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Abstract. The global annual mean contrail net radiativeclimate forcing may exceed that of aviation’s cumulative CO2 

emissions by at least two-fold. As only around 2-3% of all flights are likely responsible for 80% of the global annual contrail 10 

energy forcing (EFcontrail), re-routing these flights could reduce the formation occurrence of strongly warming contrails. Here, 

we develop a contrail forecasting tool that produces global maps of persistent contrail formation and their associated EFcontrail., 

formatted to align with standard weather and turbulence forecasts for integration into existing flight planning and air traffic 

management workflows. This is achieved by extending the existing trajectory-based contrail cirrus prediction model (CoCiP), 

which simulate contrails formed along provided flight paths, to a grid-based approach that initialises an infinitesimal contrail 15 

segment at each point in a 4D spatiotemporal grid and tracks them until their end-of-life. Outputs are provided for N number 

ofdifferent aircraft-engine groups, with groupings based on similarities in aircraft mass and engine particle number emissions: 

N = 7 results in a 3% mean error between the trajectory- and grid-based CoCiP; while N = 3 facilitates operational simplicity 

but increases the mean error to 13% and formatted to align with standard weather and turbulence forecasts, facilitating their 

integration into existing flight planning and air traffic management workflows. We use the grid-based CoCiP to 20 

simulateconduct a global contrails globally using simulation for 2019 meteorology and compare its forecast patternsthe spatial 

trends of strongly warming and cooling contrails with those from previous studies. Two approaches are proposed to apply 

these forecasts for contrail mitigationintegrating contrail forecasts into flight planning and air traffic management systems: (i) 

monetising the EFcontrail and including it as an additional cost parameter within a flight trajectory optimizer; or (ii) constructing 

polygons to avoid airspace volumes with strongly-warming contrails. We also demonstrate a probabilistic formulation of the 25 

grid-based CoCiP by running it with ensemble meteorology and excluding grid cells with significant uncertainties in the 

simulated EFcontrail. This study establishes a working standard for incorporating contrail mitigation into flight management 

protocols and demonstrates how forecasting uncertainty can be incorporated to minimize unintended consequences associated 

with increased CO2 emissions from re-routesof avoidance. 
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1 Introduction 30 

Global aviation activity produces significant socio-economic benefits, but also emits CO2 and non-CO2 pollutants that impact 

the environment in the form of climate change and air quality degradation. Lee et al. (2021) estimated that aviation accounted 

for 3.5% of the global anthropogenic climate forcing in 2018, where the collective effective radiative forcing (ERF) from non-

CO2 components such as contrail cirrus (57.4 [17, 98] mW m-2 at a 95% confidence interval) and nitrogen oxides (17.5 [0.6, 

29] mW m-2) could be two times larger than its cumulative CO2 emitted since the 1940s (34.3 [28, 40] mW m-2). Given the 35 

significant impact from aviation non-CO2 emissions, the European Union (EU) Emissions Trading System’s (ETS) Monitoring 

Reporting and Verification framework has recently been amended to require flights travelling within Europe to measure their 

non-CO2 impacts, including the effects from contrail cirrus, from 2025 onwards (European Commission, 2023). 

 

Contrails form behind an aircraft when conditions in the rapidly cooling exhaust plume become supersaturated with respect to 40 

water, enabling water vapor to condense on the surface of particles to form droplets that subsequently freeze into ice particles 

(Kärcher and Yu, 2009; Schumann, 1996). Previous studies have estimated that up to 85% of contrails are short-lived and 

sublimate within five minutes (Teoh et al., 2024a; Wolf et al., 2023b). The remaining contrails typically persist in ice 

supersaturated regions (ISSR), where they can evolve into contrail cirrus clusters that become indistinguishable from natural 

cirrus (Haywood et al., 2009). These persistent contrails exhibit lifetimes that generally follow an exponential distribution with 45 

a mean duration of 1–3 h (Caiazzo et al., 2017; Teoh et al., 2024a; Vázquez-Navarro et al., 2015). During daylight hours, 

persistent contrails can cause a cooling effect by reflecting incoming shortwave (SW) solar radiation back to space. However, 

they always induce a warming effect by absorbing and re-emitting outgoing longwave (LW) infrared radiation (Meerkötter et 

al., 1999). Contrail LW and SW instantaneous radiative forcing (RF) varies regionally and influenced by air traffic density, 

aircraft-engine particle number emissions, background radiation fields, ambient meteorology, and diurnal and seasonal factors 50 

(Kärcher, 2018; Schumann and Heymsfield, 2017; Teoh et al., 2022a, 2024a).  

 

While observational tools such as satellite imagery and ground-based cameras have been used for observing contrail formation 

and evolution (Duda et al., 2019; Mannstein et al., 2010; Rosenow et al., 2023; Schumann et al., 2013b; Vázquez-Navarro et 

al., 2015), estimates of the cumulative contrail climate forcing over their entire lifecycle are currently only available through 55 

simulation-based models. Various physics-based modelling approaches have been employed for this purpose, including: (i) 

large-eddy simulations (LES) (Lewellen, 2014; Lewellen et al., 2014; Unterstrasser, 2016); (ii) parameterised Lagrangian 

models such as the Contrail Cirrus Prediction Model (CoCiP) (Schumann, 2012), Contrail Evolution and Radiation Model 

(CERM) (Caiazzo et al., 2017), and Aircraft Plume Chemistry, Emissions, and Microphysics Model (APCEMM) (Fritz et al., 

2020); and (iii) general circulation models (GCMs) which simulate the interaction between contrails and different atmospheric 60 

processes, including the rapid atmospheric adjustments directly caused by the contrailsecond-order feedback , such as changes 

in water vapor concentration, temperature lapse rate, and natural cirrus properties , mechanisms (Bickel et al., 2019; Bier and 
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Burkhardt, 2022; Chen and Gettelman, 2013; Grewe et al., 2014; Ponater et al., 2021). Specifically, approaches (ii) and (iii) 

have been applied to investigate the spatiotemporal variations in contrail climate effects and used for flight trajectory 

optimisation purposes (Frömming et al., 2021; Grewe et al., 2017; Schumann et al., 2011; Teoh et al., 2020b). 65 

 

Recently, Teoh et al. (2024a) used CoCiP to simulate contrails globally for 2019, estimating that around 20% of all flights 

produced persistent contrails. Among these persistent contrail-forming flights, 70% of them (17% of all flights) had a net 

warming effect and 10% of them (2.7% of all flights) were responsible for 80% of the global annual contrail energy forcing 

(EFcontrail). The EFcontrail represents the cumulative contrail climate forcing over its lifetime, with a positive value indicating 70 

more energy entering the Earth system than leaving it. We use the terms “warming/cooling effect” to describe this net energy 

balance at the top of the atmosphere, while acknowledging that the actual surface temperature change depends on the contrail 

efficacy and spatiotemporal factors (Bickel et al., 2019; Ponater et al., 2005, 2021; Schumann and Mayer, 2017). These findings 

highlight a potential pathway for aviation to reduce its overall climate forcing by strategically re-routing a small subset of 

flights to minimise the formation of strongly warming contrails (Teoh et al., 2020b, a; Wilhelm et al., 2021). While two small-75 

scale operational contrail avoidance trials have been conducted in recent years (American Airlines, 2023; Sausen et al., 2023), 

several challenges must be addressed to implement a contrail-minimisation strategy at a larger-scale. These challenges include: 

(i) integrating a contrail forecast model into flight planning and management software to account for airspace and operational 

constraints; (ii) automating  airspace procedures to perform trajectory adjustments, which is necessary to reduce air traffic 

controller workload (Molloy et al., 2022; Sausen et al., 2023); (iii) incorporating meteorological and contrail forecast 80 

uncertainties into the decision-making framework for contrail mitigation actions (Agarwal et al., 2022; Gierens et al., 2020; 

Molloy et al., 2022); and (iv) balancing trade-offs between reducing contrail climate forcing and potential increases in fuel 

consumption. Challenges (i) to (iii) could be addressed by providing contrail climate forcing forecasts in a format similar to 

turbulence forecasts (Turbli, 2024), thereby facilitating their integration into the operational workflow of existing flight 

planning software (Martin Frias et al., 2024). 85 

 

This study aims to extend the existing trajectory-based CoCiP to create a prototype contrail forecasting tool that generates 

global maps of persistent contrail formation and their associated climate forcing. We then compare the spatial trends of contrail 

climate forcing predicted by this new tool with those from the trajectory-based CoCiP and earlier global contrail simulation 

studies. Additionally, we demonstrate how the tool can be applied to flight trajectory optimization and propose strategies to 90 

account for contrail forecast uncertainties arising from weather forecasts and model simplifications.  

 

Our contrail forecasting tool uses a Lagrangian model instead of LES and GCMs for two key reasons: (i) it can utilise reanalysis 

or forecast meteorological data provided by numerical weather prediction (NWP) models, rather than relying on representative 

weather conditions from GCMs (Grewe et al., 2014); and (ii) it can compute the EFcontrail efficiently within the time constraints 95 

required for flight planning and operational use. While we expect contrail forecasts to evolve as modelling and observational 
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capabilities improve, we aim to use this prototype to enable stakeholders (e.g., flight planners and air navigation service 

providers) to accommodate contrail forecasts in flight planning by establishing standards, data integration and modifications 

to software tools and operational processes.  

2 Trajectory-based CoCiP 100 

CoCiP simulates the contrail properties and climate forcing for a single flight trajectory using inputs of: (i) flight trajectory 

waypoints; (ii) fuel properties, such as the water vapour emissions index (EI!!") and lower calorific value (Qfuel); (iii) aircraft 

properties and performance parameters, including the true airspeed (VTAS), fuel mass flow rate (�̇�#), overall efficiency (η), 

aircraft mass (M), and wingspan; (iv) aircraft-engine specific non-volatile particulate matter (nvPM) number emissions index 

(EIn); and (v) historical or forecast meteorology provided by NWP models (Schumann, 2012). 105 

  

Briefly, CoCiP utilises the Schmidt-Appleman criterion (SAC) to estimate the threshold temperature for contrail formation 

(TSAC), where TSAC is influenced by η, EI!!", and Qfuel (Schumann, 1996). For waypoints that satisfy the SAC i.e., with ambient 

temperature (Tamb) falling below TSAC, CoCiP simulates the wake vortex downwash using a probabilistic two-phase wake 

vortex decay model which parametrically estimates the mean downward displacement and initial contrail width and depth as 110 

a function of aircraft mass, wingspan, and VTAS (Holzapfel, 2003). Persistent contrail segments are defined when the post-wake 

vortex contrail ice water content (IWC) in two consecutive waypoints is greater than 10-12 kg kg-1. For each contrail segment, 

the contrail ice crystal number per flight distance flown (nice,initial) is initialized by estimating the nvPM particle number 

emissions per flight distance flown, fraction of nvPM particles that activates to form contrail ice crystals (factivation), and fraction 

of contrail ice crystals that survive the wake-vortex phase (fsurv),   115 

𝑛$%&,$($)$*+ = nvPM	EI( × �̇�#,,$-) × 𝑓*%)$.*)$/( × 𝑓-01., where       (1) 

𝑓*%)$.*)$/( = −0.661e(3"#$43%&') + 1, and        (2) 

𝑓-01. =
678()(*("+49678",

678()(*("+
.          (3) 

 
The nvPM number emissions per unit distance is calculated by multiplying the aircraft-engine specific nvPM EIn with the fuel 120 

consumption per distance flown (�̇�#,,$-)), factivation is determined by the difference between Tamb and TSAC (Bräuer et al., 2021; 

Teoh et al., 2022a), and fsurv is assumed to be proportional to the change in contrail IWC due to adiabatic heating from the 

wake vortex downwash (ΔIWCad) (Schumann, 2012). 

 

For persistent contrail segments, a first order Euler method simulates the evolution of their locations, dimensions, and 125 

properties, with model time steps (dt, < 3600 s; 300 s in this study), until their end-of-life, defined as when the contrail segment 

age exceeds a maximum lifetime of 12 h, ice particle number per volume of air drops below 103 m-3, or optical depth (τcontrail) 
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falls below 10-6 (Schumann, 2012; Teoh et al., 2024a). A parametric RF model, which is fitted to the libRadtran radiative 

transfer package (Mayer and Kylling, 2005), is used to estimates the local contrail SW and LW RF (RF’, the change in radiative 

flux over the contrail coverage area) at each time step (Schumann et al., 2012a).  These RF’ estimates indirectly account for 130 

the presence of various cloud typesnatural cirrus (e.g., ice, liquid, and mixed-phased clouds) above and below the contrail 

through input meteorologicaly parameters including such as the reflected solar radiation (RSR), outgoing longwave radiation 

(OLR), effective albedo (i.e., the fraction of incoming solar radiation reflected by the surface and/or clouds), and the overlying 

natural cirrus optical depth of overlying cirrus clouds (τcirrus) (Schumann et al., 2012a). Additionally, recent CoCiP studies 

have also formulated an approach to approximate the change in contrail RF’ due to contrail-contrail overlapping (Schumann 135 

et al., 2021; Teoh et al., 2024a). 

