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Abstract. Suspended particulate matter (SPM) concentrations in estuaries have been observed to vary strongly over the spring-

neap cycle through complex interactions between trapping and re-suspension. However, a systematic framework for analysing

the processes causing this spring-neap SPM variability in general is missing. In this study we set-up such a framework, con-

sisting of three tiers. First, by studying the sediment transport capacity, it is identified how the locations of sediment trapping

change over the spring-neap cycle. Second, it is studied how the transport capacity affects the sediment stock and bottom pool5

of sediment. This bottom pool only adapts gradually to the changing transport conditions, incorporating a lag or memory effect.

Using a two-timescales analysis it is shown this slow movement of the bottom pool is the leading source of such lag effects.

Third, the SPM concentration is explained from an almost instantaneously balanced exchanged between the bottom pool and

the water column through re-suspension and deposition.

We demonstrate the use of this framework on two model cases implemented in the idealised width-averaged iFlow model:10

an idealised test case where the sediment dynamics does not affect the water motion and a case representative of the Loire

estuary, with strong feedback between sediment and the water motion through sediment-induced damping of turbulence. The

first is illustrative as it allows a full understanding in terms of cause-and-effect between water motion, transport and SPM

concentration. In the more realistic Loire case, the SPM dynamics cannot be explained in terms of cause and effect, but can

explain the trapping locations and timing of maximum concentrations in a systematic way in terms of the governing physical15

mechanisms.

1 Introduction

In estuaries, suspended particulate matter (SPM) tends to concentrate in specific zones, called estuarine turbidity maxima

(ETM). When assuming equilibrium conditions, ETM are often associated with sediment trapping, i.e. convergence of subtidal

sediment transport capacity. This leads to the formation of a bottom pool of sediment. From this bottom pool, sediment is re-20

suspended to form the ETM (Burchard et al, 2018). However, since estuaries are highly dynamic environments, the sediment

dynamics is often not in equilibrium, e.g. due to variations in flow on the spring-neap and seasonal timescales. Such flow

variations affect the amount of re-suspension as well as the location and strength of sediment trapping. Moreover, if a sediment

bottom pool was formed, it takes time to adapt to such changing flow conditions. Hence, the ETM may exist in regions without

trapping of sediment, due to remnants of a bottom pool that was formed under past flow conditions (e.g. Brouwer et al, 2018;25

Schoellhamer, 2011).
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Focussing on the spring-neap timescale, fortnightly variability of SPM concentrations has been observed in various estuaries

including the Hudson (Traykovski et al, 2004), Seine (Le Hir et al, 2001), Tamar and Weser (Grabemann et al, 1997), Ems

(Winterwerp et al, 2017), Scheldt (Fettweis et al, 1998) and Gironde (Allen et al, 1977). Observed dynamics has been attributed

to various phenomena. Firstly, the spring-neap cycle affects the SPM concentration through re-suspension. Various authors30

report higher sediment concentrations during spring than neap, because higher bed shear stresses lead to more re-suspension

(e.g. Allen et al, 1980; Vale and Sundby, 1987; Grabemann et al, 1997; Fettweis et al, 1998). Stronger vertical stratification

during neap tides than spring in stratified estuaries reinforces this effect (Jay and Musiak, 1994). Secondly, the spring-neap

variation affects the SPM concentrations through the trapping of sediments. In stratified estuaries where sediment trapping

is dominated by density-driven flow, increased trapping of sediment is observed during neap tide. This is due to reduced35

tidal mixing, which causes stronger stratification and density-driven flow (e.g. Schoellhamer, 2000; Ralston and Geyer, 2009).

Conversely, there are examples of estuaries with tide-dominated sediment trapping where trapping is strongest during spring

tides (e.g. Uncles et al, 2006).

The summary above indicates there is a great amount of observational evidence of spring-neap SPM dynamics and various

processes that affect both trapping and resuspension in complex ways. The way these various processes together result in the40

SSC is poorly understood. Underlying this knowledge gap, we observed that a framework to systematically assess spring-neap

variations of the flow on trapping and resuspension and their combined effect on SSC is essentially missing.

The goal of this study is to gain insight into the complex interactions between sediment trapping, resuspension and SPM

concentration under spring-neap variations of the flow. To this end, we developed a systematic framework to analyse and

understand these interactions. Our framework will first be illustrated using an example of an idealised tide-dominated estuary,45

where trapping is dominated by tide-induced sediment transport processes. The effect of the spring-neap cycle on these trapping

processes as well as re-suspension will be analysed in detail. By varying the erosion parameter for sediment in this test case,

the effect of bottom pool formation on the final SPM dynamics is specifically emphasised. The model is then applied to a

more realistic test case representing the hyperturbid Loire estuary, demonstrating the various effects of the spring-neap cycle

on both tide- and baroclinically-induced transport processes in a more complex context. While it is not our aim to provide an50

extensive overview of the the various spring-neap-related processes that can occur in different types of estuaries, the framework

developed can be used to systematically study other estuaries as well.

This method is implemented in an idealised width-averaged model based on the iFlow framework (Dijkstra et al, 2017;

Brouwer et al, 2018). While our analysis is not strictly limited to idealised models, the iFlow model facilitates gaining more

understanding of the various sediment transport processes that can later be projected to better interpret more complex model55

results or observations. The iFlow model allows studying a decomposition of sediment transport processes as well as facilitates

a formal definition and analysis of bottom pool dynamics.

The outline of this paper is as follows: Section 2 introduces the model, analysis methods, solution method, and set-up of our

case studies. The results for the idealised set-up and Loire case are then discussed in Section 3. A discussion of limitations and

implications of this work is presented in Section 4, followed by the conclusions.60
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2 Model and methods

2.1 Model equations and forcing

We use a process-based width-averaged model that solves for the equations for water motion, sediment mass conservation and

dynamics of the sediment bottom pool. The model domain is described by Cartesian (x, z)-coordinates. The estuary is assumed

to be a single channel running from the mouth (x= 0) to the upstream limit (x= L), see Fig. 1. The vertical axis runs from65

an x-dependent bed level z =−H(x) to the surface z =R(x)+ ζ(x,t). Here, R(x) is a subtidal reference level caused by the

river set-up and ζ(x,t) is the (tidal) surface variation. The width of the estuary is also x-dependent and denoted by a function

B(x). The equations for the water motion are the width-averaged continuity and momentum equations. Assuming hydrostatic

pressure and the Boussinesq approximation these equations read as

(Bu)x +Bwz = 0, (1)70

ut +uux +wuz =−gζx + gβ

R+ζ∫
z

sx dz
′ +(Aνuz)z . (2)

Here, subscripts x, z, and t denote derivatives with respect to these dimensions. The functions u and w are the velocity

components in the x and z directions, g is the acceleration of gravity, ρ0 is a reference density, and Aν is the vertical eddy

viscosity. The function s(x,z, t) denotes salinity and β is the haline contraction coefficient; it is assumed that density differences

are dominated by salinity. Specific choices for modelling salinity are discussed in Section 2.6. At the surface, a no-stress75

condition and kinematic condition are prescribed. At the bed, we prescribe the partial sip law Aνuz = sfu, where sf is a partial

slip parameter, and a non-permeability condition. The partial slip parameter and eddy viscosity, both representing effects of

turbulence, are assumed constant over the semi-diurnal cycle for simplicity (but potentially varying over the spring-neap cycle).

