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Abstract 21 
This study introduces a new approach to multi-hazard risk assessment, leveraging hypergraph theory to model the 22 
interconnected risks posed by cascading natural hazards. Traditional single-hazard risk models fail to account for the 23 
complex interrelationships and compounding effects of multiple simultaneous or sequential hazards. By conceptualising 24 
risks within a hypergraph framework, our model overcomes these limitations, enabling efficient simulation of multi-25 
hazard interactions and their impacts on infrastructure. We apply this model to the 2015 Mw 7.8 Gorkha earthquake in 26 
Nepal as a case study, demonstrating its ability to simulate the primary and secondary effects of the earthquake on 27 
buildings and roads across the whole earthquake-affected area. The model predicts the overall pattern of earthquake-28 
induced building damage and landslide impacts, albeit with a tendency towards over-prediction. Our findings underscore 29 
the potential of the hypergraph approach for multi-hazard risk assessment, offering advances in rapid computation and 30 
scenario exploration for cascading geo-hazards. This approach could provide valuable insights for disaster risk reduction 31 
and humanitarian contingency planning, where anticipation of large-scale trends is often more important than prediction 32 
of detailed impacts. 33 
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1. Introduction 38 
 39 
 There is a growing recognition over the last 15 years that natural hazards can interact and occur in conjunction with each 40 
other, leading to a potential compounding effect that is greater than the sum of the single-hazard impacts (Kappes et al., 41 
2012; Arosio et al., 2018, Terzi et al., 2019). While the global prevalence of cascading hazards specifically is difficult to 42 
quantify reliably, there are increasing calls for effective multi-hazard risk assessments (e.g., Ward et al., 2022). Multi-43 
hazards are defined by UNISDR (2016) as "events [that] may occur simultaneously, cascadingly or cumulatively over 44 
time, and taking into account the potential interrelated effects”. Multi-hazard approaches seek to overcome the limitations 45 
of a narrower focus on single-hazard models, which are unable to account for the observed inter-relationships between 46 
different hazards as well as potential compounding or cascading effects (e.g., Gill and Malamud, 2014; Tilloy et al., 2019; 47 
Dunant, 2021; Ming et al., 2022). Multi-hazard approaches to risk are now widely encouraged (e.g., UNISDR, 2005; 48 
Government Office for Science, 2012) and are increasingly integrated into risk assessment (see recent reviews by Gill et 49 
al., 2022; Ward et al., 2022). 50 
 51 
There remain, however, some important challenges and limitations with multi-hazard risk assessment. Because of the 52 
difficulties in recognising, understanding, and defining the inter-relationships between hazards, and the lack of data on 53 
their co-dependence (Tilloy et al., 2019; Hochrainer-Stigler et al., 2023), most ‘multi-hazard risk’ models simply overlay 54 
single hazards without considering their interactions – an approach that Gill and Malamud (2014) termed ‘multi-layer 55 
single hazard’. Even when hazard-hazard interactions are considered in risk models, there is still a lack of comprehensive 56 
approaches that capture the intricate interplay among hazards, exposure, and vulnerability beyond simple spatial overlaps 57 
(Mignan et al., 2014; de Ruiter et al., 2020). These interactions are critical because of the possibility that risks may be 58 
clustered in space and time or may amplify each other, as demonstrated by Mignan et al. (2014). Zschau (2017) extended 59 
the ideas of Gill and Malamud (2014) to risk assessment, distinguishing between risk from single hazards, risk from multi-60 
layer single hazards, and risk from multi-hazards – the latter allowing for dynamic hazard interactions, but no dynamic 61 
interactions between hazard and exposure or vulnerability). Hochrainer-Stigler et al. (2023) noted that hazard-exposure 62 
relationships and changes in exposure over time, as well as vulnerability, are also critical to fully characterise multi-risks. 63 
This complexity means that multi-hazard risk modelling can be both computationally expensive and extremely demanding 64 
of quality input data (e.g., Kappes et al. 2012). Multi-hazard risk models may also be limited by the diversity of hazard 65 
types that can be incorporated, mismatches in the appropriate spatial and temporal scale of analyses, and complex data 66 
requirements (e.g., Kappes et al., 2012; Tilloy et al., 2019; Dunant, 2021). 67 
 68 
A further complication is the growing need for national, regional, or even global-scale risk assessments, in order to 69 
understand potential patterns of impacts, provide science-based evidence for disaster risk reduction and advocacy, and 70 
allow coordinated planning (see review by Ward et al., 2020). At the same time, data are available at ever-increasing 71 
spatial and temporal resolution, including information on populations, building stock, and topography, as well as datasets 72 
on hazard drivers such as rainfall forecasts or observed precipitation. While these are welcome developments, the 73 
combination of demands for increasing scale and increasingly-fine spatial and temporal resolution data leads to a much 74 
higher computational burden. Addressing the need for both larger spatial scales and finer spatio-temporal resolutions is a 75 
growing challenge for the assessment of multi-hazard risks. The distribution of risk may also be highly spatially 76 
imbalanced if exposed elements are concentrated in specific areas, meaning that grid-based or GIS-based approaches to 77 
risk modelling may expend much computational effort on areas where risk is low or negligible. 78 
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 79 
To address these concerns, Dunant et al. (2021a) proposed a novel approach to multi-hazard risk modelling using graph 80 
theory. In this framework, both the hazards and the elements at risk are modelled as a set of interconnections between 81 
nodes. For example, a house can be linked to ground accelerations in an earthquake, or a hillslope to rainfall in a storm. 82 
This framework can then be used to generate many disaster scenarios by cascading from node to node according to a set 83 
of rules (e.g., a threshold earthquake shaking value for slope failure). The resulting network model is highly 84 
computationally efficient, and the network structure is a natural fit to the simulation of coincident or cascading events and 85 
their propagation through exposure networks (Dunant et al., 2021a) because network structures are purposefully designed 86 
to capture the interdependencies and feedbacks among different elements. The framework is agnostic to the types of 87 
objects that can be included, so it can be easily adapted to include hazard-hazard, hazard-exposure, and hazard-88 
vulnerability relationships. It is also highly flexible, so that the links between objects can be represented via different 89 
interactions depending on the level of understanding and data availability, including threshold values, empirical functions, 90 
fuzzy distributions, process models, or other approaches (e.g., Tilloy et al., 2019). 91 
 92 
Despite its advantages, however, the network model suffers from some important limitations. Most critically, because the 93 
interactions in a network model are modelled as pairs, the computational burden grows substantially as the number of 94 
components (nodes and edges) of the model increases. Prior applications focused on the epicentral area of the 2016 Mw 95 
7.8 Kaikōura earthquake (Dunant et al., 2021a) and the area around Franz Josef township (Dunant et al., 2021b), both in 96 
New Zealand and containing on the order of hundreds of nodes. Expanding the network model to a national scale at a 97 
similar resolution would increase the model size by several orders of magnitude. Similarly, increasing the number of 98 
hazards that are considered would lead to a combinatorial increase in interactions and rapid growth in computation time. 99 
 100 
Here we propose a new approach to modelling the impacts of multi-hazards using hypergraphs – two-dimensional surface 101 
equivalents of the pairwise links found in the graph-theory network model of Dunant et al. (2021a). The hypergraph model 102 
retains the advantages of the network approach while simultaneously reducing the model complexity. Below, we first 103 
present a brief review of graphs and hypergraphs and outline the benefits of using hypergraphs in a multi-hazard risk 104 
modelling framework. We describe the structure of the multi-hazard impact model, including its components and the 105 
interactions between nodes. We illustrate its application by simulating the impacts from the 2015 Mw 7.8 Gorkha 106 
earthquake in Nepal, as an exemplar of a large-scale event that had cascading effects on people and infrastructure due to 107 
both primary and secondary hazards. We close by considering wider potential applications of the hypergraph model, 108 
including national- or regional-scale disaster scenario ensembles and how they might be used to support humanitarian 109 
contingency planning (e.g., Robinson et al., 2018). 110 
 111 
2. Summary of graph and hypergraph approaches 112 
 113 
A graph is essentially a mathematical representation of a network. The term was originally introduced by Sylvester (1878) 114 
but graph theory had been used more than a hundred years before by Euler (1736) to solve the Seven Bridges of 115 
Königsberg problem. Since then, graph theory has been used in a wide variety of fields such as geography, computer 116 
science, social science, and biology (e.g., Buzna et al., 2006; Chorley & Kennedy, 1971; Dezső & Barabási, 2002; 117 
Dorogovtsev & Mendes, 2003).  118 
 119 

