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‭Supplementary material 1. Slope unit explanation and parameters‬

‭To define slope units, we use the methodology of Alvioli et al. (2016, 2020) as described in detail by Kincey et al.‬

‭(2022) in their derivation of slope units for Nepal. We refer the reader to Kincey et al. (2022) for a full evaluation. The‬

‭methodology divides a landscape into individual units separated by drainages and divide boundaries, according to a set‬

‭of user-specified parameters. We use the‬‭r.slopeunits‬‭package within GRASS GIS v.7.8.4, run on the AW3D digital‬

‭elevation model resampled to a cell size of 10 x 10 m. We choose minimum parameter settings from the range of values‬

‭recommended by Alvioli et al. (2016) to ensure that smaller slope units were retained and to match observed hillslope‬

‭length scales in Nepal. The resulting slope unit map is shown in Figure S1. Parameter names and values are as follows:‬

‭●‬ ‭The drainage area threshold‬‭thresh‬‭= 5,000,000 m²‬‭identifies cells with a flow accumulation greater than the‬

‭threshold, delineating drainage lines and subsequently forming catchments that are subdivided into half basins‬

‭(HBs).‬

‭●‬ ‭The minimum surface area‬‭areamin‬‭= 50,000 m² defines‬‭the smallest acceptable area for a slope unit.‬

‭●‬ ‭The minimum circular variance of terrain aspect within a slope unit‬‭cvmin‬‭= 0.2 plays a crucial role in‬

‭determining the uniformity of HBs concerning terrain aspect. This parameter, calculated as 1 – (|‬‭R‬‭|/‬‭N‬‭v‬‭),‬‭where‬

‭N‬‭v‬ ‭is the number of grid cells in each half basin‬‭and |‬‭R‬‭| is the magnitude of the vector resulting from‬‭the‬

‭summation of all unit vectors describing the orientation of each grid cell, influences the degree of homogeneity‬

‭in aspect among slope units. Small values of‬‭cvmin‬‭result in HBs with more uniform aspect, large values in less‬

‭uniformity.‬
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‭●‬ ‭The reduction factor‬‭rf‬‭= 10 governs the rate at which the drainage area threshold‬‭thresh‬‭decreases for‬

‭subsequent iterations. A smaller value of‬‭rf‬‭results‬‭in a faster decrease, enabling more subdivisions and‬

‭iterations, albeit at the cost of processing time.‬

‭●‬ ‭The cleaning parameter‬‭cleansize‬‭= 20,000 m² sets‬‭the threshold value for cleaning procedures, removing slope‬

‭units smaller than this area. It is also used in additional cleaning steps that inspect for unrealistic elongation or‬

‭aspect similarity.‬

‭Figure S1: Map of slope units for Nepal, using the parameter values given above. The inset shows a detailed area of‬

‭north-central Nepal, illustrating the detailed relationship between slope unit boundaries (red) and topography.‬

‭Supplementary material 2. Coseismic landslide susceptibility‬

‭To estimate the spatial pattern landsliding due to the 2015 Gorkha earthquake, we utilise a landslide susceptibility layer‬

‭for Nepal with a cell size of 10 x 10 m that is trained on the 2015 coseismic landslide inventory. Landslide susceptibility‬

‭is determined with a static susceptibility model that depends upon seven topographic factors: elevation, hillslope aspect,‬

‭distance to rivers, plan-view curvature, regional relief, local hillslope gradient over a 3 x 3 cell window, and a terrain‬

‭ruggedness index. All factors are derived from the AW3D digital elevation model resampled to a cell size of 10 x 10 m.‬

‭Distance to rivers‬‭has been calculated as the straight-line‬‭(Euclidean) distance from each pixel to the nearest river and‬

‭river confluence, respectively. Rivers are defined using a flow accumulation tool that identifies rivers based on an‬

‭upstream area threshold of 5km‬‭2‬‭.‬

‭Regional relief‬‭represents the standard deviation‬‭in elevations in a window surrounding each pixel using the Focal‬

‭Statistics tool in ArcGIS with a 1kmx1km square window.‬
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‭Terrain ruggedness index‬‭is the average difference between the elevation of the central pixel and each of the 8 adjacent‬

‭pixels which is calculated using the DEM and Focal Statistics tool in ArcGIS.‬

‭We generate the susceptibility model using a gradient boosting machine learning approach, XGBoost (Chen and‬

‭Guestrin., 2016), implemented in Python. The model is trained with the coseismic landslide inventory (epoch 4) of‬

‭Kincey et al. (2021) which covered the 14 worst affected districts during the 2015 Gorkha earthquake; we randomly‬

