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Abstract. Spatial predictions of total organic carbon (TOC) concentrations and stocks are crucial for understanding marine

sediments’ role as a significant carbon sink in the global carbon cycle. In this study, we present a geospatial prediction of TOC

concentrations and stocks at a 5 x 5 arc minute grid scale, using a deep learning model — a novel machine learning approach

based on a new compilation of over 22,000 global TOC measurements and a new set of predictors, such as seafloor lithologies,

grain size distribution, and an alpha-chlorophyll satellite data. In our study, we compared the predictions and discuss the5

limitations from various machine learning methods. Our findings reveal that the neural network approach outperforms methods

such as k Nearest Neighbors and random forests, which tend to overfit to the training data, especially in highly heterogeneous

and complex geological settings. We provide estimates of mean TOC concentrations and stocks in both continental shelves and

deep sea settings across various marine regions and oceans. Our model suggests that the upper 10 cm of oceanic sediments

harbors approximately 171 Pg of TOC stock and has a mean TOC concentration of 0.68%. Furthermore, we introduce a10

standardized methodology for quantifying predictive uncertainty using Monte Carlo dropout and present a map of information

gain, that measures the expected increase in model knowledge achieved through in-situ sampling at specific locations which is

pivotal for sampling strategy planning.

1 Introduction

Burial of particulate organic carbon in marine sediments removes carbon dioxide (CO2) from the atmosphere and generates15

molecular oxygen (O2) that accumulates in the atmosphere (Berner, 1982; Hedges and Keil, 1995). It is a key process in the

global carbon cycle that largely controls the atmospheric partial pressures of O2 and CO2 on geological timescales (Berner,

1982, 2004). The mechanisms controlling concentrations, standing stocks, degradation and accumulation rates of organic

carbon at the seabed are, however, complex and remain a topic of active research (Arndt et al., 2013; Burdige, 2007; Hedges

and Keil, 1995; LaRowe et al., 2020b; Bradley et al., 2022). Furthermore, present estimates on the spatial distribution of20

sedimentary carbon concentrations and stocks across the global ocean, including shelf regions, are limited due to sparse data
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and the large spatial variability observed in shelf deposits (Atwood et al., 2020; Diesing et al., 2021; Lee et al., 2019; Legge

et al., 2020; Seiter et al., 2004). Against this background, an improved map of global organic carbon concentrations and stocks

in marine surface sediments, including the continental shelf, could help to better understand processes governing the turnover

and accumulation of organic carbon at the seabed.25

Shelf and deep-sea regions are separate environments. Surface sediments deposited on the continental shelf are mostly

composed of clay, silt, and sand delivered by rivers and continental erosion, while pelagic sediments deposited at the deep-sea

floor contain large amounts of biogenic material (carbonate, biogenic opal) produced by marine plankton (Berner and Berner,

2012). Moreover, shelf deposits are frequently eroded, reworked and redistributed by bottom currents and intensively mixed

and irrigated by benthic biota (Aller, 1998; Boudreau, 1997; Song et al., 2022). Shelf sediments are also affected by human30

activities such as bottom-trawling and dredging that erode and disperse large sediment volumes (Sala et al., 2021). Organic

carbon within shelf and deep-sea deposits constitutes only a minor fraction of the sediment mass. It is composed of of both

reactive and inert organic matter where the reactive fraction is subject to fast biological degradation processes (Hiddink et al.,

2023). Degradation rates increase with temperature and oxygen exposure (Arndt et al., 2013; Hedges and Keil, 1995). Global

warming and resuspension of anoxic shelf sediments in oxygen-bearing bottom waters by e.g. bottom-trawling, therefore,35

enhance organic carbon degradation and induce significant CO2 emissions at the seabed that may contribute to global climate

change (Hiddink et al., 2023; Sala et al., 2021). An improved understanding of carbon stocks in surface sediments and their

spatial distribution is, hence, also needed to better constrain present and future CO2 fluxes at the shelf seabed (Atwood et al.,

2020).

Sedimentary organic carbon concentrations are typically reported as total organic carbon (TOC in weight percent), which40

includes particulate organic carbon bound to sediment grains and a minor contribution by organic carbon dissolved in sediment

porewater (Hedges and Keil, 1995). TOC varies between different geological environments (Emerson and Hedges, 1988). Fine-

grained shelf and delta sediments deposited close to river mouths typically contain 0.5 – 1.0% TOC at 0 – 10 cm sediment

depth (Berner, 1982). A major fraction of TOC deposited in these environments (up to 67%) is not formed by marine plankton

but produced by land plants (Burdige, 2005). Shelf regions where neritic carbonates are formed by corals and other organisms45

at the seabed contain about 1% TOC (Berner, 1982). However, large parts of the continent shelf (about 50 - 70%) do not

receive sediment inputs and are covered by relict sands (Emery, 1968; Hall, 2002) that contain only minor amounts of TOC

(about 0.1%). Typical deep-sea sediments, that are not associated with high productivity regions, contain about 0.2 – 0.4%

TOC (Baturin, 2007; Berner, 1982; Lee et al., 2019; Seiter et al., 2004). In oceanic upwelling regions with high productivity,

large amounts of TOC are rapidly deposited at the seabed such that sedimentary TOC concentrations are usually larger than 1%50

and may reach up to 10% (Berner, 1982; Lee et al., 2019; Seiter et al., 2004). Elevated TOC values are also reported for surface

sediments deposited in the Arctic Ocean (1.0%) and the deep basins of the Black Sea (2.0%) (Berner, 1982; Lee et al., 2019;

Seiter et al., 2004). Considering these observations, the global mean TOC concentration in both shelf and deep-sea sediments

seems to be close to 0.5 to 1.0%.

