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Response to Reviewer Comments 

We thank the editor and two reviewers for their detailed comments, which improved the quality 

and clarity of this manuscript.  

The italicized text below reflects the reviewer’s remarks, while our responses are presented in 

normal text. Blue text is used to cite passages from the revised manuscript and track the changes 

made. References cited in the blue text can be found in the revised manuscript. When page and 

line numbers are specified, they refer to the clean version of the revised manuscript.  

EDITOR 1 (EC1) 

Dear authors, 

As the topical editor, I am guiding the review process of your article and will rely on the 

feedback of the independent reviewers. However, as a scientist, I am also following your work 

with great interest. I would like to start a discussion and get your view on the similarities and 

differences in the approach you followed with the CoCiPGrid modelling and the work that we 

were doing in setting up, what we called, climate change functions (CCF, earlier also called 

climate cost functions, but then renamed later due to stakeholder feedbacks). Both are 

Lagrangian approaches, where atmospheric (physical and chemical) processes are considered 

in advected air parcels and a metric on the radiation change is mapped back to the emission 

grid. This enables this kind of “short-cut” or parametric link between a local aviation emission 

and induced changes in the radiative budget over the lifetime of the considered effects with 

respect to the advected air parcel. 

Note this should not be confused with the more simplified approach of the algorithmic climate 

change functions (aCCF) that constitute a statistical relation between the meteorology at time 

of emission and the estimated CCF value. 

Hence, for the sake of clarity, there are two points that might be of interest to science and to 

stakeholders (e.g. airspace users): 

1. What are the similarities and differences in the modelling approaches of CoCiPGrid 

and CCF? 

2. If the modelling approaches are similar, would it make sense to use one common 

language and name this specific modelling in a similar way? 

CCF modelling approach: 

Grewe, V., Frömming, C., Matthes, S., Brinkop, S., Ponater, M., Dietmüller, S., Jöckel, P., 

Garny, H., Dahlmann, K., Tsati, E., Søvde, O. A., Fuglestvedt, J., Berntsen, T. K., Shine, K. P., 

Irvine, E. A., Champougny, T., and Hullah, P.: Aircraft routing with minimal climate impact: 

The REACT4C climate cost function modelling approach (V1.0), Geosci. Model Dev. 7, 175-

201, doi:10.5194/gmd-7-175-2014, 2014. 

CCF Modelling results: 

Frömming, C., Grewe, V., Brinkop, S., Jöckel, P., Haselrud, A.S., Rosanka, S., van Manen, J., 

and Matthes, S., Influence of the weather situation on non-CO2 aviation climate effects: The 
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REACT4C Climate Change Functions, Atmos. Chem. Phys. 21, 9151-9172, 

https://doi.org/10.5194/acp-21-9151-2021, 2021. 

Final remark: 

Note that due to my role as topical editor this comment will not influence any decision on a 

potential acceptance of the publication. 

Volker Grewe 

• Thank you for this feedback and suggestion. We should have included the these papers 

in the original manuscript, which are highly relevant. Here, we compare the similarities 

and differences between the grid-based CoCiP and climate change functions (CCF), 

focusing specifically only on contrail modelling. 

• We have identified the several similarities between the grid-based CoCiP and CCFs: 

i. Both approaches use a Lagrangian framework and parameterised physics to 

simulate contrails, 

ii. Both simulate the contrail climate forcing throughout their full lifecycle and 

attribute these effects back to the original grid cell, and 

iii. Both produce a map of regions forecast with warming and cooling contrails, 

subsequently using it as a cost function for optimising flight trajectories.  

• The main differences between the grid-based CoCiP and CCFs are as follows:  

i. The grid-based CoCiP uses reanalysis and forecast data, while CCFs rely on 

representative weather patterns in the North Atlantic, 

ii. CCFs include second-order effects, such as contrail-atmosphere humidity 

exchange, changes in temperature lapse rate, and changes in natural cirrus 

occurrence and properties, all of which are not accounted for in the grid-based 

CoCiP which runs in an offline mode, and 

iii. CCFs can compute the effective radiative forcing and surface temperature 

effects, while the grid-based CoCiP only calculates the instantaneous radiative 

forcing, and 

iv. The grid-based CoCiP includes different aircraft-engine groups, accounting for 

variations in aircraft mass, overall efficiency, and nvPM number emissions, 

which can affect the simulated contrail properties as supported by 

measurements and observations (Gryspeerdt et al., 2024; Jeßberger et al., 2013; 

Märkl et al., 2024), whereas nvPM effects are not captured in the CCF. 

• In summary, both approaches have their strengths and limitations and are suited to 

different purposes. For example, CCFs may provide a more accurate representation of 

the contrail climate effects than the grid-based CoCiP, as they account for atmospheric 

interactions and second-order effects. However, this comes at the expense of 

significantly greater computational demands, where CCFs require approximately 3.3 

CPU hours to compute the aviation-induced climate effects per grid cell and per time 

slice, as estimated from Section 2.5 of Frömming et al. (2021).  The grid-based CoCiP 

takes around 10 CPU minutes to compute the global 3D EFcontrail (0.25° × 0.25° × 18 

pressure levels) for each time slice. The large computational demands of CCFs 
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potentially reduces their viability for real-time flight trajectory optimization, unless it 

is applied in the form of algorithmic climate change functions (aCCF). Additionally, 

the lower spatiotemporal resolution of the CCFs (168 grid points × 3 emission times) 

compared to the grid-based CoCiP, which uses ERA5 meteorology (0.25° longitude × 

0.25° latitude × 18 pressure levels × 1 h) in our implementation in this manuscript, 

may limit the CCF’s ability to accurately capture the structure and location of ice 

supersaturated regions (Wolf et al., 2024). Nevertheless, it should also be noted that 

the spatiotemporal resolution of the ERA5 HRES is also not high enough to fully 

address these limitations.  

• We agree that the both grid-based CoCiP and CCFs aim to quantify the contrail climate 

effects, albeit using different metrics (EFcontrail versus ATR, AGTP, and AGWP). 

However, we have decided against using a common naming convention to delineate 

the differences between the instantaneous radiative effects and longer feedbacks. 

While we can roughly convert EFcontrail to other climate metrics that can account for 

second-order and longer-term climate feedback, we aim to create a stronger link 

between the computationally efficient EFcontrail calculation and the more rigorous CCF 

calculations in future work. This has now been mentioned in the conclusions. We have 

made the following changes in the revised manuscript to incorporate these comments: 

o [Main text: Lines 50 – 58] “To simulate the full contrail lifecycle and climate 

forcing, earlier studies have relied on Various physics-based modelling 

approaches have been employed for this purpose, including: (i) large-eddy 

simulations (LES) (Lewellen, 2014; Lewellen et al., 2014; Unterstrasser, 

2016); (ii) and parameterised Lagrangian models such as the Contrail Cirrus 

Prediction Model (CoCiP) (Schumann, 2012), Contrail Evolution and 

Radiation Model (CERM) (Caiazzo et al., 2017), and Aircraft Plume 

Chemistry, Emissions, and Microphysics Model (APCEMM) (Fritz et al., 

2020); and (iii) . Contrails have also been parameterized in general circulation 

models (GCMs) which simulate the interactions between contrails and 

different atmospheric to capture the physical processes of the atmosphere and 

longer-range spatiotemporal, including second-order feedback mechanisms 

(Bier and Burkhardt, 2022; Chen and Gettelman, 2013; Grewe et al. 2014; 

Ponater et al., 2021). Specifically, approaches (ii) and (iii) have been applied 

to investigate the spatiotemporal variations in contrail climate effects and 

used for flight trajectory optimisation purposes (Frömming et al., 2021; 

Grewe et al., 2017; Schumann et al., 2011; Teoh et al., 2020b).” 

o [Main text: Lines 86 – 89] “The Our contrail forecasting tool uses strategy is 

based in a Lagrangian model instead of LES and GCMs for two key reasons: 

(i) because it can utilise most efficiently compute the EFcontrail using reanalysis 

or forecast meteorologicaly data provided by numerical weather prediction 

(NWP) models, rather than relying on representative weather conditions 

from GCMs (Grewe et al., 2014); and (ii) it can compute the EFcontrail 

efficiently within the time constraints required for flight planning and 

operational use.” 

o [Main text: Lines 527 – 535] “To implement this mitigation strategy in the real-

world, we developed a tool that uses reanalysis or forecast meteorology to 

generates global maps of forecasting regions with persistent contrails and their 

climate forcing within the timeframe necessary for flight planning and 
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operational deployment. This is achieved by extending the existing trajectory-

based CoCiP, which simulates contrails formed along flight trajectories, to a 

grid-based approach, which initializes an infinitesimal contrail segment at 

every point in a spatiotemporal grid and simulates the contrail climate forcing 

over its lifecycle. The model outputs of the grid-based CoCiP (i.e., the 5D 

EFcontrail per flight distance with dimensions of longitude × latitude × altitude × 

time × N aircraft-engine groups) are similar to the concept of climate change 

functions (CCF) introduced in previous studies (Frömming et al., 2021; 

Grewe et al., 2014), and provided in a format that is consistent with standard 

weather and turbulence forecasts so it can be readily integrated into existing 

flight planning software.” 

o [Main text: Lines 537 – 544] “Our comparison of the EFcontrail estimates 

between the grid-based and trajectory-based CoCiP demonstrates a good 

agreement for use as a prototype contrail forecasting tool (Table 4). When the 

grid-based CoCiP is configured with N ≥ 7, the mean error across all 

performance metrics is up to 3% when compared with the configuration without 

any aircraft-engine grouping. Alternatively, a configuration of N = 3 for the 

grid-based CoCiP provides operational simplicity for end users, but this comes 

at an expense of increasing the mean error across all metrics to 13%. While the 

model simplifications required for the grid-based CoCiP inevitably lead to 

additional uncertainties in the absolute EFcontrail values, we consider their 

relative spatiotemporal variabilities to be more relevant for the study’s 

objective of identifying regions with strongly warming contrails (i.e., 

EFcontrail > 80th or 95th percentile) for flight trajectory optimisation (Grewe 

et al., 2014).” 

o [Main text: Lines 557 – 562] “We acknowledge that the widespread adoption 

of our contrail forecasting tool in real-world operations depends on a successful 

validation of its predictions against independent observations. The ongoing 

focus on observational validation for both CoCiP variants underscores the 

active efforts in this critical area. While multiplying the EFcontrail by the 

ERF/RF ratio, c.f., Eq. (8), was used in this study to provide a highly 

approximate estimate of second-order and longer-term climate feedback, 

our future work aims to establish a stronger connection between this 

computationally efficient EFcontrail calculation and the more rigorous CCF 

calculations (Frömming et al., 2021).” 