https://www.zotero.org/google-docs/?07KpQp
https://www.zotero.org/google-docs/?07KpQp
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A graph comprises a set of nodes connected by edges. In the context of risks posed by environmental hazards, such nodes 120 
may represent a geographical location (spatially explicit; e.g., a fault segment, or a house) or a nominal property (spatially 121 
implicit; e.g., the occurrence of an earthquake) and the edges represent the relations between the nodes (e.g., earthquake 122 
shaking affecting exposed houses) (Fig. 1A). 123 
 124 

 125 

Figure 1: Graph (A) and hypergraph (B) representations of a hypothetical set of hazard and exposure interactions. The same 126 
set of elements are represented in both graphical form (top) and tabular form as incidence matrices (bottom). In the tables, a 127 
blank cell means no interaction between the nodes, and a value of 1 means that interactions are possible between the nodes. 128 

 129 
A defining characteristic of graphs is the set of pairwise connections or edges between nodes that define the relationships 130 
between these nodes. For example, we would represent earthquake shaking on a set of hillslopes as edges between the 131 
earthquake and each hillslope that is affected. In tabular form, each edge is represented by a row in a relational database, 132 
called an incidence matrix (Fig. 1A). The edges are directional, so a two-way relationship – for example, a hillslope 133 
potentially affecting a road via landslides, and a road potentially affecting a hillslope via excavation and steepening – 134 
would be represented by two separate rows. 135 
 136 
As summarised by Dunant et al. (2021a), here we consider relationships between nodes that are observed or felt – that is, 137 
via shaking, mass movement, or water flow. We also consider that nodes are connected if (1) the geographical effect of 138 
one node overlaps that of another, and (2) that effect is relevant to considering impacts from hazards. For example, 139 
earthquake ground shaking might affect a hillslope and trigger a new landslide or the mobilisation of loose material in a 140 
debris flow; to allow for these effects, we would represent the relationship between earthquake and the hillslope as an 141 
edge, and the relationship between the hillslope and any houses or road segments on it as a series of additional edges (Fig. 142 
1A). If we were to assume that the earthquake ground motion can potentially cause direct impacts on houses but not roads, 143 
then the earthquake would be connected to the houses by edges but not to the road segments (Fig. 1A). 144 
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 145 
In contrast, a hypergraph is a special type of graph where the edges, called hyperedges, can link one or more nodes (Fig. 146 
1B). This allows us to represent interactions that extend beyond a single pair of nodes (Wolf et al., 2016). Compared to 147 
pairwise edges, which only connect two nodes, hyperedges can connect multiple nodes and provide a more natural 148 
representation for the spatial overlap between exposed elements, like houses, and geographical hazard footprints. 149 
Hyperedges can thus represent nested information between the nodes of the system, such as their properties or locations, 150 
with far fewer tabular entries (Fig. 1B). The hypergraph uses fewer edges to represent the same number of interactions 151 
for a given number of nodes; this size difference (e.g., for the example in Figure 1, 11x8=88 entries for the graph 152 
framework and 3x8=24 for the hypergraph framework) highlights the efficiency of the hypergraph approach.  153 
 154 
The increased efficiency enabled by hypergraphs becomes more apparent when dealing with large, interconnected datasets 155 
and when iterative data manipulation is required. For example, we can run hundreds or thousands of separate simulations 156 
on the same hypergraph, choosing different events or altering input parameters within a Monte Carlo framework (e.g., 157 
Dunant et al., 2021a) to generate ensemble distributions of scenario outcomes (Robinson et al., 2018). The improvement 158 
in computation time allows the hypergraph framework to be applied to multi-hazards risk assessment over larger extents, 159 
over longer time periods, and with more complex interactions than would be feasible using a GIS-based approach or 160 
standard graph framework. 161 
 162 
3. Methodology 163 
 164 
Below we describe the setup and operation of the multi-hazard hypergraph model and describe its application to the 2015 165 
Gorkha earthquake.  166 
 167 

3.1 Model overview and setup 168 
 169 
The model is based around a set of interactions between elements in Nepal that are drawn from experience in both the 170 
annual monsoon (Kincey et al., 2022; Jimee et al., 2019; Goda et al., 2015; Rosser et al., 2021; Kargel et al., 2016) and 171 
recent earthquakes, including the 2015 Gorkha event (e.g., Roback et al., 2018; Milledge et al., 2019; Kincey et al., 2021). 172 
For the simulations in this paper, the model is driven only by earthquakes (Fig. 2) and seeks to assess the risk to buildings 173 
and roads at a national scale. Earthquake shaking is simulated as a spatial distribution of peak ground acceleration (PGA) 174 
values; these could be derived from measurements or generated for a potential scenario earthquake via a shaking model. 175 
For the experiments shown here, we use empirical PGA values estimated by the US Geological Survey Shakemap for the 176 
2015 Gorkha earthquake (https://earthquake.usgs.gov/earthquakes/eventpage/us20002926/shakemap/pga). Earthquake 177 
shaking can affect infrastructure either directly (described via a set of fragility functions) or by triggering landslides. 178 
Landslides, in turn, may affect both buildings and roads. In this version of the model, other hazards such as rainfall and 179 
floods are not considered, but they could be added via additional sets of hyperedges and interactions. 180 
 181 

https://www.zotero.org/google-docs/?GknPCR
https://earthquake.usgs.gov/earthquakes/eventpage/us20002926/shakemap/pga
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 182 