The inventory or standing stock of TOC in surface sediments (in mass of carbon per seafloor area) is calculated by multi-55

plying TOC concentrations with the dry bulk density of sediments and the thickness of the considered surface layer. Different
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methods have been applied to derive the standing stock of TOC at regional and global scales. An early estimate based on limited

data and expert knowledge concluded that the global TOC inventory is 146 Pg TOC for a 30 cm thick surface layer (Emerson

and Hedges, 1988). The first estimate of the global TOC inventory derived by a machine-learning approach (k-Nearest Neigh-

bors (kNNs)) using an extended database (5,623 data points) yielded a global inventory of 87 ± 43 Pg TOC in the top 5 cm60

layer (Lee et al., 2019). In subsequent publications with an extended database (11,574 sediment cores) and a more advanced

machine-learning approach (random forest model), the global inventory was estimated as 2322 Pg TOC for the top 1 m of the

sediment column (Atwood et al., 2020). This inventory exceeds the global TOC inventory in terrestrial soils and suggests that

TOC in marine surface sediments is the largest TOC pool at the surface of the Earth (Atwood et al., 2020). Another estimate

of the global TOC inventory was derived by reactive transport modeling of sedimentary processes employing a range of global65

datasets (LaRowe et al., 2020a). This model yields a global inventory of 171 Pg TOC for the top 10 cm affected by biological

mixing processes.

Since about 70% of the Earth’s surface is covered by oceans, and sampling sediments at the seafloor is costly, data coverage

will always be sparse. Therefore, advanced methods are required to derive spatial information on sediment properties from a

limited number of point measurements. Machine learning approaches, which have rapidly advanced in recent years, are the70

most promising approach to tackle this challenge. So far, k-nearest neighbors and random forest models have been applied to

derive global maps of sediment porosity (Martin et al., 2015), TOC concentration (Lee et al., 2019), TOC inventory (Atwood

et al., 2020), sedimentation rate (Restreppo et al., 2021, 2020), and regional estimates of TOC accumulation rates (Diesing

et al., 2021). However, machine-learning techniques have their own challenges and limitations. Overfitting issues are often

encountered, and a standardized approach for estimating predictive uncertainty has not yet been established (Lee et al., 2019).75

Against this background, this paper aims to derive more robust and better-resolved maps of TOC concentrations and inven-

tories for the global ocean, including the continental shelf, based on a new larger TOC measurement database and an extended

collection of predictors to improve the accuracy at highly heterogeneous and undersampled geological settings. We compiled

an enlarged database of TOC concentrations in surface sediments with 22,192 entries and applied a deep neural network (DNN)

as a more advanced machine-learning approach. The global ocean was divided into two different domains (shelf and deep-sea),80

and the network was trained separately for each of these domains. Moreover, we developed new methods to quantify predictive

uncertainties and information gain.

2 Materials

2.1 Features

An extensive repository of features from both the sea surface and the seafloor at a 5 x 5 arc minute grid resolution has been85

compiled. It is based on features reported in Lee et al. (2019); Restreppo et al. (2021); Hart-Davis et al. (2021) and includes

a range of oceanographic, geological, geographic, biological, and biogeochemical parameters. Features deemed irrelevant to

TOC distributions (e.g. crustal and mantle properties; distance to plate boundary, continental ridges, trenches; seasonal means

of sea conductivity, sea oxygen, sea oxygen saturation percentage, sea oxygen utilization, sea temperature) were excluded.
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We adopted the spatial mean calculation as the sole averaging method, with a spatial average over a 50 km radius to incorpo-90

rate neighborhood information alongside raw features. Additional features believed to influence TOC distributions, including

total oxygen uptake (respiration rates) at the seabed (Jørgensen et al., 2022), sediment characteristics (awaiting citation confir-

mation), tidal velocities (Hart-Davis et al., 2021), and chlorophyll-alpha concentrations at the sea surface (NASA, 2014), were

incorporated.

Together, 99 raw feature grids are compiled for a comprehensive representation of the marine environment, providing the95

necessary input for the neural network analysis in this study to predict total organic carbon content. Most of the depicted

features are easily measurable from the sea surface by e.g. satellite observations, making them a reliable dataset compared

to the less accessible properties of the seafloor. Feature grids that lack global coverage or are only available at inappropriate

resolutions have been resampled, cell centered, and interpolated as needed using various techniques, including machine learn-

ing. Overall, a total of 139 features are used in the model, including the spatial averages, that are listed in the supplementary100

information.

2.2 TOC Data

The dataset for TOC concentrations (in weight percent) utilized in this study has been compiled from multiple sources. It

includes global data sets from Seiter et al. (2004); Romankevich et al. (2009); van der Voort et al. (2021) and regional data sets

for the the northern Gulf of Mexico (Beazley, 2003) and the North Sea (personal communication, W. Zhang, HEREON). Each105

label represents a known measurement (TOC concentration) and is paired with the nearest grid point on the 139-feature grids

via L2 distance computation, resulting in the association of a feature vector with each label. The labeled data is preprocessed

to enhance the reliability and robustness of the dataset for subsequent model development and validation. Coastal regions often

exhibit clustered measurements, potentially resulting in shared feature vectors, as all the measurements lie in the same feature

grid cell. To mitigate this, a variance assessment is conducted. Labels associated with feature vectors exhibiting high variance110

(the standard deviation of the labels is higher than 20% of the maximum of the labels) are excluded, while those with low

variance are averaged, and the shared feature array is assigned. Also, some data points situated in close proximity to land may

have feature values affected by NaN (Not-a-Number, used for undefined numbers) values due to the coarseness of the dataset.

To address this, reasonable values are assigned by interpolating from the nearest points, ensuring the overall quality of the

dataset. Our database includes a total of 110149 data points (including duplicates from overlap of different sources) that have115

been consolidated as discussed above such that the TOC database employed in the model is composed of 22192 entries (Figure

11). Both the datasets for labels and features can be downloaded at https://doi.org/10.5281/zenodo.11186224.

3 Methods

The primary objective of this study is to build a supervised prediction model that uses feature grid maps as inputs to predict

TOC concentrations as outputs. Additionally, we aim to quantify prediction uncertainties using Monte Carlo dropout and120

1The color maps used for the figures in this paper are from Crameri (2023) and Thyng et al. (2016).
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Figure 1. Quantitative total organic measurements (i.e., labels) acquired from various sources (Seiter et al., 2004; Romankevich et al., 2009;

van der Voort et al., 2021; Beazley, 2003). Notably, data point clusters are observed in close proximity to coastal regions.

information theory techniques. The supervised model is trained using the set of labels (TOC data) and their corresponding

feature vectors. Due to the complex patterns in the data, we choose deep learning models, which are good at understanding

such patterns.