 

REFEREE 1 (RC1) 

General comments 

The authors describe the implementation of a new tool for contrail-avoiding flight-routing that 

is aimed at producing forecasts of fields of the so-called Energy Forcing (EF), similar in format 

to other fields of standard weather maps. These fields can then be used for flight-routing that 

optimizes flight tracks in a way that the total path-integrated EF is minimal. I am pleased that 

the authors see the necessity to test their predictions thoroughly with independent data and to 

investigate the sensitivity to uncertain parameters of their approach. Thus, this development is 

on a good way and the description of the code fits well to GMD. However, I have two major 

reservations to the current approach, which should be addressed in the final paper. 
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Major comments 

1. All the results that this method produces and will produce and many results that are cited 

are based on the "parametric RF model" by Schumann et al. (2012). This "model" is not a 

model but a fit to results from 1000s radiative transfer calculations using a large set of 

profiles as input. It must be recognized that a fit is not a model. I suggest to search the 

internet for "fit vs. regression". What would be required for the current purpose is a 

regression rather than a fit. The fit that is used so far has more than 10 free parameters. It 

is quite possible that this leads to overfitting (that is, fitting of noise). Testing of the fit 

against independent test profiles has never been performed, as far as I know. Thus it is 

unknown whether there is overfitting or not. Moreover, there is to my knowledge no 

analysis of the residuals, whether they are distributed homogeneously or not over the range 

of input variables. Thus, it is in particular not known, how the fit behaves under conditions 

that lead to the strongest warming.  There are often statements that 2-3% of contrails 

contribute 80% of the overall EF, but whether this statement is tenable cannot be judged 

without an analysis of the residuals.  

I do not expect that the "RF model" will be thoroughly tested for the current paper, but 

these tests should certainly by placed on the agenda for the near future. For the present 

paper I expect to see a section in the discussion where these issues are discussed and I 

expect that statements that are based on results of this RF model are turned moderate. 

• Thank you for this feedback. We have decided to retain the term “parametric RF 

model” in the revised manuscript to remain consistent with Schumann et al. (2012) 

while clarifying that this model is indeed a fit to the libRadtran radiative transfer 

package. Additionally, we have also included a discussion on the sensitivity of EFcontrail 

to various factors and emphasise that both contrail lifetime and RF influence the 

EFcontrail estimates. 

• We acknowledge your concerns about potential overfitting and the lack of testing 

against independent profiles. These issues can be captured within the Monte Carlo 

simulation framework, for example, using the approach of a recent study which 

evaluated the EFcontrail uncertainties resulting from the parametric RF model and other 

sources (meteorology, emissions, and model parameter uncertainties) (Platt et al., 

2024). We have noted this approach as part of the future roadmap to improve the grid-

based CoCiP (see Lines 256 – 257 and 562 – 563 of the revised manuscript). 

• Finally, we have adjusted the EFcontrail values in the revised manuscript, reducing the 

precision from three to two significant figures, to better reflect the underlying 

uncertainties.  

• The following changes has been made in the revised manuscript: 

o [Main text: Lines 121 – 123] “At each time step, a parametric RF model, which 

is fitted to the libRadtran radiative transfer package (Mayer and Kylling, 

2005), is used to estimates the local contrail SW and LW RF (RF’, the change 

in radiative flux over the contrail coverage area) at each time step (Schumann 

et al., 2012a),.” 
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o [Main text: Lines 129 – 142] “The EFcontrail is estimated by integrating the 

multiplying local contrail net RF’ over by its contrail segment length (L), and 

width (W), and integrated over its lifetime (tmax) (Schumann et al., 2011),  

EFcontrail [J] = ∫ RFnet
′ (𝑡) × 𝐿(𝑡) × 𝑊(𝑡) d𝑡

𝑡max

0
.    (4) 

The estimated RFnet
′  and EFcontrail account for the presence of natural cirrus 

above/below the contrail (Schumann et al., 2012), and recent CoCiP studies 

have further formulated an approach to approximate the change in contrail 

RFnet
′  due to contrail-contrail overlapping (Schumann et al., 2021; Teoh et al., 

2024a). For this study, wWe note that the EFcontrail is contrail diffusivity, ice 

crystal loss rate, lifetime, and climate forcing are sensitive to several factors, 

including the: (i) contrail RF’ estimates from the fitted parametric RF 

model; (ii) humidity fields from the NWP model, which affects the contrail 

tmax and coverage area (L and W); and (iii) the contrail segment angle (α), 

which is the angle between the contrail segment and the longitudinal axis). For 

(iii), because α influences the magnitude of wind shear acting perpendicular 

normal to the contrail segment (
𝑑𝑆n

𝑑Z
) (Schumann, 2012),  

𝑑𝑆n

𝑑Z
=

𝑑V

𝑑Z
cos(α) −

𝑑U

𝑑Z
sin(α),       (5) 

where 
𝑑V

𝑑Z
 and 

𝑑U

𝑑Z
 represent are the magnitude of wind shear acting on the 

eastward and northward direction respectively. The 
𝒅𝑺𝐧

𝒅𝐙
, in turn, influences the 

contrail’s spreading rate, ice crystal loss rate, and tmax. Consequently, 

contrails with a large EFcontrail are generally long-lived with a large 

coverage area, while short-lived contrails with a large positive net RF’ may 

have a negligible EFcontrail (Teoh et al. 2020a).” 

o [Main text: Lines 250 – 257] “We note that the uncertainties in the simulated 

EFcontrail can arise from multiple independent sources, including 

meteorological inputs provided by NWP models, aircraft performance and 

emissions estimates, contrail model simplifications, the parametric RF 

model fitted to the libRadtran radiative transfer package, and potentially 

other unidentified factors (Low et al., 2024; Platt et al., 2024; Schumann 

et al., 2021; Teoh et al., 2020b, 2024a). While Platt et al. (2024) evaluates 

various uncertainty sources affecting EFcontrail in an earlier 

implementation of the grid-based CoCiP, the Monte Carlo simulations in 

this study focus only on uncertainties related to meteorological inputs and 

the grid-based model simplifications (i.e., aircraft-engine groups and the 

treatment of α) as a proof of concept. Future updates to the grid-based 

CoCiP will incorporate additional uncertainty sources to improve the 

model’s robustness. ” 

o [Main text: Lines 562 – 563] “Future versions of the grid-based CoCiP are also 

expected to be prioritised towards: (i) accounting for different contrail model 

uncertaintyies sources within the framework of the Monte Carlo contrail 

simulation framework (Platt et al., 2024);” 

 

2. Some parts of the model are much more detailed than others. For instance, details on 

aircraft/engine combinations up to engine details are required as input in order to make a 
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precise prediction of the emission rate of NvPMs. At the same time, the precision of the 

weather input is certainly much lower (vertical resolution is low, hourly output, problems 

with the field of relative humidity, etc.), the ERF/RF ratio can only be estimated, other 

quantities have a very wide 5-95% confidence interval. It seems that this combination of 

very precise vs quite imprecise parts may lead to funny results. I was puzzled, on page 22, 

that in the first paragraph some quite uncertain parameters are used while in the next 

paragraph results are given with a very high precision, e.g. 213,357 +- 0.03 kg. 

Considering, for instance, the range of social carbon cost, roughly 44 to 410 USD, I would 

suggest that of the 213,357 kg maybe the first digit is valid, but not more.  

I would like to see what the authors think about this mixture of very detailed vs. very 

uncertain parts of their model. 

• Detailed engine information is crucial, as the nvPM number emissions index (EIn) 

can vary by up to five orders of magnitude between different aircraft-engine types. 

We note that the aircraft-engine grouping in the grid-based CoCiP reduces the 

precision of the nvPM EIn estimates. 

• Nevertheless, we acknowledge that differences in both the accuracy and precision 

of the different input parameters (fuel consumption, nvPM, and meteorology) 

would propagate to the estimated EFcontrail from the grid-based CoCiP. To 

incorporate this feedback, we have rounded the reported EFcontrail to 1–2 significant 

figures. Additionally, we have rounded the total CO2 mass-equivalent estimates 

(including both fuel and contrail climate forcing) are rounded to the nearest tonne, 

rather than rounding to the first digit as suggested by the reviewer, because the 

accuracy of CO2 emissions from burning fuel can be estimated to within ±10%, as 

indicated in an in-house analysis by comparing the aircraft performance model with 

flight data recorders.  

• We also acknowledge the significant uncertainties in the ERF/RF ratio. By 

providing a range for the ERF/RF ratio, end users have the option to use the lower 

bound for a more conservative estimate of the contrail climate effects.  

• We note that the social cost of carbon is included in the text solely to enable end 

users to monetise the EFcontrail if necessary, and it is not required to calculate the 

CO2 mass-equivalent emissions.  