The eddy viscosity is assumed vertically uniform.

Figure 1. Model domain. The model is two-dimensional in along-channel (x) and vertical (z) direction and is width-averaged. The depth

and width are allowed to vary smoothly with x. Figure copied from Dijkstra et al (2017).

The sediment mass balance is described by the equation80

ct +ucz +(w−ws)cz = (Kνcz)z +(Khcx)x , (3)
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where c is the suspended sediment concentration, ws is the settling velocity, and Kν and Kh are the vertical and horizontal

eddy diffusivities. Both Kν and Kh are vertically uniform and constant over the tidal cycle. At the surface, a no-flux condition

is used. At the bottom, re-suspension of sediment is considered according to

Kνcz =M |τb|f at z =−H, (4)85

where M is an erosion parameter, τb is the bed shear stress, and f is the erodibility. The erodibility is a value between 0 and 1

indicating the amount of sediment available on the bed averaged over the tidal cycle, from permanently starved conditions at

f = 0 to abundant supply at f = 1 (Brouwer et al, 2018).

The amount of sediment at the bed is modelled using the Exner equation, stating that the change of sediment mass on the

bed equals deposition minus re-suspension:90

Sbed, t = wsc|z=−H −M |τb|f, (5)

where Sbed is the amount of easily erodible sediment in the bottom pool, or bottom sediment stock (in kg/m2). It is assumed that

the thickness of the bottom pool does not affect the water depth. It is useful to also define the total tidally-averaged sediment

stock S, which describes the amount of easily erodible sediment in the bed and water column, i.e.

S =

〈
Sbed +

R+ζ∫
−H

cdz

〉
, (6)95

where ⟨·⟩ denotes averaging over a typical semi-diurnal period (formally defined in Sect. 2.2.2). We relate the erodibility f to

the stock S using the relation derived by Brouwer et al (2018). For small values of S, this relation states that f increases with

S (i.e. supply limited conditions). For sufficiently large values of S, the erodibility equals unity, meaning that adding more

sediment to the bottom pool will not affect the amount of sediment in suspension (i.e. erosion limited conditions).

The hydrodynamic forcing for this model consists of an M2, M4, S2 and S4 tide at the mouth (see also Sect. 2.2.2) and a100

constant discharge at the head of the estuary. For the sediment model a constant tidally-averaged and depth-averaged sediment

concentration is prescribed at the mouth and we impose no inflow of sediment from the watershed. We do not consider any

initial condition here, since we will only study the model in dynamic equilibrium, i.e. the state reached after a long time with

concentrations varying over the semi-diurnal and spring-neap timescale but not changing on sub-spring-neap timescales.

2.2 Solution methods105

The solution method consists of several steps. First using a scaling and perturbation approach, the model equations are ap-

proximated following work by Dijkstra et al (2017) and Chernetsky et al (2010). Next, a scaling of the tidal and spring-neap

dynamics will justify use of a two-timescales perturbation method to further approximate and simplify the temporal dynamics.

The use of this method to analyse spring-neap dynamics is new, and it will be demonstrated that it not only leads to numerically

efficient solutions, but also facilitates understanding of the dynamics. The resulting equations are solved numerically110
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2.2.1 Perturbation approach

The model equations (1)-(5) are solved within the iFlow modelling framework using a perturbation approach. This means that

the equations are solved by approximation under the assumption that the ratio of the tidal amplitude and the depth at the mouth

equals ϵ, with ϵ≪ 1. Also, bathymetric and geometric variations are assumed to be present only on the length scale of the

estuary. The perturbation approach allows for semi-analytical solutions as well as decomposition of the sediment transport115

according to the physical process causing it, see Chernetsky et al (2010) or Dijkstra et al (2017) for details.

2.2.2 Tides - a two-timescales perturbation approach

The forcing by the lunar (M2 and M4) and solar (S2 and S4) tides results in a relatively fast semi-diurnal and quarter-diurnal

tidal motion, modulated by a slowly varying amplitude and phase over the spring-neap cycle, as illustrated in Fig. 2. To

disentangle the dynamics happening at these strongly different timescales we use a two-timescales perturbation method (e.g.120

Holmes, 2013). Below we illustrate the use of this method and focus on how this method helps to understand the physics.
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Figure 2. Example of the tidal elevation caused by superposition of the M2 and S2 tide during a spring-neap cycle (blue) and the resulting

envelope function (green).

To illustrate the method, we focus on the M2 and S2 water level. We write these components of the water level ζ as

ζ(x,t) = ℜ
(
ζ̂M2

(x)eiωM2
t + ζ̂S2

(x)eiωS2
t
)
, (7)

where ζ̂M2 , ζ̂S2
are the complex phase-amplitudes corresponding to the M2 and S2 tide, and ωM2

= 1.405 · 10−4 s−1 and

ωS2
= 1.454 ·10−4 s−1 are the corresponding angular frequencies. We define the typical timescale τ = ωM2

t and re-order and125
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rewrite E. (7) to

ζ(x,t) = ℜ


[
ζ̂M2

(x)+ ζ̂S2
(x)e

i
ωS2

−ωM2
ωM2

τ
]

︸ ︷︷ ︸
Ê(x,t)

eiτ

 , (8)

where the expression Ê(x,t) is the slowly varying envelope function (green line in Fig. 2). We observe two dimensionless

timescales: τ1 = τ = ωM2
t and τ2 =

ωS2
−ωM2

ωM2
τ . The factor δ ≡ ωS2

−ωM2

ωM2
≈ 0.035 is much smaller than unity, and hence τ2

will be referred to as a slow timescale, related the envelope in Fig. 2, and τ1 is referred to as a fast timescale. Correspondingly,130

we define two dimensional time variables t1 = τ1/ωM2
= t and t2 = δt. Rewriting Eq. (8) in terms of these two time variables

we see that

ζ(x,τ1, t2) = ℜ

[
ζ̂M2(x)+ ζ̂S2(x)e

iωM2
t2
]

︸ ︷︷ ︸
Ê(x,t2)

eiωM2
t1

 , (9)

and the envelope function Ê(x,t2) only depends on the slow time variable t2. All time derivatives occurring in the governing

equations are rewritten in terms of t1 and t2 as135

∂

∂t
=

∂

∂t1
+ δ

∂

∂t2
. (10)

We now introduce the main assumptions of the two-timescales perturbation approach:

1. t1 and t2 are considered independent variables. This means that t1 can be varied while keeping t2 constant and vice-versa.

2. Terms in the equations of order δ can be neglected when compared to terms of order 1. Hence, to leading order, a time

derivative ∂
∂t is approximated as ∂

∂t1
.140

3. The small variable δ is considered O(ϵ2), where ϵ≪ 1 is the parameter in the perturbation method discussed in the

previous section.

By the decoupling of the time variables t1 and t2, t1 no longer strictly represents the M2 tide but rather a typical semi-diurnal

tide that combines the M2 and S2 tide. We will denote this as a D2 tide. Likewise the quarter-diurnal tide represents the

combined effects of the M4. S4, and MS4 tides and is referred to as the D4 tide. Here, we approximate the period of the Dn145

tidal component (n= 1,2, . . .) by the period of the corresponding lunar component Mn. Tidal averaging, denoted by ⟨·⟩ hence

is defined formally as averaging over the time variable t1, i.e. averaging over the D2 tidal component.