Figure 2: Driving stimuli and important process interactions for the area affected by the 2015 Gorkha earthquake in Nepal. 183 
The elements that are included in the multi-hazard impact experiments documented here are shown in bold text. 184 

 185 
To model coseismic landslides, we subdivide the landscape into discrete units and consider the characteristics of the 186 
topography as well as the driving mechanisms within those subdivisions. Here we divide the landscape into slope units 187 
that are bounded by drainages and divide lines (Alvioli et al., 2016; Woodard et al., 2024) (see Supplemental Information 188 
and Fig. S1). Woodard et al. (2024) demonstrated that slope units are preferable to gridded topography when representing 189 
landslide susceptibility, especially for input landslide data that are imprecise or highly spatially variable in quality. The 190 
slope units were generated following the procedure from Kincey et al (2021) where a DEM is used to segment the 191 
landscape into distinct terrain units defined by hydrological and geomorphological boundaries. 192 
 193 
The hyperedges are constructed based on the interactions in Figure 2. A hyperedge connects the earthquake node with all 194 
of the slope units and buildings within the ‘footprint’ of the earthquake, defined by the extent of a minimum PGA (X g) 195 
contour. Similarly, hyperedges connect each slope unit with the buildings and roads (divided into 100 m segments) within 196 
it; we therefore assume that landslides from one slope unit cannot impact elements in another. Attributes for each building, 197 
road segment, and slope unit, such as location, PGA, building type, landslide susceptibility, are stored on the hyperedges 198 
and can be displayed as continuous values in a tabular form. We describe each of these attributes below. 199 
 200 
We use building locations and roads taken from the Humanitarian OpenStreetMap Team, covering the whole of Nepal, 201 
and available at https://data.humdata.org/dataset/hotosm_npl_buildings and 202 
https://data.humdata.org/dataset/hotosm_npl_roads, respectively (accessed 1 January 2021). The datasets contain c. 7.1 203 
million building polygons and c. 3 million road segments. Because we lack specific information on the construction type 204 
of each building to assess its fragility, we instead use exposure data from the Modeling Exposure Through Earth 205 
Observation Routines (METEOR) project (https://maps.meteor-project.org/map/building-exposure-map-of-nepal) 206 

https://data.humdata.org/dataset/hotosm_npl_buildings
https://data.humdata.org/dataset/hotosm_npl_roads
https://maps.meteor-project.org/map/building-exposure-map-of-nepal/
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(version 2020-02-15) , which includes a list of building types and the number and value of each type within each cell of 207 
a 90 x 90 m grid across Nepal. The METEOR project used a combination of Earth Observation (EO) data, such as satellite 208 
imagery, and ground-based sampling to classify homogeneous development regions and assess vulnerability of building 209 
structures in countries like Nepal and the United States. The development patterns are then associated with typologies 210 
observed on the ground (https://nora.nerc.ac.uk/id/eprint/533439/)  to create a national scale vulnerability layer. The PGA 211 
value of the 2015 Gorkha earthquake is extracted at the centroid of each METEOR grid cell. To account for variability in 212 
construction detail and quality within these broad types, we adopt low, middle, and high fragility functions for the 213 
‘complete damage’ state for typical building types in Nepal from the METEOR dataset (Fig. 3). We take the definition of 214 
‘complete damage’ from the Hazus framework of the US Federal Emergency Management Agency (FEMA, 2020). We 215 
generate a weighted-average fragility function for the buildings within each 90 x 90 m grid cell based on the proportion 216 
of different building types; thus, in the absence of any national-scale building-specific information, all buildings within 217 
that cell are assumed to have the same average fragility. We assess the likelihood of ‘complete damage’ because this 218 
implies loss of usability or habitability, with consequences for displacement and disruption to life and livelihoods, and is 219 
typically used to estimate fatality and injury rates (FEMA, 2020). 220 
 221 

https://nora.nerc.ac.uk/id/eprint/533439/
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 222 

Figure 3: Fragility functions used in the hypergraph network modelling. Each panel shows fragility curves for a different 223 
building type in the METEOR dataset, and which relate the peak ground acceleration (PGA, in g) to the probability of being 224 
reduced to a complete damage state. Note that each sigmoidal fragility curve is defined by two parameters: a mean or scale 225 
parameter that sets the PGA value for a 50% probability of complete damage, and a standard deviation (std) that defines the 226 
spread of the curve. Parameter values and sources for the fragility curves are included in the plots. 227 

 228 
We estimate landslide susceptibility based on topographic factors alone, using a seven-parameter static susceptibility 229 
model that incorporates elevation, hillslope aspect, distance to rivers, plan-view curvature, regional relief, local hillslope 230 
gradient, and a terrain ruggedness index. These factors are derived from a 10 m digital elevation model (DEM) that was 231 
downsampled from the 5 m Advanced Land Observing Satellite World 3D DEM 232 
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(https://www.aw3d.jp/en/products/standard/). We generate the susceptibility model using a gradient boosting machine 233 
learning approach, XGBoost, implemented in Python. For the experiments shown here, the susceptibility model is trained 234 
on the locations of coseismic landslides triggered by the 2015 Gorkha earthquake as mapped by Kincey et al. (2021), 235 
yielding an area under the receiver operating characteristic (ROC) curve of 0.75 (Fig. S2). We stress that this susceptibility 236 
layer is used simply as an exemplar which is optimised for the 2015 Gorkha earthquake; for other model applications, 237 
susceptibility data generated with other approaches (see review in Reichenbach et al., 2018), or trained on different 238 
inventories, could be substituted. Because landslide susceptibility is modelled on a 10 x 10 m grid, each slope unit contains 239 
a unique distribution of cell-wise susceptibility values in the range [0,1], and each building polygon or road segment 240 
overlaps with one or more cellwise susceptibility values. Importantly, because the multi-hazard model is intended to 241 
simulate dynamic cascading scenarios, we choose not to include earthquake shaking as a determining factor in the static 242 
landslide susceptibility model. This choice preserves independence between shaking, landslide triggering, and the 243 
propagation of hazards along the hyperedges within the model. 244 
 245 
We extract the mean and standard deviation of susceptibility for each slope unit, building and road segment, although 246 
other measures of the distribution could also be used. Because we lack general building or road fragility functions for 247 
landslides that are comparable to those for earthquakes and that encompass the wide range of possible landslide types and 248 
sizes (see Luo et al., 2023, for a recent review), we adopt a simplified binary vulnerability model, such that any building 249 
or road that is affected by a landslide is considered as 'impacted'. 250 
 251 

3.2 Simulation steps 252 
 253 
In each simulation, the model works iteratively through the hyperedges that connect the driving stimulus of earthquake 254 
shaking to the other elements in the model, checking against a condition to see whether that hyperedge of the network is 255 
‘activated’ – i.e., a building is damaged by earthquake shaking, or a slope unit is affected by one or more landslides. 256 
Activation of that hyperedge then allows the stimulus to propagate, and potentially to cascade along other hyperedges if 257 
further conditions are met (Fig. 4). The simulation continues until all cascades stop and no further impacts are possible. 258 
 259 
 260 

https://www.aw3d.jp/en/products/standard/
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 261 