• The following changes have been made to the revised manuscript: 

o [Main text: Lines 447 – 464] “The 4D EFcontrail per flight distance fields (shown 

in Fig. 4a) take the form of a standard weather forecast field and can be 

incorporated into the flight trajectory optimizer as an additional cost factor 

alongside existing cost parameters such as the fuel consumption and overflight 

charges (Martin Frias et al., 2024). To do so, flight planners can convert the 

EFcontrail to a CO2 mass-equivalent (𝑚CO2 eq,𝐜𝐨𝐧𝐭𝐫𝐚𝐢𝐥𝐬) (Teoh et al., 2024a),  

𝑚CO2 eq,𝐜𝐨𝐧𝐭𝐫𝐚𝐢𝐥𝐬 [kg] =
EFcontrail×(

ERF

RF
)

AGWPCO2,TH× 𝑆Earth
,    (8) 

where the global mean ERF/RF ratio of 0.42 is used applied as a best estimate 

value to convert the RF to an ERF estimate (Lee et al., 2021). Given the 

significant uncertainties in the global mean ERF/RF ratio (ranging from 
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0.21 to 0.59, based on four global climate model studies) (Bickel, 2023; 

Bickel et al., 2019; Ponater et al., 2005; Rap et al., 2010) and its 

spatiotemporal variabilities, flight planners can choose the lower bound to 

conservatively incorporate the contrail climate effects. AGWPCO2,TH is the 

CO2 absolute global warming potential over a selected time horizon (TH) (7.54 

×10-7 J m-2 per kg-CO2 for 20 years, or 2.78 ×10-6 J m-2 per kg-CO2 for 100 

years) (Gaillot et al., 2023), and SEarth is the Earth surface area (5.101 ×1014 

m2). If necessary, the 𝑚CO2,eq can be further converted to a monetary value by 

multiplying it with the social cost of carbon (SCCO2
), which we assume to be 

is around US$ 185 [US$ 44 – 413, 5–95% range] per tonne of CO2 (Rennert et 

al., 2022). Here, we apply Eq. (8) in the flight trajectory optimizer to minimise 

the total CO2 mass-equivalent emissions (𝑚CO2,total = 𝑚CO2,fuel + 𝑚CO2,eq), 

and assuminge a 100-year time horizon for the CO2 AGWP, and rounding the 

results to the nearest tonne to align with the precision of the input 

parameters. We note that this is only one example of cost function, and that 

many other metrics are possible. The task of defining an appropriate cost 

function to assess trade-offs between contrail and CO2 climate forcing remains 

a critically important topic for future research.” 

o [Main text: Lines 466 – 472] “Using this cost-based approach, the flight 

trajectory optimizer successfully lowered the 𝑚CO2 𝐞𝐪,total by 64%, from 

597,198 tonnes kg (203,285 tonnes kg of CO2 emitted from the total fuel 

consumed + 394393,913 tonnes kg from contrails) in the original trajectory to 

213,357 tonnes kg (213,357 tonnes kg + 0.03 kg tonne) in the optimized 

trajectory. In simpler terms, more than 99.9% of the total EFcontrail (1.33 ×1015 

J in the original trajectory vs. 1.04 ×108 J in the optimized trajectory) is 

mitigated at the expense of a 54.7% increase in total fuel consumption. This is 

achieved by: (i) lowering the cruise altitude from 36,000 to 30,000 feet between 

02:45 and 05:00 UTC; followed by (ii) a further descent to 28,000 feet between 

05:00 UTC and 06:30 UTC to avoid regions forecasted with persistent warming 

contrails; and then (iii) climbing to a final cruise altitude of 40,000 feet at 

around 06:30 UTC to minimise the fuel consumption rate (Fig. 8a).” 

o [Main text: Lines 481 – 486] “Using the 80th percentile contrail-avoidance 

polygons, the optimizer recommends a trajectory that reduces 𝑚CO2,total by 

601%, from 597,198 tonnes kg (203,285 tonnes kg of CO2 emitted from the 

total fuel consumed + 394 393,913 tonnes kg from contrails) in the original 

trajectory to 236 235,782 tonnes kg (207,379 tonnes kg + 28,403 tonnes kg) 

in the optimized trajectory. Put differently, 93% of the total EFcontrail (1.33 ×1015 

J in the original trajectory vs. 9.659 ×1013 J in the optimized trajectory) is 

avoided with a fuel penalty of 2.0% (Fig. 8b). This approach involves lowering 

the cruise altitude from 36,000 to 30,000 feet between 03:00 and 05:00 UTC, 

followed by a step climb to 40,000 feet at 05:00 UTC to exploit a gap in the 

contrail-avoidance polygon (Fig. 8b).” 

 

Special comments and questions 

3. General: Please be careful to distinguish between strong radiative/energy forcing vs. 

warming/climate impact. As contrails might have a low efficacy and as that may depend on 
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location and situational circumstances (feedbacks), strong forcing and strong warming are 

not equivalent.  

• Thank you for highlighting this important distinction. After careful consideration, we 

have decided to retain the term “strongly warming contrails” rather than changing it to 

“strongly forcing contrails”, primarily because it is more intuitive for a broader 

audience. In contrast, “strongly forcing contrails” could imply a large positive or 

negative value, which may be less clear.  

• However, we also recognise the need to clarify that in this study, the terms 

“warming/cooling” refers to the change in net energy balance at the top of the 

atmosphere (TOA) and the actual surface temperature change depends on the contrail 

efficacy and spatiotemporal factors. Therefore, we have revised the introduction to 

make this distinction clear: 

o [Main text: Lines 60 – 66] “Recently, Teoh et al. (2024a) used CoCiP to 

simulate contrails globally for 2019, estimating that around 20% of all flights 

produced persistent contrails. Among these persistent contrail-forming flights, 

70% of them (17% of all flights) had a net warming effect and 10% of them 

(2.7% of all flights) were responsible for 80% of the global annual contrail 

energy forcing (EFcontrail;). i.e., tThe EFcontrail represents the cumulative 

contrail climate forcing over its lifetime, with a positive value indicating 

more energy entering the Earth system than leaving it. We use the terms 

“warming/cooling” effect to describe this net energy balance at the top of 

the atmosphere, while acknowledging that the actual surface temperature 

change depends on the contrail efficacy and spatiotemporal factors (Bickel 

et al., 2019; Ponater et al., 2005, 2021; Schumann and Mayer, 2017).” 

 

4. L 42: Isn't a negative exponential distribution simply an exponential distribution? 

• Thank you for highlighting this. We initially used the term “negative exponential 

distribution” to emphasize that the distribution declines as contrail age increases. 

However, upon further investigation, we agree that the terms “exponential 

distribution” is the correct term and refers to the same concept. We have revised this 

sentence accordingly: 

o [Main text: Lines 39 – 40] “These persistent contrails exhibit lifetimes that 

generally follow an negative exponential distribution with a mean duration of 

1–3 h (Caiazzo et al., 2017; Teoh et al., 2024a; Vázquez-Navarro et al., 2015).” 

 

5. L 44: What exactly is meant with the word "localised"?  

• Thank you for pointing this out. In the context, we used the word “localised” warming 

effect to refer to the immediate warming effect of persistent contrails on the 

surrounding air, as opposed to the delayed warming effect on the Earth’s surface. 

However, we realise that this distinction may not be necessary and have decided to 

remove the word “localised” to prevent confusion:  

o [Main text: Lines 40 – 43] “During daylight hours, persistent contrails can 

cause a cooling effect by reflecting incoming shortwave (SW) solar 

radiation back to space. However, they Persistent contrails always induce a 
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localised warming effect by absorbing and re-emitting outgoing longwave 

(LW) infrared radiation. They can also cause a cooling effect during daylight 

hours by reflecting incoming shortwave (SW) solar radiation back to space 

(Meerkötter et al., 1999).” 

 

6. L 50ff: The sentence is a bit misleading. Both satellite images and ground based cameras 

cannot only observe contrail formation, they see old contrails as well when they move 

through the field of view. That one is currently not able to integrate RF over a contrail's 

lifetime, is another - independent - issue. Perhaps it is just infeasible for long-living 

contrails, but in principle it seems possible to me. I have also problems to see the 

connection between this sentence and the remaining ones in this paragraph. 

• Thank you. We agree with this feedback and have revised this paragraph to clarify 

that: (i) satellites and ground-based cameras can observe both contrail formation and 

evolution; and (ii) the only approach currently available to estimate the cumulative 

contrail climate forcing is through simulation-based estimates: 

o [Main text: Lines 47 – 50] “While Oobservational tools such as satellite 

imagery and ground-based cameras have been used for observing offer the 

means to monitor contrail formation and early evolution (Duda et al., 2019; 

Mannstein et al., 2010; Rosenow et al., 2023; Schumann et al., 2013b; 

Vázquez-Navarro et al., 2015), estimates of the cumulative contrail climate 

forcing over their entire lifecycle are currently only available through 

simulation-based models. but they are currently unable to determine the RF 

over a contrail’s lifetime.” 

 

7. L 66 ff: The first contrail avoidance trial was the MUAC/DLR trial, not the American 

Airlines trial. Moreover, the MUAC/DLR trial is, as far as I am aware of, the only one that 

was thorougly analysed and the experiment and analysis is published in a peer-reviewd 

paper by Sausen et al. (Can we successfully avoid persistent contrails by small altitude 

adjustments of flights in the real world? Meteorol. Z., 33(1), 83-98. 

10.1127/metz/2023/1157). This paper instead of the grey literature should be cited here. If 

you know of other peer-reviewed analyses of such trials, please let the reader know. 