 

The EFcontrail is estimated by integrating the contrail net RF’ over its contrail segment length (L), width (W), and lifetime (tmax) 

(Schumann et al., 2011),  

EF%/()1*$+	[J] = ∫ RF(&): (𝑡) × 𝐿(𝑡) ×𝑊(𝑡)	d𝑡;#"-
< .        (4) 140 

 

We note that the EFcontrail is sensitive to several factors, including the: (i) contrail RF’ estimates from the fitted parametric RF 

model; (ii) humidity fields from the NWP model, which affect the contrail tmax and coverage area (L and W); and (iii) contrail 

segment angle (α), which is the angle between the contrail segment and the longitudinal axis. For (iii), α influences the 

magnitude of wind shear acting perpendicular to the contrail segment (,=)
,>

) (Schumann, 2012),  145 

,=)
,>

= ,?
,>
cos(α) − ,@

,>
sin(α),          (5) 

 

where ,?
,>

 and ,@
,>

 represent the wind shear acting on the eastward and northward directions respectively. The ,=)
,>

, in turn, 

influences the contrail’s spreading rate, ice crystal loss rate, and tmax. Consequently, contrails with a large EFcontrail are generally 

long-lived with a large coverage area, while short-lived contrails with a large positive net RF’ may have a negligible EFcontrail 150 

(Teoh et al., 2020a). 

 

While previous studies have compared the distribution of simulated contrail properties from CoCiP with in situ measurements, 

remote sensing, and satellite observations over their lifecycle (Driver et al., 2024; Jeßberger et al., 2013; Low et al., 2024; 

Schumann et al., 2017, 2021; Schumann and Heymsfield, 2017; Teoh et al., 2024a), further comparisons with observations 155 

remain crucial for building greater confidence in and improving the accuracy of CoCiP predictions. For further details on the 

versioning and evolution of the trajectory-based CoCiP, readers can refer to Appendix A1 and the documentation of the open-

source pycontrails repository (Shapiro et al., 2023).   
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3 Grid-based CoCiP 

The existing implementation of CoCiP described in Section 2, i.e., the trajectory-based CoCiP, simulates contrails formed 160 

along a flight path. However, when used to optimize the trajectory of multiple flights, the trajectory-based approach becomes 

computationally inefficient because of the need for repeated model re-runs across each flight and various trajectory iterations 

to identify the solution with minimum EFcontrail. One way to address this limitation is to produce a 4D field of the EFcontrail per 

flight distance flown, effectively identifying regions forecast to form persistent and/or strongly warming contrails. We achieve 

this by extending the trajectory-based CoCiP to a grid-based approach, where an infinitesimal contrail segment is: (i) initialized 165 

at each point in a 4D spatiotemporal domain; (ii) simulated until its end of life with a dt of 300 s using the equations of the 

trajectory-based CoCiP; and (iii) has its cumulative climate forcing attributed back to the grid cell where it originally formed, 

with the model outputs taking the same form as traditional 4D NWP data. For (ii), Appendix A2 evaluates the sensitivity of dt 

on the simulated EFcontrail and provides the rationale for selecting a dt of 300 s for the grid-based CoCiP. Additionally, we note 

that the grid-based CoCiP defines regions with strongly warming contrails based on the 80th percentile (5 ×108 J m-1) and the 170 

95th percentile (1.5 ×109 J m-1) of EFcontrail per flight distance flown, both of which were derived from a 2019 global contrail 

simulation using the trajectory-based CoCiP (Teoh et al., 2024a). 

 
Table 1: Summary of the key differences between the trajectory-based and grid-based CoCiP. 

 Trajectory-based CoCiP Grid-based CoCiP 

Flight segments  
Flight segments are initialized based on the flight 
trajectory, which is provided as a sequence of 
flight waypoints.  

An infinitesimal flight segment is initialized at each point 
in a 4D spatiotemporal grid (longitude, latitude, altitude, 
and time). 

Aircraft-engine 
performance and 
emissions 

• Requires the specification of aircraft and 
engine type for each flight,  

• Aircraft performance at each waypoint is 
estimated using aircraft performance 
models based on information about entire 
flight trajectories, 

• The nvPM EIn at each waypoint is 
estimated using the nvPM emissions profile 
provided by the ICAO aircraft engine 
emissions databank (EDB) and the T4/T2 
methodology.  

• The most-commonly used passenger aircraft-
engine types are classified based on their 
similarities in aircraft mass and nvPM EIn, and the 
model is run for each aircraft-engine group. 

• For each aircraft-engine group, input parameters 
for aircraft performance and emissions model are: 
i. Set to parameters for the aircraft-engine type 

with largest market share in the group 
(nominal simulation), or  

ii. Estimated from an empirical multivariate 
distribution (Monte Carlo simulation, see 
Fig. 1). 

• Aircraft performance at each waypoint is estimated 
using a variant of the Poll-Schumann (PS) model that 
can be run for a single point rather than entire flight 
trajectories, and nvPM EIn is estimated using the 
same methodology as trajectory-based CoCiP. 

Contrail initialisation 

The initial contrail properties (i.e., contrail 
dimensions, ice crystal number, and contrail 
segment angle) depends on the provided aircraft-
engine properties, performance, and emissions.   

The initial contrail dimensions and ice crystal number is 
initialized using the equations from the trajectory-based 
CoCiP. However, the contrail segment angle is undefined 
in the grid-based CoCiP and is either: 

i. Treated as a calibrated parameter that 
maximises the agreement between the 
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trajectory-based and grid-based CoCiP 
(nominal simulation), or 

ii. Assumed to be uniformly distributed between 0 
and 360° (Monte Carlo simulation). 

Model outputs 
Cumulative EFcontrail over the contrail segment 
lifetime, attributed back to the flight segment 
where the contrails were first formed.  

4D EFcontrail per flight distance, cumulated over the 
contrail segment lifetime and attributed back to the 
original grid cell. 

Relevant applications 

• Estimating the EFcontrail from the provided 
flight trajectories.  

• Calculating historical estimates of the 
global/regional annual mean contrail net 
RF. 

• Performing flight trajectory optimisation 
for single/multiple flights to minimise 
persistent contrail formation/EFcontrail.  

• Generating maps to identify regions forecast to 
form persistent warming and cooling contrails. 

• Improving computational efficiency in flight 
trajectory optimisation for a fleet of aircraft 
compared to the trajectory-based CoCiP.   

 175 

Table 1 presents the differences between the trajectory and grid-based CoCiP. The primary distinction lies in how the contrail 

segment properties are initialized. Here, we describe our methodology to initialize the contrail segment properties in the grid-

based CoCiP (Section 3.1) the meteorological datasets used in this study (Section 3.2), and outline key differences in the grid-

based CoCiP when it is configured to run with a nominal (Section 3.3) and a Monte Carlo simulation (Section 3.4). 

3.1 Initial contrail properties 180 

In the trajectory-based CoCiP, contrail segment properties are initialized based on the flight segment (α and VTAS) and aircraft-

engine specific properties (wingspan, M, �̇�#, η, and nvPM EIn). However, this approach cannot be directly applied to the grid-

based CoCiP because of the need to: (i) model aircraft performance (VTAS, �̇�#, M, η, and nvPM EIn) locally, rather than based 

on entire flight trajectories; and (ii) determine an appropriate value for α, which influences the wind shear acting on the contrail 

segment, c.f. Eq. (5), without prior information about direction-of-travel. 185 

 
Table 2: Classification of commonly used passenger aircraft-engine types into 12 unique groups based on their similarities in aircraft 
mass and nvPM EIn. The aircraft types listed here are labelled based on their ICAO aircraft type designator. 

Aircraft-engine 
classification 

nvPM EIn 
Low Nominal High 

Aircraft 
mass 

Light 

• A19N (LEAP-1A) 
• A20N (LEAP-1A)* 
• A21N (LEAP-1A) 
• B38M (LEAP-1B) 

• A319 (CFM56) 
• A320 (CFM56) 
• A321 (CFM56) 
• B737 (CFM56) 
• B738 (CFM56)* 
• B739 (CFM56) 

• A19N (Pratt & Whitney) 
• A20N (Pratt & Whitney) 
• A21N (Pratt & Whitney) 
• A319 (IAE V2500) 
• A320 (IAE V2500)* 
• A321 (IAE V2500) 

Intermediate N/A 

• B752 (RB211) 
• B753 (RB211) 
• B762 (CF6-80E) 
• B763 (CF6-80E)* 

N/A 
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Medium 

• B788 (GEnx) 
• B789 (GEnx)* 
• B78X (GEnx) 

• A342 (CFM56/Trent500) 
• A343 (CFM56/Trent500) 
• A345 (CFM56/Trent500) 
• A346 (CFM56/Trent500) 
• B788 (Trent 1000) 
• B789 (Trent 1000)* 
• B78X (Trent 1000) 

• A332 (Trent 700/CF6-80E) 
• A333 (Trent 700/CF6-80E)* 

Heavy 

• B772 (GE90) 
• B773 (GE90) 
• B77L (GE90) 
• B77W (GE90)* 

• A359 (Trent XWB)* 
• A35K (Trent XWB) 

N/A 

Super heavy 
• B748 (GEnx)* • A388 (Trent 900)* • B742 (CF6-80C) 

• B743 (CF6-80C) 
• B744 (CF6-80C)* 

*: Refers to the aircraft-engine type with the largest market share within the group, based on the 2019 GAIA dataset (Teoh et al., 2024b). 
Table 3: Summary of the aircraft properties (wingspan, service ceiling altitude, and maximum Mach number) and range of aircraft 190 
performance and emissions parameters (aircraft mass, η, and nvPM EIn) for the 12 aircraft-engine groups. Details of the aircraft-
engine types that are included in each group can be found in Table 2. Differences in aircraft mass and nvPM EIn among the 12 
aircraft-engine groups are visualised in Fig. A5. 

Aircraft-engine properties 
and performance 

parameters 

nvPM EIn 

Low Nominal High 

Aircraft 
mass 

Light 

• Mass: 55,000 – 80,000 kg 
• nvPM EIn: 1 ×1011 kg-1 
• η: 0.20 – 0.26 
• Wingspan: 34 – 36 m 
• Max altitude: 41,000 ft. 
• Max Mach: 0.82 
• 2019 global market share  

o No. of flights: 1.8% 
o Dist. flown: 1.8%  

• Mass: 55,000 – 80,000 kg 
• nvPM EIn: (0.8 – 1.0) ×1015 kg-1 
• η: 0.20 – 0.26 
• Wingspan: 34.1 – 34.3 m 
• Max altitude: 41,000 ft. 
• Max Mach: 0.82 
• 2019 global market share  

o No. of flights: 37.1% 
o Dist. flown: 35.2%  

• Mass: 55,000 – 80,000 kg 
• nvPM EIn: (2 – 4) ×1015 kg-1 
• η: 0.20 – 0.26 
• Wingspan: 34 – 36 m 
• Max altitude: 41,000 ft. 
• Max Mach: 0.82 
• 2019 global market share  

o No. of flights: 12.6% 
o Dist. flown: 12.5%  

Intermediate N/A 

• Mass: 85,000 – 160,000 kg 
• nvPM EIn: (0.6 – 1.2) ×1015 kg-1 
• η: 0.21 – 0.26 
• Wingspan: 38.0 – 47.6 m 
• Max altitude: 43,100 ft. 
• Max Mach: 0.86 
• 2019 global market share  

o No. of flights: 2.4% 
o Dist. flown: 4.1%  

N/A 

Medium 

• Mass: 165,000 – 240,000 kg 
• nvPM EIn: 1 ×1011 kg-1 
• η: 0.30 – 0.34 
• Wingspan: 60.1 m 
• Max altitude: 43,100 ft. 
• Max Mach: 0.90 
• 2019 global market share  

o No. of flights: 1.0% 
o Dist. flown: 3.6%  

• Mass: 165,000 – 250,000 kg 
• nvPM EIn: (4 – 7) ×1014 kg-1 
• η: 0.29 – 0.33 
• Wingspan: 60.1 – 60.3 m 
• Max altitude: 43,100 ft. 
• Max Mach: 0.86 – 0.90 
• 2019 global market share  

o No. of flights: 0.7% 
o Dist. flown: 2.8%  

• Mass: 160,000 – 210,000 kg 
• nvPM EIn: (0.7 – 1) ×1015 kg-1 
• η: 0.25 – 0.28 
• Wingspan: 60.3 m 
• Max altitude: 41,000 ft. 
• Max Mach: 0.86 
• 2019 global market share  

o No. of flights: 2.7% 
o Dist. flown: 6.9%  

Heavy 

• Mass: 200,000 – 320,000 kg 
• nvPM EIn: (3 – 4) ×1014 kg-1 
• η: 0.28 – 0.30 
• Wingspan: 64.8 m 
• Max altitude: 43,100 ft. 
• Max Mach: 0.89 

• Mass: 205,000 – 250,000 kg 
• nvPM EIn: (5 – 8) ×1014 kg-1 
• η: 0.33 – 0.35 
• Wingspan: 64.7 m 
• Max altitude: 43,100 ft. 
• Max Mach: 0.89 

N/A 
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• 2019 global market share  
o No. of flights: 1.8% 
o Dist. flown: 7.2%  

• 2019 global market share  
o No. of flights: 0.5% 
o Dist. flown: 2.2%  

Super heavy 

• Mass: 275,000 – 400,000 kg 
• nvPM EIn: 1 ×1011 kg-1 
• η: 0.32 – 0.34 
• Wingspan: 68.4 m 
• Max altitude: 42,100 ft. 
• Max Mach: 0.90 
• 2019 global market share  

o No. of flights: 0.2% 
o Dist. flown: 0.8%  

• Mass: 385,000 – 512,000 kg 
• nvPM EIn: (5 – 7) ×1014 kg-1 
• η: 0.33 – 0.35 
• Wingspan: 79.8 m 
• Max altitude: 43,100 ft. 
• Max Mach: 0.89 
• 2019 global market share  

o No. of flights: 0.3% 
o Dist. flown: 1.6%  

• Mass: 250,000 – 360,000 kg 
• nvPM EIn: (6 – 8) ×1014 kg-1 
• η: 0.27 – 0.29 
• Wingspan: 64.4 m 
• Max altitude: 45,000 ft. 
• Max Mach: 0.92 
• 2019 global market share  

o No. of flights: 0.5% 
o Dist. flown: 1.7%  

 

Moreover, the grid-based CoCiP must account for variations in aircraft performance across different aircraft and engine types 195 

that are known to influence the EFcontrail (Teoh et al., 2022a). In theory, this issue could be resolved by re-running the grid-

based CoCiP for each aircraft-engine combination. However, this method would lead to increased computational and data 

transfer requirements, as well as increased operational complexity when used in the context of flight planning and execution. 