Figure 4. Step-by-step overview of the hypergraph framework for modelling cascading multi-hazard impacts. The hypergraph 262 
is represented in a simplified example on the left and the algorithm steps are specified on the right. The simplified hypergraph 263 
assumes a landscape with two slope units, each of which contains two buildings and two road segments. The causal cascades of 264 
the algorithm are represented in three steps; from top to bottom, these are (1) earthquake shaking, (2) tests for ‘activation’ of 265 
a hillslope and ‘triggering’ of landslides, and (3) tests for impacts on structures by landslides. In the simplified hypergraph, 266 
black outlines show the hyperedges where hazards occur (e.g., landslides are triggered by the earthquake), and the nodes that 267 
are damaged by either shaking (step 2) or landsliding (step 3). The process is embedded in an iterative Monte Carlo simulation 268 
to determine the uncertainty associated with each step, creating a series of disaster scenarios that can be queried for further 269 
analysis. 270 

 271 
In the experiments shown here, the first step is to work through the hyperedge that connects the earthquake to the 272 
individual buildings to assess their damage state. For each building, we assign the PGA value at the centroid of its 90 x 273 
90 m METEOR grid cell. We use the high, middle, and low weighted mean fragility functions for that grid cell to 274 
determine the likelihood of that building being completely damaged – which is equivalent to the proportion of buildings 275 
within that 90 x 90 m grid cell in the METEOR dataset that is completely damaged. This likelihood of complete damage 276 
[0,1], reproduces the weighted mean fragility when applied over the METEOR grid cell. The low, middle, and high cases 277 
provide a range of outcomes for an individual building at a specific PGA value. The per-building likelihoods of complete 278 
damage under the three cases can then be summed by slope unit or administrative area to give the total predicted number 279 
of completely-damaged buildings in each area. 280 
 281 
Next, we assess which slope units are ‘activated’ by ground shaking (Fig. 4). Activation of a slope unit means that the 282 
ground accelerations are high enough to potentially trigger one or more landslides, if this is permitted by the topographic 283 
conditions as represented by the landslide susceptibility. Again, this allows the stimulus to propagate within the 284 
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earthquake hyperedge to the slope unit, and potentially to cascade within that slope unit (and affect buildings or road 285 
segments within it). In these experiments, we conduct a logistic regression between PGA and the locations of landslides 286 
in the inventory of coseismic landslides triggered by the 2015 Gorkha earthquake (Kincey et al., 2021) to define the 287 
regional-scale probability of landslide occurrence as a lognormal function of PGA (see Supplemental Information and 288 
Fig. S3).  289 
We begin by calculating the mean PGA value for each slope unit. This mean PGA value is then used to determine the 290 
probability of a landslide occurring within that slope unit, based on the lognormal distribution previously mentioned. To 291 
simulate whether a landslide may actually occurs, we compare this calculated probability to a randomly generated number 292 
from a uniform distribution. The value sample is coming from a uniformly distributed over the half-open interval [0, 1). 293 
In other words, any value within the given interval is equally likely to be drawn. If the probability exceeds the random 294 
number, the slope unit is considered ‘activated,’ indicating that the conditions are sufficient for a potential landslide. 295 
Over many simulations, slope units with a higher frequency of observed coseismic landslides will generally be activated 296 
more often, reflecting their greater susceptibility to landsliding. However, because the activation in each simulation 297 
depends on the random number generated, the specific pattern of activated slope units will differ from one simulation to 298 
the next. As a result, different portions of the hypergraph network are sampled in each individual simulation, providing a 299 
varied assessment of potential cascading scenarios. 300 
Once a slope unit is activated, the model advances to assess the potential impact on subsequent components of the 301 
network, specifically focusing on whether buildings or road segments within the slope unit are directly affected by a 302 
landslide (as illustrated in Fig. 4). This assessment is conducted through a two-step process in the experiments presented 303 
here. First, the model checks whether a landslide actually occurred within the activated slope unit. Even if the shaking 304 
was intense enough to ‘activate’ the slope unit, the slope might still not experience a landslide due to its low susceptibility. 305 
In other words, an activated slope unit does not always result in a ‘triggered’ landslide. 306 
 307 
Triggering in the slope unit is determined by drawing a value (A) from a Gaussian distribution of landslide susceptibility 308 
with the same mean and standard deviation as the distribution of susceptibility values in that slope unit, and comparing 309 
that value with a uniform random deviate (B). We employ a Gaussian distribution for efficiency, as this can be calculated 310 
in advance of the simulation, and note that it provides a reasonable fit to the actual distribution across a wide range of 311 
slope units (Supplemental Information, Fig. S4). If the susceptibility value A is smaller than B, then no landslide has 312 
occurred in that slope unit, and propagation along that hyperedge stops. If A is larger than B, then one or more landslides 313 
has occurred in that slope unit. We then check if each building and road segment within the slope unit is affected by this 314 
landsliding by comparing the landslide susceptibility value at the infrastructure location with another uniform random 315 
deviate. If the random deviate exceeds the landslide susceptibility value, then the building or road segment remains 316 
unaffected by the landslide (in other words, even if a landslide happens in the slope unit, it doesn’t affect the building or 317 
road). Then, the simulation continues to evaluate other buildings or roads within the same slope unit, and then moves on 318 
to other slope units activated by the earthquake. If the random deviate is less than the susceptibility value, then the building 319 
or road segment is impacted by landsliding. In this case, we add it to the pool of affected elements for this simulation and 320 
move to the next building or road. We continue this process to search iteratively through all slope units in the network to 321 
generate a single cascading impact scenario. 322 
 323 
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 324 
3.3 Outputs and evaluation 325 