• Thank you for bringing this to our attention. We have replaced the previous citation 

(Lokman, 2022) with the peer-reviewed journal article (Sausen et al., 2023): 

o [Main text: Lines 68 – 70] “While two small-scale operational contrail 

avoidance trials have been conducted in recent years (American Airlines, 2023; 

Lokman, 2022; Sausen et al., 2023), several challenges must be addressed to 

implement a contrail-minimisation strategy at a larger-scale.” 

• Additionally, please note that the “Copernicus Publication” citation style lists 

references in alphabetical order, so the order of citations should not be interpreted as 

indicating the timeline of the trials.  

 

8. L 68 ff: I find the rest of this paragraph a bit too optimistic. It appears as when the list of 

current problems is quite short and that they are easily solvable by selecting a certain kind 

of format for model output. 
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• Thank you for this feedback. We have revised the manuscript accordingly: 

o [Main text: Lines 70 – 78] “These Such challenges include the: (i) 

integratingon of a contrail forecast model into flight planning and management 

software to account for airspace and operational constraints optimize flight 

trajectories; (ii) automatingon of operational airspace procedures to perform 

trajectory adjustments, which is necessary to reduce air traffic controller 

workload (Lokman, 2022; Molloy et al., 2022; Sausen et al., 2023); and (iii) 

incorporating inclusion of meteorological and contrail forecast uncertainties 

into the decision-making framework for contrail mitigation actions (Agarwal 

et al., 2022; Gierens et al., 2020; Molloy et al., 2022); and (iv) balancing 

trade-offs between reducing contrail climate forcing and potential 

increases in fuel consumption. All three cChallenges (i) to (iii) could can 

effectively be addressed by providing if the contrail climate forcing forecasts 

can be provided in a format similar to turbulence forecasts (Turbli, 2024), 

thereby facilitating their integration so that they can be readily integrated 

into the operational workflow of existing flight planning software (Martin Frias 

et al., 2024).” 

 

9. Figure 3: Please explain the strange structures around x,y=+-10(-7).  

• The axes in this figure use a logarithmic scale for |EFcontrail| > 107 J m-1 and a linear scale 

between 10-7 and 107 J m-1. To address this comment, we have updated the figure 

caption to clarify that the box-like structures around 10-7 and 107 J m-1 result from the 

transition between the linear and logarithmic scales: 

o [Main text: Lines 303 – 307] “Figure 3: Pointwise errors between EFcontrail
traj

 

and EFcontrail
grid

 when the grid-based CoCiP is configured: (a) using the 

exact/original aircraft-engine types (i.e., the same as the trajectory-based 

CoCiP); and with (b) N=7; (c) N=3; and (d) N=1 aircraft-engine groups 

respectively. Each panel contains 10,000,000 randomly-sampled flight 

waypoints. The axes use a logarithmic scale for |EFcontrail| > 107 J m-1 and a 

linear scale between 10-7 and 107 J m-1. For both axes, the box-like structures 

observed around 10-7 and 107 J m-1 arise from the transition between the 

linear and logarithmic scale.” 

 

10. L 365 ff: Please reformulate this sentence "The 2019 ...". It is not clear what you mean. 

• Thank you for highlighting this. We have revised this paragraph for clarity 

improvements: 

o [Main text: Lines 389 – 396] “Unlike a map of the ISSR coverage area, which 

identifies regions likely prone to form persistent contrails formation, the 4D 

EFcontrail per flight distance accounts for the intensity of contrail-induced 

warming and allows for more estimates the expected contrail climate forcing 

of flying through a specific airspace. This approach enables targeted mitigation. 

For example, in 2019, the by identifying regions forecast to produce strongly 

warming contrails (i.e., grid cells with EFcontrail greater than the 80th percentile), 

rather than all persistent contrails. When considering navigational contrail 

avoidance, this approach minimises potential disruptions to air traffic 

management and airspace capacity. The 2019 global annual mean percentage 
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of airspace volumes forecasted with strongly warming contrails was, i.e., 

0.44% for EFcontrail > 95th percentile (1.54 ×109 J m-1 (95th percentile), and 

1.6% for EFcontrail > 80th percentile (5.0 ×108 J m-1 (80th percentile). These 

values are up to 91% smaller than the airspace volumes with net warming 

contrails (, and 4.8% for EFcontrail > 0 (net warming contrails), and are up to 

93% smaller than the ISSR coverage area (6.6%, for EFcontrail ≠ 0) (Fig. 5a). 

Thus, using this approach to navigational contrail avoidance could 

minimise potential disruptions to air traffic management and airspace 

capacity, as it focuses only on the most warming contrails rather than 

avoiding all persistent contrails.” 

 

11. L 386 ff: It is counterintuitive that areas with high cirrus coverage lead to strongly warming 

contrails. Please explain. 

• We have revised this paragraph to explain how regions with high albedo, which 

includes areas with high natural cirrus coverage, can increase the likelihood of strongly 

warming contrails: 

o [Main text: Lines 416 – 423] “Background radiation fields, such as the solar 

direct radiation (SDR), reflected solar radiation (RSR), outgoing longwave 

radiation (OLR) and albedo (RSR/SDR), are mainly influenced by latitude, 

natural cirrus occurrence, and surface temperature and reflectance albedo. In 

general, strongly warming contrails are more likely in regions with: (i) a 

higher relative albedo (e.g., poles, Siberia, and areas with high natural cirrus 

coverage),; (ii) high OLR (e.g., tropics and the Sahara Desert),; and (iii) a 

lower relative SDR (e.g., wintertime) tend to exhibit more strongly warming 

contrails (Fig. 6 and 7). Condition (i) limits the contrail SW RF because a 

higher proportion of incoming solar radiation is already reflected without 

contrails, while condition (ii) drives the contrail LW RF especially in cloud 

free conditions. In contrast, regions and times with a larger relative SDR-to-

OLR ratio (e.g., Southeast Asia, springtime at high latitudes) are associated 

with more strongly cooling contrails (Fig. 7b, 7d, and 7f).” 

 

12. P 22: The precision of the quoted input and output values does not fit together, see major 

comment above.  

• Thank you. We have addressed this in Comment 2. 

 

13. L 521/22: I am pleased that the authors acknowledge this necessity and agree completely! 

• Thank you.  

 

14. L 636: Please try to find a combination of entries in a contingency table that results in 

ETS=-1. If you find one, please let the reader know. 

• Thank you for highlighting this. After further investigation, we confirm that an ETS 

score of -1 represents a theoretical lower bound and have revised this paragraph to 

clarify this point:    
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o [Main text: Lines 709 – 713] “The ERA5-corrected RHi from both 

methodologies (i.e., global humidity correction and quantile mapping) were 

compared against in-situ RHi measurements from the mid-latitude region 

(30°N – 70°N and 125°W – 145°E) (Hofer et al., 2024). These comparisons 

were conducted useding the equitable threat score (ETS) metric, where an ETS 

score of = 1 represents suggests a perfect agreement between the ERA5-

corrected and in-situ RHi measurements, an ETS score of = 0 suggests a 

random agreement relationship, and an ETS score below 0 signifies = -1 

suggests an inverse relationship.” 

 

REFEREE 2 (RC2) 

General comments 

This study describes a gridded version of the Contrail Cirrus Prediction model and illustrates 

how it could be used in various applications, including aircraft rerouting for contrail 

avoidance. 

The paper is very well written and presents several important findings for contrail avoidance. 

Using Cocip to compute a grid of cumulative contrail energy forcing per flown distance is a 

simple and clever idea. The Monte-Carlo framework for calculating uncertainties is very 

welcome, because the lack of uncertainty propagation in Cocip is a strong limitation of the 

original model. The comparison between Cocip and CocipGrid is important to inform a 

potential operational use of the latter. The examples of CocipGrid-based contrail avoidance 

are informative illustrations. I have installed and tried CocipGrid and it was straightforward 

– congratulations to the developers. 

Yet, there are aspects of the study that require improvement. Like much of Cocip literature, the 

paper does not discuss the impact of the choice of model timestep. That discussion needs to 

happen now, since it has direct implications for the avoidance examples given in section 5. The 

comparison between Cocip and CocipGrid also needs to be deepened, because the differences 

are large. For those reasons, and to also address the other comments below, I recommend 

major revisions. 

Major comments 

15. Line 116: Cocip timestepping has received little attention in the literature. This study uses 

a timestep of 300 s (5 min), following Teoh et al. (2023). Schumann (2012) used much 

longer timesteps but noted that some aspects of the model are timestep-dependent (their 

section 2.9), unfortunately without discussing the impact on simulated contrail energy 

forcing. So, I ran CocipGrid on ERA5 data for the case shown in Fig 5, 7 Jan 2019 at 3am, 

focusing on the North Atlantic at 200 hPa. With a 5-min timestep (dt_integration 

parameter), I get a domain-averaged energy forcing of 6.7 107 J km−1 and a maximum of 

4.8×109 J km−1. Increasing the timestep to 15 min, the numbers become 6.4×107 and 

4.1×109 J km−1, respectively. At 30 min, we are down to 6.1×107 and 3.8×109 J km−1. So 

simply changing the integration timestep decreases the domain average by almost 10% and 

maximum energy forcing by more than 20%. If CocipGrid is to become the basis for 

contrail avoidance, that needs to be addressed – otherwise actors will use whichever 

timestep gives the most convenient answer. Why such a large impact? Can that impact be 
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reduced with further developments? If not, what guidance can be given for choosing the 

timestep? Are there other unexplored parameters with similarly dramatic impacts on 

simulated energy forcing? 