Instead, we address this challenge by classifying the most-commonly used passenger aircraft-engine types into N number of 

groups based on their similarities in aircraft mass and nvPM EIn (Tables 2 and 3), thereby introducing a fifth dimension to the 200 

model outputs (longitude × latitude × altitude × time × N aircraft-engine group).  

 

The classification by aircraft mass and nvPM is informed by the strong correlation between the nvPM emissions per flight 

distance, which is estimated as a product of nvPM EIn and �̇�#,,$-) (where the aircraft mass is used as a proxy), and the EFcontrail 

per flight distance (R = 0.71) (Teoh et al., 2022a). While a higher N is expected to improve the agreement between the 205 

trajectory- and grid-based CoCiP, our goal is to identify an acceptable minimum value for N to reduce the computational 

demands and operational complexity in practice (Section 4). For each group, the waypoint-specific inputs (α, VTAS, wingspan, 

aircraft mass, �̇�#, η, and nvPM EIn) vary depending on whether the grid-based CoCiP is configured to run in a nominal mode 

(Section 3.3) or with a Monte Carlo simulation (Section 3.4).  

3.2 Meteorology 210 

In practice, the grid-based CoCiP would utilise forecast meteorological products (e.g. the European Centre for Medium-Range 

Weather Forecasts (ECMWF) Atmospheric Model high resolution 10-day forecast (ECMWF, 2024) to provide contrail climate 

forcing forecasts. For this paper, we use historical meteorology, specifically the ECMWF ERA5 High Resolution Realisation 

(HRES) Reanalysis for the nominal simulation and the ERA5 10-member ensembles for the Monte Carlo simulation (Section 

3.4) (Hersbach et al., 2020). 215 

 

Both datasets share a vertical resolution of 26 model levels, spanning from 6,300 m (20,000 feet) to 15,000 m (49,000 feet), 

but the ERA5 HRES Reanalysis offers a higher spatiotemporal resolution (0.25° longitude × 0.25° latitude at a 1 h temporal 

resolution) than the ERA5 10-member ensembles (0.5° longitude × 0.5° latitude at a 3 h temporal resolution). The 
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spatiotemporal resolution of the grid-based CoCiP is adjustable and set to align with the ERA5 HRES Reanalysis. For both 220 

meteorological products, we apply a correction to ensure that the ERA5 RHi distribution is consistent with in-situ 

measurements (refer to Appendix A3 for further details). 

3.3 Nominal simulation 

Each aircraft-engine type is characterised by a set of fixed properties, including the wingspan, design-optimum Mach number, 

aerodynamic coefficients, and nvPM emissions profile, all of which are required as inputs to aircraft performance and emission 225 

models. The Poll-Schumann (PS) aircraft performance model (Poll and Schumann, 2020, 2021) provides the wingspan, design-

optimum Mach number, and aerodynamic coefficients, while the ICAO Aircraft Engine Emissions Databank (EASA, 2021) 

supplies the nvPM EIn at the four ICAO certification test points representing the engine power settings (i.e., 7%, 30%, 85%, 

and 100% of the maximum rated engine thrust) used in the landing and take-off (LTO) cycle. For each aircraft-engine group, 

which encompasses multiple aircraft-engine types (Table 2), we set these fixed properties to values of the aircraft-engine type 230 

with largest market share within the group (Teoh et al., 2024b). 

 

The nominal grid-based CoCiP derives the waypoint-specific parameters (e.g., VTAS, M, �̇�#, η, and nvPM EIn) using two key 

assumptions and two established models. Firstly, it assumes that the Mach number at each grid cell is equal to the design-

optimum Mach number plus 0.04 (Teoh et al., 2024b), reflecting the common practice of airlines in flying faster to minimise 235 

time-dependent costs and/or address delays (Edwards et al., 2016; Lovegren and Hansman, 2011). Secondly, it assumes that 

the aircraft mass at each altitude is equal to the value that maximises η, which is based on the rationale that a lower aircraft 

mass is required to fly at higher altitudes (Fig. 1). The PS model is used to estimate the ṁ# (Poll and Schumann, 2020, 2021), 

while the T4/T2 methodology estimates the nvPM EIn at cruise by interpolating the LTO-based nvPM emissions profile relative 

to the non-dimensional engine thrust settings (EASA, 2021; Teoh et al., 2024b).  240 
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Figure 1: Multivariate distribution of aircraft mass and nvPM EIn for one aircraft-engine group (light aircraft mass and nominal 
nvPM EIn, see Table 2) at 32,000 feet (in blue) and 40,000 feet (in orange). The underlying data is provided by the 2019 global 
aviation emissions inventory based on ADS-B (GAIA) (Teoh et al., 2024b). The multi-modal distribution of the aircraft mass and 
nvPM EIn is due to the inclusion of two comparable aircraft engine families (Boeing 737 and Airbus A320 families) in the same 245 
group, each exhibiting distinct operating characteristics. The variations in nvPM EIn with altitude results from changes in aircraft 
mass and air density, both of which influence the engine thrust settings and subsequently nvPM emissions (EASA, 2021).  

As α cannot be defined for an infinitesimal flight segment, the nominal grid-based CoCiP adopts a workaround by calibrating 

Eq. (5) as follows,  
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 is the magnitude of the wind shear and fshear is a free parameter and has physical limits of 0 (i.e., contrail segment aligned 

with the wind shear) and 1 (i.e., contrail segment perpendicular to shear). We calibrate fshear = 0.665 by minimizing each of the 

error metrics when evaluating EFcontrail from the trajectory- and grid-based CoCiP (described in Section 4). 255 

3.4 Monte Carlo simulation 

The grid-based CoCiP can perform Monte Carlo simulations to produce a range of EFcontrail estimates for each grid cell. Here, 

we utilize this capability to demonstrate how uncertainties in contrail forecasts can be integrated into flight planning (Section 
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5.3). We note that the uncertainties in the simulated EFcontrail can arise from multiple independent sources, including 

meteorological inputs provided by NWP models, aircraft performance and emissions estimates, contrail model simplifications, 260 

the parametric RF model fitted to the libRadtran radiative transfer package, and potentially other unidentified factors (Low et 

al., 2024; Platt et al., 2024; Schumann et al., 2021; Teoh et al., 2020b, 2024a). While Platt et al. (2024) evaluates various 

uncertainty sources affecting EFcontrail in an earlier implementation of the grid-based CoCiP, the Monte Carlo simulations in 

this study focus only on uncertainties related to meteorological inputs and the grid-based model simplifications (i.e., aircraft-

engine groups and treatment of α) as a proof of concept. Future updates to the grid-based CoCiP will incorporate additional 265 

uncertainty sources to improve the model’s robustness.  

 

We account for multi-collinearity among different aircraft performance parameters (i.e., VTAS, M, �̇�#, η, and nvPM EIn) by 

constructing a five-dimensional empirical multivariate distribution for each aircraft-engine group. Figure 1 illustrates an 

example of the relationship between two (M and nvPM EIn) of these five variables. These distributions are derived using flight 270 

waypoints during the cruise phase of flight (i.e., above 25,000 feet and zero vertical climb rate) from the 2019 Global Aviation 

emissions Inventory based on ADS-B (GAIA) (Teoh et al., 2024b). Our Monte Carlo approach consists of 100 global 

simulations, where each of the ERA5 10-member ensembles is fixed for 10 consecutive simulation runs. Within each set of 10 

simulation runs, the aircraft performance parameters (i.e., VTAS, M, �̇�#, η, and nvPM EIn) at different altitudes are sampled 

from the five-dimensional empirical multivariate distribution and α is sampled from a uniform distribution that ranges between 275 

0° and 360°. This setup results in 10 ensemble members capturing the meteorological uncertainties, and multiplied by 10 

independent simulations capturing the variabilities in aircraft performance and α. We use these outputs to quantify the 

probabilities of forming persistent warming and cooling contrails for each grid cell.  

4 Comparing trajectory vs. grid-based CoCiP 

Here, we use both the trajectory-based and nominal grid-based CoCiP to simulate the EFcontrail from historical flight trajectories 280 

provided by GAIA (Teoh et al., 2024b). We evaluate the agreement between both models and explore the trade-off between 

the model agreement and model simplification, i.e., formulating the grid-based CoCiP with a smaller number of aircraft-engine 

groups (N) as discussed in Section 3.1. To achieve this, we classify the most-commonly used passenger aircraft-engine types 

into groups of between 1 (no differentiation between aircraft-engine types) and 12 based on their aircraft mass and nvPM EIn 

(see Tables 2 and 3, and Appendix A4). We then filter the GAIA dataset to only include the 43 aircraft-engine types covered 285 

in Table 2 and randomly sample one day per week throughout the entire year of 2019. We extract flight waypoint data within 

each day and simulate the EFcontrail using both the trajectory-based (EF%/()1*$+
)1*C ) and grid-based CoCiP (EF%/()1*$+

D1$, ).  
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Our goal in this analysis is not to validate grid-based CoCiP in an absolute sense, but to demonstrate that the grid-based CoCiP 

can provide sufficiently accurate representations of the trajectory-based CoCiP. We recognize the critical importance of 290 

validating both CoCiP variants against independent observations, which is an active area of ongoing research.  

4.1 Metrics 

The agreement between EF%/()1*$+
)1*C  and EF%/()1*$+

D1$,  is assessed using five distinct approaches. Together, these approaches are 

aimed at quantifying both the point-wise errors and fleet-aggregated errors. We note that these metrics are predominantly 

biased towards evaluating the model’s ability to correctly predict strongly warming contrails rather than all contrails, consistent 295 

with existing proposals that aim to target the 2-3% of flights that are responsible for 80% of the global annual EFcontrail (Teoh 

et al., 2020b, a, 2024a; Wilhelm et al., 2021). 

 
Figure 2: Performance curves for the trajectory-based CoCiP (black line) and the grid-based CoCiP when it is configured using the 
exact/original aircraft-engine types (i.e., the same as the trajectory-based CoCiP; blue line), and with N=7 (orange line), N=3 (green 300 
line), and N=1 (red line) aircraft-engine groups respectively. Further methodological information used to construct these 
performance curves can be found in Appendix A5. 

Point-wise errors are quantified using three metrics including the false negative rate i.e. P JHEF%/()1*$+
D1$, <

EF)A1&-A/+,I	L MEF%/()1*$+
)1*C > EF)A1&-A/+,O], the false alarm rate PPMEF%/()1*$+

)1*C < EF)A1&-A/+,O	Q	HEF%/()1*$+
D1$, > EF)A1&-A/+,I], and 

the modified mean absolute log error (modified-MALE). The false negative and false alarm rates serve to evaluate the accuracy 305 

of the grid-based CoCiP in identifying the location of moderately and strongly warming contrails, which are assumed to be 

those with an EFthreshold of 1 ×107 J m-1 (around the 50th percentile) and 5 ×108 J m-1 (80th percentile) respectively (Teoh et al., 

2024a). In addition, the modified-MALE measures the average relative error between EF%/()1*$+
)1*C  and EF%/()1*$+

D1$,  at each flight 

segment, while minimising the impact of prediction errors in segments with a weak contrail climate forcing (i.e., EFcontrail < 

107 J m-1). 310 
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Figure 3: Pointwise errors between 𝐄𝐅𝐜𝐨𝐧𝐭𝐫𝐚𝐢𝐥

𝐭𝐫𝐚𝐣  and 𝐄𝐅𝐜𝐨𝐧𝐭𝐫𝐚𝐢𝐥
𝐠𝐫𝐢𝐝  when the grid-based CoCiP is configured: (a) using the exact/original 

aircraft-engine types (i.e., the same as the trajectory-based CoCiP); and with (b) N=7; (c) N=3; and (d) N=1 aircraft-engine groups 
respectively. Each panel contains 10,000,000 randomly-sampled flight waypoints. The axes use a logarithmic scale for |EFcontrail| > 
107 J m-1 and a linear scale between 10-7 and 107 J m-1. For both axes, the box-like structures observed around 10-7 and 107 J m-1 315 
arise from the transition between the linear and logarithmic scale.  