Applying these assumptions to the governing equations and combining them with the scaling as detailed in Chernetsky et al

(2010) and Dijkstra et al (2017), we find the following. To leading order and order ϵ, all terms involving δ ∂
∂t2

are neglected.

For both the water motion and sediment dynamics, the model result only accounts for terms of leading order and order ϵ, since150

these form the dominant balances. Hence, the water motion is in dynamic equilibrium at each stage of the spring-neap cycle.
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In other words, a changing value of the envelope function Ê(0, t2) at the mouth is transferred immediately to the water motion

in the entire estuary. Similarly, the sediment distribution over the water column in dynamic equilibrium at each stage of the

spring-neap cycle; i.e. when varying t2, the vertical sediment distribution is assumed to adapt immediately to the changing

hydrodynamics.155

However, the distribution of sediment in the bottom pool Sbed and stock S do not adapt instantly when varying t2, but

adapt slowly to the changing conditions. To see this, we first derive an equation for the time-evolution of S. This is done by

integrating Eq. (3) over the water column and combining this with the Exner equation, Eq. (5). Tidal averaging then yields

(Brouwer et al, 2018)

BSt =−

〈
B

ζ∫
−H

uc−Khcx dz

〉
x

. (11)160

Applying our two-timescales assumptions, we see that the tidally-averaged stock S depends only on t2, not t1 and the equation

rewrites to

BδSt2 =−

〈
B

ζ∫
−H

uc−Khcx dz

〉
x

. (12)

Using a scaling analysis (see Chernetsky et al (2010)), it can be shown that the right-hand side is at maximum of order ϵ2.

Since δ is of order ϵ2, both sides of the equations balance. Physically, this means that the sediment stock varies gradually on165

the slow timescale.

This equation clearly demonstrates the conceptual understanding obtained by using the two-timescale approach. Eq. (12)

shows that the change in the stock over the slow timescale is a function of the divergence of the total tidally averaged sediment

transport. Hence, the effects of spring-neap variations can be fully understood by analysis of the tidally-averaged transports

and the evolution of the stock on the slow timescale. Additionally, without the two-timescales approach, ’tidally-averaged’ is170

ambiguous and one would need to choose to average over e.g. the lunar semi-diurnal cycle. Finally, as will be argued below,

the method allows for a more efficient numerical solution method and hence much reduced computation times.

2.3 Analytical and numerical solution procedures

The vertical velocity and sediment profiles are resolved using semi-analytical methods (i.e. analytical supplemented by nu-

merical quadrature rules where needed, see Dijkstra et al (2017)). The along-channel dimensions are discretised using a finite175

difference method of first-order for advective terms and second-order for dispersive terms on an equidistant grid. In the fast

time variable t1, the model is solved in terms of harmonic components. As the forcing consists only of residual, D2 and D4

components, the solution consists of residual, D2, D4 and overtidal components. Using harmonic components means that the

model is directly solved for dynamic equilibrium in the variable t1; i.e. no time-stepping or spin-up is needed. In the slow t2

time variable, the model is solved using time-stepping, starting from an initial condition for S. In this study, we start from180

S = 0 and time-integrate until a dynamic equilibrium on the spring-neap cycle is reached. We used 200 time steps per spring-

neap cycle, implying a time step of approximately 1.8 hours. Note that this timestep is much coarser than what would usually
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Figure 3. Conceptual depiction of SPM dynamics in an estuary, showing subtidal along-channel transport and the exchange in a water

column. Two cases are shown for the water column: supply limited and erosion limited. In the supply limited state, the bottom pool is empty

during part of the semi-diurnal cycle, while there is always erodible sediment present in the erosion limited state.

be needed if time-stepping were also used for solving for the semi-diurnal tides. Hence, the application of the two-timescales

approach results in much smaller computation times than would be needed otherwise.

2.4 Analysis method185

In order to analyse the sediment dynamics, we study three processes: the D2-tide averaged horizontal transport, bottom pool

movement and re-suspension in the water column, as sketched conceptually in Fig. 3. These processes, of course, are coupled,

yet it is useful to study them separately to better understand the SPM concentration.

First we consider the D2-tide averaged horizontal transport. We analyse this using the sediment transport capacity: the

transport that would occur if a small uniform layer of sediment were added on the bed. We look specifically for the locations190

where transport capacity converges, i.e. locations where the transport capacity changes from positive (i.e. importing) to negative

(i.e. exporting). This means sediment tends to accumulate there. To further understand why the transport capacity changes over

the spring-neap cycle, we will make a decomposition into contributions from various physical components. Here we will use

the decomposition as implemented in iFlow, of which a selection of relevant terms is discussed below:

– River: Transport related to river flushing of tidally resuspended sediment and effects of tide-river interaction on sediment195

resuspension.

– External M4 tide: Transport related to the tidal asymmetry caused by the interaction between the D2 and D4 tide

propagating from the mouth in either resuspension or flow.

– Internal M4 tide: Transport related to the tidal asymmetry caused by the interaction between the D2 and the subtidal flow

and D4 tide generated inside of the estuary. Various processes generate subtidal flow and D4 tide inside of the estuary,200

including tidal return flow, nonlinear momentum advection and velocity-depth asymmetry (representing that the vertical

velocity profiles are not exactly equal during ebb and flood, because the depth of the estuary is different).
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– Spatial settling lag: Transport due to spatial settling lag: the tendency for sediment to move to areas with minimum

velocity amplitude.

– Baroclinic contribution: Transport related to the flow and resuspension caused by gravitational circulation due to the205

along-channel salinity gradient.

Second, the global D2-tide averaged transport leads to changes in the sediment stock S (i.e. sediment in suspension and at

the bottom) at each location in the estuary. Associated with each stock is an erodibility f used as measure for the bottom pool

thickness. Changes in the stock occur on the slow time scale and hence it is needed to consider the history of the system. We

compare the bottom pool with the convergence points. If the system responds fast, the bottom pool will be most thick at the210

convergence points, while a delay may be present in slower systems.

Third, knowing the spatial distribution of sediment on the bottom, we may focus on each location of the estuary in isolation.