• We commend the reviewer’s effort in personally running the grid-based CoCiP to 

evaluate the sensitivity of the contrail energy forcing (EFcontrail) to the selected model 

time step (dt). In response to this comment, we have added a new section to the 

Appendix, which includes: 

o A discussion on the choice and rationale behind the dt values used in previous 

studies that simulated contrails with CoCiP,  

o A sensitivity analysis evaluating the impact of different dt values on the 

simulated EFcontrail from the grid-based CoCiP, along with a short discussion on 

the factors causing the EFcontrail to increase with smaller dt values, and 

o The rationale of selecting a dt of 300 s for this study, and  

o An assessment of how the choice of dt changes the forecast of the grid-based 

CoCiP, specifically regarding regions forecasted with strongly warming 

contrails.  

• The following changes have been made to the revised manuscript: 

o [Main text: Lines 155 – 160] “We achieve this by extending the trajectory-

based CoCiP to a grid-based approach, where an infinitesimal contrail segment 

is: (i) initialized at each point in a 4D spatiotemporal domain; (ii) simulated 

until its end of life with a dt of 300 s using the equations of the trajectory-based 

CoCiP; and (iii) has its cumulative climate forcing attributed back to the grid 

cell where it originally formed, with the model outputs.  The output from this 

approach takinges the same form as traditional 4D NWP data. For (ii), 

Appendix A2 evaluates the sensitivity of dt on the simulated EFcontrail and 

provides the rationale for selecting a dt of 300 s for the grid-based CoCiP.” 

o [Main text: Lines 488 – 495] “Figure 9: Application of the simulated EFcontrail 

per flight distance for contrail mitigation purposes, where flight planners can: 

(a) construct polygons and avoid flying in regions forecast with strongly 

warming contrails (i.e., grid cells where the EFcontrail per flight distance is 

greater than the 80th percentile (5.0 ×108 J m-1); and/or (b) account for 

uncertainties in the simulated contrail climate forcing by masking and 

disregarding grid cells (shown in white) when their probability of forming net 

warming (or cooling) contrails is less than 90%. The global contrail climate 

forcing shown here are from the nominal nvPM aircraft-engine group and 

simulated at FL360 (10,973 m) on the 7th of January 2019 at 03:00:00. For 

panel (a), the impact of dt on regions forecast with strongly warming 

contrails are evaluated in Appendix A2. Basemap plotted using Cartopy 

0.22.0 and sourced from Natural Earth; licensed under public domain.” 

o [Appendix: Lines 648 – 683] “ 

A2 Sensitivity of contrail climate forcing to CoCiP model time step 

Previous studies that simulated contrails with CoCiP have used different model 

time steps (dt) ranging between 5 and 60 minutes, depending on their specific 

application and available computational resources: 
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▪ Schumann et al. (2015) used a 60-minute dt due to: (i) CoCiP’s 

coupling with the Community Atmosphere Model (CAM), which 

operates on a 60-minute time step; and (ii) the extensive computational 

demands of the 20-year global simulations, 

▪ Regional studies over Japan, Europe, and the North Atlantic used a 30-

minute dt, as these simulations were conducted locally on consumer-

grade hardware (Schumann et al., 2021; Teoh et al., 2020b, 2022a), 

▪ Schumann & Graf (2013) used a 15-minute dt to match the time 

resolution of their air traffic and satellite datasets, and 

▪ Teoh et al. (2024a) used a 5-minute dt because the simulation was 

conducted on the cloud where computational resources were no longer 

constrained.  

In this section, we perform a sensitivity analysis by running the grid-based 

CoCiP with different dt values of 1, 5, 10, 15 and 30 minutes and quantify their 

impact on the estimated EFcontrail. We specifically simulated contrails on the 7th 

of January 2019 at 03:00:00 UTC to be consistent with time period used in the 

examples in Section 5. Figure A3 shows that the simulated EFcontrail tends to 

increase as dt decreases, with the mean EFcontrail per flight distance simulated 

from a 1-minute dt being approximately 24% larger than those simulated from 

a 30-minute dt. The smaller EFcontrail at larger dt values, such as 30-minutes, 

can be explained by the contrail lifetime ending prematurely. For example, if 

ambient conditions in the next model time step (t + 30 minutes) are 

unfavourable for contrail persistence, the EFcontrail between t and (t + 30 

minutes) becomes zero because contrails are no longer present at (t + 30 

minutes). In contrast, under the same ambient conditions, a smaller dt of 1-

minute allows the simulated contrails to persist for a longer time period within 

the same 30-minute window, thereby increasing the overall contrail lifetime 

and resulting in a larger warming or cooling effect (|EFcontrail|, as shown in the 

larger standard deviation in Fig. A3). 

 
Figure A3: Change in the global mean and standard deviation of EFcontrail per 

flight distance across different CoCiP model time steps (dt). Contrails are 

simulated globally at FL360 (10,973 m) on the 7th of January 2019 at 03:00:00, 

with the nominal nvPM aircraft-engine group. The y-axis uses a logarithmic scale 

for |EFcontrail| > 107 J m-1 and a linear scale between 10-7 and 107 J m-1. 
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Figure A4: Regions forecasted with strongly warming contrails, i.e., EFcontrail per 

flight distance > 5.0 ×108 J m-1 (80th percentile) when simulated with different 

model time steps (dt) of: (a) 1-minute; (b) 5-minute; (c) 15-minute; and (d) 30-

minutes. Contrails are simulated globally at FL360 (10,973 m) on the 7th of 

January 2019 at 03:00:00, with the nominal nvPM aircraft-engine group.  

In this study, we chose a 5-minute dt to align with Teoh et al. (2024a), as their 

EFcontrail thresholds (i.e., > 80th and 95th percentiles) were used to identify 

regions that forecasted to produce strongly warming contrails. For our research 

objectives, we note that the choice of dt only leads to minor differences in the 

regions identified with strongly warming contrails (Fig. A4). While time step 

error is one of the many sources of errors influencing EFcontrail, our analysis 

shows that it is not the most dominant one especially when compared to the 

impact of humidity corrections applied to the ERA5 HRES (Teoh et al., 

2024a).” 

 

16. Section 4 is very good at describing the different metrics used to compare CocipGrid to 

Cocip, which is a very important comparison to make, but the discussion of the results feels 

incomplete. Section 4.2 focuses on the impact of the choice of the number of aircraft 

groupings. But differences shown on Fig 3a are sizeable and raise several questions: 

i. What causes the differences? Is that mainly alpha and f_shear? Line 222 mentioned 

a calibration of f_shear. Has that been done here? 

ii. Many flights have zero energy forcing in either Cocip or CocipGrid when the other 

model has non-zero energy forcing. Why is that? Difference in contrail persistence 

due to different effective wind shear? 

iii. And why are the datapoints arranged in square patterns? Is it an artefact of the 

selection of comparison cases? 

• Thank you for this feedback. To address points (i) and (ii), we have now added a short 

discussion outlining the primary factors that contribute to the discrepancies between 

the trajectory-based CoCiP and the grid-based CoCiP when configured with the 

original aircraft-engine type for each flight: 

o [Main text: Lines 323 – 339] “Table 4 summarises the performance metrics 

when comparing the model agreement between the trajectory-based CoCiP and 
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various configurations of the grid-based CoCiP, i.e., using the original aircraft-

engine type for each flight as in the trajectory-based CoCiP, and with different 

aircraft-engine groupings (1 ≤ 𝑁 ≤ 12), as outlined in Section 3 and Appendix 

A3.  

The performance metrics fFor the original aircraft-engine group,ing show: (i), 

the false negative and false alarm rates are of 3.2% and 10.4% respectively 

when evaluated against moderately warming contrails (EFthreshold = 1 ×107 J m-

1), and 6.0% and 17.7% respectively when assessed against strongly warming 

contrails (EFthreshold = 5 ×108 J m-1). The; (ii) a modified-MALE of 0.166, 

correspondsing to a 47% relative error between EFcontrail
traj

 and EFcontrail
grid

. These 

pointwise errors (shown in Fig. 3a) are independent of the aircraft-engine 

grouping and primarily arise from: (i) the assumption of an infinitesimal 

contrail segment in the grid-based CoCiP compared to a finite segment in 

the trajectory-based CoCiP, where the 𝐄𝐅𝐜𝐨𝐧𝐭𝐫𝐚𝐢𝐥
𝐭𝐫𝐚𝐣

 can be zero if the next 

flight waypoint does not form a persistent contrail; (ii) the use of nominal 

VTAS and aircraft mass in the grid-based CoCiP, which causes differences 

in the downward displacement and survivability of the contrail during the 

wake vortex phase; and (iii) the calibrated fshear, c.f. Eq. (6), which affects 

the 
𝒅𝑺𝐧

𝒅𝐙
, contrail diffusivity, coverage area, lifetime, and EFcontrail. For the 

fleet-aggregated errors, the; (iii) τw of 0.821 demonstrates , indicating a 

strong correlation between the rankings of EFcontrail
traj

 and EFcontrail
grid

. The ; (iv) 

a change in the initial mitigation rate of 0.816, suggestsing an 18% reduction 

in the effectiveness of mitigating the most strongly warming contrails with the 

grid-based CoCiP,; and (v) a change in the flight segment ratio of 1.156, 

indicatesing that interventions must be applied to an additional 16% of the total 

flight distance flown to mitigate 80% of the EFcontrail.” 

• For point (iii), the square patterns observed in Figure 3 are due to the transition from 

a linear scale (EFcontrail of between 10-7 and 107 J m-1) to a logarithmic scale (|EFcontrail| 

> 107 J m-1). This clarification has been added to the caption of Figure 3 (see Comment 

9). 

 

Other comments 

17. Abstract: The abstract does not say anything of the differences between Cocip and 

CocipGrid. Those differences are not negligible and that could impact the operational use 

of CocipGrid, so it is important that the abstract acknowledges that fact. 