Fleet-aggregated errors are evaluated using the weighted Kendall rank correlation coefficient (τw), which assesses the grid-

based CoCiP’s capability to correctly rank flight segments by their magnitude of EF%/()1*$+
)1*C .We additionally use two custom 

performance curve metrics that evaluate the deterioration in contrail mitigation potential when interventions are informed by 

imperfect predictions (EF%/()1*$+
D1$, ) (Platt et al., 2024). The performance curves are constructed by first sorting the flight segments 320 

based on an estimate of their EFcontrail (EF%/()1*$+
D1$, ) and then plotting their cumulative EFcontrail as a function of the cumulative 

flight distance flown (L), shown in Fig. 2. This is equivalent to a curve showing the reduction in EFcontrail as a function of L, 

with interventions being prioritised based on an estimate of the EFcontrail and assuming that the contrail mitigation at the flight 

segment is successful (EFcontrail = 0). The cumulative EFcontrail increases most quickly with the cumulative L if the EFcontrail is 
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based on perfect information (i.e., EF%/()1*$+
)1*C ) and less quickly if the EFcontrail estimates (i.e., EF%/()1*$+

D1$, ) contain errors. We use 325 

these performance curves to quantify the: (i) change in initial mitigation rate (i.e., the reduced effectiveness in mitigating flight 

segments with the most strongly warming contrails), which is estimated from the gradient of a secant line over the first 5% of 

the cumulative EFcontrail (m5) and expressed as a ratio E.
/0(,

E.
*0"1 (< 1); and (ii) change in flight segment ratio,F23

/0(,

F23
*0"1 (> 1), which 

quantifies the additional flight distance where interventions have to be applied to mitigate 80% of the total EFcontrail. A detailed 

description of each metric can be found in Appendix A5.  330 

4.2 Model comparison 

Table 4 summarises the performance metrics when comparing the model agreement between the trajectory-based CoCiP and 

various configurations of the grid-based CoCiP, i.e., using the original aircraft-engine type for each flight as in the trajectory-

based CoCiP, and with different aircraft-engine groupings (1 ≤ 𝑁 ≤ 12).  

 335 

For the original aircraft-engine group, the false negative and false alarm rates are 3.2% and 10.4% respectively when evaluated 

against moderately warming contrails (EFthreshold = 1 ×107 J m-1), and 6.0% and 17.7% respectively when assessed against 

strongly warming contrails (EFthreshold = 5 ×108 J m-1). The modified-MALE of 0.166 corresponds to a 47% relative error 

between EF%/()1*$+
)1*C  and EF%/()1*$+

D1$, . These pointwise errors (shown in Fig. 3a) are independent of the aircraft-engine grouping 

and primarily arise from: (i) the assumption of an infinitesimal contrail segment in the grid-based CoCiP compared to a finite 340 

segment in the trajectory-based CoCiP, where the EF%/()1*$+
)1*C  can be zero if the next flight waypoint does not form a persistent 

contrail; (ii) the use of nominal VTAS and aircraft mass in the grid-based CoCiP, which causes differences in the downward 

displacement and survivability of the contrail during the wake vortex phase; and (iii) the calibrated fshear, c.f. Eq. (6), which 

affects the ,=)
,>

, contrail diffusivity, coverage area, lifetime, and EFcontrail. For the fleet-aggregated errors, the τw of 0.821 

demonstrates a strong correlation between the rankings of EF%/()1*$+
)1*C  and EF%/()1*$+

D1$, . The change in initial mitigation rate of 345 

0.816 suggests an 18% reduction in the effectiveness of mitigating the most strongly warming contrails with the grid-based 

CoCiP, and a change in the flight segment ratio of 1.156 indicates that interventions must be applied to an additional 16% of 

the total flight distance flown to mitigate 80% of the EFcontrail. 

 

Using different aircraft-engine groupings (1 ≤ 𝑁 ≤ 12) rather than the original aircraft-engine type introduces additional 350 

sources of error between the trajectory-based and grid-based CoCiP (Table 4, and Fig. 2, 3, and A8). The mean error across 

different performance metrics for N = 12 and N = 7 are around 0.6% and 2.8% relative to the configuration without any aircraft-

engine grouping, but the degradation rate generally starts to increase when N < 7 (Fig. A8). Specifically, the mean error for N 

= 1 (34.5%) is around an order of magnitude larger than that of N = 7 (2.8%), with these errors primarily arising from 

overestimates in the EFcontrail from aircraft-engine types with low nvPM EIn (c.f. top right quadrant in Fig. 3d). Notably, a 355 
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reduction from N = 4 to N = 3 results in an improvement in mean error across the performance metrics from 18.0% to 13.1%. 

This improvement can be attributed to the fact that N = 3 categorises the aircraft-engine types solely based on their nvPM EIn, 

whereas N = 4 categorised the aircraft-engine types into two nvPM and two aircraft mass categories, thereby suggesting that 

the nvPM EIn is a stronger predictor of EFcontrail than aircraft mass.  

 360 
Table 4: Summary of the different performance metrics used to evaluate the agreement between the grid-based CoCiP with different 
configurations of aircraft-engine groups (N) relative to the trajectory-based CoCiP. Further information on these metrics can be 
found in Section 4.1 and Appendix A5.  

Number of 
aircraft-
engine 

groups (N) 

EFthreshold = 107 J m-1 EFthreshold = 5 x108 J m-1 
Modified-
MALEa τwb 

Performance curves Mean 
error 

across all 
metricsc 

False negative False 
alarm 

False 
negative 

False 
alarm 

Initial 
mitigation 

rate 

Flight 
segment 

ratios 
Original 3.2% 10.4% 6.0% 17.7% 0.166 0.821 0.816 1.156 - 

12 3.2% 10.6% 5.7% 18.3% 0.169 0.819 0.811 1.158 0.6% 
7 3.6% 10.7% 5.7% 18.6% 0.173 0.814 0.809 1.160 2.8% 
6 3.7% 10.4% 8.0% 18.1% 0.178 0.802 0.808 1.177 7.8% 
5 3.8% 11.0% 9.5% 18.0% 0.183 0.790 0.787 1.202 11.7% 
4 4.1% 11.2% 13.2% 17.3% 0.194 0.766 0.586 1.236 18.0% 
3 4.7% 12.2% 5.6% 22.0% 0.201 0.784 0.791 1.191 13.1% 
2 5.0% 12.4% 9.5% 21.6% 0.213 0.755 0.588 1.242 19.7% 
1 5.1% 16.0% 9.5% 29.4% 0.286 0.670 0.526 1.378 34.5% 

a: The modified mean absolute log error (modified-MALE), where a value of zero indicates perfect agreement in the magnitude of EFcontrail between 
the trajectory-based and grid-based CoCiP, while larger values are indicative of larger relative errors. The modified-MALE can be converted to a 365 
percentage relative error using the following formula, Percentage	relative	error = 100 × (1045678796	;<=> − 1). A value of 1 implies that, on 
average, EF?5@ABC7D

EB76  are off by one order of magnitude. 
b: The weighted Kendall rank correlation coefficient (τw), where τF = 1 indicates a perfect agreement between the rankings of EF?5@ABC7D

ABCG  and 
EF?5@ABC7D

EB76 , τF = 0 indicates a completely random relationship, while τF = −1  indicates a perfect disagreement. 
c: The mean percentage error across all performance metrics when compared with the grid-based CoCiP without any aircraft-engine configuration, 370 
visualised in Fig. A8.  

Based on these results, we draw three key insights to inform the selection of an optimal N: (i) the model agreement between 

the trajectory-based and grid-based CoCiP is comparable for N = 12 and N = 7, which suggests that there may not be a 

significant advantage to running the grid-based CoCiP with N = 12 rather than N = 7; (ii) N = 3, which categorises the aircraft-

engine types solely based on nvPM EIn, offers a reasonable trade-off between model accuracy and operational complexity; and 375 

(iii) N = 1 significantly degrades the accuracy of the grid-based CoCiP and is not recommended for operational use.  

5 Application of grid-based CoCiP 

Here, we run a 2019 full year grid-based global contrail simulation with N = 3 and reanalysis meteorology to quantify the 

annual statistics and spatial trends of strongly warming and cooling contrails (Section 5.1). We then introduce two different 

approaches for integrating the grid-based CoCiP into flight trajectory optimization (Section 5.2), followed by proposing two 380 
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strategies to account for uncertainties within the decision-making process of contrail mitigation to increase the probability of 

achieving a net climate benefit (Section 5.3). 

5.1 Global contrail simulation 

The grid-based CoCiP produces a global map of the EFcontrail per flight distance for each of the three aircraft-engine group that 

were categorised based on their nvPM EIn (Fig. 4 and Section 4.2). A comparison between the nominal and high nvPM aircraft-385 

engine group (Fig. 4b) showed notable differences in the magnitude of EFcontrail, where the global mean EFcontrail per flight 

distance for the high nvPM aircraft-engine group (10 ×108 J m-1) is around two times larger than the nominal nvPM group (5.5 

×108 J m-1). These groups also show differences in the sign of EFcontrail, especially at around 25–60°S and 60–150°E, where the 

number of grid cells with cooling contrails (EFcontrail < 0) in the high nvPM group is 18% more than the nominal nvPM group. 

These trends can be linked to the relationship between the nvPM EIn and contrail lifetime, where a larger nvPM EIn generally 390 

leads to a higher initial contrail ice crystal number, which in turn, lowers the ice crystal sizes and its sedimentation rate, thereby 

prolonging the contrail lifetime, and increase the magnitude and variability of EFcontrail (Teoh et al., 2022a). Although the global 

mean EFcontrail for the low nvPM group (0.15 ×108 J m-1) is around one order of magnitude smaller than the nominal nvPM 

group (5.5 ×108 J m-1) (Fig. 4c), we note that the EFcontrail estimates from the low nvPM group are likely underestimated because 

CoCiP does not currently account for the potential activation of volatile particulate matter and ambient aerosols to form contrail 395 

ice crystals in the “soot-poor” regime (nvPM EIn < 1013 kg-1) (Kärcher and Yu, 2009). 

 

Unlike a map of the ISSR coverage area, which identifies regions likely to form persistent contrails, the 4D EFcontrail per flight 

distance accounts for the intensity of contrail-induced warming and allows for more targeted mitigation. For example, in 2019, 

the global annual mean percentage of airspace volumes forecasted with strongly warming contrails was 0.44% for EFcontrail > 400 

95th percentile (1.5 ×109 J m-1), and 1.6% for EFcontrail > 80th percentile (5.0 ×108 J m-1). These values are up to 91% smaller 

than the airspace volumes with net warming contrails (4.8% for EFcontrail > 0) and up to 93% smaller than the ISSR coverage 

area (6.6% for EFcontrail ≠ 0) (Fig. 5a). Thus, using this approach to navigational contrail avoidance could minimise potential 

disruptions to air traffic management and airspace capacity, as it focuses only on the most warming contrails rather than 

avoiding all persistent contrails. 405 
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Figure 4: The (a) absolute EFcontrail per flight distance for the aircraft-engine group with nominal nvPM; and the absolute difference 
in EFcontrail per flight distance between the (b) nominal and high nvPM aircraft-engine group; and (c) nominal and low nvPM 
aircraft-engine group. The global contrail climate forcing shown here are simulated at FL360 (10,973 m) on the 7th of January 2019 
at 03:00:00 UTC. Basemap plotted using Cartopy 0.22.0 and sourced from Natural Earth; licensed under public domain. 410 
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Figure 5: Daily means of the percentage of airspace volume: (a) globally; and (b) over the North Atlantic region (between 40–63°N 
and 70–5°W) in 2019, where the EFcontrail per flight distance is: (i) greater than 1.54 ×109 J m-1 (95th percentile, blue lines); (ii) greater 
than 5.0 ×108 J m-1 (80th percentile, orange lines); (iii) negative (i.e., cooling contrails, green lines); (iv) positive (i.e., warming 
contrails, red lines); and (v) non-zero (i.e., all contrails, black lines). 415 

We also use the 2019 grid-based global contrail simulation to quantify the global annual mean EFcontrail per flight distance (Fig. 

6) and annual occurrence of strongly warming (EFcontrail > 1.5 ×109 J m-1, 95th percentile) and cooling contrails (EFcontrail < -2.4 

×108 J m-1, 5th percentile) at different altitudes (Fig. 7). The grid-based CoCiP’s predictions of persistent contrail occurrence 

and spatial trends in EFcontrail are generally consistent with earlier global contrail simulation studies (Bier and Burkhardt, 2022; 

Gettelman et al., 2021; Teoh et al., 2024a). For example, the absence of persistent contrails below 35,000 feet in the tropics 420 

(Fig. 6a and 6b) is due to its higher relative ambient temperatures and tropopause height (Santer et al., 2003), while the lower 

relative EFcontrail per flight distance at the subtropics (i.e., China, India, Middle East, and Australia, as shown in Fig. 6c) is 

associated with a lower persistent contrail formation due to the Hadley circulation (Teoh et al., 2024a). Diurnal and seasonal 

effects contribute to a higher prevalence of both strongly warming and cooling contrails at higher latitudes due to the significant 

seasonal variations in daylight hours (Fig. 7a to 7d). Background radiation fields, such as the solar direct radiation (SDR), 425 

RSR, OLR, and albedo (RSR/SDR), are mainly influenced by latitude, natural cirrus occurrence, and surface temperature and 

reflectance. In general, strongly warming contrails are more likely in regions with: (i) high albedo (e.g., poles, Siberia, and 

areas with high natural cirrus coverage); (ii) high OLR (e.g., tropics and the Sahara Desert); and (iii) low SDR (e.g., wintertime) 

(Fig. 6 and 7). Condition (i) limits the contrail SW RF because a higher proportion of incoming solar radiation is already 

reflected without contrails, while condition (ii) drives the contrail LW RF especially in cloud free conditions. In contrast, 430 

regions and times with a larger relative SDR-to-OLR ratio (e.g., Southeast Asia, springtime at high latitudes) are associated 

with strongly cooling contrails (Fig. 7b, 7d, and 7f). Finally, global atmospheric circulation patterns can also influence the 
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humidity transport underlying ISSR occurrence (i.e., Hadley Circulation and North Atlantic warm conveyor belt) and 

preferential advection of persistent contrails to specific regions (Teoh et al., 2024a; Voigt et al., 2017; Wolf et al., 2024).  