 326 
The iterative simulation process outlined above is repeated within a Monte Carlo framework to create an ensemble of 327 
scenarios, each of which explores a different set of outcomes within the same set of hyperedges. In the experiments shown 328 
here, we generate 10,000 scenarios from the initial stimulus of the 2015 Gorkha earthquake. Hence, all scenarios in these 329 
experiments use the same spatial distribution of PGA values and thus the probability of an individual building suffering 330 
complete damage by shaking stays the same. What differs between scenarios are the details of which slope units are 331 
activated, which slope units experience landsliding, and which buildings or road segments are impacted by those 332 
landslides. Thus, we take the likelihood of a structure being affected by landsliding over the whole ensemble as the 333 
proportion of the 10,000 scenarios in which the structure is impacted. This leads to a shaking impact likelihood and a 334 
landslide impact likelihood, both in the range [0,1], for each of the buildings and road segments in our combined dataset. 335 
 336 
To explore the trade-off between spatial resolution and model performance, we aggregate the structure-level results over 337 
successively larger administrative units. Nepal is divided, from smallest unit to largest, into 6,743 wards, 753 urban and 338 
rural municipalities, 77 districts, and 7 provinces. Aggregation across these units allows us to evaluate the performance 339 
of the model against independent measures of earthquake impacts from the 2015 Gorkha earthquake at different spatial 340 
resolutions. For buildings damaged by earthquake shaking, we evaluate the model in two ways. First, we sum up the per-341 
building likelihoods of complete damage in each district for the low, middle, and high fragility estimates – which yields 342 
the number of completely-damaged buildings in each case – and compare those sums to incident reports summarising the 343 
number of "fully damaged” buildings per district and published on the Government of Nepal’s Bipad Portal 344 
(http://drrportal.gov.np/ – see also Chaulagain et al., 2018) based on the Post-Disaster Damage and Needs Assessment 345 
(PDNA) (National Planning Commission, 2015). This assesses the ability of the model to estimate the absolute number 346 
of damaged buildings. While this data remains the most extensive for validation purpose, the PDNA was done urgently 347 
after the disaster with limited systematic gathering hence it relies on judgement by the PDNA participants and, therefore, 348 
carry significant uncertainty (Lallemant et al., 2017).  Note that wards and municipalities were defined in the federal 349 
restructuring of Nepal in 2017, and so data on damaged buildings from the 2015 earthquake are not available at ward or 350 
municipality level. Second, we take the mean likelihood of complete damage in each district, in the range [0,1], and 351 
compare that with the presence or absence of damaged buildings in each of the 77 districts. This second measure is 352 
independent of the absolute number of buildings, and gives information instead on the ability of the model to anticipate 353 
the occurrence of one or more completely damaged buildings in an area.  354 
 355 
For structures impacted by landslides, we derive similar statistical measures for model evaluation. First, we sum up the 356 
per-structure likelihoods of landslide impact over successively larger areas of aggregation – ward, municipality, district, 357 
and province. Because there are no systematic published data on observed landslide impacts on buildings and roads in the 358 
2015 earthquake, we generate an estimate of affected structures by overlaying the coseismic landslide polygons from 359 
Kincey et al. (2021) on our building and road dataset; all structures that intersect with a mapped landslide polygon are 360 
assumed to have been impacted by landsliding in the earthquake. Note that this measure of landslide impacts does not 361 
consider the significant post-earthquake changes in landslide footprint and debris runout (e.g., Tian et al., 2020; Kincey 362 
et al., 2022). Also, the coseismic landslides were mapped on medium-resolution satellite imagery (c. 10 m, equivalent to 363 
our DEM and derived topographic metrics) and so will have omitted small landslides or rockfalls, especially in areas of 364 
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dense vegetation or steep topography (e.g., Williams et al., 2018); this error and the inherent uncertainty in mapped 365 
landslide outlines (Kincey et al., 2021) mean that our estimate of the number of landslide-affected structures is likely to 366 
represent a lower bound. We then sum the observed number of impacted buildings and road segments by administrative 367 
area to compare with our modelled totals. We also compare the mean likelihood of landslide impact, averaged by 368 
administrative area and ranging from [0,1], with the presence or absence of landslide impacts in that area. We evaluate 369 
the relationship between these parameters with the area under the ROC curve and the F1 score. 370 
 371 
4. Results 372 

 373 
4.1 Impacts from earthquake shaking 374 

 375 
We first consider modelled impacts from earthquake shaking alone. Unsurprisingly, the probability of complete damage 376 
per building, or equivalently the proportion of completely-damaged buildings within each 90 x 90 m exposure grid cell, 377 
closely matches the estimated PGA contours from the Gorkha earthquake (Fig. 5A). There are particularly high 378 
probabilities in the hill and mountain districts, especially to the east and northeast of Kathmandu, where the values exceed 379 
0.7. Notably, these values generally increase to the north and this increase is cut off only by the lack of buildings above 380 
elevations of around 3,500 m in northern Nepal (visible as the white areas in Fig. 5A). The Kathmandu Valley itself yields 381 
a low proportion of completely-damaged buildings, despite moderately high PGA values, due to the preponderance of 382 
less-fragile building types. 383 
 384 
We convert the proportion of completely-damaged buildings per grid cell into a sum total aggregated over municipalities 385 
(Fig. 5B) and districts (Fig. 5C). These totals reflect the PGA pattern and the weighted mean fragility functions, but 386 
importantly also the number of buildings within each administrative area. When aggregated by municipality, the largest 387 
modelled totals tend to occur in the more densely-populated Middle Hills in the vicinity of Kathmandu, rather than the 388 
more sparsely-populated north. There are some notable exceptions to this pattern, such as Bharatpur to the south of the 389 
earthquake epicentre (Fig. 5B), which combines a large stock of fragile building types with moderately high PGA values. 390 
When aggregated by district, the largest modelled totals are again dominated by areas with both large numbers of buildings 391 
and moderate to high PGA values (Fig. 5C). With the exception of Chitwan to the south of the epicentre, the largest totals 392 
are found in districts where PGA exceeded 0.4 g. It is instructive to compare the aggregated pattern by district to the 393 
actual numbers of completely-damaged buildings (Fig. 5D). There are broad similarities between modelled and observed 394 
totals, especially in the hill and mountain districts of Sindhupalchok, Nuwakot, and Kavrepalanchok. Notably, the model 395 
over-predicts the impacts in districts close to the epicentre, including Gorkha and Chitwan, and under-predicts the impacts 396 
at the eastern margin of the rupture in Dolakha (Fig. 5D). 397 
 398 
 399 
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 400 

Figure 5: Modelled building impacts from shaking in the 2015 Gorkha earthquake. In all panels, the red contours show the 401 
estimated PGA values from the earthquake in g. Note that these results are derived from the middle-case fragility functions in 402 
Fig. 4. A, modelled probability of complete damage for individual buildings across the country. This is equivalent to the 403 
proportion of completely-damaged buildings in each 90 x 90 m grid cell in the METEOR exposure dataset. B, modelled sum 404 
total of completely-damaged buildings aggregated by municipality. C, modelled sum total of completely-damaged buildings 405 
aggregated by district. D, actual sum of reported “fully damaged” buildings aggregated by district. Note similar colour scales 406 
in panels C and D. 407 

 408 
To better visualise the agreement between modelled and observed totals of completely-damaged buildings, we compare 409 
the observed totals for all 77 districts in Nepal with model results using the high, middle, and low fragility cases (Fig. 410 
6A). For most districts with non-zero impacts, the observed totals fall within the range of model results using the different 411 
fragility curves, with a slight bias toward model over-prediction (Fig. 6B). Among the top 15 districts in terms of modelled 412 
impacts, observed impacts fall below that range in three districts (Chitwan, Tanahu, and Kaski; see Fig. 5C for locations), 413 
within that range in 11, and above that range in only one (Dolakha). Alternatively, out of the ‘14 worst-affected districts’ 414 
identified by the Government of Nepal, observed impacts fall within the range of model results in thirteen districts, with 415 
Dolakha being the only outlier. The model thus appears to be somewhat conservative in that it slightly over-predicts 416 
building impacts due to shaking in the 2015 earthquake. The mismatch between modelled and observed totals is not 417 
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clearly related to building typologies (Fig. 6C). There may be a weak correlation with shaking; districts with significant 418 
over-prediction tend to be those with lower mean PGA values (typically <0.44 g) while Dolakha has a larger mean PGA 419 
(0.59 g), and we explore this point in the Discussion. 420 
 421 

