Because  we  lack  general  building  or  road  fragility  functions  for 

 landslides  that  are  comparable  to  those  for  earthquakes  and  that  encompass  the  wide  range  of  possible  landslide  types 

 and  sizes  (see  Luo  et  al.,  2023,  for  a  recent  review),  we  adopt  a  simplified  binary  vulnerability  model,  such  that  any 

 building or road that is affected by a landslide is considered as 'impacted'. 

 3.2 Simulation steps 

 In  each  simulation,  the  model  works  iteratively  through  the  hyperedges  that  connect  the  driving  stimulus  of  earthquake 

 shaking  to  the  other  elements  in  the  model,  checking  against  a  condition  to  see  whether  that  hyperedge  of  the  network  is 

 ‘activated’  –  i.e.,  a  building  is  damaged  by  earthquake  shaking,  or  a  slope  unit  is  affected  by  one  or  more  landslides. 

 Activation  of  that  hyperedge  then  allows  the  stimulus  to  propagate,  and  potentially  to  cascade  along  other  hyperedges  if 

 further conditions are met (Fig. 4). The simulation continues until all cascades stop and no further impacts are possible. 
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 Figure  4.  Step-by-step  overview  of  the  hypergraph  framework  for  modelling  cascading  multi-hazard  impacts.  The 

 hypergraph  is  represented  in  a  simplified  example  on  the  left  and  the  algorithm  steps  are  specified  on  the  right.  The 

 simplified  hypergraph  assumes  a  landscape  with  two  slope  units,  each  of  which  contains  two  buildings  and  two  road 

 segments.  The  causal  cascades  of  the  algorithm  are  represented  in  three  steps;  from  top  to  bottom,  these  are  (1)  earthquake 

 shaking,  (2)  tests  for  ‘activation’  of  a  hillslope  and  ‘triggering’  of  landslides,  and  (3)  tests  for  impacts  on  structures  by 

 landslides.  In  the  simplified  hypergraph,  black  outlines  show  the  hyperedges  where  hazards  occur  (e.g.,  landslides  are 

 triggered  by  the  earthquake),  and  the  nodes  that  are  damaged  by  either  shaking  (step  2)  or  landsliding  (step  3).  The  process  is 

 embedded  in  an  iterative  Monte  Carlo  simulation  to  determine  the  uncertainty  associated  with  each  step,  creating  a  series  of 

 disaster scenarios that can be queried for further analysis. 

 In  the  experiments  shown  here,  the  first  step  is  to  work  through  the  hyperedge  that  connects  the  earthquake  to  the 

 individual  buildings  to  assess  their  damage  state.  For  each  building,  we  assign  the  PGA  value  at  the  centroid  of  its  90  x 

 90  m  METEOR  grid  cell.  We  use  the  high,  middle,  and  low  weighted  mean  fragility  functions  for  that  grid  cell  to 

 determine  the  likelihood  of  that  building  being  completely  damaged  –  which  is  equivalent  to  the  proportion  of  buildings 

 within  that  90  x  90  m  grid  cell  in  the  METEOR  dataset  that  is  completely  damaged.  This  likelihood  of  complete  damage 

 [0,1],  reproduces  the  weighted  mean  fragility  when  applied  over  the  METEOR  grid  cell.  The  low,  middle,  and  high 

 cases  provide  a  range  of  outcomes  for  an  individual  building  at  a  specific  PGA  value.  The  per-building  likelihoods  of 

 complete  damage  under  the  three  cases  can  then  be  summed  by  slope  unit  or  administrative  area  to  give  the  total 

 predicted number of completely-damaged buildings in each area. 

 Next,  we  assess  which  slope  units  are  ‘activated’  by  ground  shaking  (Fig.  4).  Activation  of  a  slope  unit  means  that  the 

 ground  accelerations  are  high  enough  to  potentially  trigger  one  or  more  landslides,  if  this  is  permitted  by  the 

 topographic  conditions  as  represented  by  the  landslide  susceptibility.  Again,  this  allows  the  stimulus  to  propagate  within 

 the  earthquake  hyperedge  to  the  slope  unit,  and  potentially  to  cascade  within  that  slope  unit  (and  affect  buildings  or  road 

 segments  within  it).  In  these  experiments,  we  conduct  a  logistic  regression  between  PGA  and  the  locations  of  landslides 

 in  the  inventory  of  coseismic  landslides  triggered  by  the  2015  Gorkha  earthquake  (Kincey  et  al.,  2021)  to  define  the 
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 regional-scale  probability  of  landslide  occurrence  as  a  lognormal  function  of  PGA  (see  Supplemental  Information  and 

 Fig.  S3).  We  calculate  the  mean  PGA  value  within  each  slope  unit,  and  use  that  to  determine  the  corresponding 

 probability  of  landsliding  within  the  slope  unit  from  the  lognormal  function.  That  probability,  in  turn,  is  compared  with 

 a  uniform  random  deviate  to  determine  whether  each  slope  unit  is  activated  or  not.  Thus,  over  large  numbers  of 

 simulations,  slope  units  with  more  observed  coseismic  landslides  will  be  activated  more  frequently,  but  the  exact  pattern 

 of activations in each individual simulation – and thus the portion of the hypergraph network that is sampled – will vary. 

 For  all  slope  units  that  are  activated,  the  model  proceeds  to  subsequent  hyperedges  to  assess  whether  buildings  or  road 

 segments  are  affected  by  direct  landslide  occurrence  (Fig.  4).  In  the  experiments  shown  here,  this  is  a  two-step  process. 

 We  first  check  if  a  landslide  occurred  within  the  slope  unit.  Even  if  the  shaking  was  strong  enough  to  potentially  trigger 

 a  landslide  (i.e.,  the  slope  unit  was  ‘activated’),  it  might  still  have  a  low  likelihood  of  experiencing  landsliding  due  to 

 low  susceptibility  (i.e.,  it  was  not  ‘triggered’).  Triggering  in  the  slope  unit  is  determined  by  drawing  a  value  (A)  from  a 

 Gaussian  distribution  of  landslide  susceptibility  with  the  same  mean  and  standard  deviation  as  the  distribution  of 

 susceptibility  values  in  that  slope  unit,  and  comparing  that  value  with  a  uniform  random  deviate  (B).  We  employ  a 

 Gaussian  distribution  for  efficiency,  as  this  can  be  calculated  in  advance  of  the  simulation,  and  note  that  it  provides  a 

 reasonable  fit  to  the  actual  distribution  across  a  wide  range  of  slope  units  (Supplemental  Information,  Fig.  S4).  If  the 

 susceptibility  value  A  is  smaller  than  B,  then  no  landslide  has  occurred  in  that  slope  unit,  and  propagation  along  that 

 hyperedge  stops.  If  A  is  larger  than  B,  then  one  or  more  landslides  has  occurred  in  that  slope  unit.  We  then  check  if  each 

 building  and  road  segment  within  the  slope  unit  is  affected  by  this  landsliding  by  comparing  the  landslide  susceptibility 

 value  at  the  infrastructure  location  with  another  uniform  random  deviate.  If  the  random  deviate  exceeds  the  landslide 

 susceptibility  value,  then  the  building  or  road  segment  remains  unaffected  by  the  landslide  (in  other  words,  even  if  a 

 landslide  happens  in  the  slope  unit,  it  doesn’t  affect  the  building  or  road).  Then,  the  simulation  continues  to  evaluate 

 other  buildings  or  roads  within  the  same  slope  unit,  and  then  moves  on  to  other  slope  units  activated  by  the  earthquake. 

 If  the  random  deviate  is  less  than  the  susceptibility  value,  then  the  building  or  road  segment  is  impacted  by  landsliding. 

 In  this  case,  we  add  it  to  the  pool  of  affected  elements  for  this  simulation  and  move  to  the  next  building  or  road.  We 

 continue  this  process  to  search  iteratively  through  all  slope  units  in  the  network  to  generate  a  single  cascading  impact 

 scenario. 

 3.3 Outputs and evaluation 

 The  iterative  simulation  process  outlined  above  is  repeated  within  a  Monte  Carlo  framework  to  create  an  ensemble  of 

 scenarios,  each  of  which  explores  a  different  set  of  outcomes  within  the  same  set  of  hyperedges.  In  the  experiments 

 shown  here,  we  generate  10,000  scenarios  from  the  initial  stimulus  of  the  2015  Gorkha  earthquake.  Hence,  all  scenarios 

 in  these  experiments  use  the  same  spatial  distribution  of  PGA  values  and  thus  the  probability  of  an  individual  building 

 suffering  complete  damage  by  shaking  stays  the  same.  What  differs  between  scenarios  are  the  details  of  which  slope 

 units  are  activated,  which  slope  units  experience  landsliding,  and  which  buildings  or  road  segments  are  impacted  by 

 those  landslides.  Thus,  we  take  the  likelihood  of  a  structure  being  affected  by  landsliding  over  the  whole  ensemble  as 

 the  proportion  of  the  10,000  scenarios  in  which  the  structure  is  impacted.  This  leads  to  a  shaking  impact  likelihood  and 

 a  landslide  impact  likelihood,  both  in  the  range  [0,1],  for  each  of  the  buildings  and  road  segments  in  our  combined 

 dataset. 
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 To  explore  the  trade-off  between  spatial  resolution  and  model  performance,  we  aggregate  the  structure-level  results  over 

 successively  larger  administrative  units.  Nepal  is  divided,  from  smallest  unit  to  largest,  into  6,743  wards,  753  urban  and 

 rural  municipalities,  77  districts,  and  7  provinces.  Aggregation  across  these  units  allows  us  to  evaluate  the  performance 

 of  the  model  against  independent  measures  of  earthquake  impacts  from  the  2015  Gorkha  earthquake  at  different  spatial 

 resolutions.  For  buildings  damaged  by  earthquake  shaking,  we  evaluate  the  model  in  two  ways.  First,  we  sum  up  the 

 per-building  likelihoods  of  complete  damage  in  each  district  for  the  low,  middle,  and  high  fragility  estimates  –  which 

 yields  the  number  of  completely-damaged  buildings  in  each  case  –  and  compare  those  sums  to  incident  reports 

 summarising  the  number  of  "fully  damaged”  buildings  per  district  and  published  on  the  Government  of  Nepal’s  Bipad 

 Portal  (http://drrportal.gov.np/  –  see  also  Chaulagain  et  al.,  2018)  based  on  the  Post-Disaster  Damage  and  Needs 

 Assessment  (PDNA)  (National  Planning  Commission,  2015).  This  assesses  the  ability  of  the  model  to  estimate  the 

 absolute  number  of  damaged  buildings.  While  this  data  remains  the  most  extensive  for  validation  purpose,  the  PDNA 

 was  done  urgently  after  the  disaster  with  limited  systematic  gathering  hence  it  relies  on  judgement  by  the  PDNA 

 participants  and,  therefore,  carry  significant  uncertainty  (Lallemant  et  al.,  2017).  Note  that  wards  and  municipalities 

 were  defined  in  the  federal  restructuring  of  Nepal  in  2017,  and  so  data  on  damaged  buildings  from  the  2015  earthquake 

 are  not  available  at  ward  or  municipality  level.  Second,  we  take  the  mean  likelihood  of  complete  damage  in  each 

 district,  in  the  range  [0,1],  and  compare  that  with  the  presence  or  absence  of  damaged  buildings  in  each  of  the  77 

 districts.  This  second  measure  is  independent  of  the  absolute  number  of  buildings,  and  gives  information  instead  on  the 

 ability of the model to anticipate the occurrence of one or more completely damaged buildings in an area. 

 For  structures  impacted  by  landslides,  we  derive  similar  statistical  measures  for  model  evaluation.  First,  we  sum  up  the 

 per-structure  likelihoods  of  landslide  impact  over  successively  larger  areas  of  aggregation  –  ward,  municipality,  district, 

 and  province.  Because  there  are  no  systematic  published  data  on  observed  landslide  impacts  on  buildings  and  roads  in 

 the  2015  earthquake,  we  generate  an  estimate  of  affected  structures  by  overlaying  the  coseismic  landslide  polygons 

 from  Kincey  et  al.  (2021)  on  our  building  and  road  dataset;  all  structures  that  intersect  with  a  mapped  landslide  polygon 

 are  assumed  to  have  been  impacted  by  landsliding  in  the  earthquake.  Note  that  this  measure  of  landslide  impacts  does 

 not  consider  the  significant  post-earthquake  changes  in  landslide  footprint  and  debris  runout  (e.g.,  Tian  et  al.,  2020; 

 Kincey  et  al.,  2022).  Also,  the  coseismic  landslides  were  mapped  on  medium-resolution  satellite  imagery  (c.  10  m, 

 equivalent  to  our  DEM  and  derived  topographic  metrics)  and  so  will  have  omitted  small  landslides  or  rockfalls, 

 especially  in  areas  of  dense  vegetation  or  steep  topography  (e.g.,  Williams  et  al.,  2018);  this  error  and  the  inherent 

 uncertainty  in  mapped  landslide  outlines  (Kincey  et  al.,  2021)  mean  that  our  estimate  of  the  number  of 

 landslide-affected  structures  is  likely  to  represent  a  lower  bound.  We  then  sum  the  observed  number  of  impacted 

 buildings  and  road  segments  by  administrative  area  to  compare  with  our  modelled  totals.  We  also  compare  the  mean 

 likelihood  of  landslide  impact,  averaged  by  administrative  area  and  ranging  from  [0,1],  with  the  presence  or  absence  of 

 landslide  impacts  in  that  area.  We  evaluate  the  relationship  between  these  parameters  with  the  area  under  the  ROC 

 curve and the F1 score. 

 4. Results 

 4.1 Impacts from earthquake shaking 

 We  first  consider  modelled  impacts  from  earthquake  shaking  alone.  Unsurprisingly,  the  probability  of  complete  damage 

 per  building,  or  equivalently  the  proportion  of  completely-damaged  buildings  within  each  90  x  90  m  exposure  grid  cell, 
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 closely  matches  the  estimated  PGA  contours  from  the  Gorkha  earthquake  (Fig.  5A).  There  are  particularly  high 

 probabilities  in  the  hill  and  mountain  districts,  especially  to  the  east  and  northeast  of  Kathmandu,  where  the  values 

 exceed  0.7.  Notably,  these  values  generally  increase  to  the  north  and  this  increase  is  cut  off  only  by  the  lack  of  buildings 

 above  elevations  of  around  3,500  m  in  northern  Nepal  (visible  as  the  white  areas  in  Fig.  5A).  The  Kathmandu  Valley 

 itself  yields  a  low  proportion  of  completely-damaged  buildings,  despite  moderately  high  PGA  values,  due  to  the 

 preponderance of less-fragile building types. 

 We  convert  the  proportion  of  completely-damaged  buildings  per  grid  cell  into  a  sum  total  aggregated  over 

 municipalities  (Fig.  5B)  and  districts  (Fig.  5C).  These  totals  reflect  the  PGA  pattern  and  the  weighted  mean  fragility 

 functions,  but  importantly  also  the  number  of  buildings  within  each  administrative  area.  When  aggregated  by 

 municipality,  the  largest  modelled  totals  tend  to  occur  in  the  more  densely-populated  Middle  Hills  in  the  vicinity  of 

 Kathmandu,  rather  than  the  more  sparsely-populated  north.  There  are  some  notable  exceptions  to  this  pattern,  such  as 

 Bharatpur  to  the  south  of  the  earthquake  epicentre  (Fig.  5B),  which  combines  a  large  stock  of  fragile  building  types  with 

 moderately  high  PGA  values.  When  aggregated  by  district,  the  largest  modelled  totals  are  again  dominated  by  areas 

 with  both  large  numbers  of  buildings  and  moderate  to  high  PGA  values  (Fig.  5C).  With  the  exception  of  Chitwan  to  the 

 south  of  the  epicentre,  the  largest  totals  are  found  in  districts  where  PGA  exceeded  0.4  g.  It  is  instructive  to  compare  the 

 aggregated  pattern  by  district  to  the  actual  numbers  of  completely-damaged  buildings  (Fig.  5D).  There  are  broad 

 similarities  between  modelled  and  observed  totals,  especially  in  the  hill  and  mountain  districts  of  Sindhupalchok, 

 Nuwakot,  and  Kavrepalanchok.  Notably,  the  model  over-predicts  the  impacts  in  districts  close  to  the  epicentre, 

 including  Gorkha  and  Chitwan,  and  under-predicts  the  impacts  at  the  eastern  margin  of  the  rupture  in  Dolakha  (Fig. 

 5D). 
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 Figure  5:  Modelled  building  impacts  from  shaking  in  the  2015  Gorkha  earthquake.  In  all  panels,  the  red  contours  show  the 

 estimated  PGA  values  from  the  earthquake  in  g.  Note  that  these  results  are  derived  from  the  middle-case  fragility  functions  in 

 Fig.  4.  A,  modelled  probability  of  complete  damage  for  individual  buildings  across  the  country.  This  is  equivalent  to  the 

 proportion  of  completely-damaged  buildings  in  each  90  x  90  m  grid  cell  in  the  METEOR  exposure  dataset.  B,  modelled  sum 

 total  of  completely-damaged  buildings  aggregated  by  municipality.  C,  modelled  sum  total  of  completely-damaged  buildings 

 aggregated  by  district.  D,  actual  sum  of  reported  “fully  damaged”  buildings  aggregated  by  district.  Note  similar  colour  scales 

 in panels C and D. 

 To  better  visualise  the  agreement  between  modelled  and  observed  totals  of  completely-damaged  buildings,  we  compare 

 the  observed  totals  for  all  77  districts  in  Nepal  with  model  results  using  the  high,  middle,  and  low  fragility  cases  (Fig. 

 6A).  For  most  districts  with  non-zero  impacts,  the  observed  totals  fall  within  the  range  of  model  results  using  the 

 different  fragility  curves,  with  a  slight  bias  toward  model  over-prediction  (Fig.  6B).  Among  the  top  15  districts  in  terms 

 of  modelled  impacts,  observed  impacts  fall  below  that  range  in  three  districts  (Chitwan,  Tanahu,  and  Kaski;  see  Fig.  5C 

 for  locations),  within  that  range  in  11,  and  above  that  range  in  only  one  (Dolakha).  Alternatively,  out  of  the  ‘14 

 worst-affected  districts’  identified  by  the  Government  of  Nepal,  observed  impacts  fall  within  the  range  of  model  results 

 in  thirteen  districts,  with  Dolakha  being  the  only  outlier.  The  model  thus  appears  to  be  somewhat  conservative  in  that  it 

 slightly  over-predicts  building  impacts  due  to  shaking  in  the  2015  earthquake.  The  mismatch  between  modelled  and 

 observed  totals  is  not  clearly  related  to  building  typologies  (Fig.  6C).  There  may  be  a  weak  correlation  with  shaking; 
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 districts  with  significant  over-prediction  tend  to  be  those  with  lower  mean  PGA  values  (typically  <0.44  g)  while 

 Dolakha has a larger mean PGA (0.59 g), and we explore this point in the Discussion. 

 Figure  6:  A,  comparison  of  modelled  and  observed  numbers  of  completely-damaged  buildings  per  district  in  the  2015  Gorkha 

 earthquake.  Bars  show  the  range  of  modelled  results  for  each  district  using  high  and  low  fragility  cases  (see  Fig.  4),  with  the 

 middle  case  shown  by  the  black  arrow.  Red  dots  show  the  reported  numbers  of  "fully  damaged”  buildings.  Blue  numbers 

 show  the  mean  PGA  for  each  district,  in  g.  The  inset  shows  the  same  quantities  with  a  logarithmic  y-axis  scale.  B,  mismatch 

 between  observed  (  D  obs  )  and  modelled  (  D  mod  )  numbers  for  each  district,  normalised  by  the  total  number  of  buildings  in  that 

 district  (  N  ).  Negative  values  indicate  model  over-prediction,  while  positive  values  indicate  model  under-prediction.  Note  that 

 impacts  in  most  of  the  districts  with  non-zero  damage  values  are  slightly  under-predicted.  C,  proportion  of  different  building 

 types  in  each  district  from  the  METEOR  exposure  data  set.  There  is  no  clear  correlation  between  the  residuals  in  panel  B  and 

 the dominant building types. 

 4.2 Impacts from coseismic landslides 

 As  with  shaking  damage,  the  modelled  probability  of  a  building  (Fig.  7A)  or  road  segment  (Fig.  7D)  being  impacted  by 

 a  coseismic  landslide  scales  with  PGA;  this  is  simply  a  consequence  of  the  assumed  relationship  between  PGA  and 

 landslide  triggering  (Fig.  S3).  Higher  probability  values  are  found  in  northern  areas  of  Nepal,  where  landslide 
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 susceptibility  is  elevated  (Fig.  S2).  We  aggregate  these  probabilities  to  estimate  the  number  of  impacted  buildings  and 

 road  segments  at  the  municipality  (Fig.  7B,  E)  and  district  (Fig.  7C,  F)  levels.  The  regions  experiencing  the  highest 

 predicted  impacts  closely  align  with  those  observed,  notably  concentrated  in  Sindhupalchok  district,  where  both 

 modelled  and  observed  landslide  impacts  are  most  prevalent  (Fig.  7C,  F).  Again,  these  areas  predominantly  lie  in 

 northern  Nepal  where  susceptibility  to  landslides  is  greatest,  contrasting  somewhat  with  the  distribution  of  modelled 

 shaking  damage.  This  disparity  may  stem  from  the  higher  and  more  widely  dispersed  density  of  buildings  in  the 

 southern  regions.  Consequently,  while  shaking-related  damage  appears  diffuse,  landslide-related  damage  is  more 

 focused  in  specific  regions  due  to  localized  exposure.  Importantly,  the  model  anticipates  approximately  an  order  of 

 magnitude  fewer  building  impacts  from  landslides  as  compared  to  those  damaged  by  shaking  (note  the  scale  difference 

 between  Figs.  5  and  7).  We  also  note  that,  while  the  overall  spatial  patterns  of  modelled  building  and  road  impacts  are 

 similar,  the  model  predicts  somewhat  higher  numbers  of  road  impacts  (by  about  50%),  and  that  this  generally  matches 

 the  observed  differences  in  intersections  between  these  infrastructure  types  with  coseismic  landslides  (Fig.  7).  Roads  are 

 typically  sited  along  or  near  valley  floors  ,  thus  increasing  their  exposure  to  landslides.  Additionally,  there  is  a 

 significant  association  between  roads  and  landslides  (e.g.,  Hearn  and  Shakya,  2017;  McAdoo  et  al.,  2018),  suggesting 

 that  the  interaction  between  landslides  and  roads  may  cover  a  broader  spatial  extent  compared  to  the  relationship 

 between landslides and buildings. 
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 Figure  7:  Modelled  structural  impacts  from  coseismic  landslides  in  the  2015  Gorkha  earthquake.  In  all  panels,  the  red 

 contours  show  the  estimated  PGA  values  from  the  earthquake  in  g.  The  red  crosses  show  observed  landslide  impacts  on 

 buildings  (left  column)  and  road  segments  (right  column),  derived  by  mapping  the  intersections  between  those  structure 

 locations  and  the  coseismic  landslide  inventory  of  Kincey  et  al.  (2021).  A,  modelled  probability  of  impact  for  individual 

 buildings  across  the  country.  B,  sum  of  per-building  probabilities  aggregated  by  municipality,  of  which  there  are  753  in 

 Nepal.  C,  sum  of  per-building  probabilities  aggregated  by  district,  of  which  there  are  77  in  Nepal.  D,  modelled  probability  of 

 impact  for  individual  100  m  road  segments  across  the  country.  E,  sum  of  per-road  segment  probabilities  aggregated  by 

 municipality. F, sum of per-road segment probabilities aggregated by district. 

 The  correlation  between  the  modelled  and  observed  numbers  of  buildings  impacted  by  landslides  depends  upon  the  area 

 over  which  they  are  aggregated  (Fig.  8).  At  province  (n  =  7)  and  district  (n  =  77)  levels,  there  is  an  approximately  linear 

 relationship  between  modelled  and  observed  numbers  of  buildings,  with  a  Pearson’s  correlation  coefficient  >0.80  (Fig. 

 8).  At  municipality  and  ward  levels,  however,  the  correlation  is  much  weaker.  Notably,  modelled  numbers  of  buildings 

 over-predict  the  observed  totals  by  a  factor  of  about  50-100,  irrespective  of  the  administrative  area.  Similar  results  are 

 seen  for  road  segments:  good  linear  correlations  for  province-  and  district-level  aggregation,  much  weaker  performance 

 for municipalities and wards, and over-prediction of impacts by a factor of about 20-25 (Fig. 8). 
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 Figure  8:  Comparison  of  modelled  (x-axis)  and  observed  (y-axis)  numbers  of  building  and  road  impacts  from  coseismic 

 landslides  in  the  2015  Gorkha  earthquake,  summed  over  different  administrative  areas.  Straight  lines  show  best-fit  linear 

 regression  results.  Note  differences  in  axis  limits  depending  on  the  area  of  aggregation  by  province  (red),  district  (orange), 

 municipality (green), or ward (blue). 
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 Figure  9:  ROC  (top),  F1  (lower  left),  and  precision-recall  (lower  right)  curves  for  coseismic  landslide  impacts  of  buildings  and 

 road  segments  aggregated  over  province,  district,  municipality,  ward  and  at  the  individual  infrastructure  scale.  Numbers  in 

 the top panels show the area under the ROC curves. Line colours match the symbol colours in Fig. 8. 

 As  a  more  permissive  test  of  the  model’s  ability  to  anticipate  landslide  impacts,  we  also  compare  the  mean  likelihood  of 

 landslide  impacts,  averaged  by  administrative  area,  with  the  presence  or  absence  of  impacts  in  those  areas.  While  the 

 area  under  the  ROC  curves  is  high  for  all  aggregation  levels  (Fig.  9),  this  is  likely  due  to  the  strong  imbalance  between 

 prediction  categories  (i.e.,  there  are  many  more  non-impacted  buildings  than  impacted  buildings,  so  the  ROC  curve  is 

 dominated  by  the  large  number  of  true  negative  model  results).  In  contrast,  precision-recall  curves  show  a  progressive 

 decrease  in  model  performance  at  progressively  smaller  levels  of  aggregation,  from  province  to  ward,  and  very  low 

 precision  at  the  scale  of  an  individual  building  or  road  segment  (Fig.  9).  Because  F1  scores  combine  precision  and 

 recall,  they  show  a  similar  pattern  (Fig.  9);  across  the  full  range  of  thresholds,  F1  scores  for  both  buildings  and  roads 

 (Fig.  9)  are  highest  for  province-  and  district-level  aggregation  and  lowest  for  ward-level  aggregation.  For  an  optimal 

 model  threshold,  province-level  aggregation  achieves  maximum  F1  scores  of  around  c.  0.8  for  buildings  and  c.  0.65  for 

 roads.  The  maximum  F1  scores  for  buildings  are  also  around  0.8  for  districts  and  diminish  progressively  to  0.55  for 

 municipalities  and  0.4  for  wards.  For  roads,  the  maximum  F1  scores  are  0.8  for  districts  and  municipalities,  and  0.55  for 

 wards.  In  sum,  these  results  indicate  that,  while  the  model  can  reproduce  the  spatial  pattern  of  landslide  impacts  at  the 

 provincial  or  district  scale,  its  predictive  capability  is  much  weaker  when  assessing  impacts  within  smaller 

 administrative  units  like  municipalities  and  wards,  and  it  should  not  be  used  to  predict  impacts  to  individual  buildings  or 

 road segments. 

 5. Discussion 

 5.1 General observations 

 Overall,  the  hyperedge  model  is  able  to  reproduce  the  overall  spatial  pattern  of  the  impacts  from  the  Gorkha  earthquake. 

 This  lends  some  confidence  that  the  model  framework  could  be  adapted  to  estimate  the  potential  impacts  from  a  future 

 event,  such  as  a  large  earthquake  or  rainstorm.  While  the  computational  efficiency  of  the  hyperedge  approach  is  a 

 notable  strength  –  enabling  rapid  simulations  involving  extensive  elements,  such  as  the  approximately  7.1  million 

 individual  buildings  and  3  million  road  segments  in  our  case  –  its  significance  extends  beyond  speed  and  flexibility 

 because  it  fosters  the  generation  of  multi-hazard  scenario  ensembles,  diverging  from  the  limitation  of  focusing  solely  on 

 deterministic  impact  scenarios.  Robinson  et  al.  (2018)  demonstrated  the  advantages  of  scenario  ensembles  over  the 

 more  common  approach  of  single  deterministic  scenarios,  especially  as  a  tool  for  facilitating  awareness  of  what  could 

 be  possible  in  a  future  event.  While  creation  of  multi-hazard  scenario  ensembles  is  our  wider  goal,  the  experiments 

 shown here focus on multiple realisations of the same past event for the purpose of evaluation. 

 A  key  finding  of  the  experiments  is  the  trade-off  between  model  performance,  in  terms  of  the  ability  to  anticipate  both 

 the  spatial  pattern  and  number  of  impacts,  and  the  resolution  of  the  model  outputs.  Because  of  the  probabilistic  nature  of 

 the  model  and  limitations  in  our  understanding  of  exposure,  earthquake  shaking,  and  landslide  susceptibilities,  we 

 cannot  say  with  confidence  which  buildings  were  impacted  by  hazards  related  to  the  2015  earthquake.  As  we  aggregate 

 the  model  results  over  increasingly  large  areas,  however,  our  ability  to  rank  those  areas  in  terms  of  impact,  and  to 

 estimate  the  number  of  structures  affected,  increases  monotonically.  While  our  results  can  therefore  not  be  used  to 
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 anticipate  the  risk  to  individual  households,  they  could  be  used  by  organisations  working  at  a  larger  scale  to  identify 

 areas  that  are  more  or  less  prone  to  different  types  of  hazards,  and  provide  a  relative  ranking  in  terms  of  the  number  and 

 scale  of  expected  impacts.  Thus,  the  value  and  potential  usefulness  of  the  hypergraph  approach  as  implemented  here  lies 

 more  in  informing  planning  over  larger  spatial  scales,  at  which  the  model  performs  best,  as  opposed  to  rapid  response  to 

 a  particular  event  where  detailed  spatial  information  would  be  required.  There  is  some  indication  that  absolute  numbers 

 of  affected  structures  could  be  generated  for  larger  administrative  units  by  extrapolating  the  scaling  by  our  analysis  of 

 the  2015  earthquake  (see,  for  example,  Fig.  8),  but  we  hesitate  to  draw  conclusions  from  a  single  earthquake  without 

 further testing. 

 5.2 Over-prediction and relative impacts between hazards 

 We  note  that  the  model  over-predicts  the  number  of  impacts  at  all  levels  of  aggregation,  and  is  therefore  conservative  in 

 terms  of  anticipating  the  scale  of  impacts  for  the  2015  earthquake.  The  possible  reasons  for  this  over-prediction  are 

 likely  to  differ  for  shaking  and  landslide  impacts.  The  mismatch  in  the  number  of  buildings  damaged  by  shaking  is 

 especially  notable  for  districts  with  moderate  mean  PGA  values  (typically  <0.5  g;  Fig.  6A).  The  sigmoidal  fragility 

 functions  used  in  the  model  are  steepest  at  moderate  PGA  values  (Fig.  3);  for  the  middle  case,  this  corresponds  to  PGA 

 values  of  ~0.2-0.5  g  for  the  most  common  building  types  in  Nepal.  Thus,  small  uncertainties  in  PGA  will  yield  large 

 differences  in  the  likelihood  of  complete  damage,  and  thus  in  the  numbers  of  completely-damaged  buildings  in  our 

 model  experiments.  This  issue  is  compounded  by  the  highly-uncertain  values  of  ground  motion  in  the  Gorkha 

 earthquake  stemming  from  the  paucity  of  strong-motion  recordings,  as  noted  by  Goda  et  al.  (2015).  We  also  note  that 

 our  experiments  do  not  account  for  aftershocks,  including  the  M  w  7.3  earthquake  that  occurred  on  12  May  and  that 

 ruptured  the  eastern  end  of  the  25  April  slip  patch  under  Dolakha  district  (Avouac  et  al.,  2015).  This  event  likely  led  to 

 additional  building  damage  which  was  included  in  the  observations  but  is  not  simulated  here,  perhaps  leading  to 

 under-prediction in Dolakha in particular. 

 Over-prediction  of  observed  landslide  impacts,  in  contrast,  may  result  from  a  range  of  different  factors.  As  noted  above, 

 in  the  absence  of  an  independent  dataset  of  landslide  impacts  on  buildings  or  roads  in  the  2015  earthquake,  we  have 

 generated  these  data  by  intersecting  those  elements  at  risk  with  the  coseismic  landslide  inventory  of  Kincey  et  al. 

 (2021).  This  is  likely  to  underpredict  the  actual  number  of  impacts  due  to  errors  and  limitations  in  landslide  mapping  as 

 well  as  the  potential  for  buildings  to  be  omitted  from  the  Humanitarian  OpenStreetMap  database.  It  is  also  important  to 

 note  that  our  approach  relies  on  a  probabilistic  sampling  of  an  underlying  landslide  susceptibility  dataset  in  order  to 

 anticipate  (1)  the  slope  units  in  which  a  landslide  is  most  likely  to  be  triggered,  and  (2)  the  buildings  and  road  segments 

 that  were  most  likely  to  be  affected.  Our  results  are  thus  highly  dependent  upon  the  quality  of  the  underlying 

 susceptibility  information.  In  the  experiments  described  here,  susceptibility  is  a  static  quantity  that  depends  only  upon 

 local  topography.  Because  we  are  focused  on  a  single  event,  there  is  no  direct  provision  for  dynamic  variation  in 

 susceptibility  over  time  or  for  other  factors  that  may  affect  landslide  occurrence,  such  as  the  presence  or  absence  of 

 antecedent  rainfall,  soil  moisture  or  other  measures  of  ground  condition,  or  land  cover.  Further  applications  of  the 

 model  could  incorporate  susceptibility  estimates  that  are  trained  on  other  landslide  inventories  –  for  example, 

 time-varying  susceptibility  that  captures  the  evolution  of  landslide  hazard  over  time  (e.g.,  Tian  et  al.,  2020;  Kincey  et 

 al., 2021, 2022) or that depends upon other causative factors (e.g., Reichenbach et al., 2018). 
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 Our  model  result  that  the  number  of  buildings  damaged  by  ground  shaking  is  approximately  an  order  of  magnitude 

 greater  than  that  impacted  by  landslides  is  difficult  to  test  directly  because  of  the  lack  of  a  systematic  description  of  the 

 sources  of  building  damage  in  the  2015  Gorkha  earthquake.  It  is  broadly  consistent,  however,  with  previous  work  on  the 

 relative  importance  of  secondary  hazards  –  including  landslides  –  and  ground  shaking  in  determining  earthquake  losses. 

 Bird  and  Bommer  (2004)  assessed  the  relative  impacts  of  ground  shaking  and  ground  failure  on  direct  and  indirect 

 losses  in  earthquakes.  They  found  that  fatal  landslides  occurred  in  10  of  their  50  studied  earthquakes  and  that  landslides 

 could  be  the  primary  cause  of  building  damage  in  affected  areas,  locally  overshadowing  ground  shaking.  Overall, 

 however,  ground  shaking  was  the  primary  cause  of  building  damage  in  88%  of  their  studied  earthquakes,  and  landslides 

 in  only  6%.  They  also  found  that  landslide-induced  disruption  of  road  or  transport  networks  was  much  more  common 

 than  building  damage,  which  matches  our  model  results  for  the  Gorkha  earthquake.  Daniell  et  al.  (2017)  argued  that 

 ground  shaking  has  caused  62%  of  total  economic  costs  in  earthquakes  over  the  period  1900-2016,  with  landslides 

 responsible  for  5%  of  total  costs.  Marano  et  al.  (2010)  found  that  21.5%  of  the  fatal  earthquakes  in  the  PAGER-CAT 

 database  had  deaths  due  to  secondary  hazards,  but  that  these  were  rarely  the  main  cause  of  death.  Landslides  were  the 

 leading  cause  of  non-shaking-related  deaths  if  the  2004  Great  Sumatra  earthquake  was  excluded,  although  they 

 accounted  for  about  an  order  of  magnitude  fewer  deaths  than  ground  shaking.  In  contrast,  Budimir  et  al.  (2014) 

 demonstrated  that  earthquakes  with  landslides  typically  cause  more  fatalities  than  those  without,  independent  of  other 

 factors  such  as  earthquake  size  or  affected  population.  Their  results  demonstrate  the  need  to  account  for  the  full 

 multi-hazard  cascade  in  anticipating  losses  at  anything  other  than  a  simplified  regional  scale  (e.g.,  Bird  and  Bommer, 

 2004; Daniell et al., 2017). 

 5.3 Limitations 

 While  the  model  operates  on  a  hyperedge  that  connects  every  structure  within  the  dataset,  there  are  a  number  of  factors 

 that  cannot  be  resolved  at  a  building  scale.  Notably,  PGA  values  were  gridded  at  a  spatial  resolution  of  100  by  100  m, 

 meaning  that  we  have  no  information  on  the  actual  accelerations  experienced  by  individual  buildings  or  road  segments. 

 Similarly,  while  landslide  susceptibility  was  estimated  using  a  comparatively  fine-scale  DEM  with  a  grid  size  of  10  x  10 

 m,  each  individual  building  or  road  segment  occupies  at  most  a  few  grid  cells  and  the  susceptibility  values  are  thus 

 highly  location-dependent.  It  is  also  important  to  note  that  we  do  not  simulate  the  triggering,  occurrence,  and  runout  of 

 individual  landslides,  nor  do  we  ‘place’  landslides  in  the  landscape  as  would  be  done  for  example  in  a  landscape 

 evolution  model  (e.g.,  Croissant  et  al.,  2017;  2019).  Such  a  calculation  would  dramatically  increase  both  the  model 

 complexity,  making  it  infeasible  to  construct  a  multi-hazard  scenario  ensemble  at  a  national  scale.  Because  of  this 

 limitation,  we  cannot  directly  evaluate  which  elements  at  risk  are  directly  impacted  by  landslides,  nor  can  we  anticipate 

 which  elements  may  be  affected  by  remobilisation  and  runout  of  landslide  debris  (e.g.,  Kincey  et  al.,  2022).  By 

 sampling  the  landslide  susceptibility  distribution  for  each  slope  unit,  and  the  landslide  susceptibility  values  for  each 

 building,  we  are  (over  enough  iterations)  recovering  those  distributions,  but  we  cannot  overcome  the  inherent 

 uncertainty  in  susceptibility  at  those  locations.  Finally,  the  METEOR  exposure  dataset  contains  information  on  the 

 building  types  and  numbers  within  each  90  x  90  m  grid  cell,  but  we  have  no  information  on  the  type  and  fragility  of 

 individual  buildings.  Therefore,  while  impact  likelihood  is  calculated  at  the  scale  of  individual  structures,  we  stress  that 

 this  estimate  is  only  meaningful  across  the  whole  scenario  ensemble,  and  should  never  be  interpreted  as  a  statement  that 

 ‘building X will be affected by this earthquake’. 
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 5.4 Other applications 

 Because  of  its  efficiency,  the  framework  allows  exploration  of  other  elements  of  model  performance,  including  the 

 distinction  between  false  positive  and  false  negative  errors.  While  performance  measures  such  as  the  area  under  an 

 ROC  or  precision-recall  curve  can  be  used  to  define  an  ‘optimum’  model  outcome,  the  model  application  and  users  may 

 determine  which  type  of  error  is  more  important  to  minimise.  For  example,  a  humanitarian  organisation  may  view  false 

 positives  as  more  acceptable  than  false  negatives;  the  former  may  lead  at  worst  to  unnecessary  preparations,  whereas 

 the  latter  means  that  impacts  are  not  anticipated  and  may  delay  relief  and  recovery  efforts.  By  quickly  generating 

 numerous  multi-hazard  scenarios,  the  framework  can  be  run  with  users  to  explore  these  different  outcomes,  and  to 

 examine  the  specificity  of  model  results  to  the  details  of  a  particular  scenario  (e.g.,  Robinson  et  al.,  2018).  The  model 

 could  also  be  used  to  explore  ‘what-if’  questions  with  users  to  examine  the  effects  of  particular  interventions  or 

 remediation  measures.  In  addition,  the  efficiency  of  the  framework  could  be  used  to  explore  the  evolution  of  risk  over 

 time,  where  increased  simulation  length  or  time  resolution  would  lead  to  an  increase  in  computational  cost.  Thus,  the 

 effects  of  policy  decisions,  climate  change  and  consequent  changes  in  hazard  occurrence,  or  demographic  shifts  on  the 

 pattern of anticipated impacts could be explored (Zschau, 2017). 

 The  flexibility  of  the  hyperedge  framework  also  lends  itself  to  other  types  of  simulation.  Other  elements  of  the 

 multi-hazard  chain  shown  in  Fig.  2  could  be  included;  for  example,  susceptibility  to  landslide  debris  remobilisation  and 

 runout  could  be  included  and  sampled  for  each  element  at  risk,  allowing  the  model  to  anticipate  both  the  direct  impacts 

 within  an  event  as  well  as  potential  longer-term  impacts  arising  from  later  secondary  hazards  (e.g.,  Fan  et  al.,  2019; 

 Kincey  et  al.,  2022).  Impacts  from  other  types  of  driving  events,  such  as  monsoon  rainfall,  could  also  be  explored.  It 

 would  be  feasible,  for  example,  to  generate  an  ensemble  of  scenarios  around  different  rainfall  patterns  associated  with  a 

 seasonal  monsoon  outlook,  or  with  different  iterations  of  shorter-term  weather  forecasts,  to  look  at  the  pattern  and 

 specificity  of  impacts.  Such  an  application  would  be  subject  to  the  comparatively  low  spatial  resolution  of  both 

 observational  (e.g.,  Hou  et  al.,  2014)  and  forecast  rainfall  data  products,  so  that  –  just  as  with  the  earthquake  scenarios 

 developed  here  –  the  impact  results  at  the  scale  of  an  individual  structure  would  not  be  meaningful.  The  hyperedge 

 framework  would,  however,  allow  exploration  of  the  trade-offs  between  aggregation  and  model  performance,  as 

 demonstrated  here,  and  could  be  useful  for  informing  humanitarian  contingency  planning  for  annual  rainfall-related 

 impacts in Nepal and other monsoon-affected countries. 

 6. Conclusions 

 Accounting  for  the  multi-hazard  aspects  of  risk  is  crucial  for  disaster  risk  reduction  and  humanitarian  planning. 

 Traditional  approaches  to  risk  modelling  tend  to  omit  the  interactions  between  hazards  and,  even  when  these 

 interactions  are  accounted  for,  may  struggle  to  meet  the  computational  demands  posed  by  such  complex  scenarios. 

 Here,  we  demonstrate  that  a  new  model  based  on  hypergraph  theory,  a  type  of  network  modelling  approach,  is  able  to 

 efficiently  simulate  multi-hazard  risk.  The  model  framework  accounts  for  the  interactions  between  a  driving  stimulus 

 such  as  an  earthquake  or  rainstorm  with  processes  on  the  landscape  (such  as  landslides)  and  exposed  infrastructure. 

 Beyond  overcoming  computational  challenges,  this  framework  can  facilitate  multi-hazard  risk  assessments  by  enabling 

 the  generation  of  ensembles  to  explore  the  importance  of  different  geophysical  hazards,  larger  areas,  longer  timeframes, 

 and  diverse  counterfactual  scenarios.  This  versatility  enhances  our  understanding  of  complex  risk  landscapes  and 

 empowers decision-makers with valuable insights for proactive disaster preparedness and response strategies. 
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 We  explore  the  capabilities  of  the  model  through  a  case  study  of  the  2015  M  w  7.8  Gorkha  earthquake  in  Nepal,  which 

 caused  widespread  damage  due  to  both  primary  shaking  and  secondary  landslides.  We  find  that  the  model  can  reproduce 

 the  overall  spatial  pattern  of  earthquake  impacts.  The  observed  numbers  of  completely-damaged  buildings  in  most 

 districts,  including  13  out  of  the  14  worst-affected  districts,  fall  within  the  range  of  model  predictions,  which  depends 

 primarily  on  the  assumed  fragility  functions  for  the  typical  building  types  found  in  Nepal.  The  model  also  broadly 

 reproduces  the  spatial  patterns  of  structures  that  were  damaged  by  coseismic  landslides  in  the  earthquake,  although  it 

 overestimates  the  absolute  number  of  impacts.  This  may  be  due  to  limitations  in  the  data  used  by  the  model  to 

 determine  impacts.  Importantly,  there  is  an  increase  in  model  performance  when  the  results  are  aggregated  over  larger 

 administrative  areas;  the  model  does  a  reasonable  job  of  anticipating  the  relative  impacts  at  a  province  or  district  scale, 

 but  performs  much  less  well  at  the  smaller  scales  of  municipalities  or  wards.  This  result  suggests  that  the  hypergraph 

 framework  could  be  usefully  applied  to  rank  administrative  areas  by  expected  impacts,  for  example  due  to  a  future 

 earthquake  or  rainstorm,  to  underpin  pre-disaster  contingency  planning  efforts  where  large-scale  trends  are  more 

 important  than  detailed  impact  predictions.  The  computational  efficiency  of  the  hypergraph  framework,  even  at  the 

 scale  of  an  entire  country  such  as  Nepal,  lends  itself  to  the  generation  of  multiple  impact  scenarios  and  raises  the 

 possibility  of  using  an  ensemble  of  potential  scenario  results  rather  than  depending  upon  single-event  scenarios  for 

 disaster preparedness and planning. 
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