 435 
Figure 6: The 2019 global annual mean EFcontrail per flight distance from the grid-based CoCiP at an altitude of: (a) 30,000 feet; (b) 
35,000 feet; and (c) 40,000 feet, for the nominal nvPM aircraft-engine group. Basemap plotted using Cartopy 0.22.0 and sourced 
from Natural Earth; licensed under public domain. 
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Figure 7: The 2019 annual probability of the EFcontrail per flight distance at each grid cell being above the 95th percentile (1.54 ×109 440 
J m-1) and below the 5th percentile (-2.39 ×108 J m-1) at 30,000 feet (a, b), 35,000 feet (c, d), and 40,000 feet (e, f). Basemap plotted 
using Cartopy 0.22.0 and sourced from Natural Earth; licensed under public domain. 

 

5.2 Flight trajectory optimisation 

The contrail climate forcing estimates from the grid-based CoCiP can be applied within the context of flight trajectory 445 

optimization. We demonstrate two possible optimization strategies using an in-house flight trajectory optimizer (described in 

Appendix A6) to optimize the trajectory of an actual transatlantic flight that was flown by a B77W from New York to Cairo 

on the 7th of January 2019. 
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Figure 8: Application of the grid-based CoCiP in flight trajectory optimization, where the: (a) 4D EFcontrail per flight distance flown 450 
is integrated as an additional cost component, c.f. Eq. (8); or (b) airspace volumes that are expected to form strongly warming 
contrails, i.e., EFcontrail > 80th percentile (5 ×108 J m-1)  highlighted in red, are avoided. For both optimization methods, the original 
and optimized flight trajectories are depicted by the black and green lines respectively, and the optimized trajectories are not 
checked for real-world air traffic management constraints.  

5.2.1 Cost-based optimisation 455 

The 4D EFcontrail per flight distance fields (shown in Fig. 4a) take the form of a standard weather forecast field and can be 

incorporated into the flight trajectory optimizer as an additional cost factor, alongside existing cost parameters such as the fuel 

consumption and overflight charges (Martin Frias et al., 2024). To do so, flight planners can convert the EFcontrail to a CO2 

mass-equivalent (m8"!	&H,%/()1*$+-) (Teoh et al., 2024a),  

𝑚8"!	&H,%/()1*$+-	[kg] =
IJHI)*0"(+×(

JKL
KL )

LM7N'M!,OP×	=J"0*Q
,         (8) 460 
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where the global mean ERF/RF ratio of 0.42 is used as a best estimate to convert the RF to an ERF estimate (Lee et al., 2021). 

Given the significant uncertainties in the global mean ERF/RF ratio (ranging from 0.21 to 0.59, based on four global climate 

model studies) (Bickel, 2023; Bickel et al., 2019; Ponater et al., 2005; Rap et al., 2010) and its spatiotemporal variabilities, 

flight planners can choose the lower bound to conservatively incorporate the contrail climate effects. AGWP8"!,O! is the CO2 

absolute global warming potential over a selected time horizon (TH) (7.54 ×10-7 J m-2 per kg-CO2 for 20 years, or 2.78 ×10-6 465 

J m-2 per kg-CO2 for 100 years) (Gaillot et al., 2023), and SEarth is the Earth surface area (5.101 ×1014 m2). If necessary, the 

𝑚8"!,&H can be further converted to a monetary value by multiplying it with the social cost of carbon (SC8"!), which we 

assume to be US$ 185 [US$ 44 – 413, 5–95% range] per tonne of CO2 (Rennert et al., 2022). Here, we apply Eq. (8) in the 

trajectory optimizer to minimise the total CO2 mass-equivalent emissions (𝑚8"!	&H,)/)*+ = 𝑚8"!,#0&+ +𝑚8"!	&H,%/()1*$+- ), 

assuming a 100-year time horizon for the CO2 AGWP, and rounding the results to the nearest tonne to align with the precision 470 

of the input parameters. We note that this is only one example of cost function, and that many other metrics are possible. The 

task of defining an appropriate cost function to assess trade-offs between contrail and CO2 climate forcing remains a critically 

important topic for future research.  

 

Using this cost-based approach, the flight trajectory optimizer successfully lowered the 𝑚8"!	&H,)/)*+ by 64%, from 597 tonne 475 

(203 tonnes of CO2 emitted from the total fuel consumed + 394 tonnes from contrails) in the original trajectory to 213 tonnes 

(213 tonnes + 0 tonne) in the optimized trajectory. In simpler terms, more than 99.9% of the total EFcontrail (1.3 ×1015 J in the 

original trajectory vs. 1.0 ×108 J in the optimized trajectory) is mitigated at the expense of a 5% increase in total fuel 

consumption. This is achieved by: (i) lowering the cruise altitude from 36,000 to 30,000 feet between 02:45 and 05:00 UTC; 

followed by (ii) a further descent to 28,000 feet between 05:00 UTC and 06:30 UTC to avoid regions forecasted with persistent 480 

warming contrails; and then (iii) climbing to a final cruise altitude of 40,000 feet at around 06:30 UTC (Fig. 8a). 

5.2.2 Polygon-based optimisation 

Alternatively, the 4D EFcontrail per flight distance can also be used to construct contrail avoidance polygons to identify regions 

forecast with strongly warming contrails (Fig. 9a). These regions can be defined by when the EFcontrail per flight distance at a 

grid cell exceeds a user-defined threshold, e.g., above the 80th percentile (5.0 ×108 J m-1) (Teoh et al., 2024a). These polygons 485 

can then be integrated into existing flight planning software (Martin Frias et al., 2024), akin to weather-avoidance polygons 

which restrict flights from traversing in airspace volumes that are forecast with turbulence and/or thunderstorms (Rubnich and 

Delaura, 2010).  

 

Using the 80th percentile contrail-avoidance polygons, the optimizer recommends a trajectory that reduces m8"!,)/)*+ by 60%, 490 

from 597 tonnes (203 tonnes of CO2 emitted from the total fuel consumed + 394 tonnes from contrails) in the original trajectory 

to 236 tonnes (207 tonnes + 28 tonnes) in the optimized trajectory. Put differently, 93% of the total EFcontrail (1.3 ×1015 J in the 
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original trajectory vs. 9.6 ×1013 J in the optimized trajectory) is avoided with a fuel penalty of 2%. This approach involves 

lowering the cruise altitude from 36,000 to 30,000 feet between 03:00 and 05:00 UTC, followed by a step climb to 40,000 feet 

at 05:00 UTC to exploit a gap in the contrail-avoidance polygon (Fig. 8b).  495 

 
Figure 9: Application of the simulated EFcontrail per flight distance for contrail mitigation, where flight planners can: (a) construct 
polygons and avoid flying in regions forecast with strongly warming contrails (i.e., grid cells where the EFcontrail per flight distance 
is greater than the 80th percentile (5.0 ×108 J m-1); and/or (b) account for uncertainties in the simulated contrail climate forcing by 
masking and disregarding grid cells (shown in white) when their probability of forming net warming (or cooling) contrails is less 500 
than 90%. The global contrail climate forcing shown here are from the nominal nvPM aircraft-engine group and simulated at FL360 
(10,973 m) on the 7th of January 2019 at 03:00:00. For panel (a), the impact of dt on regions forecast with strongly warming contrails 
are evaluated in Appendix A2. Basemap plotted using Cartopy 0.22.0 and sourced from Natural Earth; licensed under public 
domain. 

5.3 Decision-making under uncertainty 505 

Here, we propose two strategies as a proof of concept to incorporate contrail forecast uncertainties in the decision-making 

process of contrail mitigation. Our goal of providing a range of EFcontrail estimates is to increase the probability of achieving a 
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net climate benefit and minimise the unintended consequences associated with increased fuel consumption and long-lived CO2 

emissions.  

 510 

The first strategy involves applying an additional constraint to the cost-based or polygon-based approach (Section 5.2), 

excluding grid cells where their probability of forming net warming contrails is below a user-defined threshold (e.g., 90%, as 

shown in Fig. 9b). This approach would ensure that mitigation actions are more likely to be focused on areas with a high 

probability of forming net warming contrails. A visual examination of the uncertainties in the simulated EFcontrail at a specific 

point in time reveals three key features: (i) EFcontrail uncertainties are generally larger at the edges and localised pockets of 515 

ISSRs; (ii) the sign of EFcontrail tend to be more stable on a synoptic scale (i.e., ISSRs with horizontal coverages of ~1000 km); 

and (iii) persistent contrails formed at night and in winter are more likely to have a lower relative uncertainty compared to 

those formed during daytime and in the summer (i.e., Northern vs. Southern hemisphere, shown in Fig. 9b). These results 

suggest that contrail interventions may be more effective when implemented at a regional level rather than targeting individual 

flights, as contrail uncertainties in specific locations and time may be lower than in other areas. 520 

 

Secondly, flight planners and policymakers could implement additional constraints to ensure that diversions are performed 

only under specific circumstances, such as: (i) when there are no fuel penalties, which may be possible if the original cruise 

altitude and/or VTAS were suboptimal, or if the alternative trajectory offers more favourable wind conditions (Poll, 2017); or 

(ii) when the selected CO2-equivalence metric from the alternative trajectory exceeds a predefined reduction threshold 525 

compared to the original route, thereby providing some margin of error to account for contrail uncertainties (Borella et al., 

2024). Notably, the transition of airspace surveillance towards satellite-based systems, such as the Automatic Dependent 

Surveillance–Broadcast (ADS-B) standard, can improve airspace capacity and flexibility, thus increasing the likelihood of 

fulfilling these constraints (Molloy et al., 2022).   

6 Conclusions 530 

The global annual mean contrail climate forcing, which represents the largest component of aviation’s overall climate forcing 

(Lee et al., 2021), underscores the need for heightened attention and priority from stakeholders in formulating effective 

mitigation solutions. As only around 2-3% of all flights are responsible for 80% of the global annual EFcontrail, one proposed 

solution is to re-route affected flights to avoid regions forecast with strongly warming contrails. 

 535 

To implement this mitigation strategy in the real-world, we developed a tool that uses reanalysis or forecast meteorology to 

generate global maps of persistent contrail climate forcing within the timeframe necessary for flight planning and operational 

deployment. This is achieved by extending the existing trajectory-based CoCiP, which simulates contrails formed along flight 

trajectories, to a grid-based approach, which initializes an infinitesimal contrail segment at every point in a spatiotemporal grid 
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and simulates the contrail climate forcing over its lifecycle. The model outputs of the grid-based CoCiP (i.e., the 5D EFcontrail 540 

per flight distance with dimensions of longitude × latitude × altitude × time × N aircraft-engine groups) are similar to the 

concept of climate change functions (CCF) introduced in previous studies (Frömming et al., 2021; Grewe et al., 2014), and 

provided in a format that is consistent with standard weather and turbulence forecasts so it can be readily integrated into 

existing flight planning software.  

 545 

Our comparison of the EFcontrail estimates between the grid-based and trajectory-based CoCiP demonstrates a good agreement 

for use as a prototype contrail forecasting tool (Table 4). When the grid-based CoCiP is configured with N ≥ 7, the mean error 

across all performance metrics is up to 3% when compared with the configuration without any aircraft-engine grouping. 

Alternatively, a configuration of N = 3 for the grid-based CoCiP provides operational simplicity for end users, but this comes 

at an expense of increasing the mean error across all metrics to 13%. While the model simplifications required for the grid-550 

based CoCiP inevitably lead to additional uncertainties in the absolute EFcontrail values, we consider their relative spatiotemporal 

variabilities to be more relevant for the study’s objective of identifying regions with strongly warming contrails (i.e., EFcontrail 

> 80th or 95th percentile) for flight trajectory optimisation (Grewe et al., 2014). 

 

Several strategies are proposed to utilize the grid-based CoCiP for contrail mitigation while accounting for uncertainties in the 555 

decision-making framework. Contrail forecasts can be integrated into flight planning software in two different ways: (i) using 

a cost-based approach, where the EFcontrail is monetised and included as an additional cost component within their flight 

trajectory optimizer; or (ii) adopting a polygon-based approach, where “weather-avoidance” polygons are defined to avoid 

traversing in airspace expected to produce strongly warming contrails. The grid-based CoCiP can also be set up in a Monte 

Carlo formulation to estimate the probability of each grid cell forming net warming contrails (EFcontrail > 0), which in turn, 560 

enables mitigation efforts to be focused on grid cells with a high probability of forming net warming contrails (Fig. 9b). The 

probability of achieving a net climate benefit can also be maximised when diversions are only targeted to flights where their 

alternative trajectory either avoids a fuel penalty, or achieves a reduction in the user-selected CO2-equivalence metric beyond 

a pre-defined margin of safety. 