 422 

Figure 6: A, comparison of modelled and observed numbers of completely-damaged buildings per district in the 2015 Gorkha 423 
earthquake. Bars show the range of modelled results for each district using high and low fragility cases (see Fig. 4), with the 424 
middle case shown by the black arrow. Red dots show the reported numbers of "fully damaged” buildings. Blue numbers show 425 
the mean PGA for each district, in g. The inset shows the same quantities with a logarithmic y-axis scale. B, mismatch between 426 
observed (Dobs) and modelled (Dmod) numbers for each district, normalised by the total number of buildings in that district (N). 427 
Negative values indicate model over-prediction, while positive values indicate model under-prediction. Note that impacts in 428 
most of the districts with non-zero damage values are slightly under-predicted. C, proportion of different building types in each 429 
district from the METEOR exposure data set. There is no clear correlation between the residuals in panel B and the dominant 430 
building types. 431 

 432 
 433 
 434 
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4.2 Impacts from coseismic landslides 435 
 436 
As with shaking damage, the modelled probability of a building (Fig. 7A) or road segment (Fig. 7D) being impacted by 437 
a coseismic landslide scales with PGA; this is simply a consequence of the assumed relationship between PGA and 438 
landslide triggering (Fig. S3). Higher probability values are found in northern areas of Nepal, where landslide 439 
susceptibility is elevated (Fig. S2). We aggregate these probabilities to estimate the number of impacted buildings and 440 
road segments at the municipality (Fig. 7B, E) and district (Fig. 7C, F) levels. The regions experiencing the highest 441 
predicted impacts closely align with those observed, notably concentrated in Sindhupalchok district, where both modelled 442 
and observed landslide impacts are most prevalent (Fig. 7C, F). Again, these areas predominantly lie in northern Nepal 443 
where susceptibility to landslides is greatest, contrasting somewhat with the distribution of modelled shaking damage. 444 
This disparity may stem from the higher and more widely dispersed density of buildings in the southern regions. 445 
Consequently, while shaking-related damage appears diffuse, landslide-related damage is more focused in specific regions 446 
due to localized exposure. Importantly, the model anticipates approximately an order of magnitude fewer building impacts 447 
from landslides as compared to those damaged by shaking (note the scale difference between Figs. 5 and 7). We also note 448 
that, while the overall spatial patterns of modelled building and road impacts are similar, the model predicts somewhat 449 
higher numbers of road impacts (by about 50%), and that this generally matches the observed differences in intersections 450 
between these infrastructure types with coseismic landslides (Fig. 7). Roads are typically sited along or near valley floors 451 
, thus increasing their exposure to landslides. Additionally, there is a significant association between roads and landslides 452 
(e.g., Hearn and Shakya, 2017; McAdoo et al., 2018), suggesting that the interaction between landslides and roads may 453 
cover a broader spatial extent compared to the relationship between landslides and buildings. 454 
 455 
 456 
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Figure 7: Modelled structural impacts from coseismic landslides in the 2015 Gorkha earthquake. In all panels, the red contours 458 
show the estimated PGA values from the earthquake in g. The red crosses show observed landslide impacts on buildings (left 459 
column) and road segments (right column), derived by mapping the intersections between those structure locations and the 460 
coseismic landslide inventory of Kincey et al. (2021). A, modelled probability of impact for individual buildings across the 461 
country. B, sum of per-building probabilities aggregated by municipality, of which there are 753 in Nepal. C, sum of per-462 
building probabilities aggregated by district, of which there are 77 in Nepal. D, modelled probability of impact for individual 463 
100 m road segments across the country. E, sum of per-road segment probabilities aggregated by municipality. F, sum of per-464 
road segment probabilities aggregated by district. 465 

 466 
The correlation between the modelled and observed numbers of buildings impacted by landslides depends upon the area 467 
over which they are aggregated (Fig. 8). At province (n = 7) and district (n = 77) levels, there is an approximately linear 468 
relationship between modelled and observed numbers of buildings, with a Pearson’s correlation coefficient >0.80 (Fig. 469 
8). At municipality and ward levels, however, the correlation is much weaker. Notably, modelled numbers of buildings 470 
over-predict the observed totals by a factor of about 50-100, irrespective of the administrative area. Similar results are 471 
seen for road segments: good linear correlations for province- and district-level aggregation, much weaker performance 472 
for municipalities and wards, and over-prediction of impacts by a factor of about 20-25 (Fig. 8). 473 
 474 

 475 

Figure 8: Comparison of modelled (x-axis) and observed (y-axis) numbers of building and road impacts from coseismic 476 
landslides in the 2015 Gorkha earthquake, summed over different administrative areas. Straight lines show best-fit linear 477 
regression results. Note differences in axis limits depending on the area of aggregation by province (red), district (orange), 478 
municipality (green), or ward (blue). 479 

 480 
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 481 

Figure 9: ROC (top), F1 (lower left), and precision-recall (lower right) curves for coseismic landslide impacts of buildings and 482 
road segments aggregated over province, district, municipality, ward and at the individual infrastructure scale. Numbers in 483 
the top panels show the area under the ROC curves. Line colours match the symbol colours in Fig. 8. 484 

 485 
As a more permissive test of the model’s ability to anticipate landslide impacts, we also compare the mean likelihood of 486 
landslide impacts, averaged by administrative area, with the presence or absence of impacts in those areas. While the area 487 
under the ROC curves is high for all aggregation levels (Fig. 9), this is likely due to the strong imbalance between 488 
prediction categories (i.e., there are many more non-impacted buildings than impacted buildings, so the ROC curve is 489 
dominated by the large number of true negative model results). In contrast, precision-recall curves show a progressive 490 
decrease in model performance at progressively smaller levels of aggregation, from province to ward, and very low 491 
precision at the scale of an individual building or road segment (Fig. 9). Because F1 scores combine precision and recall, 492 
they show a similar pattern (Fig. 9); across the full range of thresholds, F1 scores for both buildings and roads (Fig. 9) are 493 
highest for province- and district-level aggregation and lowest for ward-level aggregation. For an optimal model 494 
threshold, province-level aggregation achieves maximum F1 scores of around c. 0.8 for buildings and c. 0.65 for roads. 495 
The maximum F1 scores for buildings are also around 0.8 for districts and diminish progressively to 0.55 for 496 
municipalities and 0.4 for wards. For roads, the maximum F1 scores are 0.8 for districts and municipalities, and 0.55 for 497 
wards. In sum, these results indicate that, while the model can reproduce the spatial pattern of landslide impacts at the 498 
provincial or district scale, its predictive capability is much weaker when assessing impacts within smaller administrative 499 
units like municipalities and wards, and it should not be used to predict impacts to individual buildings or road segments. 500 
 501 
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5. Discussion 502 
 503 