The SPM concentrations at each location follows from the local balance between re-suspension and settling dynamics in the

water column and interaction with the bottom pool. This can be expressed as (adapted from Chernetsky et al, 2010; Brouwer

et al, 2018)215

c(t1, t2) = ĉ(t1, t2)f(t2), (13)

where ĉ is the sediment capacity. The sediment capacity is the maximum concentration one could attain at any moment given

there is sufficient sediment available (i.e. f = 1). It depends on hydrodynamic quantities (i.e. bed shear stress, turbulence)

and sediment parameters (settling velocity, erosion parameter). We hence see that the SPM concentration follows from under-

standing both the sediment capacity and erodibility. Under supply limited conditions, f < 1, the bottom pool is so thin that all220

sediment is suspended from it for at least part of the semi-diurnal cycle (illustrated in the left water column in Fig. 3). Hence,

both changes in the stock and changes in sediment capacity affect the SPM concentration. Under erosion limited conditions,

f = 1, there is always sediment present on the bed (illustrated in the right water column in Fig. 3). Sediment added to the

stock on a tide-averaged basis will go to the bottom pool without affecting f . During times of erosion limited conditions, the

observed SPM concentration is therefore not affected by horizontal transport but only by changing sediment capacity.225

Overall, our framework consists of analysing how transports distribute the sediment stock along the estuary, after which we

can look at the slowly varying bottom pool (via f ) at each location. The SPM concentration then follows from an instantaneous

balance between the bottom pool and the water column depending on the sediment capacity. We argue that this is a useful way

of thinking about the SPM dynamics, but also acknowledge that transport, bottom pool and SPM concentration are mutually

dependent and this analysis does not imply the dynamics is linear.230

2.5 Quasi-stationary and dynamic model experiments

We specifically want to highlight the importance of the slow timescale adaptation of the sediment stock. To this end, we

compare the model results to their quasi-stationary equivalent. The model as described above accounts for the time it takes

for the sediment stock in the estuary to adapt to the changing hydrodynamic conditions and is referred to as the dynamic
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computation. This is compared to a case where the sediment stock is assumed to instantaneously adapt to the hydrodynamic235

conditions, referred to as quasi-stationary. The quasi-stationary case is a useful reference, because the sediment distribution

is a direct consequence of the present hydrodynamic conditions without any memory effects. The mathematical procedure for

computing quasi-stationary conditions is discussed in Appendix A. The analysis framework presented in the previous section

will be applied to both the dynamic and quasi-stationary model runs to help highlight the importance of memory effects.

2.6 Design of model experiments240

2.6.1 Idealised example

We use an idealised example to provide insight into the various interacting effects of the spring-neap cycle on the sediment

dynamics. This example does not directly represent a particular estuary, but is configured to some of the properties of the Ems

estuary to make sure we are in a realistic and practically relevant parameter space. The model domain is 64 km long, has a depth

H varying smoothly between H = 10.5 m at the mouth and 5 m at the head and a width B according to B = 800e−x/30000,245

where x is the along-channel distance in metres. The tidal forcing parameters are inspired on a T-tide analysis (Pawlowicz et al,

2002) of the observed tidal data at the tidal station of Knock in the Ems. Salinity is prescribed according to

s=
ssea

2

(
1− tanh

(
x−xc

xL

))
, (14)

where ssea, xc and xL are fixed parameters and salinity is assumed constant over the tide and spring-neap timescale. The

parameters are fixed to keep the analysis as simple as possible for this case. Similarly, the roughness parameter, eddy viscosity250

and eddy diffusivity are constant in time and space and independent of the velocity or sediment concentrations for simplicity.

Values of the salinity and turbulence parameters were taken from Chernetsky et al (2010) and are roughly representative

of the Ems estuary. It should be noted though that the Ems features very high sediment concentrations where sediment-

turbulence feedbacks are important. Such effects are ignored here for simplicity. As a consequence, the obtained results are

not representative of the observed dynamics in the Ems. All parameter values are shown in Table 1. The model is solved255

analytically in the vertical direction and numerically in the horizontal direction. The horizontal grid contains 200 cells, and the

time integration uses seven spring-neap cycles for spin-up and an eighth cycle for analysis. This is sufficient to reach dynamic

equilibrium.

2.6.2 Loire case study

To further illustrate the effects of spring-neap variations in a more realistic setting, we will discuss an application to the260

Loire estuary. The Loire is a hyperturbid estuary in France, featuring sediment concentrations well over 10 g/l during low

discharge conditions. The spring-neap differences are very pronounced, with the modelled D2 tidal amplitude at the mouth

varying between 1.1 m and 2.4 m, and large differences in observed sediment concentrations over the spring-neap cycle (e.g.

Jalón-Rojas et al, 2016). We will use the schematisation and iFlow model of Dijkstra and De Goede (Submitted to Journal of

Geophysical Research: Oceans) (hereafter DdG24).265
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Parameter Value Parameter Value

AM2 M2 amplitude at x= 0 1.39 m AM4 M4 amplitude at x= 0 0.17 m

AS2 S2 amplitude at x= 0 0.35 m AS4 S4 amplitude at x= 0 0.013 m

ϕM2 M2 phase at x= 0 335 deg ϕM4 M4 phase at x= 0 138 deg

ϕS2 S2 phase at x= 0 47 deg ϕS4 S4 phase at x= 0 356 deg

Q River discharge 45 m2/s ws Sediment settling velocity 2 mm/s

Aν Eddy viscosity 0.012 m2/s csea Depth-averaged tide-averaged sedi-

ment concentration at x= 0

20 mg/l

Kν Eddy diffusivity 0.012 m2/s ssea Seaward salinity 30 psu

sf Partial slip parameter 0.049 m/s xc Salinity parameter, Eq. (14) -3.5 km

Kh Horizontal eddy diffusivity 100 m2/s xL Salinity parameter, Eq. (14) 11 km

M Erosion parameter 1.5 ·10−4 s/m
Table 1. Default values of the parameters in the idealised case.

In this set-up, salinity is modelled dynamically following the model of MacCready (2004), resolving transport by gravi-

tational circulation and tidal dispersion as well as computing vertical salt stratification. The salt is assumed to be in quasi-

stationary state, i.e. adapting immediately to changing spring-neap conditions. The roughness parameter, eddy viscosity and

eddy diffusivity are still vertically uniform and time-independent but their values depend dynamically on the velocity, depth

and salt- and sediment stratification. Furthermore, the settling velocity ws is not constant but accounts for the effects of hin-270

dered settling. Hence, the effects of the spring-neap cycle on salinity and turbulence, as well as density-driven flow are taken

into account. The model is applied for a constant representative summer discharge of 250 m3/s and tidal characteristics are

derived from a T-tide analysis of observations at the estuary mouth. For all model settings, model calibration and validation,

we refer to DdG24. Model settings and a summary of the turbulence closure model are also included in Appendix B. Whereas

DdG24 assumed different values for csea for their spring and neap cases, we will use their neap tide value of csea = 0.3g/l for275

the entire simulation.

3 Results

3.1 An idealised case study

Fig. 4 shows results of the idealised case study, comparing the quasi-stationary results with the dynamic results. Fig. 4a

shows the spring-neap averaged along-channel near-bed concentration for the quasi-stationary case (blue line) and dynamic280

case (red line). The shaded areas indicate the range of variation of the semi-diurnally-averaged (i.e. D2-averaged) near-bed

concentration over the spring-neap cycle. Looking at the mean concentrations, ETM are observed near km 8 and 55 in both

the quasi-stationary and dynamic case. Moreover, in this specific case it turns out that mean concentrations are of a similar

magnitude. This is not generally the case as will be illustrated in the following sections. A generally valid result is that the
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spring-neap variation of the D2-averaged concentration is smaller in the dynamic case than in the quasi-stationary case. Fig.285

4b-c show the near-bed concentration as a function of x and t. In the quasi-stationary case, the highest concentrations are

attained after spring tide near km 55 (marked by x in the figure) and the ETM moves gradually downstream towards neap. The