 565 

We acknowledge that the widespread adoption of our contrail forecasting tool in real-world operations depends on a successful 

validation of its predictions against independent observations. The ongoing focus on observational validation for both CoCiP 

variants underscores the active efforts in this critical area. While multiplying the EFcontrail by the ERF/RF ratio, c.f., Eq. (8), 

was used in this study to provide a highly approximate estimate of and account for the rapid atmospheric adjustments directly 

caused by the contrail (Bickel et al., 2019)second-order and longer-term climate feedback, our future work aims to establish a 570 

stronger connection between this computationally efficient EFcontrail calculation and the more rigorous CCF calculations 

(Frömming et al., 2021). Future versions of the grid-based CoCiP are also expected to be prioritised towards: (i) evaluating 

and accounting for different uncertainty sources to produce a more comprehensive probabilistic forecast of the grid-based 
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CoCiPwithin the Monte Carlo contrail simulation framework (Platt et al., 2024); (ii) incorporating contrail predictions from 

other models, such as Google’s artificial intelligence-based predictions (Elkin and Sanekommu, 2023) and/or algorithmic 575 

climate change functions (Dietmüller et al., 2023), and only performing flight diversions in regions where there are inter-model 

agreements; (iii) improving the contrail forecast estimates for aircraft-engine groups that operate in the ‘soot-poor’ regime 

(nvPM EIn < 1013 kg-1) by accounting for the potential activation of volatile particulate matter and ambient aerosols in forming 

contrail ice crystals (Kärcher et al., 2015; Kärcher and Yu, 2009); and (iv) utilising real-time observations from ground-based 

cameras and/or satellite images (Geraedts et al., 2023; Low et al., 2024) to improve forecast accuracy and verify the outcome 580 

of any contrail mitigation actions. 

Appendix 

A1 Versioning of trajectory-based CoCiP 

The original trajectory-based contrail cirrus prediction model (CoCiP), versioned as “CoCiP (2012)”, was developed by Ulrich 

Schumann at DLR using the Fortran programming language (Schumann, 2012; Schumann et al., 2012a). Figure A1 summarises 585 

the steps and input parameters needed to run the trajectory-based CoCiP.  

 
Figure A1: Steps and input parameters required to run the trajectory-based CoCiP. 

CoCiP versioning and improvements  

Since its first publication, CoCiP has undergone continuous refinement in its contrail simulation workflow and treatment of 590 

input parameters. Figure A2 provides an overview of the different versions of CoCiP and its evolution. Subsequent versions 

that are used by its creator Ulrich Schumann are versioned as “CoCiP-DLR” and have been extensively used in multiple studies 
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(Jeßberger et al., 2013; Schumann et al., 2011, 2013b, a, 2015, 2017, 2021; Schumann and Graf, 2013; Schumann and 

Heymsfield, 2017). CoCiP-DLR incorporates additional features such as:  

• radiative heating effects on the contrail plume (Schumann et al., 2010), 595 

• humidity exchange between contrails and the background air (Schumann et al., 2015), and 

• change in contrail radiative forcing due to contrail-contrail overlapping (Schumann et al., 2021). 

 
Figure A2: Overview of the different versions of the trajectory-based CoCiP and its evolution. 

In 2018, a copy of CoCiP (2012) was provided for cooperation to Imperial College by Ulrich Schumann and DLR. CoCiP 600 

(2012) was re-coded in MATLAB by Imperial College with support from Ulrich Schumann. This version of CoCiP is 

designated as “CoCiP (2018)”. In 2022, CoCiP (2018) was re-coded to Python by Breakthrough Energy and hosted on GitHub 

via the pycontrails library repository (Shapiro et al., 2023). This CoCiP implementation is referred to as “pycontrails 

(v0.37.0)” and was open-sourced on March-2023. The pycontrails library standardized input and output data structures to 

expand access to the CoCiP model. The different structures include flight trajectories (pycontrails.Flight), meteorology 605 

(pycontrails.MetDataset), fuel properties (pycontrails.Fuel), as well as aircraft performance and emission models 

(pycontrails.Model). The CoCiP model implemented in pycontrails also features several improvements relative to 

CoCiP (2018), including: 
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• Modelling the radiative heating effects on the contrail plume, identical to the workflow that was already implemented 

in CoCiP-DLR (Schumann et al., 2010; Schumann and Graf, 2013), and 610 

• Modelling the nvPM activation rate to form contrail ice crystals (factivation), which now depends on the difference 

between the ambient temperature and SAC threshold temperature (Bräuer et al., 2021), which replaces the simplifying 

assumption that factivation = 1 at each flight waypoint,    

The CoCiP model outputs from pycontrails (v0.37.0) were evaluated against those from CoCiP-DLR, revealing consistent 

results. The pycontrails repository is regularly updated, with the version used in this study being v0.51.0 (Shapiro et al., 615 

2023). Detailed documentation of the specific changes made between each version of pycontrails can be found in the 

change log of Shapiro et al. (2023). Notably, several updates have also been applied to the trajectory-based CoCiP, including:  

• Implementing a parameterized model of the ice crystal survival fraction during the wake-vortex phase, developed 

based on outputs from large eddy simulations (Unterstrasser, 2016), and  

• Incorporating the contrail-contrail overlapping effects on the contrail radiative forcing (Teoh et al., 2024a) with minor 620 

modifications relative to the approach of Schumann et al. (2021).  

Publications using CoCiP 

Initial results of the CoCiP (2012) include comparisons to satellite and airborne lidar remote sensing observations, as well as 

comparisons to exhaust and contrail in-situ measurements (Schumann, 2010; Schumann and Wirth, 2009; Voigt et al., 2010). 

The concept of the contrail energy forcing (EFcontrail), which represents the cumulative contrail climate forcing over its lifetime, 625 

and its application to flight trajectory optimization were first introduced in Schumann et al. (2011). The first application of a 

gridded CoCiP approach was demonstrated in Schumann et al. (2012b). Additionally, CoCiP (2012) was applied alongside 8 

years of METEOSAT cirrus and outgoing longwave radiation observations to derive the contrail longwave radiative forcing 

(RF) over the North and South Atlantic (Schumann and Graf, 2013). These results were then extrapolated through CoCiP 

simulations to estimate the global contrail shortwave and longwave RF, which results were used to inform the 630 

Intergovernmental Panel on Climate Change (IPCC) report (Boucher et al., 2013). 

 

CoCiP (2018) was used in two separate studies to simulate contrails over the Japanese airspace (Teoh et al., 2020b, a) which 

included the following changes to the simulation workflow relative to CoCiP (2012), including: 

• The incorporation of the fractal aggregates (FA) model, which estimates the non-volatile particulate matter (nvPM) 635 

number emissions index (EIn) at each flight waypoint based on the engine thrust setting and pressure ratio, rather than 

assuming a constant nvPM EIn (1015 kg-1), and 

• The implementation of a Monte Carlo simulation to propagate uncertainties in the nvPM EIn estimates and 

meteorology to the simulated contrail properties and climate forcing.  

 640 
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pycontrails has been used in multiple studies to simulate aircraft emissions and contrail climate forcing (Martin Frias et 

al., 2024; Platt et al., 2024; Quante et al., 2024; Teoh et al., 2022a, b, 2024b, a) with the following improvements to the 

simulation workflow: 

• Utilising the T4/T2 methodology (Teoh et al., 2022a, 2024b), which supersedes the FA model and estimates the 

aircraft-engine specific nvPM EIn using the reported nvPM emissions profile provided by the ICAO aircraft engine 645 

emissions databank (EDB) (EASA, 2021), 

• Simulating the change in contrail formation and properties resulting from the use of sustainable aviation fuel (SAF) 

(Teoh et al., 2022b), 

• Corrections applied to the humidity fields provided by numerical weather predictions (NWP), which ensures that the 

provided relative humidity with respect to ice (RHi) is more consistent with in-situ measurements (Teoh et al., 2022a, 650 

2024a; Wolf et al., 2023a) (see Appendix A3),  

• Supporting additional interpolation methods across the vertical level, such as the log-log and cubic spline 

interpolation, to account for the non-linear lapse rate of the specific humidity, and 

• Incorporating additional features in various structures in pycontrails (i.e., pycontrails.Flight, 

pycontrails.MetDataset) and supporting the open-source Poll-Schumann (PS) aircraft performance model (Poll 655 

and Schumann, 2020, 2021, 2024). 

Since 2023, a revised CoCiP-DLR is being implemented into the Icosahedral Nonhydrostatic (ICON) weather model of the 

German Weather Service (DWD) (U. Schumann and A. Seifert, to be published). The pycontrails repository is also currently 

in use at DLR with modifications to the interpolation scheme (not versioned).  

 660 

A2 Sensitivity of contrail climate forcing to CoCiP model time step 

Previous studies that simulated contrails with CoCiP have used different model time steps (dt) ranging between 5 and 60 

minutes, depending on their specific application and available computational resources: 

• Schumann et al. (2015) used a 60-minute dt due to: (i) CoCiP’s coupling with the Community Atmosphere Model 

(CAM), which operates on a 60-minute time step; and (ii) the extensive computational demands of the 20-year global 665 

simulations, 

• Regional studies over Japan, Europe, and the North Atlantic used a 30-minute dt, as these simulations were conducted 

locally on consumer-grade hardware (Schumann et al., 2021; Teoh et al., 2020b, 2022a), 

• Schumann & Graf (2013) used a 15-minute dt to match the time resolution of their air traffic and satellite datasets, 

and 670 
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• Teoh et al. (2024a) used a 5-minute dt because the simulation was conducted on the cloud where computational 

resources were no longer constrained.  

In this section, we perform a sensitivity analysis by running the grid-based CoCiP with different dt values of 1, 5, 10, 15 and 

30 minutes and quantify their impact on the estimated EFcontrail. We specifically simulated contrails on the 7th of January 2019 

at 03:00:00 UTC to be consistent with time period used in the examples in Section 5. Figure A3 shows that the magnitude and 675 

variance of simulated EFcontrail tends to increase as dt decreases, with the mean EFcontrail per flight distance simulated from a 1-

minute dt being approximately 24% larger than those simulated from a 30-minute dt. Likewise, the global airspace area forecast 

with strongly warming contrails (EFcontrail > 80th percentile) is 20% larger at a 1-minute dt compared to a 30-minute dt (1.60% 

vs. 1.33%, as shown in Fig. A4). The smaller EFcontrail and coverage area at larger dt values, such as 30-minutes, can be 

explained by the contrail lifetime ending prematurely. For example, if ambient conditions in the next model time step (t + 30 680 

minutes) are unfavourable for contrail persistence, the EFcontrail between t and (t + 30 minutes) becomes zero because contrails 

are no longer present at (t + 30 minutes). In contrast, under the same ambient conditions, a smaller dt of 1-minute allows the 

simulated contrails to persist for a longer time period within the same 30-minute window, thereby increasing the overall contrail 

lifetime and resulting in a larger warming or cooling effect (|EFcontrail|, as shown in the larger standard deviation in Fig. A3). 

 685 
Figure A3: Change in the global mean and standard deviation of EFcontrail per flight distance across different CoCiP model time steps 
(dt). Contrails are simulated globally at FL360 (10,973 m) on the 7th of January 2019 at 03:00:00, with the nominal nvPM aircraft-
engine group. The y-axis uses a logarithmic scale for |EFcontrail| > 107 J m-1 and a linear scale between 10-7 and 107 J m-1. 

In this study, we chose a 5-minute dt to align with Teoh et al. (2024a), as their EFcontrail thresholds (i.e., > 80th and 95th 

percentiles) were used to identify regions that are forecasted to produce strongly warming contrails. For our research objectives, 690 

we note that the choice of dt only leads to minor differences in the regions identified with strongly warming contrails (Fig. 

A4). While time step error is one of the many sources of errors influencing EFcontrail, our analysis in this section suggests shows 
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that it is not the most dominant one especially when compared to the impact of humidity corrections applied to the ERA5 

HRES (Teoh et al., 2024a). Since dt is a model parameter, we recommend that users select a dt of 1 or 5 minutes to minimise 

its impact as a source of error, as smaller dt values are expected to result in convergence of the global airspace area forecast 695 

with strongly warming contrails (1.60% for a 1-minute dt vs. 1.58% for a 5-minute dt, as shown in Fig. A4).  

 
Figure A4: Regions forecasted with strongly warming contrails, i.e., EFcontrail per flight distance > 5.0 ×108 J m-1 (80th percentile) 
when simulated with different model time steps (dt) of: (a) 1-minute; (b) 5-minute; (c) 15-minute; and (d) 30-minutes. Contrails are 
simulated globally at FL360 (10,973 m) on the 7th of January 2019 at 03:00:00, with the nominal nvPM aircraft-engine group.  700 

 

A3 Humidity correction 

Two approaches have been used in previous studies to ensure that the RHi distribution provided by the European Centre for 

Medium Range Weather Forecasts (ECMWF) ERA5 products are consistent with in-situ RHi measurements.  