5.1 General observations 504 
 505 
Overall, the hyperedge model is able to reproduce the overall spatial pattern of the impacts from the Gorkha earthquake. 506 
This lends some confidence that the model framework could be adapted to estimate the potential impacts from a future 507 
event, such as a large earthquake or rainstorm. While the computational efficiency of the hyperedge approach is a notable 508 
strength – enabling rapid simulations involving extensive elements, such as the approximately 7.1 million individual 509 
buildings and 3 million road segments in our case – its significance extends beyond speed and flexibility because it fosters 510 
the generation of multi-hazard scenario ensembles, diverging from the limitation of focusing solely on deterministic 511 
impact scenarios. Robinson et al. (2018) demonstrated the advantages of scenario ensembles over the more common 512 
approach of single deterministic scenarios, especially as a tool for facilitating awareness of what could be possible in a 513 
future event. While creation of multi-hazard scenario ensembles is our wider goal, the experiments shown here focus on 514 
multiple realisations of the same past event for the purpose of evaluation. 515 
 516 
A key finding of the experiments is the trade-off between model performance, in terms of the ability to anticipate both 517 
the spatial pattern and number of impacts, and the resolution of the model outputs. Because of the probabilistic nature of 518 
the model and limitations in our understanding of exposure, earthquake shaking, and landslide susceptibilities, we cannot 519 
say with confidence which buildings were impacted by hazards related to the 2015 earthquake. As we aggregate the model 520 
results over increasingly large areas, however, our ability to rank those areas in terms of impact, and to estimate the 521 
number of structures affected, increases monotonically. While our results can therefore not be used to anticipate the risk 522 
to individual households, they could be used by organisations working at a larger scale to identify areas that are more or 523 
less prone to different types of hazards, and provide a relative ranking in terms of the number and scale of expected 524 
impacts. Thus, the value and potential usefulness of the hypergraph approach as implemented here lies more in informing 525 
planning over larger spatial scales, at which the model performs best, as opposed to rapid response to a particular event 526 
where detailed spatial information would be required. There is some indication that absolute numbers of affected 527 
structures could be generated for larger administrative units by extrapolating the scaling by our analysis of the 2015 528 
earthquake (see, for example, Fig. 8), but we hesitate to draw conclusions from a single earthquake without further testing. 529 
 530 

5.2 Over-prediction and relative impacts between hazards 531 
 532 
We note that the model over-predicts the number of impacts at all levels of aggregation, and is therefore conservative in 533 
terms of anticipating the scale of impacts for the 2015 earthquake. The possible reasons for this over-prediction are likely 534 
to differ for shaking and landslide impacts. The mismatch in the number of buildings damaged by shaking is especially 535 
notable for districts with moderate mean PGA values (typically <0.5 g; Fig. 6A). The sigmoidal fragility functions used 536 
in the model are steepest at moderate PGA values (Fig. 3); for the middle case, this corresponds to PGA values of ~0.2-537 
0.5 g for the most common building types in Nepal. Thus, small uncertainties in PGA will yield large differences in the 538 
likelihood of complete damage, and thus in the numbers of completely-damaged buildings in our model experiments. 539 
This issue is compounded by the highly-uncertain values of ground motion in the Gorkha earthquake stemming from the 540 
paucity of strong-motion recordings, as noted by Goda et al. (2015). We also note that our experiments do not account 541 
for aftershocks, including the Mw 7.3 earthquake that occurred on 12 May and that ruptured the eastern end of the 25 542 
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April slip patch under Dolakha district (Avouac et al., 2015). This event likely led to additional building damage which 543 
was included in the observations but is not simulated here, perhaps leading to under-prediction in Dolakha in particular. 544 
 545 
Over-prediction of observed landslide impacts, in contrast, may result from a range of different factors. As noted above, 546 
in the absence of an independent dataset of landslide impacts on buildings or roads in the 2015 earthquake, we have 547 
generated these data by intersecting those elements at risk with the coseismic landslide inventory of Kincey et al. (2021). 548 
This is likely to underpredict the actual number of impacts due to errors and limitations in landslide mapping as well as 549 
the potential for buildings to be omitted from the Humanitarian OpenStreetMap database. It is also important to note that 550 
our approach relies on a probabilistic sampling of an underlying landslide susceptibility dataset in order to anticipate (1) 551 
the slope units in which a landslide is most likely to be triggered, and (2) the buildings and road segments that were most 552 
likely to be affected. Our results are thus highly dependent upon the quality of the underlying susceptibility information. 553 
In the experiments described here, susceptibility is a static quantity that depends only upon local topography. Because we 554 
are focused on a single event, there is no direct provision for dynamic variation in susceptibility over time or for other 555 
factors that may affect landslide occurrence, such as the presence or absence of antecedent rainfall, soil moisture or other 556 
measures of ground condition, or land cover. Further applications of the model could incorporate susceptibility estimates 557 
that are trained on other landslide inventories – for example, time-varying susceptibility that captures the evolution of 558 
landslide hazard over time (e.g., Tian et al., 2020; Kincey et al., 2021, 2022) or that depends upon other causative factors 559 
(e.g., Reichenbach et al., 2018). 560 
 561 
Our model result that the number of buildings damaged by ground shaking is approximately an order of magnitude greater 562 
than that impacted by landslides is difficult to test directly because of the lack of a systematic description of the sources 563 
of building damage in the 2015 Gorkha earthquake. It is broadly consistent, however, with previous work on the relative 564 
importance of secondary hazards – including landslides – and ground shaking in determining earthquake losses. Bird and 565 
Bommer (2004) assessed the relative impacts of ground shaking and ground failure on direct and indirect losses in 566 
earthquakes. They found that fatal landslides occurred in 10 of their 50 studied earthquakes and that landslides could be 567 
the primary cause of building damage in affected areas, locally overshadowing ground shaking. Overall, however, ground 568 
shaking was the primary cause of building damage in 88% of their studied earthquakes, and landslides in only 6%. They 569 
also found that landslide-induced disruption of road or transport networks was much more common than building damage, 570 
which matches our model results for the Gorkha earthquake. Daniell et al. (2017) argued that ground shaking has caused 571 
62% of total economic costs in earthquakes over the period 1900-2016, with landslides responsible for 5% of total costs. 572 
Marano et al. (2010) found that 21.5% of the fatal earthquakes in the PAGER-CAT database had deaths due to secondary 573 
hazards, but that these were rarely the main cause of death. Landslides were the leading cause of non-shaking-related 574 
deaths if the 2004 Great Sumatra earthquake was excluded, although they accounted for about an order of magnitude 575 
fewer deaths than ground shaking. In contrast, Budimir et al. (2014) demonstrated that earthquakes with landslides 576 
typically cause more fatalities than those without, independent of other factors such as earthquake size or affected 577 
population. Their results demonstrate the need to account for the full multi-hazard cascade in anticipating losses at 578 
anything other than a simplified regional scale (e.g., Bird and Bommer, 2004; Daniell et al., 2017). 579 
 580 