• Thank you for this suggestion. We have revised the abstract to briefly highlight the 

difference between the trajectory-based and grid-based CoCiP:  

o [Abstract: Lines 10 – 16] “Here, we develop a contrail forecasting tool that 

produces global maps of persistent contrail formation and their associated 

energy climate forcing (EFcontrail). This is achieved by tool extendings the 

existing trajectory-based contrail cirrus prediction model (CoCiP), which 

simulate contrails formed along provided flight paths, to a grid-based 

approach that initialises efficiently evaluate infinitesimal contrail segments 

initialized at each point in a regular 4D spatiotemporal grid and tracks them 

until their end-of-life. Outputs are provided for different aircraft-engine 
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groups and formatted to align with standard weather and turbulence 

forecasts, facilitating their reported in a concise meteorology data format that 

integrationes into with existing flight planning and air traffic management 

workflows.” 

 

18. Line 125: So Cocip does not account for the impact of underlying clouds other than cirrus? 

I thought it dealt with underlying cloudiness by using outgoing longwave radiation as input. 

Is that not the case? 

• Thank you for highlighting this. The parametric RF’ model used by CoCiP indirectly 

incorporates the effects of natural cirrus, as their presence is captured by the reflected 

solar radiation (RSR), outgoing longwave radiation (OLR), and the overlying natural 

cirrus optical depth (τcirrus) terms (Schumann et al., 2012), all of which are provided by 

the ERA5 HRES. We have revised the paragraph to clarify this point:   

o [Main text: Lines 121 – 127] “At each time step, a parametric RF model, which 

is fitted to the libRadtran radiative transfer package (Mayer and Kylling, 

2005), is used to estimates the local contrail SW and LW RF (RF’, the change 

in radiative flux over the contrail coverage area) at each time step (Schumann 

et al., 2012a),. These RF’ estimatesd RFnet
′  and EFcontrail indirectly account for 

the presence of natural cirrus above and /below the contrail through input 

meteorology parameters including the reflected solar radiation (RSR), 

outgoing longwave radiation (OLR) and the overlying natural cirrus 

optical depth (τcirrus) (Schumann et al., 2012a),. Additionally, and recent 

CoCiP studies have further formulated an approach to approximate the change 

in contrail RF’ RFnet
′  due to contrail-contrail overlapping (Schumann et al., 

2021; Teoh et al., 2024a).” 

 

19. Line 134: It would be useful to note here that “generally consistent” is a low bar, and, as 

acknowledged in the conclusion, a proper quantification of Cocip skill compared to 

observations, all the way to simulated energy forcing, remains needed. 

• Thank you for this feedback. We agree that further comparisons evaluation of CoCiP 

is required and have revised this sentence accordingly:    

o [Main text: Lines 144 – 147] “While Pprevious studies compared have shown 

that the distribution range of simulated contrail properties from CoCiP are 

generally consistent when compared with in situ measurements, remote 

sensing, and satellite observations over their lifecycle (Driver et al., 2024; 

Jeßberger et al., 2013; Low et al., 2024; Schumann et al., 2017, 2021; 

Schumann and Heymsfield, 2017; Teoh et al., 2024a), further comparisons 

with observations remain crucial for building greater confidence in and 

improving the accuracy of CoCiP predictions.” 

 

20. Tables 2 and 3: It would be useful to have a graphical version of those Tables, showing the 

mass and nvPM of the individual aircraft types on a plot, to see how well separated the 

different aircraft groups are. Like Figure 1, but before transformation by the aircraft 

performance model. 
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• Thank you. We agree with this suggestion and have now added the following figures 

(below) in Appendix A4:   

o [Main text: Lines 181 – 184] “Table 3: Summary of the aircraft properties 

(wingspan, service ceiling altitude, and maximum Mach number) and range of 

aircraft performance and emissions parameters (aircraft mass, η, and nvPM EIn) 

for the 12 aircraft-engine groups. Details of the aircraft-engine types that are 

included in each group can be found in Table 2. Differences in aircraft mass 

and nvPM EIn among the 12 aircraft-engine groups are visualised in Fig. 

A5.” 

o [Appendix: Lines 728 – 732] “Here, we propose several alternative aircraft-

engine classifications with N ranging between 3 and 7 (groups) to assess the 

trade-offs between the model performance and computational requirements 

(see Tables A1 to A5). Additionally, we visualise the range of aircraft mass 

and nvPM EIn for each aircraft-engine group when they are clustered into 

12 groups (Fig. A5 and Table 2), 7 groups (Fig. A6 and Table A1), and 3 

groups (Fig. A7 and Table A5) respectively.” 

o [Appendix: Lines 733 – 736] 

 

“Figure A5: Range of aircraft mass and nvPM EIn for each aircraft-engine 

group when they are clustered into 12 groups. The error bars for each data 

point represent one standard deviation of these values, which are provided 

by the 2019 global aviation emissions inventory based on ADS-B (GAIA) 

(Teoh et al., 2024b).” 

o [Appendix: Lines 746 – 749] 
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“Figure A6: Range of aircraft mass and nvPM EIn for each aircraft-engine 

group when they are clustered into 7 groups. The error bars for each data 

point represent one standard deviation of these values, which are provided 

by the 2019 global aviation emissions inventory based on ADS-B (GAIA) 

(Teoh et al., 2024b).” 

o [Appendix: Lines 753 – 756] 

 

“Figure A7: Range of aircraft mass and nvPM EIn for each aircraft-engine 

group when they are clustered into 3 groups. The error bars for each data 

point represent one standard deviation of these values, which are provided 

by the 2019 global aviation emissions inventory based on ADS-B (GAIA) 

(Teoh et al., 2024b).” 

 

21. Line 201: Could point out that the ICAO emission databank is for LTO emissions, hence 

the need to translate them to the more relevant cruise emissions. 

• Thank you for this suggestion. We have added a note to clarify that the ICAO 

emissions databank provides the nvPM emissions profile for typical engine power 

settings used during the landing and take-off (LTO) cycle, and the cruise nvPM EIn is 

then estimated using the T4/T2 methodology which interpolates the LTO-based nvPM 

emissions profile relative to the non-dimensional engine thrust settings (Teoh et al., 

2024). Additionally, we have also revised this paragraph to improve its overall flow 

and readability:   

o [Main text: Lines 215 – 231] “Each aircraft-engine type is characterised by a 

set of fixed properties, including the: (i) wingspan,; (ii) design-optimum Mach 

number,; (iii) aerodynamic coefficients,; and (iv) nvPM emissions profile, all 

of which are required as inputs to aircraft performance and emission models. 

The Inputs (i) to (iii) are provided by the Poll-Schumann (PS) aircraft 

performance model (Poll and Schumann, 2020, 2021) provides the wingspan, 

design-optimum Mach number, and aerodynamic coefficients;, while input 

(iv) is provided by the ICAO Aircraft Engine Emissions Databank (EASA, 

2021) supplies the nvPM EIn at the four ICAO certification test points 

representing the engine power settings (i.e., 7%, 30%, 85%, and 100% of 

the maximum rated engine thrust) used in the landing and take-off (LTO) 

cycle. For each aircraft-engine group, which encompasses multiple aircraft-
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engine types (Table 2), we set these fixed properties to values of the aircraft-

engine type with largest market share within the group (Teoh et al., 2024b). 

For waypoint-specific parameters (i.e., VTAS, aircraft mass, �̇�f,, η, and nvPM 

EIn), tThe nominal grid-based CoCiP derives the waypoint-specific 

parameters (e.g., VTAS, M, �̇�𝐟, η, and nvPM EIn) using two key 

assumptions and two established models. obtains these parameters by 

Firstly, it assumesing that the: (i) Mach number at each grid cell is equal to the 

design-optimum Mach number plus 0.04 to reflect real-world operational 

conditions (Teoh et al., 2024b), reflecting the common practice of airlines in 

flying faster to minimise time-dependent costs and/or address delays 

(Edwards et al., 2016; Lovegren and Hansman, 2011). Secondly, it assumes 

that the; (ii) aircraft mass at each altitude is equal to the value that maximises 

η, which is based on the rationale that a lower aircraft mass is required to 

fly at higher altitudes (Fig. 1).; and using tThe (iii) PS aircraft performance 

model is used to estimate the �̇�f (Poll and Schumann, 2020, 2021), while the; 

and (iv) T4/T2 methodology to estimates the nvPM EIn at cruise by 

interpolating the LTO-based nvPM emissions profile relative to the non-

dimensional engine thrust settings (EASA, 2021; Teoh et al., 2024b). 

Assumption (i) is justified by the tendency of airlines to fly faster than the 

design-optimum conditions to minimise time-dependent costs and/or catch up 

with delays (Edwards et al., 2016; Lovegren and Hansman, 2011), while 

assumption (ii) is based on the rationale that a lower aircraft mass is required 

for the aircraft to cruise at higher altitudes (Fig. 1).” 

 

22. Line 204: Which aircraft type has the largest market share in each group? It could be good 

to indicate it in italics in Table 2. 

• Thank you for this suggestion. In response to this comment, we have highlighted the 

aircraft-engine type with the largest market share within each group in Table 2. 

Additionally, we also provide a quantification of the 2019 global market share for each 

aircraft-engine group in Table 3, based on the number of flights and the total flight 

distance flown. 

o [Main text: Lines 178 – 180] 

Table 2: Classification of commonly used passenger aircraft-engine types into 12 unique groups based on their 

similarities in aircraft mass and nvPM EIn. The aircraft types listed here are labelled based on their ICAO aircraft 

type designator. 