Firstly, a global humidity correction developed by Teoh et al. (2024a) attempts to improve the goodness-of-fit of the ERA5-705 

derived and in-situ RHi distribution. It scales the ERA5-derived RHi with the following parametric equations,  
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pliq(Tamb) and pice(Tamb) are the saturation pressure of water vapour over liquid water and ice respectively (Sonntag, 

1994)(Sonntag, 1994). aopt and bopt captures the change in tropopause height between 20° and 50° N/S, which aims to account 

for the latitude effects on the RHi distribution. The model coefficients are re-calibrated based on the specific ERA5 product, 

with: (i) a0 = 0.06262, a1 = 0.4589, a2 = 39.25, a3 = 0.9522, b0 = 1.471, b1 = 0.04431, b2 = 18.76, and b3 = 1.433 for the ERA5 

HRES reanalysis on pressure levels (Teoh et al., 2024a); or (ii) a0 = 0.02630, a1 = 2.2501, a2 = 36.5494, a3 = 0.9651, b0 = 715 

0.4891, b1 = 4.1827, b2 = 17.5338, and b3 = 2.2109 for the ERA5 HRES reanalysis on model levels. The main factor 

contributing to differences between the two set of coefficients stems from the higher vertical resolution of the ERA5 HRES 

on model levels relative to those on pressure levels (26 vs. 10 levels between 6,300 and 15,000 m).  

 

Secondly, more recent studies corrected the ERA5-derived RHi using a quantile mapping approach (Platt et al., 2024; Wolf et 720 

al., 2023a). The quantile mapping approach replicates the in-situ RHi distribution by constructing two cumulative density 

functions (CDF) based on RHi distributions from the ERA5 and in-situ measurements, estimating the quantile value of the 

ERA5-derived RHi (represented on the y-axis of the CDF), and using the quantile values to substitute the ERA5-derived RHi 

with the in-situ RHi values.  

 725 

The ERA5-corrected RHi from both methodologies (i.e., global humidity correction and quantile mapping) were compared 

against in-situ RHi measurements from the mid-latitude region (30°N – 70°N and 125°W – 145°E) (Hofer et al., 2024). These 

comparisons used the equitable threat score (ETS) metric, where an ETS score of 1 represents perfect agreement between the 

ERA5-corrected and in-situ RHi measurements, an ETS score of 0 suggests a random agreement, and an ETS score below 0 

signifies an inverse relationship. The results show that the ETS from the quantile mapping method (0.344) is 21% higher than 730 

the global humidity correction method (0.284), and the corrected RHi from both methods represent a significant improvement 

relative to the uncorrected ERA5-derived RHi (0.198). However, we note that these findings are only valid for the mid-latitude 

region and further work is required to evaluate both the correction methodologies globally. We note that we do not prescribe 

for any specific humidity correction methodology, and a final decision for the operational global contrail forecasting tool will 

be determined through stakeholder consensus. For the purposes of this paper, we employ the global humidity correction 735 

methodology instead of the quantile mapping approach because it was calibrated to account for the latitude effects, c.f. Eq. 

(A2) and (A3), which could be more suitable for a global contrail simulation.  
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A4 Alternative aircraft type classifications 

The grid-based CoCiP provides the simulated EFcontrail per flight distance across five dimensions of longitude, latitude, altitude, 740 

time, and N unique groups of passenger aircraft-engine types. The fifth dimension is necessary to differentiate between the 

contrails formed by passenger aircraft-engine types with varying nvPM number emissions and aircraft mass. Generally, a 

higher N will improve the agreement in the simulated EFcontrail between the trajectory-based and grid-based CoCiP, but this 

comes at the expense of an increase in computational resources and data storage/transfer requirements. Tables 2 and 3 in the 

main text classifies the most-commonly used passenger aircraft-engine types into 12 groups. Here, we propose several 745 

alternative aircraft-engine classifications with N ranging between 3 and 7 (groups) to assess the trade-offs between the model 

performance and computational requirements (see Tables A1 to A5). Additionally, we visualise the range of aircraft mass and 

nvPM EIn for each aircraft-engine group when they are clustered into 12 groups (Fig. A5 and Table 2), 7 groups (Fig. A6 and 

Table A1), and 3 groups (Fig. A7 and Table A5) respectively.  

 750 
Figure A5: Range of aircraft mass and nvPM EIn for each aircraft-engine group when they are clustered into 12 groups. The error 
bars for each data point represent one standard deviation of these values, which are provided by the 2019 global aviation emissions 
inventory based on ADS-B (GAIA) (Teoh et al., 2024b).  
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Table A1: Classification of the commonly used passenger aircraft-engine types into 7 unique groups based on their similarities in 760 
aircraft mass and nvPM EIn.  

Aircraft-engine 
classification 

nvPM EIn 
Low Nominal High 

Aircraft 
mass 

Light 

• A19N (LEAP-1A) 
• A20N (LEAP-1A) 
• A21N (LEAP-1A) 
• B38M (LEAP-1B) 

• A319 (CFM56) 
• A320 (CFM56) 
• A321 (CFM56) 
• B737 (CFM56) 
• B738 (CFM56) 
• B739 (CFM56) 
• B752 (RB211) 
• B753 (RB211) 
• B762 (CF6-80E) 
• B763 (CF6-80E) 

• A19N (Pratt & Whitney) 
• A20N (Pratt & Whitney) 
• A21N (Pratt & Whitney) 
• A319 (IAE V2500) 
• A320 (IAE V2500) 
• A321 (IAE V2500) 

Medium 

• B788 (GEnx) 
• B789 (GEnx) 
• B78X (GEnx) 
• B748 (GEnx) 

• A332 (Trent 700/CF6-80E) 
• A333 (Trent 700/CF6-80E) 
• A342 (CFM56/Trent500) 
• A343 (CFM56/Trent500) 
• A345 (CFM56/Trent500) 
• A346 (CFM56/Trent500) 
• A359 (Trent XWB) 
• A35K (Trent XWB) 
• B788 (Trent 1000) 
• B789 (Trent 1000) 
• B78X (Trent 1000) 

N/A 

Heavy 

• B772 (GE90) 
• B773 (GE90) 
• B77L (GE90) 
• B77W (GE90) 

N/A N/A 

Super heavy N/A 

• A388 (Trent 900) 
• B742 (CF6-80C) 
• B743 (CF6-80C) 
• B744 (CF6-80C) 

N/A 

 

 
Figure A6: Range of aircraft mass and nvPM EIn for each aircraft-engine group when they are clustered into 7 groups. The error 
bars for each data point represent one standard deviation of these values, which are provided by the 2019 global aviation emissions 765 
inventory based on ADS-B (GAIA) (Teoh et al., 2024b).  
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Table A2: Classification of the commonly used passenger aircraft-engine types into 6 unique groups based on their similarities in 
aircraft mass and nvPM EIn.  

Aircraft-engine 
classification 

nvPM EIn 
Low Nominal High 

Aircraft 
mass 

Light 

• A19N (LEAP-1A) 
• A20N (LEAP-1A) 
• A21N (LEAP-1A) 
• B38M (LEAP-1B) 

• A319 (CFM56) 
• A320 (CFM56) 
• A321 (CFM56) 
• B737 (CFM56) 
• B738 (CFM56) 
• B739 (CFM56) 
• B752 (RB211) 
• B753 (RB211) 
• B762 (CF6-80E) 
• B763 (CF6-80E) 

• A19N (Pratt & Whitney) 
• A20N (Pratt & Whitney) 
• A21N (Pratt & Whitney) 
• A319 (IAE V2500) 
• A320 (IAE V2500) 
• A321 (IAE V2500) 

Medium/Heavy 

• B788 (GEnx) 
• B789 (GEnx) 
• B78X (GEnx) 
• B748 (GEnx) 

• A332 (Trent 700/CF6-80E) 
• A333 (Trent 700/CF6-80E) 
• A342 (CFM56/Trent500) 
• A343 (CFM56/Trent500) 
• A345 (CFM56/Trent500) 
• A346 (CFM56/Trent500) 
• A359 (Trent XWB) 
• A35K (Trent XWB) 
• B772 (GE90) 
• B773 (GE90) 
• B77L (GE90) 
• B77W (GE90) 
• B788 (Trent 1000) 
• B789 (Trent 1000) 
• B78X (Trent 1000) 

N/A 

Super heavy N/A 

• A388 (Trent 900) 
• B742 (CF6-80C) 
• B743 (CF6-80C) 
• B744 (CF6-80C) 

N/A 

 

 770 
Figure A7: Range of aircraft mass and nvPM EIn for each aircraft-engine group when they are clustered into 3 groups. The error 
bars for each data point represent one standard deviation of these values, which are provided by the 2019 global aviation emissions 
inventory based on ADS-B (GAIA) (Teoh et al., 2024b).  
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Table A3: Classification of the commonly used passenger aircraft-engine types into 5 unique groups based on their similarities in 
aircraft mass and nvPM EIn.  775 

Aircraft-engine classification nvPM EIn 
Low Nominal High 

Aircraft 
mass 

Light 

• A19N (LEAP-1A) 
• A20N (LEAP-1A) 
• A21N (LEAP-1A) 
• B38M (LEAP-1B) 

• A319 (CFM56) 
• A320 (CFM56) 
• A321 (CFM56) 
• B737 (CFM56) 
• B738 (CFM56) 
• B739 (CFM56) 
• B752 (RB211) 
• B753 (RB211) 
• B762 (CF6-80E) 
• B763 (CF6-80E) 

• A19N (Pratt & Whitney) 
• A20N (Pratt & Whitney) 
• A21N (Pratt & Whitney) 
• A319 (IAE V2500) 
• A320 (IAE V2500) 
• A321 (IAE V2500) 

Medium/Heavy 

• B788 (GEnx) 
• B789 (GEnx) 
• B78X (GEnx) 
• B748 (GEnx) 

• A332 (Trent 700/CF6-80E) 
• A333 (Trent 700/CF6-80E) 
• A342 (CFM56/Trent500) 
• A343 (CFM56/Trent500) 
• A345 (CFM56/Trent500) 
• A346 (CFM56/Trent500) 
• A359 (Trent XWB) 
• A35K (Trent XWB) 
• A388 (Trent 900) 
• B742 (CF6-80C) 
• B743 (CF6-80C) 
• B744 (CF6-80C) 
• B772 (GE90) 
• B773 (GE90) 
• B77L (GE90) 
• B77W (GE90) 
• B788 (Trent 1000) 
• B789 (Trent 1000) 
• B78X (Trent 1000) 

N/A 

 
Table A4: Classification of the commonly used passenger aircraft-engine types into 4 unique groups based on their similarities in 
aircraft mass and nvPM EIn.  

Aircraft-engine classification nvPM EIn 
Low Nominal/High 

Aircraft 
mass 

Light 

• A19N (LEAP-1A) 
• A20N (LEAP-1A) 
• A21N (LEAP-1A) 
• B38M (LEAP-1B) 

• A19N (Pratt & Whitney) 
• A20N (Pratt & Whitney) 
• A21N (Pratt & Whitney) 
• A319 (CFM56) 
• A319 (IAE V2500) 
• A320 (CFM56) 
• A320 (IAE V2500) 
• A321 (CFM56) 

• A321 (IAE V2500) 
• B737 (CFM56) 
• B738 (CFM56) 
• B739 (CFM56) 
• B752 (RB211) 
• B753 (RB211) 
• B762 (CF6-80E) 
• B763 (CF6-80E) 

Medium/Heavy 

• B788 (GEnx) 
• B789 (GEnx) 
• B78X (GEnx) 
• B748 (GEnx) 

• A332 (Trent 700/CF6-80E) 
• A333 (Trent 700/CF6-80E) 
• A342 (CFM56/Trent500) 
• A343 (CFM56/Trent500) 
• A345 (CFM56/Trent500) 
• A346 (CFM56/Trent500) 
• A359 (Trent XWB) 
• A35K (Trent XWB) 
• A388 (Trent 900) 
• B742 (CF6-80C) 

• B743 (CF6-80C) 
• B744 (CF6-80C) 
• B772 (GE90) 
• B773 (GE90) 
• B77L (GE90) 
• B77W (GE90) 
• B788 (Trent 1000) 
• B789 (Trent 1000) 
• B78X (Trent 1000) 
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Table A5: Classification of the commonly used passenger aircraft-engine types into 3 unique groups based on their similarities in 780 
nvPM EIn.  