3.1 Deep learning model

Deep Neural Networks (DNNs) have achieved state of the art results on a variety of tasks in ocean observation, prediction, and125

forecasting of ocean phenomena (Song et al., 2023). DNN architectures, that are intrinsically non-parametric and non linear,

are less susceptible to the curse of dimensionality. They capture complex relationships between features at different levels of

abstraction through their hierarchical nature which makes them well-suited to resolve highly complex geoscientific problems

(LeCun et al., 2015).

Here, we propose a multi-layer perceptron (MLP), feed forward DNN to predict global TOC in sediments and an approach130

to map uncertainty in predictions that serves as a quantifiable measure of information gain from sampling. In contrast to a

one-model approach for both deep sea and continental shelves as in previous works (Restreppo et al., 2020, 2021; Martin

et al., 2015; Lee et al., 2019), separate models are trained and inferred on data from two marine regions: the deep sea (> 200m

depth) and the continental shelves (< 200m depth), because of the different parameters that drive the sedimentation process

in these regions. The DNN, initialized using the technique proposed by He et al. (2015) (initializes parameters of the DNN135

taking into account the non-linearity of activation functions), consists of 10 layers with 128 nodes each. Batch normalization

(which normalizes the inputs of each layer for faster and more stable training) and dropout (which assigns a probability of

being deactivated to each node during training and thus prevents overfitting) are applied to each layer for regularization. ReLU

(Rectified Linear Unit, a piecewise linear function that outputs 0 for negative inputs and the input itself for positive inputs,

introducing non-linearity in the DNN) is used as the activation function.140

5

https://doi.org/10.5194/egusphere-2024-1360
Preprint. Discussion started: 4 June 2024
c© Author(s) 2024. CC BY 4.0 License.

trunyan
Comment on Text
Such as?

trunyan
Comment on Text
How is uncertainty different from information gain? In other prediction frameworks the two are inherently different. e.g., In Lee et al., 2019 you can have high uncertainty and low parametric isolation (similar to information gain). That is the locations with high uncertainty do not inherently mean the most information gain as these locations have low information gain because they are parametrically similar to other observed data points. And vice versa.

trunyan
Comment on Text
Did you ultimately feed it the same set of predictors though? How were they selected? Did you try to do one model on the entire world? How did the results differ?



The Monte Carlo Dropout method is implemented here to estimate uncertainty in the DNN model, leveraging dropout layers

as approximate Bayesian inference (Gal and Ghahramani, 2016). It gives us an ensemble of predictions from different subsets

of neurons in the same DNN model. Kullback Leibler (KL) divergence is used to map information gain from the quantified

predictive uncertainty. In the field of information theory, KL divergence represents the information gain and is defined as the

difference of the cross entropy between the observation and the prediction of an event, and the entropy in the observation of145

the event (Kullback and Leibler, 1951). In our context, the predicted distribution arises from Monte Carlo dropout prediction

ensemble, while the reconstructed observed distribution is modeled with a normal distribution with the predicted value as a

mean and the standard deviation of 0.05 TOC%, arising from both technical handling and the precision of the weighing tool

(Pape et al., 2020). The mathematical formulation of the entropy and the cross entropy is detailed in the supplement.

In other words, information gain measures the expected increase in model knowledge achieved through in-situ sampling at150

a specific location. This concept provides a strategic guide for determining optimal sampling strategies to refine our model’s

representation of the real world.

4 Results and Discussions

Understanding the global distribution of TOC concentrations and stocks is crucial for advancing our knowledge of the carbon

cycle and sedimentary environments worldwide. Before delving into the prediction maps from the DNN, we first compare the155

performance of three methods: DNNs, kNNs, and random forests. Separate models are run for deep-sea and continental shelf

regions, and the outcomes are summarized in Table 1. For kNN, 5 neighbors were utilized for continental shelves, and 4 for

the deep sea, based on a sensitivity analysis with respect to model performance. Random forests employed 100 estimators for

both marine regions. This comparison sets the groundwork for a detailed exploration of DNN results, offering insights into its

effectiveness compared to other established methods. Notably, random forest and kNN algorithms exhibit higher correlation160

coefficients and superior overall performance on the training dataset than the DNN, however, the DNN outperforms both

the other algorithms in the test data performance. This discrepancy suggests a potential overfitting issue, where the kNN

and random forest models may have become specialized in learning the training data. Nonetheless, they are useful learning

algorithms when computational resources are constrained. More detailed analysis of the results of kNN and random forests are

provided in the supplementary information. The correlation plot between measured and predicted data shows similar errors for165

the training and test data sets which confirms that the DNN-model largely avoids overfitting (Figure 2).

Our DNN-based map of TOC concentrations (Figure 3) shows similarities to maps previously published by Seiter et al.

(2004) and Lee et al. (2019), who used geostatistical methods and a kNN model, respectively. All maps show elevated con-

centrations in the Arctic region and in upwelling areas located along the western continental margins of America and Africa,

the equatorial Pacific, and the Arabian Sea. This pattern can be explained by elevated rates of marine primary and export170

production in upwelling regions delivering large fluxes of TOC to the seabed. The low TOC values in the open oceans are

related to lower productivity and the large water depths limiting the TOC flux to the deep-sea floor. The predictions in Figure 3

are also consistent with the early work on TOC distributions by Berner (1982) and Emerson and Hedges (1988), showing low
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Method Train data Test data(15% of all data)

Pearson CC R-squared Pearson CC R-squared

kNN 0.927 0.859 0.8435 0.6747

Random forests 0.986 0.969 0.8470 0.6949

DNN 0.909 0.807 0.853 0.725
Table 1. Comparison of machine learning methods based on performance metrics: Pearson correlation coefficient (Pearson CC) and coeffi-

cient of determination (R-Squared) for the training and testing data. The train:test data ratio is 85:15.