Aircraft-engine 

classification 

nvPM EIn 

Low Nominal High 

Aircraft 

mass 

Light 

• A19N (LEAP-1A) 

• A20N (LEAP-1A)* 

• A21N (LEAP-1A) 

• B38M (LEAP-1B) 

• A319 (CFM56) 

• A320 (CFM56) 

• A321 (CFM56) 

• B737 (CFM56) 

• B738 (CFM56)* 

• B739 (CFM56) 

• A19N (Pratt & Whitney) 

• A20N (Pratt & Whitney) 

• A21N (Pratt & Whitney) 

• A319 (IAE V2500) 

• A320 (IAE V2500)* 

• A321 (IAE V2500) 

Intermediate N/A 

• B752 (RB211) 

• B753 (RB211) 

• B762 (CF6-80E) 

• B763 (CF6-80E)* 

 

N/A 
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Medium 

• B788 (GEnx) 

• B789 (GEnx)* 

• B78X (GEnx) 

• A342 (CFM56/Trent500) 

• A343 (CFM56/Trent500) 

• A345 (CFM56/Trent500) 

• A346 (CFM56/Trent500) 

• B788 (Trent 1000) 

• B789 (Trent 1000)* 

• B78X (Trent 1000) 

• A332 (Trent 700/CF6-80E) 

• A333 (Trent 700/CF6-80E)* 

Heavy 

• B772 (GE90) 

• B773 (GE90) 

• B77L (GE90) 

• B77W (GE90)* 

• A359 (Trent XWB)* 

• A35K (Trent XWB) 
N/A 

Super heavy 

• B748 (GEnx)* • A388 (Trent 900)* • B742 (CF6-80C) 

• B743 (CF6-80C) 

• B744 (CF6-80C)* 

*: Refers to the aircraft-engine type with the largest market share within the group, based on the 2019 GAIA dataset 

(Teoh et al., 2024b). 

o [Main text: Line 184] 

Aircraft-engine properties 

and performance 

parameters 

nvPM EIn 

Low Nominal High 

Aircraft 

mass 

Light 

• Mass: 55,000 – 80,000 kg 

• nvPM EIn: 1 ×1011 kg-1 

• η: 0.20 – 0.26 

• Wingspan: 34 – 36 m 

• Max altitude: 41,000 ft. 

• Max Mach: 0.82 

• 2019 global market share  

o No. of flights: 1.8% 

o Dist. flown: 1.8%  

• Mass: 55,000 – 80,000 kg 

• nvPM EIn: (0.8 – 1.0) ×1015 kg-1 

• η: 0.20 – 0.26 

• Wingspan: 34.1 – 34.3 m 

• Max altitude: 41,000 ft. 

• Max Mach: 0.82 

• 2019 global market share  

o No. of flights: 37.1% 

o Dist. flown: 35.2%  

• Mass: 55,000 – 80,000 kg 

• nvPM EIn: (2 – 4) ×1015 kg-1 

• η: 0.20 – 0.26 

• Wingspan: 34 – 36 m 

• Max altitude: 41,000 ft. 

• Max Mach: 0.82 

• 2019 global market share  

o No. of flights: 12.6% 

o Dist. flown: 12.5%  

Intermediate N/A 

• Mass: 85,000 – 160,000 kg 

• nvPM EIn: (0.6 – 1.2) ×1015 kg-1 

• η: 0.21 – 0.26 

• Wingspan: 38.0 – 47.6 m 

• Max altitude: 43,100 ft. 

• Max Mach: 0.86 

• 2019 global market share  

o No. of flights: 2.4% 

o Dist. flown: 4.1%  

N/A 

Medium 

• Mass: 165,000 – 240,000 kg 

• nvPM EIn: 1 ×1011 kg-1 

• η: 0.30 – 0.34 

• Wingspan: 60.1 m 

• Max altitude: 43,100 ft. 

• Max Mach: 0.90 

• 2019 global market share  

o No. of flights: 1.0% 

o Dist. flown: 3.6%  

• Mass: 165,000 – 250,000 kg 

• nvPM EIn: (4 – 7) ×1014 kg-1 

• η: 0.29 – 0.33 

• Wingspan: 60.1 – 60.3 m 

• Max altitude: 43,100 ft. 

• Max Mach: 0.86 – 0.90 

• 2019 global market share  

o No. of flights: 0.7% 

o Dist. flown: 2.8%  

• Mass: 160,000 – 210,000 kg 

• nvPM EIn: (0.7 – 1) ×1015 kg-1 

• η: 0.25 – 0.28 

• Wingspan: 60.3 m 

• Max altitude: 41,000 ft. 

• Max Mach: 0.86 

• 2019 global market share  

o No. of flights: 2.7% 

o Dist. flown: 6.9%  

Heavy 

• Mass: 200,000 – 320,000 kg 

• nvPM EIn: (3 – 4) ×1014 kg-1 

• η: 0.28 – 0.30 

• Wingspan: 64.8 m 

• Max altitude: 43,100 ft. 

• Max Mach: 0.89 

• 2019 global market share  

o No. of flights: 1.8% 

o Dist. flown: 7.2%  

• Mass: 205,000 – 250,000 kg 

• nvPM EIn: (5 – 8) ×1014 kg-1 

• η: 0.33 – 0.35 

• Wingspan: 64.7 m 

• Max altitude: 43,100 ft. 

• Max Mach: 0.89 

• 2019 global market share  

o No. of flights: 0.5% 

o Dist. flown: 2.2%  

N/A 

Super heavy 

• Mass: 275,000 – 400,000 kg 

• nvPM EIn: 1 ×1011 kg-1 

• η: 0.32 – 0.34 

• Wingspan: 68.4 m 

• Max altitude: 42,100 ft. 

• Max Mach: 0.90 

• 2019 global market share  

o No. of flights: 0.2% 

o Dist. flown: 0.8%  

• Mass: 385,000 – 512,000 kg 

• nvPM EIn: (5 – 7) ×1014 kg-1 

• η: 0.33 – 0.35 

• Wingspan: 79.8 m 

• Max altitude: 43,100 ft. 

• Max Mach: 0.89 

• 2019 global market share  

o No. of flights: 0.3% 

o Dist. flown: 1.6%  

• Mass: 250,000 – 360,000 kg 

• nvPM EIn: (6 – 8) ×1014 kg-1 

• η: 0.27 – 0.29 

• Wingspan: 64.4 m 

• Max altitude: 45,000 ft. 

• Max Mach: 0.92 

• 2019 global market share  

o No. of flights: 0.5% 

o Dist. flown: 1.7%  
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23. Figure 1 could do with a more detailed discussion. If I understand well, it was obtained by 

applying the four assumptions listed in lines 205-212 onto the input data for one aircraft 

group. I see that the aircraft needs to be lighter to fly higher up, which makes sense. But 

why are the distributions multimodal? Is that because of the different aircraft types within 

the group? And why does the nvPM EI distributions change with altitude? Because mass 

has changed? 

• Thank you for this suggestion. Figure 1 to serve two purposes in the manuscript: (i) it 

illustrates that a lower aircraft mass is more likely when the aircraft is cruising at 

higher altitudes (Section 3.3); and (ii) it visualises the empirical multivariate 

distribution for two of the five variables that is used in the Monte Carlo simulation 

(Section 3.4 and raised in Comment 24). 

• To avoid any confusion for the reader, we have updated the caption of Figure 1 to cite 

the underlying data source, describe the multi-modal nature of the aircraft mass and 

nvPM distributions, and explain the changes in nvPM EIn with altitude:  

o [Main text: Lines 233 – 238] “Figure 1: The mMultivariate distribution of 

aircraft mass and nvPM EIn for one aircraft-engine group (light aircraft mass, 

and nominal nvPM EIn, see Table 2) at 32,000 feet (in blue) and 40,000 feet 

(in orange). The underlying data is provided by the 2019 global aviation 

emissions inventory based on ADS-B (GAIA) (Teoh et al., 2024b). The 

multi-modal distribution of the aircraft mass and nvPM EIn is due to the 

inclusion of two comparable aircraft engine families (Boeing 737 and 

Airbus A320 families) in the same group, each exhibiting distinct operating 

characteristics. The variations in nvPM EIn with altitude results from 

changes in aircraft mass and air density, both of which influence the engine 

thrust settings and subsequently nvPM emissions (EASA, 2021).” 

 

24. In addition, the use of Figure 1 in Section 3.4 is ambiguous. My understanding is that it is 

an example of a multivariate distribution, and that the Monte Carlo analysis relies on many 

similar figures. Is that correct? It would be good to clarify the role of Figure 1 in that 

section. 

• Thank you for highlighting this. To account for multi-collinearity between different 

aircraft performance parameters, the Monte Carlo simulation uses a five-dimensional 

empirical multivariate distribution constructed for each of the 12 aircraft-engine 

groups. Figure 1 illustrates the relationship between two of the five aircraft 

performance parameters (aircraft mass and nvPM EIn) for one aircraft-engine group 

(light mass and nominal nvPM EIn) 

• To prevent any potential confusion for the reader, we have revised the text in Section 

3.4 to make clear that a five-dimensional empirical multivariate distribution is used 

and to clarify the specific role of Figure 1: 

o [Main text: Lines 259 – 261] “For each aircraft-engine group, wWe account for 

the multi-collinearity among between different aircraft performance 

parameters (i.e., VTAS, M, �̇�f, η, and nvPM EIn) by constructing an five-

dimensional empirical multivariate distribution for each aircraft-engine 

group. to sample the required aircraft performance parameters (Figure. 1 
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illustrates an example of the relationship between two (M and nvPM EIn) 

of these five variables).” 

o [Main text: Lines 264 – 267] “Within each set of these 10 simulation runs, the 

aircraft performance parameters (i.e., VTAS, M aircraft mass, �̇�f, η, and nvPM 

EIn) at different altitudes are sampled drawn from the five-dimensional 

empirical multivariate distribution (Fig. 1) and α is sampled from a uniform 

distribution that ranges between 0° and 360°.” 