Aircraft-engine classification 

nvPM EIn 

Low 
• A19N (LEAP-1A) 
• A20N (LEAP-1A) 
• A21N (LEAP-1A) 

• B38M (LEAP-1B) 
• B788 (GEnx) 
• B789 (GEnx) 

• B78X (GEnx) 
• B748 (GEnx) 

Nominal 

• A319 (CFM56) 
• A320 (CFM56) 
• A321 (CFM56) 
• B737 (CFM56) 
• B738 (CFM56) 
• B739 (CFM56) 
• B752 (RB211) 
• B753 (RB211) 
• B762 (CF6-80E) 
• B763 (CF6-80E) 

• A332 (Trent 700/CF6-80E) 
• A333 (Trent 700/CF6-80E) 
• A342 (CFM56/Trent500) 
• A343 (CFM56/Trent500) 
• A345 (CFM56/Trent500) 
• A346 (CFM56/Trent500) 
• A359 (Trent XWB) 
• A35K (Trent XWB) 
• B772 (GE90) 
• B773 (GE90) 

• B77L (GE90) 
• B77W (GE90) 
• B788 (Trent 1000) 
• B789 (Trent 1000) 
• B78X (Trent 1000) 
• A388 (Trent 900) 
• B742 (CF6-80C) 
• B743 (CF6-80C) 
• B744 (CF6-80C) 

High 
• A19N (Pratt & Whitney) 
• A20N (Pratt & Whitney) 
• A21N (Pratt & Whitney) 

• A319 (IAE V2500) 
• A320 (IAE V2500) 
• A321 (IAE V2500) 

 

 

A5 Comparison metrics 

Section 4 in the main text assessed the agreement in the simulated contrail climate forcing between the trajectory-based 

(EF%/()1*$+
)1*C ) and grid-based CoCiP (EF%/()1*$+

D1$, ) using four different approaches: (i) the false negative and false alarm rate; (ii) 785 

the modified mean absolute log error (modified-MALE); (iii) the weighted Kendall rank correlation coefficient (τw); and (iv) 

two custom performance curves (Platt et al., 2024) which evaluates the effectiveness of contrail mitigation when interventions 

are based on an imperfect prediction of the EFcontrail. Approaches (i) and (ii) evaluates the point-wise errors between EF%/()1*$+
)1*C  

and EF%/()1*$+
D1$,  at each contrail segment, while approaches (iii) and (iv) assesses the model agreement at the fleet-aggregated 

level. Here, we provide a detailed description of approaches (ii), (iii), and (iv) and discuss the rationale behind their inclusion.  790 

 

Firstly, the modified-MALE describes the relative errors in the magnitude of EFcontrail at each flight segment, and is calculated 

based on the actual (Ftrue) and predicted (Fpredicted) EFcontrail, 

MALE =
∑ 	|^*0VU,W4^R0U,,W|
WXY
WXS

_
, where          (A5) 

𝐿`,a = sgn(𝐹 ,a) × max	(log H
UVbcZ,Wb
|c#()|

I , 0).         (A6) 795 
 
N represents the total number of data points in the sample, the subscript x denotes the true or predicted EFcontrail, sgn(Fx,i) is the 

sign of Fx,I (1 or -1), and Fmin is set to 107 J m-1. The modified-MALE calculates the average errors between EF%/()1*$+
)1*C  and 

EF%/()1*$+
D1$,  at the flight waypoint level, with a focus on accurately predicting moderately and strongly warming and cooling 
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contrail segments. It achieves this by minimising the impact of prediction errors in segments with a weak EFcontrail (< 107 J m-800 
1). A value of 1 implies that, on average, the EF%/()1*$+

D1$,  is off by one order of magnitude relative to EF%/()1*$+
)1*C .  

Secondly, we calculate τw to assess the grid-based CoCiP’s accuracy in ranking flight segments according to their magnitude 

of EFcontrail,  

τd =
∑ e(1×-D(fc*0VU,(4c*0VU,1g×W[\ -D((cR0U,,(4cR0U,,1)

∑ e(1W[\
, where       (A7) 

𝑤$C = 𝐹)10&,$ + 𝐹)10&,C.           (A8) 805 
 
τw measures the correlation between two rankings based on the proportion of concordant and discordant pairs. A τw value of 1 

indicates a perfect match between the rankings, a value of 0 indicates an absence of association between Ftrue and Fpred, while 

a value of -1 means that no pairs share the same ordering. For the purposes of evaluating the grid-based CoCiP, we only include 

flight waypoints if Ftrue > Fmin (= 107 J m-1), and the wij term is introduced to assign larger weights to correctly rank flight 810 

segments with a large EFcontrail, consistent with the approach used in the modified-MALE. The primary distinction between the 

modified-MALE and τw lies in their treatment of pointwise errors (i.e., difference in the magnitude of EFcontrail between the 

trajectory-based and grid-based CoCiP), where τw disregards these errors unless they are significant enough to alter their 

relative rankings. 

 815 

Thirdly, the two performance curves are formulated to measure the impact of model errors on the effectiveness of contrail 

mitigation when interventions are prioritised to specific flight segments based on an imperfect prediction of the EFcontrail per 

flight distance. More specifically, the performance curves are constructed with the following steps:  

1. Given the EF%/()1*$+
)1*C  and EF%/()1*$+

D1$,  per flight distance on a common set of contrail segments (indexed from i = 1 to N), sort 

the waypoint indices into two distinct lists of 𝑝)1*C(𝑖) and 𝑝D1$,(𝑖). More specifically, 𝑝)1*C(𝑖) sorts the EF%/()1*$+
)1*C  from 820 

largest to smallest and represents prioritising flight segments for mitigation based on perfect knowledge of the contrail 

climate forcing, while 𝑝D1$,(𝑖) sorts the EF%/()1*$+
D1$,  per flight distance from largest to smallest and represents prioritisations 

based on an imperfect prediction of the contrail climate forcing.  

2. Calculate four cumulative sums, F(x), for the EFcontrail per flight distance and flight segment lengths (L) for the trajectory-

based and grid-based CoCiP,   825 

𝐹MEF%/()1*$+,h
)1*C O = ∑ EF%/()1*$+,a

)1*Ch
Y*0"1(a)iU ,         (A9) 

𝐹(𝐿h
)1*C) = ∑ 𝐿ah

Y*0"1(a)iU ,          (A10) 

𝐹(EF%/()1*$+,h
D1$, ) = ∑ EF%/()1*$+,a

)1*Ch
Y/0(,(a)iU , and        (A11) 

𝐹(𝐿h
D1$,) = ∑ 𝐿ah

Y/0(,(a)iU ,          (A12) 
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3.  Construct two absolute cumulative density functions by plotting 𝐹MEF%/()1*$+,h
)1*C O  versus 𝐹(𝐿h

)1*C)  and 𝐹(EF%/()1*$+,h
D1$, ) 830 

versus 𝐹(𝐿h
D1$,) , both of which represents the performance curves for the trajectory-based and grid-based CoCiP 

respectively.  

 

An example of these performance curves is shown in Fig. 2 in the main text. We then use these performance curves to derive 

two metrics that evaluates the effectiveness of contrail mitigation based on imperfect knowledge of the EFcontrail:  835 

• The change in initial mitigation rate, i.e., the relative reduction in EFcontrail per unit of re-routed flight distance for the most 

strongly warming contrails, which is estimated as the gradient of a secant line (m) from the origin to the 5th percentile of 

𝐹MEF%/()1*$+
)1*C O and 𝐹HEF%/()1*$+

D1$, I and expressed as a ratio of  
j]X.
/0(,

j]X.
*0"1 , and 

• The change in the total flight distance flown that contributes to 80% of the total EFcontrail, which is estimated as a ratio of 

c(^]X23
/0(, )

c(^]X23
*0"1 )

.  840 

In essence, 
j]X.
/0(,

j]X.
*0"1 (< 1) quantifies the reduced effectiveness of the grid-based CoCiP in mitigating the most strongly warming 

contrails when compared to the trajectory-based CoCiP; while 
c(^]X23

/0(, )

c(^]X23
*0"1 )

(> 1) measures the additional effort that is required to 

mitigate 80% of the total EFcontrail when imperfect predictions are used. Table 4 summarises the performance metrics when 

various configurations of the grid-based CoCiP (i.e., original aircraft-engine type and with different aircraft-engine groupings) 

are evaluated against the trajectory-based CoCiP. Figure A8 shows the mean percentage error across all performance metrics 845 

when comparing the grid-based CoCiP with different aircraft-engine groupings (1 ≤ 𝑁 ≤ 12) relative to the configuration 

using the exact aircraft-engine type.   

 
Figure A8: Mean percentage error across all performance metrics for different grid-based CoCiP configurations (𝟏 ≤ 𝑵 ≤ 𝟏𝟐) 
compared to the configuration using exact aircraft-engine types.  850 
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A6 Flight trajectory optimizer 

In Section 5.2, we used an in-house flight trajectory optimizer together with the 4D EFcontrail per flight distance provided by 

the grid-based CoCiP to minimise the total CO2 mass-equivalent emissions (𝑚8"!	&H,)/)*+ = 𝑚8"!,#0&+ +𝑚8"!	&H,%/()1*$+-) from 

a historical transatlantic flight, where 𝑚8"!	&H,%/()1*$+- is calculated using Eq. (8). Here, we describe the algorithm of the flight 

trajectory optimizer. We note that this flight trajectory optimizer is not intended to create trajectories that could be used in 855 

real-world operations, but rather as a heuristic to estimate the time and fuel costs associated with contrail mitigation, and to 

demonstrate the utility of the contrail forecasts in flight planning. 

 

The optimizer attempts to make realistic trajectories by implementing two constraints: (i) restricting the aircraft cruise altitude 

at designated flight levels, typically in increments of 2,000 feet; and (ii) requiring that the aircraft maintains a specific flight 860 

level for a minimum duration of 90 minutes between step climbs. Constraint (i) aims to account for the established airspace 

structure, which typically dictates vertical separation of flights travelling in opposite directions at intervals of 1,000 feet (ICAO, 

2016); while constraint (ii) attempts to capture constraints in airspace capacity and air traffic controller workload, where flights 

are typically not permitted to perform frequent step changes in cruise altitude (Filippone, 2015; Tobaruela, 2015). We also do 

not consider a full 4D flight trajectory optimization in this work. Instead, the optimization is only performed in two dimensions, 865 

namely time and altitude, while retaining the original horizontal flight path.  

 

The main input parameter of the flight trajectory optimizer is the Cost Index (CI), which is defined as the ratio between the 

time and fuel related fuel costs, and the optimizer minimises the weighted objective function that combines time costs, CO2 

and contrail costs. The flight trajectory is divided into equal flight segments, where each segment will be traversed in 870 

approximately five minutes at a near optimal cruise speed. The search space used to find the optimal trajectory is then 

constrained to a 2D grid representing the flight segments (i.e., horizontal axis) and flight level (i.e., vertical axis). For the flight 

trajectory used in Section 5.2, the horizontal axis consisted of 207 segments, each approximately 44.8 km in length, and vertical 

axis represents the altitude that is divided in increments of 2,000 feet between a specified minimum (assumed to be 26,000 

feet) and maximum altitude (assumed to be the maximum operating altitude of the aircraft). We also ensure that the step 875 

climb/descent performed at each flight segment is realistic and does not exceed a nominal rate of climb and descent (ROCD) 

of 500 feet per minute.  

 

The flight trajectory optimizer performs a breadth-first Dykstra-like search across the 2D search space. Starting from the initial 

point of the horizontal grid and the lowest flight level, the algorithm iterates through each of the feasible grid points to 880 

determine the optimal Mach number (Mopt) for the given aircraft type and CI. The Mopt that minimizes the total cost of cruise 

at each flight segment is given by:  
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𝑀/T) =
argmin
𝑀 (86V9j(k)

lO&%
),           (A13) 

where the CI is assumed to be 60 in this study, Δm(M) is the fuel burn over this flight segment for a given Mach number (M), 

and VTAS is the aircraft true airspeed. The fuel burn for the original and alternative flight paths, which represent different cruise 885 

altitude options, is computed using the Poll-Schumann (PS) aircraft performance model (Poll and Schumann, 2020, 2021, 

2024). The estimated fuel burn accounts for various input parameters such as the aircraft type, ambient air temperature, ambient 

wind conditions (which influence VTAS), and aircraft mass. We then define a set of allowed actions for the aircraft to transition 

to the next flight segment: 

• If the aircraft is at the starting point of the search, it is allowed to stay level or climb, 890 

• If the aircraft remained level during the last horizontal segment, it must continue to remain level unless it exceeded the 

specified time interval (> 90 minutes) since the last altitude change,  

• If the aircraft was climbing or descending during the last horizontal segment, it must maintain its current climb and descent 

until it has reached an allowed flight level for cruise, at which point it has the option to remain level or continue its climb 

or descent, and 895 

• Each action is allowed only if the required thrust and lift are within the rated operating conditions of the aircraft, as 

determined by the PS model.  

 

At each grid point reached through an allowed action, the algorithm compares the cumulative cost of the current flight 

trajectory with any previously identified optimal path to that same grid point. During each iteration, the algorithm only saves 900 

the lowest-cost path for reaching the designated grid point. The search concludes once it has examined every viable grid point, 

and the optimal trajectory is reconstructed by starting from the final grid point and retracing the sequence of actions that were 

previously taken to reach that point. We note that the optimized flight trajectories are not checked for practical usage, and a 

real-world flight trajectory optimization needs to consider practical flight and air traffic management constraints, such as the 

minimum separation between aircraft, airspace congestion and design (i.e., North Atlantic Organised Track Structure), and air 905 

traffic controller workload (Molloy et al., 2022).  
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Model & Data availability 

The pycontrails repository that contains the algorithms for the Poll-Schumann (PS) aircraft performance model, the 

trajectory-based CoCiP (Cocip), and the grid-based CoCiP (CocipGrid) is publicly available at 

https://doi.org/10.5281/zenodo.7776686. The grid-based CoCiP can also be accessed via an Application Programming 915 

Interface (API) at https://api.contrails.org and https://forecast.contrails.org. This document contains Copernicus Climate 

Change Service information from 2024. Neither the European Commission nor the ECMWF is responsible for any use of the 

Copernicus information.  
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