Figure 2. Correlation plot between measured (labels) and predicted data (targets) using DNN, with particular emphasis on the test dataset

(purple points) to assess the model’s generalization performance. The minimal difference observed between train and test errors serves as an

indicator of the model’s ability to avoid overfitting.

TOC values in the open oceans and elevated values for upwelling regions and the Arctic region. The high TOC concentrations

predicted for the Black Sea and Baltic Sea (Figure 3) are probably related to the lack of oxygen in bottom waters of these175

marginal seas that promotes TOC preservation (Hedges and Keil, 1995). The map published by Lee et al. (2019) shows several

large areas in the open Pacific that have unusually high TOC concentrations. These patches are probably not realistic since they

do not appear in other maps and are not consistent with our understanding of the TOC cycle. They may be artifacts generated

by the kNN method and the sparse data coverage in these regions. Our new map avoids these artifacts and offers much better

coverage and spatial resolution for the shelf region than previous maps (Seiter et al., 2004). This feature and the avoidance of180

overfitting are the major advances achieved by our modeling approach.

We also produced a map of TOC stocks for the global ocean (Figure 4). The TOC stock was calculated using the global

porosity grid provided by Martin et al. (2015) and a density of dry solids (ds) of 2.6g/cm3. We performed the calculation for

the top 10 cm of the sediment column since our TOC data have been measured within this thin surface layer. Moreover, the

top 10 cm are the most vulnerable and dynamic part of the sedimentary TOC pool since they are subject to frequent biological185

and physical mixing processes (Song et al., 2022) and are affected by human interventions such as bottom trawling (Sala et al.,

2021). The TOC stocks are calculated as:
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Figure 3. Global prediction map of the TOC concentration using a DNN.

Figure 4. TOC stock map.

TOC stock = (1− porosity)× ds×TOC concentration× 10 cm (1)

The TOC stock is computed for global oceans and major seas (Flanders Marine Institute, 2021), focusing on both continental

shelves and deep-sea regions within each ocean and sea and is shown in Table 2. Notably, the mean TOC concentration in190

continental shelves exhibits significant variability across regions.

According to our model, most the TOC stock can be found in the vast deep-sea basins of the Pacific, Indian and Atlantic

oceans which is due to the large area of these basins (Table 2). The shelf region harbors 11.2% of the global stock (Table 2,

including Baltic Sea and Caspian Sea), similar to the fraction, previously derived by Atwood et al. (2020) who suggested that

11.5% of the global TOC stock is located on the continental shelves. The global TOC stock derived from our model amounts195
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Continental Shelves Deep Sea

Region Sum of TOC

stock($Pg$)

Area (mil-

lion km2)

Mean TOC

concentra-

tion(%)

Sum of TOC

stock($Pg$)

Area (mil-

lion km2)

Mean TOC

concentra-

tion(%)

Arctic Ocean 5.24 5.72 0.88 6.98 9.46 0.87

Indian Ocean 2.52 4.06 0.59 29.82 67.10 0.64

Mediterranean Region 0.60 0.65 0.97 2.16 2.27 1.18

North Atlantic Ocean 2.55 4.26 0.57 17.07 37.46 0.66

North Pacific Ocean 2.58 3.83 0.63 33.76 73.42 0.73

South Atlantic Ocean 1.08 1.86 0.72 15.54 38.67 0.62

South China and Easter

Archipelagic Seas

1.60 3.00 0.50 2.61 3.74 0.87

South Pacific Ocean 1.19 1.46 0.96 36.72 83.81 0.64

Southern Ocean 0.20 0.57 0.56 7.63 20.16 0.52

Baltic Sea∗ 0.84 0.39 3.36

Caspian Sea∗ 0.81 0.38 2.55

Total 19.21 26.20 0.75 152.30 336.08 0.66
Table 2. TOC Stock in the continental shelves and deep sea regions of different marine domains. ∗The total sums and the mean concentrations

in the continental shelves include the Baltic Sea and the Caspian Sea. Without these regions, the total TOC stock in continental shelves is

17.56 Pg, area of the continental shelves is 25.42 million km2 and the mean TOC concentration is 0.69%. Visualisation of the TOC stock in

the oceans is provided in the supplementary information.

to 171.5 Pg carbon for the 10 cm layer consider in our calculations (Table 2). This value is close to the global stock in the

top 10 cm derived by reactive transport modeling (170 Pg, LaRowe et al. (2020a)). The other stock estimates were calculated

applying a range of sediment thicknesses. When normalized to 10 cm, the stocks reported by Lee et al. (2019) amounts to 174

Pg while the stock derived by Atwood et al. (2020) results as 232 Pg carbon. The first stock estimate, that was based on expert

knowledge and a limited data base, corresponds to only 49 Pg carbon when normalized to 10 cm (Emerson and Hedges, 1988)200

which is lower than our estimate.

According to our DNN-model, the mean TOC concentration in continental shelves sediments, excluding the Baltic Sea and

the Caspian Sea (0.69%) is close to the concentration in deep-sea sediments (0.66%, Table 2). This is a surprising result since

the high marine productivity and low water depths on the shelf induce high TOC fluxes to the seabed that should result in

elevated TOC concentrations in surface sediments. Moreover, large amounts of terrestrial particulate organic carbon (POC)205

produced by land plants are deposited in shelf sediments (Burdige, 2005) which should further increase TOC concentrations

on these deposits. However, TOC concentrations in shelf surface sediments are diminished by a number of factors: i. frequent

biological and physical reworking that accelerates TOC degradation processes (Song et al., 2022), ii. dilution of TOC by
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Figure 5. Information gain in prediction of TOC concentration derived using Monte Carlo Dropout. The information gain map serves as a

guide for determining optimal sampling locations.