5.3 Limitations 581 
 582 
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While the model operates on a hyperedge that connects every structure within the dataset, there are a number of factors 583 
that cannot be resolved at a building scale. Notably, PGA values were gridded at a spatial resolution of 100 by 100 m, 584 
meaning that we have no information on the actual accelerations experienced by individual buildings or road segments. 585 
Similarly, while landslide susceptibility was estimated using a comparatively fine-scale DEM with a grid size of 10 x 10 586 
m, each individual building or road segment occupies at most a few grid cells and the susceptibility values are thus highly 587 
location-dependent. It is also important to note that we do not simulate the triggering, occurrence, and runout of individual 588 
landslides, nor do we ‘place’ landslides in the landscape as would be done for example in a landscape evolution model 589 
(e.g., Croissant et al., 2017; 2019). Such a calculation would dramatically increase both the model complexity, making it 590 
infeasible to construct a multi-hazard scenario ensemble at a national scale. Because of this limitation, we cannot directly 591 
evaluate which elements at risk are directly impacted by landslides, nor can we anticipate which elements may be affected 592 
by remobilisation and runout of landslide debris (e.g., Kincey et al., 2022). By sampling the landslide susceptibility 593 
distribution for each slope unit, and the landslide susceptibility values for each building, we are (over enough iterations) 594 
recovering those distributions, but we cannot overcome the inherent uncertainty in susceptibility at those locations. 595 
Finally, the METEOR exposure dataset contains information on the building types and numbers within each 90 x 90 m 596 
grid cell, but we have no information on the type and fragility of individual buildings. Therefore, while impact likelihood 597 
is calculated at the scale of individual structures, we stress that this estimate is only meaningful across the whole scenario 598 
ensemble, and should never be interpreted as a statement that ‘building X will be affected by this earthquake’. 599 
 600 

5.4 Other applications 601 
 602 
Because of its efficiency, the framework allows exploration of other elements of model performance, including the 603 
distinction between false positive and false negative errors. While performance measures such as the area under an ROC 604 
or precision-recall curve can be used to define an ‘optimum’ model outcome, the model application and users may 605 
determine which type of error is more important to minimise. For example, a humanitarian organisation may view false 606 
positives as more acceptable than false negatives; the former may lead at worst to unnecessary preparations, whereas the 607 
latter means that impacts are not anticipated and may delay relief and recovery efforts. By quickly generating numerous 608 
multi-hazard scenarios, the framework can be run with users to explore these different outcomes, and to examine the 609 
specificity of model results to the details of a particular scenario (e.g., Robinson et al., 2018). The model could also be 610 
used to explore ‘what-if’ questions with users to examine the effects of particular interventions or remediation measures. 611 
In addition, the efficiency of the framework could be used to explore the evolution of risk over time, where increased 612 
simulation length or time resolution would lead to an increase in computational cost. Thus, the effects of policy decisions, 613 
climate change and consequent changes in hazard occurrence, or demographic shifts on the pattern of anticipated impacts 614 
could be explored (Zschau, 2017). 615 
 616 
The flexibility of the hyperedge framework also lends itself to other types of simulation. Other elements of the multi-617 
hazard chain shown in Fig. 2 could be included; for example, susceptibility to landslide debris remobilisation and runout 618 
could be included and sampled for each element at risk, allowing the model to anticipate both the direct impacts within 619 
an event as well as potential longer-term impacts arising from later secondary hazards (e.g., Fan et al., 2019; Kincey et 620 
al., 2022). Impacts from other types of driving events, such as monsoon rainfall, could also be explored. It would be 621 
feasible, for example, to generate an ensemble of scenarios around different rainfall patterns associated with a seasonal 622 
monsoon outlook, or with different iterations of shorter-term weather forecasts, to look at the pattern and specificity of 623 
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impacts. Such an application would be subject to the comparatively low spatial resolution of both observational (e.g., Hou 624 
et al., 2014) and forecast rainfall data products, so that – just as with the earthquake scenarios developed here – the impact 625 
results at the scale of an individual structure would not be meaningful. The hyperedge framework would, however, allow 626 
exploration of the trade-offs between aggregation and model performance, as demonstrated here, and could be useful for 627 
informing humanitarian contingency planning for annual rainfall-related impacts in Nepal and other monsoon-affected 628 
countries. 629 
 630 
6. Conclusions 631 
 632 
Accounting for the multi-hazard aspects of risk is crucial for disaster risk reduction and humanitarian planning. Traditional 633 
approaches to risk modelling tend to omit the interactions between hazards and, even when these interactions are 634 
accounted for, may struggle to meet the computational demands posed by such complex scenarios. Here, we demonstrate 635 
that a new model based on hypergraph theory, a type of network modelling approach, is able to efficiently simulate multi-636 
hazard risk. The model framework accounts for the interactions between a driving stimulus such as an earthquake or 637 
rainstorm with processes on the landscape (such as landslides) and exposed infrastructure. Beyond overcoming 638 
computational challenges, this framework can facilitate multi-hazard risk assessments by enabling the generation of 639 
ensembles to explore the importance of different geophysical hazards, larger areas, longer timeframes, and diverse 640 
counterfactual scenarios. This versatility enhances our understanding of complex risk landscapes and empowers decision-641 
makers with valuable insights for proactive disaster preparedness and response strategies. 642 
 643 
We explore the capabilities of the model through a case study of the 2015 Mw 7.8 Gorkha earthquake in Nepal, which 644 
caused widespread damage due to both primary shaking and secondary landslides. We find that the model can reproduce 645 
the overall spatial pattern of earthquake impacts. The observed numbers of completely-damaged buildings in most 646 
districts, including 13 out of the 14 worst-affected districts, fall within the range of model predictions, which depends 647 
primarily on the assumed fragility functions for the typical building types found in Nepal. The model also broadly 648 
reproduces the spatial patterns of structures that were damaged by coseismic landslides in the earthquake, although it 649 
overestimates the absolute number of impacts. This may be due to limitations in the data used by the model to determine 650 
impacts. Importantly, there is an increase in model performance when the results are aggregated over larger administrative 651 
areas; the model does a reasonable job of anticipating the relative impacts at a province or district scale, but performs 652 
much less well at the smaller scales of municipalities or wards. This result suggests that the hypergraph framework could 653 
be usefully applied to rank administrative areas by expected impacts, for example due to a future earthquake or rainstorm, 654 
to underpin pre-disaster contingency planning efforts where large-scale trends are more important than detailed impact 655 
predictions. The computational efficiency of the hypergraph framework, even at the scale of an entire country such as 656 
Nepal, lends itself to the generation of multiple impact scenarios and raises the possibility of using an ensemble of 657 
potential scenario results rather than depending upon single-event scenarios for disaster preparedness and planning. 658 
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