‭selected 20% of grid cells for model validation and used the remaining 80% of cells for model training. This yields an‬

‭area under the receiver operating characteristic (ROC) curve of 0.86 (Fig. S2).‬

‭The relative importance of the features in our XGBoost-based susceptibility model was assessed through the‬

‭‘feature_importances_’ class from the scikit-learn Python library. This measurement is derived by evaluating how‬

‭significantly each feature decreases the model's loss function. Specifically, the importance score for each feature is‬

‭calculated by counting how frequently a feature is used to split the data across all decision trees, weighting these counts‬

‭by the improvement (gain) brought about by each split, and normalizing these values by the total gains across the‬

‭model.‬

‭Figure S2: A, map of susceptibility to coseismic landslides derived from the static seven-parameter susceptibility model and‬

‭the XGBoost algorithm. Susceptibility values range from 0 to 1. B, receiver operating characteristic curve derived for a‬

‭random selection of 20% of grid cells. Values show area under the curve (AUC) and maximum F1 score. Dashed line shows‬
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‭the random case (AUC = 0.5). C, relative feature importance of the seven topographic factors derived from the XGBoost‬

‭algorithm. DistToStreams, distance to the nearest river; PlanCurv, plan-view curvature; TRI, terrain ruggedness index.‬

‭Supplemental material 3. Relationship between PGA and landslide occurrence‬

‭A logistic regression algorithm is used to investigate the relationship between peak ground acceleration (PGA) values‬

‭and the occurrence of landslides. Initially, the script creates a feature matrix `X` containing PGA values and a target‬

‭variable `y` that encodes whether a landslide occurred (1) or not (0) based on the presence of landslide events. These‬

‭variables are derived from a geospatial dataset, where the PGA values are resampled at centroids of slope units and‬

‭merged with the number of landslides in those units. The dataset is then split into training and testing subsets, with 80%‬

‭of the data used for training and 20% reserved for testing. The logistic regression model is trained on the training data to‬

‭predict the binary outcome of landslide or no-landslide in the slope unit. This model is fitted using the default settings‬

‭of Python library Scikit-learn’s ‘LogisticRegression’ class, aiming to learn the probability of landslide occurrences as a‬

‭function of the PGA values. This yields an area under the receiver operating characteristic (ROC) curve of 0.93. The‬

‭characteristics of the normal cumulative density function (CDF) are a mean value of 0.506 and a standard deviation of‬

‭0.127.‬

‭Figure S3: A, relationship between PGA and the probability of coseismic landslide occurrence. B, receiver operating‬

‭characteristic curve derived for a random selection of 20% of slope units. Value shows the area under the curve (AUC) and‬

‭the dashed line shows the random case (AUC = 0.5).‬

‭Supplemental material 4. Distributions of susceptibility per slope unit‬

‭Each slope unit (Fig. S1) contains a unique distribution of landslide susceptibility values. When a slope unit is activated‬

‭during a model run, sampling this unique distribution to determine whether or not a landslide has been triggered would‬

‭require the model to hold that distribution in memory, and would slow the model run time substantially. As a‬

‭simplification, we instead calculate the mean and standard deviation of landslide susceptibility values within each slope‬

‭unit in advance, and add them as attributes to each slope unit. This allows us to simulate the distribution of‬

‭susceptibility values with a Gaussian distribution using the same mean and standard deviation during each pass through‬
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‭the hypergraph network. Values drawn from this synthetic Gaussian distribution are then compared with a uniform‬

‭random deviate to determine whether one or more landslides has been triggered in that slope unit.‬

‭To evaluate the validity of this simplification, Figure S4 shows the actual distributions of landslide susceptibility values‬

‭from a random selection of slope units across Nepal, along with the corresponding synthetic Gaussian distributions with‬

‭the same mean and standard deviation values. While the actual distributions take a variety of forms and are both left-‬

‭and right-skewed, a Gaussian distribution provides a reasonable approximation to the true distribution of values in most‬

‭cases.‬
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‭Figure S4: Actual and modelled distributions of landslide susceptibility values in a range of slope units across Nepal. A,‬

‭locations of randomly-selected slope units. Numbers correspond to sub-figures in panel B. Coordinate axes show easting and‬

‭northing values in UTM Zone 48. B, actual and modelled synthetic distributions of landslide susceptibility values. Blue bars‬

‭show actual values as probability density of susceptibility pixel values, red lines show modelled Gaussian distributions with‬

‭the same mean and standard deviation, and vertical dashed red lines show mean values.‬
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