inorganic material (clay, silt, sand) in delta deposits and other shelf regions with high sedimentation rates (Berner, 1982),

iii. strong bottom currents that inhibit sediment deposition such that large shelf areas are covered by relict coarse-grained210

sediments that were deposited in the geological past and do not contain significant amount of TOC (Emery, 1968), iv: frequent

bottom trawling that exposes sedimentary TOC to oxygen and accelerates TOC degradation (Atwood et al., 2020). According

to our DNN-model, these factors decrease TOC concentrations in shelf sediments to such to degree that they attain mean values

that are close to those observed in deep-sea sediments (Table 2). The regions with the highest information gain (Figure 5) are

predominantly situated on continental shelves. Despite the Norwegian Trench exhibiting a high total organic carbon percentage,215

sufficient measurements in the North Sea contribute to lower uncertainty, resulting in a lower information gain. Notably, the

Gulf of Mexico, Carribean sea, North Pacific Ocean and the western coast of Madagascar exhibit higher information gain due to

a scarcity of measurement. Clusters of measurements, such as those in the North Sea, East China Sea, or North Atlantic Ocean,

show lower information gain. Significantly, our analysis also reveals that an abundance of measurements does not necessarily

correspond to lower information gain, and vice versa, as in the case of the south west coast of Africa. Information gain depends220

not only on the geographical proximity of measurements but also on their proximity in the parameter space and the congruence

of the measurements made there.

5 Conclusions

The comparison between different modeling approaches, including DNNs, kNNs, and random forests, highlights the effec-

tiveness of each method in predicting TOC concentrations. While kNN and random forest models exhibit higher correlation225

coefficients and overall performance on the training dataset, the DNN outperforms them on test data performance. This sug-

gests a potential overfitting issue with the kNN and random forest models, where they may have become specialized in learning
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the training data. Nonetheless, these algorithms remain useful, especially when computational resources are limited. Further

analysis of the results of kNN and random forests is provided in the supplementary information.

Our DNN-based map of TOC concentrations shows elevated concentrations in specific regions such as the Arctic and up-230

welling areas along continental margins. These patterns are consistent with known processes of marine primary and export

production. Notably, our map offers better coverage and spatial resolution for the shelf region compared to previous maps,

avoiding artifacts like unrealistic high TOC concentrations seen in some regions.

The computed TOC stock for global oceans and major seas provides valuable insights into the distribution and magnitude

of TOC storage. Despite significant variability in mean TOC concentration across continental shelves, our model shows that235

the majority of TOC stock is found in deep-sea basins. This underscores the importance of deep-sea environments in the

global carbon cycle. Surprisingly, mean TOC concentrations in continental shelves are close to those in deep-sea sediments,

suggesting complex processes at play that diminish TOC concentrations in shelf sediments.

The analysis of information gain highlights regions with sparse or contradicting measurements and higher uncertainty,

providing guidance for future sampling efforts. It reveals that the abundance of measurements does not necessarily correspond240

to lower uncertainty, emphasizing the importance of considering both geographical proximity and parameter space proximity

in sampling strategies.

In conclusion, our study contributes to a better understanding of global TOC distributions and stocks, shedding light on the

complex interplay between biological, physical, and geological processes in marine sedimentary environments. The insights

gained from our modeling approach can inform future research and management efforts aimed at preserving and managing245

marine carbon sinks.

Code availability. The repository of code to run the different models, analyse the outputs is available at: https://doi.org/10.3289/SW_3_2024.

Data availability. Raw features and labels, model outputs are available at: https://doi.org/10.5281/zenodo.11186224.
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Appendix A: Comparison of methods

Table 1 highlights superior performance on the training dataset for kNNs and random forests, while their test performance250

lags behind that of DNNs. The emphasis on generalization capabilities is crucial in our context due to data scarcity in many

regions, making predictions in unseen areas a priority. Examining predictions from kNN and random forests in this section,

Figure A1 shows artifacts, particularly in the equatorial Pacific and Atlantic oceans, in the TOC predictions using kNN, similar

to the map published by Lee et al. (2019). They may be artifacts generated by the kNN method and the sparse data coverage

in these regions. We observe that the TOC stock and the mean TOC concentration predicted by the kNN and the random255

forest algorithm for the same set of features and labels, for the entire ocean, result in lesser overall TOC stock and mean TOC

percentage compared to the results from DNN.

Figure A1. Global prediction map of TOC concentrations using a K-Nearest Neigbours algorithm with 5 nearest neighbors in the continental

shelves and 4 nearest neighbors in the deep sea. The total TOC stock from the random forests model is 164.27 Pg and the mean TOC

concentration is 0.63% for the entire ocean.

Appendix B: Information gain

In this paper, KL divergence, also known as information gain or relative entropy, has been used to quantify model uncertainty.

As Rényi (1961) points out, the amount of information can be taken numerically equal to the amount of uncertainty concerning260

the model prediction. The mathematical derivation of KL divergence under the theoretical background of information theory

(Shannon, 1948) is presented below. The information entropy of a random variable X , with a probability distribution P is

represented as:

H(P ) =−
∑

i

P (xi) logP (xi) (B1)
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Figure A2. Global prediction map of TOC concentrations using a random forest algorithm with 100 estimators. The total TOC stock from

the random forests model is 155.14 Pg and the mean TOC concentration is 0.60% for the entire ocean.

Shannon (1948)’s definition of entropy determines the minimum channel capacity required to reliably transmit the informa-265

tion as encoded binary digits. Usually, the true distribution P (X) denotes observed data, measurements, or an exact probability

distribution. Here, P (X) is constructed using a normal distribution with a mean value equal to Monte Carlo dropout predic-

tion, and a standard deviation of 0.05 TOC%, which arises from both technical handling and the precision of the weighing

tool (Pape et al., 2020). The predicted distribution Q(X) is derived from the Monte Carlo dropout prediction ensemble. The

measure Q(X) typically represents a theoretical framework, a model, a description, or an approximation of P (X). The cross270

entropy between P (X) and Q(X) measures the average number of binary digits to represent an event from P (X), by Q(X).