 

25. Line 225: What is meant by “is set up”? Is that something you did for that section, or some 

built-in capability of the model? Some practical information would be useful here. 

• We have revised this sentence to make clear that the Monte Carlo simulation is a built-

in capability of the grid-based CoCiP: 

o [Main text: Line 248] “The grid-based CoCiP can perform is set up to run in 

Monte Carlo simulations to produce a range of EFcontrail estimates for each 

grid cell explore the uncertainties related to model simplifications (i.e., 

aircraft-engine groups and the treatment of α) and meteorological forecasts.” 

 

26. Line 234: Are 100 Monte-Carlo simulations enough to get robust uncertainties? That seems 

like a small number given the number of uncertain parameters and their uncertainty 

ranges. 

• The choice of 100 Monte Carlo simulation runs was primarily driven by computational 

resource constraints. As a sanity check, we plotted the running mean of EFcontrail per 

flight distance against the number of Monte Carlo simulation runs for a specific time 

slice (03:00:00 on the 7th of January 2019, which is same time slice used to produce 

Fig. 9b). For the uncertainty parameters covered in this study (i.e., meteorology, 

aircraft performance, emissions, and treatment of the segment angle), the plot (below) 

indicates that 100 runs are sufficient for the EFcontrail to converge: 

  
• Since the Monte Carlo simulation in this study serves as a proof of concept to 

demonstrate how uncertainties in contrail forecasts can be integrated into flight 

planning, we have not included further discussions on this topic in the revised 

manuscript, as it falls beyond the scope of this research.  
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• Nevertheless, we highlight a recent publication by Platt et al. (2024), which evaluates 

the impact of various uncertainty sources on EFcontrail estimated using an earlier version 

of the grid-based CoCiP. 

• To address this comment, we have revised the manuscript to emphasise that our Monte 

Carlo simulations are intended as a proof of concept. We also highlighted the different 

uncertainty sources and noted that these uncertainty sources will be incorporated in 

future releases of the grid-based CoCiP:  

o [Main text: Lines 248 – 257] “The grid-based CoCiP can perform is set up to 

run in Monte Carlo simulations to produce a range of EFcontrail estimates for 

each grid cell. Here, we utilize this capability to demonstrate how 

uncertainties in contrail forecasts can be integrated into flight planning 

(Section 5.3). We note that the uncertainties in the simulated EFcontrail can 

arise from multiple independent sources, including meteorological inputs 

provided by NWP models, aircraft performance and emissions estimates, 

contrail model simplifications, the parametric RF model fitted to the 

libRadtran radiative transfer package, and potentially other unidentified 

factors (Low et al., 2024; Platt et al., 2024; Schumann et al., 2021; Teoh et 

al., 2020b, 2024a). While Platt et al. (2024) evaluates various uncertainty 

sources affecting EFcontrail in an earlier implementation of the grid-based 

CoCiP, the Monte Carlo simulations in this study focuses only on explore 

the uncertainties related to meteorological inputs and the grid-based model 

simplifications (i.e., aircraft-engine groups and the treatment of α) and 

meteorological forecasts as a proof of concept. Future updates to the grid-

based CoCiP will incorporate additional uncertainty sources to improve 

the model’s robustness.” 

o [Main text: Lines 497 – 500] “Here, we propose two strategies as a proof of 

concept to incorporate these contrail forecast uncertainties in the decision-

making process of contrail mitigation, thereby. Our goal of providing a range 

of EFcontrail estimates is to increaseing the probability of achieving a net 

climate benefit, and minimiseing the unintended consequences associated with 

increased fuel consumption and long-lived CO2 emissions.” 

 

27. Line 260: But to determine the proportion of flights that exert 80% of total annual energy 

forcing, the model needs to be able to simulate the whole distribution properly. Unless you 

take an approximated view of the percentile boundaries? 

• Thank you for raising this point. To address this, we have added a short description at 

the beginning of Section 3 to make clear that the percentile boundaries for EFcontrail per 

flight distance, which are used by the grid-based CoCiP to define regions with strongly 

warming contrails, came from a historical global contrail simulation in 2019 using the 

trajectory-based CoCiP:  

o [Main text: Lines 154 – 163] “One way to address this limitation is to produce 

a 4D field of the EFcontrail per flight distance flown, effectively identifying 

regions forecast to form persistent and/or strongly warming contrails. We 

achieve this by extending the trajectory-based CoCiP to a grid-based approach, 

where an infinitesimal contrail segment is: (i) initialized at each point in a 4D 

spatiotemporal domain; (ii) simulated until its end of life with a dt of 300 s 
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using the equations of the trajectory-based CoCiP; and (iii) has its cumulative 

climate forcing attributed back to the grid cell where it originally formed, with 

the model outputs taking the same form as traditional 4D NWP data. For (ii), 

Appendix A2 evaluates the sensitivity of dt on the simulated EFcontrail and 

provides the rationale for selecting a dt of 300 s for the grid-based CoCiP. 

Additionally, we note that the grid-based CoCiP defines regions with 

strongly warming contrails based on the 80th percentile (5 ×108 J m-1) and 

the 95th percentile (1.5 ×109 J m-1) of EFcontrail per flight distance flown, 

both of which were derived from a 2019 global contrail simulation using 

the trajectory-based CoCiP (Teoh et al., 2024a).” 

 

28. Lines 377-378: Is this statement an introduction to what follows? What is the consistency 

with Bier and Burkhardt (2022) and Gettleman et al. (2021)? Are you talking about 

qualitative or quantitative consistency? 

• Thank you for highlighting this. We have revised this sentence to clarify the variables 

being compared with earlier global contrail simulation studies and to set the context 

for the discussion to follow: 

o [Main text: Lines 409 – 414] “The grid-based CoCiP’s prediction of persistent 

contrail occurrence and spatial trends in EFcontrail are generally provides 

results that are consistent with earlier global contrail simulation studies prior 

research (Bier and Burkhardt, 2022; Gettelman et al., 2021; Teoh et al., 2022a, 

2024a). For example, Tthe absence of persistent contrails below 35,000 feet 

in the tropics (Fig. 6a and 6b) is primarily attributed to its higher relative 

ambient temperatures and tropopause height (Santer et al., 2003), while the 

lower relative EFcontrail per flight distance at the subtropics (i.e., China, India, 

Middle East, and Australia, as shown in Fig. 6c) is associated with a lower 

persistent contrail formation due to the Hadley circulation (Teoh et al., 2024a).” 

 

29. Line 476: Are those findings based on the one-day case shown on Figure 9b? How generic 

are they? 

• We have revised this sentence to make clear that our findings are based on a visual 

examination of the EFcontrail uncertainties at a specific point in time: 

o [Main text: Lines 505 – 506] “A visual examination of Our analysis reveals 

three key features regarding the uncertainties in the simulated EFcontrail at a 

specific point in time reveals three key features: …” 

• To determine if these findings are generally applicable, a different methodology 

beyond a visual evaluation would be needed to conduct a large-scale comparison of 

these uncertainty patterns at each time step.  

 

30. Line 477: Regions of lower uncertainties seem to be also located at the edges and in 

pockets. 
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• As our findings are based on a visual examination (mentioned in Comment 29), we 

have made the following changes in the revised manuscript to reflect a more cautious 

interpretation of these findings: 

o [Main text: Lines 505 – 511] “A visual examination of Our analysis reveals 

three key features regarding the uncertainties in the simulated EFcontrail at a 

specific point in time reveals three key features: (i) uncertainties in the 

EFcontrail uncertainties are generally largerst at the edges and localised pockets 

of ISSRs; (ii) the sign of EFcontrail tend to be more stable on a exhibit greater 

stability at the synoptic length scale (i.e., ISSRs with horizontal coverages of 

~1000 km); and (iii) persistent contrails formed at night and in wintertime tend 

to exhibit are more likely to have a lower relative uncertainty compared to 

those formed during daytime and in the summer (i.e., Northern vs. Southern 

hemisphere, shown in Fig. 9b). These results also suggest that contrail 

interventions may be more effective when implemented at a regional level 

rather than targeting individual flights as trajectories because the contrail 

uncertainties in at a specific locations space and time may be lower than in 

other areas regions.” 

 

31. Line 771: How is the fuel cost of changing altitude calculated? Is that part of the 

performance model? 

• Thank you for highlighting this. We have revised the paragraph to make clear that the 

fuel cost of changing altitudes is provided by the Poll-Schumann (PS) aircraft 

performance model. We also note that the model accounts for factors such as the 

ambient wind conditions at different altitudes to estimate the fuel consumption: 

o [Main text: Lines 862 – 871] “Starting from the initial point of the horizontal 

grid and the lowest flight level, the algorithm iterates through each of the 

feasible grid points to determine the optimal Mach number (Mopt) for the given 

aircraft type and CI. The Mopt that minimizes the total cost of cruise at each 

flight segment is given by:  

𝑀opt =
argmin

𝑀
(

CI+Δ𝑚(𝑀)

𝑉TAS
),       (A13) 

where the CI is the chosen cost index (assumed to be 60 in this study), Δm(M) 

is the fuel burn over this flight segment for a given Mach number (M), and VTAS 

is the aircraft true airspeed which accounts for the ambient wind conditions. 

The fuel burn for the original and alternative flight paths, which represent 

different cruise altitude options, is computed using the Poll-Schumann (PS) 

aircraft performance model (Poll and Schumann, 2020, 2021, 2024). The 

estimated fuel burn accounts for various input parameters such as and 

requires the aircraft type, ambient air temperature, ambient wind conditions 

(which influence VTAS), and aircraft mass as input parameters.” 
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