ETM is absent in the time between neap and spring tide. In the dynamic case, the ETM near km 55 remains present during the

entire spring-neap cycle and moves by about 10 km during this time. Interestingly, another peak in concentration is observed

some time after neap tide near km 45.290

3.2 Analysis

To better understand the dynamics we apply the analysis framework developed in Section 2.4. Hence, we first look at the

transport capacity. Since there is no feedback of the sediment stock or concentration to the water motion and sediment capacity

in this simple model, the transport capacity depends on the instantaneous flow conditions and hence is the same in the quasi-

stationary and the dynamic case. The transport capacity scales with the bed friction, which, in this model, scales linearly295

with the D2 velocity amplitude near the bed. To facilitate comparison of the transport capacity during spring and neap tide,

we therefore divide the transport capacity by the near-bed velocity amplitude at x= 0. Fig. 5 shows this rescaled transport

capacity for the default case at neap tide (Fig. 5a) and spring tide (Fig. 5b). First looking at the total transport capacity, we

see two sediment convergence zones (i.e. transitions from importing capacity to exporting capacity): at km 15 and 41 during

neap tide and km 5 and 56 during spring tide. During neap and spring tide, the transport capacities due to the river flow are300

equal after scaling by the near-bed velocity amplitude. The transport capacity due to the external D4 tide is almost the same

after scaling, while the contributions related to the internally generated D4 tide and spatial settling lag are much larger during

spring than neap. These dependencies of the transport components on the stage of the spring-neap cycle can be explained from

analysis of the model equations. Results are presented in Table 2. The transport capacity depends on the tidal velocity, which

(due to linearity) scales with the tidal surface elevation amplitude |AD2 | and |AD4 | (i.e. D2 and D4 tidal elevation) and a305

function of the local D2-D4 phase difference f (ϕD4
−ϕD2

) (see Bouwman (2019) for an explicit expression of this function).

Since the transport capacity due to river discharge scales linearly with the D2 amplitude (and hence the D2 velocity), the

rescaled transport capacity due to river discharge in Fig. 5 is constant over the spring-neap cycle. The transport capacity by the

externally generated D4 tide is related to the asymmetry between the linearly propagating parts of the D2 and D4 tides, and

also scales with the D2 amplitude and additionally the variation of the D4 amplitude and D2 −D4 phase difference are small310

between spring and neap in this particular case. Hence also the rescaled transport capacity of this component is similar during

both phases. The internally generated D4 tide is caused by the quadratic interaction of the D2 tide due to processes including

advection and stokes drift. Hence, the transport capacity due to the internally generated D4 tide relates to the asymmetry

between this nonlinearly generated D4 tide and the D2 tide and scales with the tidal amplitude cubed. Similarly, spatial settling

lag follows from nonlinear interactions and scales with the tidal amplitude cubed. This explains the difference between neap315

and spring transport capacities.

Secondly, we study the variation of the bottom pool. Fig. 4d-e show the erodibility in the quasi-stationary and dynamic cases.

The black lines indicate the location of the sediment convergence points in the quasi-stationary case (leading to either a local
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Figure 4. Results for the sediment concentration in the default case, comparing quasi-stationary and dynamic results. a) mean near-bed

concentration (lines) and the spring-neap range of the tidally-averaged near bed concentration (shaded area). b-c) near-bed concentrations in

the quasi-static and dynamic cases as function of x and t.The x marks the maximum concentration. d-e) erodibility as a function of x and

t. In d) black solid lines indicate the convergence of transport capacity. In e) the black solid lines indicate local maxima. The black dashed

lines indicate areas where f = 1. f-g) sediment transport as function of x and t

maximum in erodibility or f = 1) and the local maxima in erodibility in the dynamic case. The dashed lines indicate areas

where erosion limited conditions (f = 1) are found. In the quasi-stationary case, convergence points are found during part of320

the cycle between km 0 and 10 as well as further upstream. At spring and neap tide (yellow dashed lines), the convergence

points match the downward zero-crossings of the transport capacity in Fig. 5. Erosion limited conditions are found going from
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spring to neap tide, directly downstream from a sediment convergence point. In the dynamic case, local maxima in erodibility

are found near km 5-8 and 45-55. An erosion limited zone is found from late spring to neap near km 50. Comparing the dynamic

and quasi-steady case, it is observed that erosion limited conditions are not immediately attained at spring tide in the dynamic325

case, since it takes time to build up the bottom pool. This is confirmed by the transport (Fig. 4g), which shows that sediment is

imported towards the bottom pool around spring. Similarly, erosion limited conditions do not immediately disappear after neap

tide. The transport shows sediment is exported, but it takes time for sediment to leave the bottom pool. Also, the bottom pool

moves much less in the dynamic case compared to the quasi-stationary case. Just before neap in the quasi-stationary case, the

ETM moves downstream in a short time, while this downstream movement is only weakly present in the dynamic case. After330

neap in the quasi-stationary case, the ETM disappears. In the dynamic case we do observe exporting of sediment, but this is not

fast enough for the ETM to disappear entirely. Note that transports in the quasi-stationary case are either positive, indicating

there are erosion limited conditions with a growing bottom pool, or transport is zero.

Finally, we will look at the SPM concentration, which is the product of the sediment capacity and erodibility. In this idealised

model, sediment capacity ĉ changes only through variations in the bed shear stress over the spring-neap cycle. Hence, the335

subtidal sediment capacity is highest during spring tide and smallest during neap tide. In the quasi-stationary case (Fig. 4b), the

highest concentrations are found just after spring tide. There are erosion limited conditions and hence concentration depends

on the bed shear stress. Whereas the bed shear stress is maximum at spring tide, the bottom pool is slightly further downstream

after spring tide, where bed shear stresses are higher than upstream. During the spring-neap cycle, the ETM follows the location

of the maximum erodibility. In the dynamic case (Fig. 4c), the location of the highest concentrations follows the location of340

the bottom pool. Now, highest concentrations occur some time after spring tide not only because of the bed shear stress, but

because the bottom pool still needs time to build up. Another peak in concentration is found after neap tide, as the bottom pool

is still present for some time while the estuary is still exporting sediment and bottom shear stresses increase again.
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Figure 5. Transport capacity (black) and the leading contributions to the transport capacity for neap and spring. These are the same for the

quasi-stationary and dynamic cases.

14



Transport contribution Scaling with D2 and D4 tide

River |AD2 |

Ext. D4 tide |AD2 ||AD4 |f (ϕD4 −ϕD2)

Int. D4 tide |AD2 |3

Spatial settling lag |AD2 |3

Table 2. Scaling of some transport components with the D2 and D4 tidal amplitude and phase (ϕ). Note that these dependencies are valid

in the context of the model for the idealised case. Various factors are not taken into account in these dependencies, including the scaling of

turbulence parameters with the tidal amplitude and effects of salt and SPM concentration on turbulence.

3.3 Effect of bottom pool presence

The timing and location of the ETM resulting from spring-neap variations depend strongly on whether or not a bottom pool345

with erosion limited conditions (f = 1) can form. If such a bottom pool forms, sediment keeps accumulating and the sediment

concentration is at capacity conditions. To show the effect of the bottom pool on the SPM concentration we compare cases

with different values of the erosion parameter M = 1 · 10−5 s/m and M = 1 · 10−3 s/m. Within this model, the sediment

transport capacity simply scales linearly with the erosion parameter, while the spatial distribution remains the same. Hence,

the underlying sediment transport tendency remains the same as in the default case (cf. Fig. 5).350

Fig. 6a, c, e, g show the sediment concentration, erodibility and transport for M small. All results correspond to the dynamic

case, with the only comparison with the quasi-stationary case in panel a. Due to the small erodibility, maximum concentrations

are quite small, but since the transport capacity is the same, ETM are still found in the same locations (near km 5 and 50). The

mean concentration in the dynamic case is bigger than that in the quasi-stationary case (panel a), while the variation is smaller.

The mean concentration is higher, because the sediment concentration is at capacity conditions (f = 1, panel e) in areas at the355

entrance and near km 50 during the entire spring-neap cycle. Sediment is still imported and exported to and from the bottom

pool (panel g), but erosion limited conditions persist. Hence, the ETM does not vanish after neap as in the quasi-steady case

(cf. Fig. 4c). Consistent with the capacity conditions, the highest concentrations in both ETM are found during spring tide,

when bed shear stresses are at their maximum.

Fig. 6b, d, f, h show the results for the larger value of M , again corresponding to the dynamic case. The ETM near km 5360

is still present but only very weak, while there is still a clear ETM near km 50. Mean concentrations in the dynamic case are

significantly smaller than in the quasi-stationary case, while variations over the cycle remain smaller in the dynamic case (panel

b). The estuary never reaches capacity conditions (f < 1) and maximum erodibility in both ETM is reached close to neap tide

(Fig. 6f). Maximum concentrations are now found between spring and neap tide, when erodibility is approaching its maximum,

while the bed shear stress is not yet at its minimum. After neap tide, the ETM does not disappear as in the quasi-steady case,365

but concentrations do decrease after neap tide. This is because the bottom pool is not big enough to remain present for long

after neap tide, preventing increasing concentrations even though the bed shear stress increases.

15



Comparing the situations with high and low M , it is observed that there is a significant dynamic effect of the spring neap

cycle in both cases, compared to the quasi-stationary state. In both cases, it takes significant time for the estuary to move the

sediment stock around and adapt to the changing conditions. Under erosion limited conditions, an important dynamic effect370

is the build-up and break-down of the bottom pool. During times of export, this means that erosion limited conditions can be

sustained for a significant amount of time or even the entire spring-neap cycle as it takes time before the bottom pool is drained.

This is reflected in a different timing of maxima and minima in the sediment concentrations. Indeed, comparing Fig. 6c and

6d, maximum concentrations for small M occur at the time when minimum concentrations are attained for large M and vice

versa. Since the underlying transport capacity is identical in both cases, this is due to the bottom pool thickness relative to the375

possible re-suspension by the tide.

3.4 Adjustment time

In previous studies of the effects of spring-neap tides on salt distributions in estuaries, the dynamic effects of the spring-neap

cycle are often quantified by measuring the delay between the salinity distribution and the tidal amplitude (e.g. Hetland and

Geyer, 2004). For sediment, even in our highly simplified model, such relation is not possible. Fig. 5 already shows the com-380

plicated relation between the tidal amplitude and transport capacity. As the various physical contributions scale differently

with the tidal amplitudes and D2-D4 phase difference, the spring-neap variation in total sediment transport capacity is not a

monotone function of the tidal amplitude. This total transport capacity determines the tendency for the estuary to redistribute

sediment over time which then results in an erodibility f and finally the sediment concentration. As there is no monotone rela-

tion between the spring-neap forcing and the transport capacity, there is no monotone response of the sediment concentration385

to the tidal amplitude and hence analysis in terms of delay is not possible.

We may however still estimate a timescale for adjustment of the estuary to changing forcing conditions. If the adjustment

time is much shorter than the spring-neap period, the dynamic SPM concentration will be similar to the quasi-steady result.

If the adjustment time is similar to or bigger than the spring-neap period, results may deviate significantly from the quasi-

stationary results as shown in the previous sections. A simple expression to estimate the order-of-magnitude of the adjustment390

time of the estuary Tadj could be:

Tadj =
maxt

(∫ L

0
BSdx

)
−mint

(∫ L

0
BSdx

)
< |T |>x=0

, (15)

i.e. the difference between the maximum and minimum total amount of sediment in the estuary divided by the mean (< ·>)

absolute sediment transport at the mouth. Note that this timescale is diagnostic, i.e. it requires knowledge of the sediment

balance to compute it. By this definition, Tadj in the default case is approximately 23 days. This is longer than the spring-neap395

cycle duration, consistent with the results showing significant dynamic effects.
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Figure 6. Results for model runs with low and high values of the erosion parameter M . a-b) mean near-bed concentrations (lines) and

the range of tidally-averaged near-bed concentration (shaded). c-d) near-bed concentrations. The x marks the maximum concentration..e-f)

erodibility. Black dashed lines indicate erosion limited areas. Black solid lines indicate local maxima (with f < 1). g-h) sediment transport.

3.5 Application to the hyperturbid Loire

Next, we discuss the application of the model to the Loire configuration (Dijkstra and De Goede, Submitted to Journal of

Geophysical Research: Oceans), in which the model includes various additional physical processes (see Sect. 2.6.2). The

additional processes mean that the sediment concentration now influences the flow (through its effect on turbulence), sediment400
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capacity, and transport capacity. The dynamic effects of the spring-neap cycle are therefore not only visible in the erodibility

and sediment concentration, but also in the sediment capacity and transport capacity.

Fig. 7a shows near-bed average concentration (lines) and variability over the spring-neap cycle (shaded areas) in the quasi-

stationary and dynamic cases. The ETM are located around km 8 and 30 with mean concentrations around 30 g/l. Fig.7b-c

show the time dependence of the near-bed concentration. The ETM only move a few km over the spring-neap cycle for both405

the quasi-stationary and dynamic cases. In the quasi-stationary case there is a small time interval after neap tide when the ETM

disappears from the estuary. In the dynamic case, however, the ETM mostly remains present during the spring-neap cycle.

Exception is a small time interval near km 8 when stratification briefly collapses leading to somewhat lower concentrations.

The along-channel maximum near-bed concentrations vary between 26 g/l and 52 g/l over the spring-neap cycle, with higher

near-bed concentrations at neap. Surface concentrations (Fig.7d-e) have along-channel maxima which vary between 1 and 3410

g/l, with the maximum occurring after spring tide.

To better understand these results, we will again apply our analysis framework. Fig. 8 shows the transport capacity scaled

by the local near-bed velocity amplitude in the dynamic case at neap and spring tide. First concentrating on the total transport

capacity, the downward zero-crossings, indicating the locations of maximum erodibility, are located at approximately the same

locations. This helps to explain the quite minor qualitative differences between spring and neap in the erodibility and sediment415

concentration noted earlier. The transport capacity at spring is larger than at neap, even relative to the near-bed velocity. During

spring tide, the eddy viscosity is bigger mainly due to bigger shear stresses and the effective settling velocity is smaller due

to hindered settling. Hence, sediments are mixed up higher in the water column and the water column can accommodate and

transport more sediment. This effect of mixing causes all contributions to the transport capacity to increase at spring. In the km

8 ETM, the baroclinic contribution is most important, closely followed by the effect of the externally generated D4 tide. In the420

km 40 ETM, the external tidal asymmetry is dominant at neap, while spatial settling lag is dominant at spring.

The various contributions to the transport capacity do no longer scale with the tidal amplitude exactly as in Table 2 due

to the added physical processes. Table 3 presents the relative differences between spring and neap magnitude of the various

transport contributions (not scaled by the near-bed velocity) in the areas 0-10 km (1st column) and 20-40 km (2nd column). The

relative spring-neap differences are much larger than the scaling of Table 2 (third column) suggests, especially in the first 10425

km. Relatively, however, we still notice that the spatial settling lag and internal asymmetry are much more strongly amplified

at spring due to their greater sensitivity to the tidal amplitude.

Next looking at the bottom pool dynamics, it is observed that the erodibility (Fig. 7f-g) is largest around the locations of

the ETM, consistent with the convergence of transport capacity. The erodibility is highest around neap, with erosion limited

conditions in km 0-8. The amount of sediment in the bottom pool remains of the same order of magnitude during spring and430

neap (not shown). Erodibility is nevertheless highest during neap because the sediment capacity is low due to small bed shear

stress and strong stratification. The quasi-stationary and dynamic cases show quite similar results, except for some time after

neap tide, where the quasi-stationary case shows flushing of the bottom pool. In the dynamic case, the erodibility remains

significantly larger than zero. Sediment is transported (Fig. 7i) to the bottom pool between km 0-10 around neap tide (∼
0.5<t/T<1), and to the bottom pool at km 40 around spring tide (∼ 0<t/T<0.5). Hence, even though trapping occurs at435
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approximately the same locations during the entire spring-neap cycle, sediment is transported between the two bottom pools

between spring and neap.

Finally considering the SPM concentration in the dynamic case, the location of high near-bed concentrations (Fig. 7c) does

not move much due to the stable locations of the bottom pools. Highest near-bed concentrations occur at neap because the

erodibility is high and strong stratification keep sediment confined close to the bed. Surface concentrations (Fig. 7e) corre-440

spondingly are lowest during neap. Maximum surface concentrations occur some time after spring tide, due to larger mixing.

Summarising, we find that the transport capacity indicates similar trapping locations over the entire spring-neap cycle, with

sediment transported between the two trapping areas. A combination between high erodibility and low bottom shear stress at

neap and lower erodibility but higher bed shear stress at spring means quite high concentrations can be attained during the

entire cycle. Observed peaks in bottom and surface concentration are mainly related to the stratification, determining whether445

sediment can be mixed or is confined to the bed. The differences between the dynamic and quasi-stationary cases are quite

small, except for a window of a few days after neap, indicating a rapid adjustment of the estuary .This is supported by the

(diagnostic) adjustment scale (Sect 3.4), which in this case is approximately 4 days.

Contribution Tspring/Tneap 0-10 km Tspring/Tneap 20-40 km Scaling with |ζspring|/|ζneap| from Table 2

River 25-50 5 |ζspring|/|ζneap|= 2.17

Spatial settling lag 100-500 10-20 (|ζspring|/|ζneap|)3 = 10.3

Internal asymmetry 100-400 4-10 (|ζspring|/|ζneap|)3 = 10.3

External asymmetry 20-30 4-7 |ζspring|/|ζneap|= 2.17

Baroclinic 25-50 2 |ζspring|/|ζneap|= 2.17

Diffusion 10-20 2 |ζspring|/|ζneap|= 2.17

Table 3. Relative difference between the transport capacity contributions at spring and neap tide in two areas of the model domain.

4 Discussion

4.1 Wider applicability and limitations of the methodology and results450

Our framework of analysis of the dynamics of SPM extends beyond the scope of this study. Firstly, such analysis may be

extended to any variation in the forcing parameters that is much slower than the D2 tidal timescale, such as seasonal discharge

variations (see e.g. Brouwer et al, 2018). The analysis framework can partly be used to interpret results from numerical simula-

tion models. Inclusion of spatially varying viscosity and diffusivity through more complex turbulence closures does not affect

the interpretation framework. Nonlinear interactions between water motion, salinity, SPM and mixing within such turbulence455

closures do complicate a cause-and-effect analysis in the same way as we found in the Loire case, but otherwise still allows

use of the analysis framework. Furthermore, it is possible to compute the bottom pool thickness, erodibility and total sediment
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transport capacity from such models (see Dijkstra, 2019, Ch 7 for an example in the Delft3D model). Decompositions of the

transport capacity, such as the ones used in this study, can usually not be computed from simulation models.

The aim of this study was to provide insights into various effects of the spring-neap cycle on SPM dynamics, but ignored460

various potentially important aspects. Some aspects that were not considered in the idealised case, such as the influence of

velocity, salinity and sediment concentration on turbulence parameters, were added in the Loire case study. Still, D2 tidal

variations in the salinity and turbulence parameters were not considered, thus excluding effects of tidal straining and eddy

viscosity-shear covariance (ESCO). These processes would affect the trapping and resuspension dynamics in a complex way.

Some other aspects that were ignored are worth mentioning specifically for further study. Firstly, the width averaging means465

the lateral dynamics is ignored. In estuaries it is well possible that sediment accumulates on shallow flanks with erosion

limited conditions, while supply limited conditions dominate in the deeper channel. The effects of spring-neap variations in

such contexts still needs further investigation. Also, it is assumed that all sediment in the bottom pool remains easily erodible

without a critical threshold for the bed shear stress. Consolidation of sediments on the spring-neap timescale is not taken

into account and may additionally significantly affect the dynamics. Thirdly, the present model only considers changes in the470

bottom pool over the spring-neap cycle as a consequence of the tidally averaged transport. This ignores the intratidal variations

of the bottom pool thickness.

The two-timescales formalism as applied here ignores some dynamics that is assumed to be unimportant. For example, it was

assessed that the interaction between the tidal and spring-neap cycle in the sediment balance is negligible, but this assumption

still needs a-posteriori verification. Also, it was assumed that the water motion adapts quickly to spring-neap conditions. Allen475

et al (1980, (p.75)) argue that overall storage of water in the estuary can potentially be larger during spring tide than neap tide

due to a different subtidal water set-up. Hence there is a subtidal flow of water in and out of the estuary over the spring-neap

cycle. Our scaling arguments indicate this effect to be negligible, but to the author’s knowledge, this has not been systematically

verified.

4.2 Use of quasi-stationary model simulations480

Quasi-stationary model results are frequently used to gain understanding of estuarine sediment dynamics (e.g. Burchard and

Baumert, 1998; Chernetsky et al, 2010; McSweeney et al, 2016; Dijkstra et al, 2019). Since quasi-stationary results do not

depend on the forcing history but are consistent with the actual (tidal) forcing, this greatly reduces complexity. In cases where

the dynamics of e.g. the spring-neap cycle is important, some caution needs to be taken in the interpretation of such results. First

considering the case where quasi-stationary results are used to study spring-neap averaged results, it is clear from our results485

that spring-neap mean sediment concentrations in the dynamic and quasi-stationary cases are not the same. By calibration using

e.g. the erosion parameter, similar concentrations between the dynamic mean and quasi-stationary case may be nevertheless

obtained and hence one should be careful that the value of such a calibration parameter is highly context dependent. As the

contributions to the sediment transport capacity scale non-linearly with the tidal amplitude and D2-D4 phase difference, using

an average spring-neap amplitude and phase difference results in an error in the relative importance of processes, which may490

result in a shift of the sediment trapping location. As long as similar processes are important during spring and neap tide, the
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dominant processes are still identified by taking a spring-neap average. Therefore, the quasi-stationary simulations should be

more regarded as qualitative than quantitatively correct when dynamics are important.

Secondly, we consider the use of quasi-stationary reasoning to understand the dynamics during spring or neap tidal phases.

From our results it is concluded this should be done with caution, since the dynamic sediment concentrations may be quite495

different from the quasi-stationary ones, as there are significant memory effects. Hence, one should best use these results to

indicate a range of the dynamics occurring over the spring-neap cycle, acknowledging that the dynamic spring-neap variability

in SPM concentration is smaller.

5 Conclusions

In this study we set-up and applied a framework for understanding spring-neap dynamics of fine sediments in estuaries. The500

framework consists of analysing sediment trapping using sediment transport capacity, consequently considering the slow move-

ment of the bottom pool and finally studying the local interaction between the bottom pool and water column to understand

the SPM concentrations. Our framework is motivated using a two-timescales approach, which separates the solution over the

tidal timescale and the spring-neap timescale. It shows that it is mainly the slow movement of the bottom pool that explains

lag or memory effects, while the water motion and vertical distributions of SPM adapt much faster. The use of our frame-505

work was demonstrated using an idealised test case where the sediment dynamics does not affect the water motion, and a case

representing the Loire estuary, with significant feedback between the SPM concentration and water motion.

In the idealised test case it was shown that dynamic effects of the spring-neap cycle are quite important. While transport

capacity could indicate flushing of the ETM at some stage of the spring-neap cycle, slow adaptation of the bottom pool can

cause the ETM to persist over the entire spring-neap cycle. Depending on the interplay between this dynamically influenced510

bottom pool, the bed shear stress and stratification, the timing of the maximum concentrations during the spring-neap cycle can

be quite different. This was illustrated by comparing the same test case with different values of the erosion parameter, showing

maximum SPM concentrations at opposite stages of the spring-neap cycle. The framework also proved useful interpreting the

results of the Loire case. Due to the feedback, cause-and-effect between water motion, transport and SPM concentration could

not be considered, but we could still explain the trapping locations and timing of maximum concentrations in a systematic way.515

Code availability. The model code and input files to reproduce the model experiments are available under iFlow version 3.1 on GitHub

(https://github.com/iFlow-Modelling-Framework/iFlow, or https://doi.org/10.5281/zenodo.822394).

Appendix A: Mathematical computation of quasi-stationary conditions

The quasi-stationary results used in this study are computed by solving the model equations presented in Section 2.1 with

some minor modification. In quasi-stationary conditions, one can identify two different cases. In the first, the sediment stock520

S is in balance with the instantaneous hydrodynamics conditions, which means that slow-time derivative of the stock vanishes
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(St2 = 0 in Eq. (12)). In the second case, the sediment concentration is in balance with the instantaneous hydrodynamic

conditions, but the bottom pool keeps growing. The growing bottom pool can however not be fully re-suspended and does

not alter sediment concentration. It is assumed that the bottom pool remains small enough not to affect the water depth. In

both cases, the slow-time derivative of the erodibility vanishes. To use this latter observation, we rewrite Eq. (12). Note that525

erodibility f is a function of the stock S. Multiplying Eq. (12) by ∂f
∂S and using that ∂f

∂SSt2 = ft2 we obtain:

Bδft2 =−∂f

∂S

〈
B

ζ∫
−H

uc−Khcx dz

〉
x

. (A1)

Assuming quasi-stationary conditions we set ft2 = 0 and solve the above equation together with the equations in Section 2.1.

On a technical note, ∂f
∂S may be equal to zero. Hence, multiplying Eq. (12) by ∂f

∂S eliminates that equation if ∂f
∂S = 0. This is

not a problem however, since ∂f
∂S = 0 only happens when f = 1, so we also eliminate one of the unknowns of the model. The530

model hence remains solvable.

Appendix B: Additional information for the Loire case

Table B1 lists the parameter values used in the Loire case. Please see Dijkstra and De Goede (Submitted to Journal of Geo-

physical Research: Oceans) for a further description of the model.

Parameter Value Parameter Value

AM2 M2 amplitude at x= 0 1.75 m AM4 M4 amplitude at x= 0 0.20 m

AS2 S2 amplitude at x= 0 0.65 m AS4 S4 amplitude at x= 0 0.007 m

ϕM2 M2 phase at x= 0 0 deg ϕM4 M4 phase at x= 0 -148 deg

ϕS2 S2 phase at x= 0 103 deg ϕS4 S4 phase at x= 0 110 deg

Q River discharge 250 m2/s ws,0 Clear water sediment settling veloc-

ity

2 mm/s

z∗0,est Dimensionless roughness estuary

(x < 45 km)

0.01 csea Depth-averaged tide-averaged sedi-

ment concentration at x= 0

0.3 g/l

z∗0,riv Dimensionless roughness river

(x > 60 km)

0.05 Kh Horizontal eddy diffusivity 100 m2/

M Erosion parameter 0.03 s/m cgel Gelling concentration 100 g/l
Table B1. Default values of the parameters in the Loire case.

The subtidal eddy viscosity and eddy diffusivity in this case depends on the velocity and stratification through the equations535

Aν =
〈
cν,1(z

∗
0)|U |(H + ζ)F (Ri)

〉
, (B1)

Kν =

〈
cν,1(z

∗
0)

σρ
|U |(H + ζ)G(Ri)

〉
. (B2)
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Here, cν,1(z∗0) is a coefficient that depends on a calibrated dimensionless roughness height z∗0 , σρ is a constant Prandtl-Schmidt

number of 1, |U | is the depth-averaged velocity magnitude, and F (Ri), G(Ri) are adaptations of the Munk and Anderson

(1948) functions for stratification-induced damping of turbulence: F (Ri) =
(
1+10Ri

)−1/2
and G(Ri) =

(
1+3.33Ri

)−3/2
.540

They depend on the depth-average (·) of an approximation of the Richardson number

Ri ==−g
βccz +βsz
u2
z +u2

z,min
. (B3)

This is best thought of as a bulk-Richardson number. Here uz,min = 0.03 s−1 parametrises the unresolved shear, e.g. by lateral

flows and βc = 6.2 · 10−4 m3/kg.

The resulting eddy viscosity, Richardson number and the depth-averaged M2 velocity magnitude are plotted in Fig. B1.545
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Figure 7. Results for the sediment concentration in the Loire case, comparing quasi-stationary and dynamic results. a) mean near-bed

concentration (lines) and the spring-neap range of the tidally-averaged near bed concentration (shaded area). b-c) near-bed concentrations

in the quasi-static and dynamic cases as function of x and t. d-e) id. for surface concentrations. f-g) erodibility. Black dashed lines indicate

erosion limited areas. Black solid lines indicate local maxima (with f < 1). h-i) sediment transport.
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Figure B1. Right: eddy viscosity in time relative to the spring-neap period (T ) and space (x) in the Loire case. Left: the depth-averaged

(bulk) Richardson number (top) and depth-averaged M2 velocity magnitude (bottom).
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