It is represented as:

H(P,Q) =−
∑

i

P (xi) logQ(xi) (B2)

The relative entropy, or the information gain measure the difference between the equations B2 and B1, is represented as

DKL(P∥Q), or the information gain for a specific event xi measures the cost in bits in modelling P (x) with Q(x).275

DKL(P∥Q) = H(P,Q)−H(P ) =
∑

i

P (xi) log
(

P (xi)
Q(xi)

)
(B3)

DKL(P∥Q) is always non negative, remains well-defined for continuous distributions. To obtain the continuous distribution

for the predicted distribution Q(X), the prediction ensemble is binned into histograms, to obtain an approximate probability

density function (PDF). This PDF is then modeled using curve fitting techniques, typically fitted to a Gaussian distribution

(Algorithm 2). DKL(P∥Q), is calculated globally for each prediction, and plotted in the information gain map.280
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Appendix C: Feature list

File names adhere to the naming conventions discussed below. The naming structure is partitioned by underscores and periods

in the following order: interface to which the gridded values refer to, quantity of values contained within the grid, units and

reference values/units (e.g. meters below sea level), data source, statistic calculated (if applicable), grid pitch, and file extension.

SS – Sea surface – atmosphere interface (may also be average of the entire water column);285

SF – Seafloor – water interface (may also be denoted by GL);

GL – Ground level (e.g. bottom of pure liquid, top of dirt);

(r50 km) - Raw feature and feature averaged at a 50km radius used.

Units referenced are as follows:

KGM3 - kilogram per cubic meter; MS - meters per second; KM - kilometer; M_ASL - meters above sea level (i.e. meters290

referenced to sea level); MWM2 - milliwatt per square meter; TGCYR - terragram of carbon per year; TGYR - terragram per

year; MA - megaannum; M - meters; MGCM2 - milligram of carbon per square meter; DEG - degree; S - seconds.

Most of the features presented below have been collected by Lee et al. (2020) and Phrampus et al. (2019). The new datasets

including the additions from this work are uploaded in (zenodo link).

Feature Explanation Data Source

GL _COAST _FROM _LAND _IS _1.0

_ETOPO2v2.5m.nc (raw, r50km)

Coastline, with a binary indicator for the

presence of coastline. This dataset is derived

from ETOPO2v2, a 2-minute gridded global

relief data for land boundary

National Geophysical Data

Center (2006)

GL _COAST _FROM _SEA _IS _1.0

_ETOPO2v2.r50km.men.5m.nc (raw, r50km)

Coastline with a binary indicator for the

presence of coastline using ETOPO2v2 re-

lief data for ocean boundary

National Geophysical Data

Center (2006)

GL _DIST _TO _COAST _KM

_ETOPO.r50km.men.5m.grd (raw, r50km)

Distance from ocean grid points to the near-

est coast.

National Geophysical Data

Center (2006)

GL _ELEVATION _M _ASL

_ETOPO2v2.r50km.men.5m.grd (raw, r50km)

Elevation data from ETOPO2v2, represent-

ing heights above sea level

National Geophysical Data

Center (2006)

GL _RIVERMOUTH _CO2 _TGCYR-1

_ORNL.r50km.men.5m.grd (raw, r50km)

Carbon dioxide flux at river mouths, mea-

sured in teragrams of carbon per year (Tg

C/yr)

Ludwig et al. (2011)

GL _RIVERMOUTH _DOC _TGCYR-1

_ORNL.r50km.men.5m.grd (raw, r50km)

Dissolved organic carbon flux at river

mouths (Tg C/yr)

Ludwig et al. (2011)

GL _RIVERMOUTH _HCO3 _TGCYR-1

_ORNL.r50km.men.5m.grd (raw, r50km)

bicarbonate HCO3
– flux at river mouths (Tg

C/yr)

Ludwig et al. (2011)
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Feature name Explanation Data Source

GL _RIVERMOUTH _POC _TGCYR-1

_ORNL.r50km.men.5m.grd (raw, r50km)

Particulate organic carbon flux at river

mouths (Tg C/yr)

Ludwig et al. (2011)

GL _RIVERMOUTH _TSS _TGYR-1

_ORNL.r50km.men.5m.grd (raw, r50km)

Total suspended solids flux at river mouths

(50 km resolution) (Tg C/yr)

Ludwig et al. (2011)

GL _TOT _SED _THICK _M _CRUST1

_NOAA.r50km.men.5m.grd (raw, r50km)

Total sediment thickness in the earth’s crust

in m

Whittaker et al. (2013)

2N2 _ocean _eot20 _modified.nc;K1 _ocean

_eot20 _modified.nc;K2 _load _eot20 _mod-

ified.nc;K2 _ocean _eot20 _modified.nc;M2

_load _eot20 _modified.nc;M2 _ocean _eot20

_modified.nc;M4 _load _eot20 _modified.nc;M4

_ocean _eot20 _modified.nc;MF _load _eot20

_modified.nc;MF _ocean _eot20 _modi-

fied.nc;MM _load _eot20 _modified.nc;MM

_ocean _eot20 _modified.nc;N2 _load _eot20

_modified.nc;N2 _ocean _eot20 _modified.nc;O1

_load _eot20 _modified.nc;O1 _ocean _eot20

_modified.nc;P1 _load _eot20 _modified.nc;P1

_ocean _eot20 _modified.nc;Q1 _load _eot20

_modified.nc;S1 _load _eot20 _modified.nc;S1

_ocean _eot20 _modified.nc;S2 _load _eot20

_modified.nc;S2 _ocean _eot20 _modified.nc;SA

_load _eot20 _modified.nc;SA _ocean _eot20

_modified.nc; SSA_load_eot20_modified.nc;

SSA_ocean_eot20_modified.nc

Hart-Davis et al. (2021) provides global

atlases of both ocean and load tides are

provided, containing information about the

amplitudes and phases of seventeen tidal

constituents(ocean and load) for the global

ocean. These constituents include: 2N2, J1,

K1, K2, M2, M4, MF, MM, N2, O1, P1, Q1,

S1, S2, SA, SSA, and T2, that extends across

the entire global ocean ranging from 66°S

to 66°N. For higher latitudes, the FES2014b

model is used to fill in the gaps. Eleven

satellite altimetry missions contribute to this

model.

Hart-Davis et al. (2021)

ChlorSummerMean.nc Average chlorophyll-alpha concentration

during summer

NASA (2014)

ChlorWinterMean.nc Average chlorophyll-alpha concentration

during winter

NASA (2014)

DERIVATIVE _GL _ELEVATION _M _ASL

_ETOPO2v2.5.nc

Gradient of elevation from ETOPO2v2.5

data
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Feature name Explanation Data Source

GL _HEATFLUX _MWM2 _Becker.5m.nc Oceanic heat flux data(exchange of heat

energy between the ocean surface and

the atmosphere) in megawatts per square

meter(MW/m2)

Becker et al. (2014)

GL _LAND _IS _1.0 _ETOPO2v2.5m.nc Land mask data National Geophysical Data

Center (2006)

POROSITY _global _prediction.grd Global prediction map for porosity of

surface sediments using a random forest

method

Martin et al. (2015)

SF _ACTIVE _SEAMOUNTS

_KIM.r10km.wct.5m.grd

Active(volcanically) seamounts location

data at a 10 km resolution

Kim and Wessel (2011)

SF _AVG _SEA _DENSITY _KGM3

_DECADAL _MEAN _woa13x.5m.grd (raw,

r50km)

Mean sea density in kg/m3 over a decade Boyer et al. (2013)

SF _COASTLINE _IS _1.0.5m.nc Coastline data Lee et al. (2020)

SF _CURRENT _EAST _MS _2012 _12 _HY-

COMx.5m.grd;SF _CURRENT _NORTH _MS

_2012 _12 _HYCOMx.5m.grd;SF _CURRENT

_MAG _MS _2012 _12 _HYCOMx.5m.grd (raw,

r50km)

Ocean bottom current data for the east-

west, north-south component and total mag-

nitude using the HYCOM model in Decem-

ber 2012 in m/s

The HYCOM+NCODA Ocean

Reanalysis (2014)

SF _GRAINSIZE _D16 _MM _NGDC.5m.nc;SF

_GRAINSIZE _D50 _MM _NGDC.5m.nc;SF

_GRAINSIZE _D84 _MM _NGDC.5m.nc

Grainsize data with the 16th percentile

(D16), median (D50) and the 84th percentile

(D84)

National Geophysical Data

Center (1976)

SF _SEA _BULKMODULUS _MPA

_DECADAL _MEAN _woa13x.5m.nc

Sea bulk modulus in mega pascals(MPa) av-

eraged over a decade

Boyer et al. (2013)

SF _SEA _CONDUCTIVITY _SM _DECADAL

_MEAN _woa13v2x.5m.grd(raw, r50km)

Average conductivity of seawater(dissolved

ions) at the sea surface over a decade in

siemens per meter(S/m)

Boyer et al. (2013)

SF _SEA _OXYGEN _MLL _DECADAL

_MEAN _woa13v2x.5m.grd(raw, r50km)

Average dissolved sea oxygen in millilitre

per litre over a decadal mean

Boyer et al. (2013)

SF _SEA _OXYGEN _PCTSAT _DECADAL

_MEAN _woa13v2x.5m.grd(raw, r50km)

Sea oxygen percentage saturation averaged

over a decade

Boyer et al. (2013)

16

https://doi.org/10.5194/egusphere-2024-1360
Preprint. Discussion started: 4 June 2024
c© Author(s) 2024. CC BY 4.0 License.



Feature name Explanation Data Source

SF _SEA _PRESSURE _MPA _DECADAL

_MEAN _woa13x.5m.nc

Sea pressure in mega pascals(MPa) aver-

aged over a decade.

Boyer et al. (2013)

SF _SEA _SALINITY _PSU _DECADAL

_MEAN _woa13v2x.5m.nc

Sea salinity in practical salinity units aver-

aged over a decade

Boyer et al. (2013)

SF _SEA _SEA _OXYGEN _UTILIZA-

TION _MOLM3 _DECADAL _MEAN

_woa13v2x.5m.grd(raw, r50km)

Sea oxygen utilization in mol/m3 averaged

over a decade

Boyer et al. (2013)

SF _SEA _TEMPERATURE _C _DECADAL

_MEAN _woa13v2x.5m.grd(raw, r50km)

Sea Temperature in Celcius averaged over a

decade

Boyer et al. (2013)

SL _GEOID _M _ABOVE _WGS84 _NGA

_egm2008.5m.grd

Height of the geoid above the WGS84

reference ellipsoid, in meters(m), and

referenced to the National Geospatial-

Intelligence Agency (NGA)

Pavlis et al. (2008)

SS _BIOMASS _BACTERIA _LOG10

_MGCM2 _WEI2010x.5m.grd(raw, r50km);

SS _BIOMASS _FISH _LOG10 _MGCM2

_WEI2010x.5m.grd(raw, r50km); SS

_BIOMASS _INVERTEBRATE _LOG10

_MGCM2 _WEI2010x.5m.grd(raw, r50km);

SS _BIOMASS _MACROFAUNA _LOG10

_MGCM2 _WEI2010x.5m.grd(raw, r50km);

SS _BIOMASS _MEGAFAUNA _LOG10

_MGCM2 _WEI2010x.5m.grd(raw, r50km);

SS _BIOMASS _MEIOFAUNA _LOG10

_MGCM2 _WEI2010x.5m.grd(raw, r50km);

SS _BIOMASS _TOTAL _LOG10 _MGCM2

_WEI2010x.5m.grd(raw, r50km);

Distribution of mean biomass predictions

for (a)bacteria, (b)fishes, (c)invertebrates,

(d)macrofauna, (e)megafauna, and

(f)meiofauna. The mean biomass was

computed using random forest algorithm.

The total biomass was combined from

predictions of bacteria, meiofauna, macro-

fauna, and megafauna biomass. Predictions

were smoothed by Inverse Distance Weight-

ing interpolation to 0.1 degree resolution

and displayed in logarithm scale (base of

10), which is then converted to 5 arc minute

grids by Lee et al. (2019)

Wei et al. (2010)
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Feature name Explanation Data Source

SS _CHLOROPHYLL _LOG _MG _M3 _MODIS

_Aqua _MISSION _MEANx.5m.grd(raw, r50km);

SS _PIC _LOG _MOL _M3-1 _MODIS _Aqua

_MISSION _MEANx.5m.grd(raw, r50km); SS

_POC _LOG _MOL _M3-1 _MODIS _Aqua

_MISSION _MEANx.5m.grd(raw, r50km)

The Moderate Resolution Imaging Spectro-

radiometer (MODIS), is a 36-band spectro-

radiometer measuring visible and infrared

radiation and obtaining data that are being

used to derive the near-surface concentra-

tion of chlorophyll-a (chlor_a) in mgm−3.

It is calculated using an empirical relation-

ship derived from in situ measurements of

chlor_a, concentrations of Particulate Or-

ganic Carbon(POC) and Particulate Inor-

ganic Carbon(PIC) (i.e., calcium carbonate

or calcite) and blue-to-green band ratios of

in situ remote sensing reflectances (Rrs).

NASA (2014)

SS _CORIOLIS.5m.nc Coriolis data, generated using empirical

means

Lee et al. (2020)

SS _DENSITY _KGM-3 _SACD _Aquarius

_MISSION _MEANx.5m.grd

The Aquarius/SAC-D satellite mission,

launched on 10 June 2011, was a joint ven-

ture between NASA and the Argentinean

Space Agency (CONAE). The mission fea-

tured the sea surface salinity sensor Aquar-

ius and was the first mission with the pri-

mary goal of measuring sea surface salinity

(SSS) from space. The monthly maps of sea

surface density are derived from Aquarius

sea surface salinity and ancillary sea surface

temperature.

NASA (2011)

SS _GEOID _ANOMALY _NGA

_egm2008.5m.nc(raw, r50km)

The regional Free-air and Bouguer grav-

ity anomaly grids (averaged over 2,5 arc-

minute by 2,5 arc-minute) are computed at

BGI from the EGM2008 spherical harmonic

coefficients

Pavlis et al. (2008)
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Feature name Explanation Data Source

SS _MIXED _LAYER _DEPTH _MAX

_M _Goyetx.5m.grd(raw, r50km); SS

_MIXED _LAYER _DEPTH _MIN _M

_Goyetx.5m.grd(raw, r50km)

shows the geographical distribution of the

maximum and minimum depth(m) of the

mixed layer

Goyet et al. (2000)

SS _PHOTO _AVAIL _RAD _EINSTEIN

_M-2 _DAY _SNPP _VIIRS _MISSION

_MEANx.5m.grd(raw, r50km); SS _PHYTO

_ABSORPTION _443NM _M-1 _SNPP _VIIRS

_MISSION _MEANx.5m.grd

Daily average photosynthetically available

radiation (PAR) at the ocean surface in

Einstein/m2/day The Visible Infrared

Imaging Radiometer Suite (VIIRS) on the

Suomi National Polar-orbiting Partnership

(SNPP) have been developed for global

ocean color products. PAR is defined as the

quantum energy flux from the Sun in the

400-700nm range. For ocean color applica-

tions, PAR is a common input used in mod-

eling marine primary productivity. An aver-

age of the sensors and the 443 nm wave-

length maps are used as features

NASA (2014)

SS _WAVE _DIRECTION _DEG _2012

_12 _WAVEWATCH3x.5m.grd(raw, r50km);

SS _WAVE _HEIGHT _M _2012 _12

_WAVEWATCH3x.5m.grd(raw, r50km); SS

_WAVE _PERIOD _S _2012 _12 _WAVE-

WATCH3x.5m.grd(raw, r50km)

Mean Wave direction in , wave height in m

and wave period in s. Features are based

on the 3rd generation wave model WAVE-

WATCH III®.

The HYCOM+NCODA Ocean

Reanalysis (2014)

SS _WINDSPEED _MS-1 _SACD _Aquarius

_MISSION _MEANx.5m.grd(raw, r50km)

Mean wind speed in m/s fromtThe

Aquarius/SAC-D satellite mission

NASA (2011)

TOU _Jorgenson2022.nc Global map of the total oxygen uptake

(TOU) of the seabed.

Jørgensen et al. (2022)

litho_maps_type1_.nc Lithology map: Mudflats binary map (<0.05

mm)

Garlan et al. (2018)

litho_maps_type2_.nc Lithology map: Fine sand binary map (0.05

mm - 0.5 mm)

Garlan et al. (2018)

litho_maps_type3_.nc Lithology map: Sand binary map (0.5 mm -

2 mm)

Garlan et al. (2018)
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Feature name Explanation Data Source

litho_maps_type4_.nc Lithology map: Clay binary map (<0.01

mm)

Garlan et al. (2018)

litho_maps_type5_.nc Lithology map: Gravel and stone binary map

(>2 mm)

Garlan et al. (2018)

litho_maps_type6_.nc Lithology map: Bed rock binary map Garlan et al. (2018)

lithology _grain _size _global _8.nc Grain size distribution of sediments Garlan et al. (2018)

Table C1: Feature list with description and references, that is used as input to all the models in the paper.
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Appendix D: Algorithms295

Algorithm 1 Neural Network Training with Batch Normalization and Dropout including Monte Carlo Dropout for inference

Require: Labeled dataset D = {(x1,y1),(x2,y2), ...,(xN ,yN )}
xi: feature vector for the ith label

yi: corresponding TOC%

1: Input: feature vector xj

2: Output: Predicted TOC% predicted% for xj

3: Method: Construct a neural network with 10 layers and 128 nodes per layer: ϕ(x,W,b)

4: Apply batch normalization and dropout to each layer.

5: Initialize optimizer (e.g., Adam) with appropriate learning rate and parameters.

6: Initialize loss function (e.g., Mean Squared Error) for regression.

7: Train the neural network with D for 1000 epochs:

8: for epoch = 1 to num_epochs do

9: Randomly shuffle the training dataset..

10: for (xi,yi) in D do

11: Forward pass: compute predictions ŷi = ