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20 Supplementary material 1. Slope unit explanation and parameters
21
22 To define slope units, we use the methodology of Alvioli et al. (2016, 2020) as described in detail by Kincey et al.
23 (2022) in their derivation of slope units for Nepal. We refer the reader to Kincey et al. (2022) for a full evaluation. The
24 methodology divides a landscape into individual units separated by drainages and divide boundaries, according to a set
25 of user-specified parameters. We use the 7.slopeunits package within GRASS GIS v.7.8.4, run on the AW3D digital
26 elevation model resampled to a cell size of 10 x 10 m. We choose minimum parameter settings from the range of values
27 recommended by Alvioli et al. (2016) to ensure that smaller slope units were retained and to match observed hillslope

28 length scales in Nepal. The resulting slope unit map is shown in Figure S1. Parameter names and values are as follows:

29

30 e The drainage area threshold thresh = 5,000,000 m? identifies cells with a flow accumulation greater than the

31 threshold, delineating drainage lines and subsequently forming catchments that are subdivided into half basins
32 (HBs).

33 e The minimum surface area areamin = 50,000 m? defines the smallest acceptable area for a slope unit.

34 e The minimum circular variance of terrain aspect within a slope unit cvmin = 0.2 plays a crucial role in

35 determining the uniformity of HBs concerning terrain aspect. This parameter, calculated as 1 — (|R|/N,), where
36 N, is the number of grid cells in each half basin and |R| is the magnitude of the vector resulting from the

37 summation of all unit vectors describing the orientation of each grid cell, influences the degree of homogeneity
38 in aspect among slope units. Small values of cvmin result in HBs with more uniform aspect, large values in less
39 uniformity.



40 e The reduction factor /= 10 governs the rate at which the drainage area threshold thresh decreases for

41 subsequent iterations. A smaller value of 7/ results in a faster decrease, enabling more subdivisions and

42 iterations, albeit at the cost of processing time.

43 e The cleaning parameter cleansize = 20,000 m? sets the threshold value for cleaning procedures, removing slope
44 units smaller than this area. It is also used in additional cleaning steps that inspect for unrealistic elongation or
45 aspect similarity.

46

47 200000 200000
48 Figure S1: Map of slope units for Nepal, using the parameter values given above. The inset shows a detailed area of

49 north-central Nepal, illustrating the detailed relationship between slope unit boundaries (red) and topography.
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52 Supplementary material 2. Coseismic landslide susceptibility

53

54 To estimate the spatial pattern landsliding due to the 2015 Gorkha earthquake, we utilise a landslide susceptibility layer
55 for Nepal with a cell size of 10 x 10 m that is trained on the 2015 coseismic landslide inventory. Landslide susceptibility
56 is determined with a static susceptibility model that depends upon seven topographic factors: elevation, hillslope aspect,
57 distance to rivers, plan-view curvature, regional relief, local hillslope gradient over a 3 x 3 cell window, and a terrain

58 ruggedness index. All factors are derived from the AW3D digital elevation model resampled to a cell size of 10 x 10 m.
59 Distance to rivers has been calculated as the straight-line (Euclidean) distance from each pixel to the nearest river and
60 river confluence, respectively. Rivers are defined using a flow accumulation tool that identifies rivers based on an

61 upstream area threshold of 5km?.

62 Regional relief represents the standard deviation in elevations in a window surrounding each pixel using the Focal

63 Statistics tool in ArcGIS with a 1kmx1km square window.



64 Terrain ruggedness index is the average difference between the elevation of the central pixel and each of the 8 adjacent
65 pixels which is calculated using the DEM and Focal Statistics tool in ArcGIS.

66

67 We generate the susceptibility model using a gradient boosting machine learning approach, XGBoost (Chen and

68 Guestrin., 2016), implemented in Python. The model is trained with the coseismic landslide inventory (epoch 4) of

69 Kincey et al. (2021) which covered the 14 worst affected districts during the 2015 Gorkha earthquake; we randomly

70 selected 20% of grid cells for model validation and used the remaining 80% of cells for model training. This yields an
71 area under the receiver operating characteristic (ROC) curve of 0.86 (Fig. S2).

72

73 The relative importance of the features in our XGBoost-based susceptibility model was assessed through the

74 ‘feature importances ’ class from the scikit-learn Python library. This measurement is derived by evaluating how

75 significantly each feature decreases the model's loss function. Specifically, the importance score for each feature is

76 calculated by counting how frequently a feature is used to split the data across all decision trees, weighting these counts

77 by the improvement (gain) brought about by each split, and normalizing these values by the total gains across the

78 model.
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79

80 Figure S2: A, map of susceptibility to coseismic landslides derived from the static seven-parameter susceptibility model and
81 the XGBoost algorithm. Susceptibility values range from 0 to 1. B, receiver operating characteristic curve derived for a

82 random selection of 20% of grid cells. Values show area under the curve (AUC) and maximum F1 score. Dashed line shows



83 the random case (AUC = 0.5). C, relative feature importance of the seven topographic factors derived from the XGBoost

84 algorithm. DistToStreams, distance to the nearest river; PlanCurv, plan-view curvature; TRI, terrain ruggedness index.
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88 Supplemental material 3. Relationship between PGA and landslide occurrence

89

90 A logistic regression algorithm is used to investigate the relationship between peak ground acceleration (PGA) values
91 and the occurrence of landslides. Initially, the script creates a feature matrix 'X" containing PGA values and a target

92 variable 'y’ that encodes whether a landslide occurred (1) or not (0) based on the presence of landslide events. These

93 variables are derived from a geospatial dataset, where the PGA values are resampled at centroids of slope units and

94 merged with the number of landslides in those units. The dataset is then split into training and testing subsets, with 80%
95 of the data used for training and 20% reserved for testing. The logistic regression model is trained on the training data to
96 predict the binary outcome of landslide or no-landslide in the slope unit. This model is fitted using the default settings
97 of Python library Scikit-learn’s ‘LogisticRegression’ class, aiming to learn the probability of landslide occurrences as a
98 function of the PGA values. This yields an area under the receiver operating characteristic (ROC) curve of 0.93. The

99 characteristics of the normal cumulative density function (CDF) are a mean value of 0.506 and a standard deviation of

100 0.127.
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102
103 Figure S3: A, relationship between PGA and the probability of coseismic landslide occurrence. B, receiver operating

104 characteristic curve derived for a random selection of 20% of slope units. Value shows the area under the curve (AUC) and
105 the dashed line shows the random case (AUC = 0.5).
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108 Supplemental material 4. Distributions of susceptibility per slope unit

109

110 Each slope unit (Fig. S1) contains a unique distribution of landslide susceptibility values. When a slope unit is activated
111 during a model run, sampling this unique distribution to determine whether or not a landslide has been triggered would
112 require the model to hold that distribution in memory, and would slow the model run time substantially. As a

113 simplification, we instead calculate the mean and standard deviation of landslide susceptibility values within each slope
114 unit in advance, and add them as attributes to each slope unit. This allows us to simulate the distribution of

115 susceptibility values with a Gaussian distribution using the same mean and standard deviation during each pass through



116 the hypergraph network. Values drawn from this synthetic Gaussian distribution are then compared with a uniform

117 random deviate to determine whether one or more landslides has been triggered in that slope unit.

118 To evaluate the validity of this simplification, Figure S4 shows the actual distributions of landslide susceptibility values
119 from a random selection of slope units across Nepal, along with the corresponding synthetic Gaussian distributions with
120 the same mean and standard deviation values. While the actual distributions take a variety of forms and are both left-
121 and right-skewed, a Gaussian distribution provides a reasonable approximation to the true distribution of values in most

122 cases.
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125 Susceptibility

126 Figure S4: Actual and modelled distributions of landslide susceptibility values in a range of slope units across Nepal. A,

127 locations of randomly-selected slope units. Numbers correspond to sub-figures in panel B. Coordinate axes show easting and
128 northing values in UTM Zone 48. B, actual and modelled synthetic distributions of landslide susceptibility values. Blue bars
129 show actual values as probability density of susceptibility pixel values, red lines show modelled Gaussian distributions with
130 the same mean and standard deviation, and vertical dashed red lines show mean values.
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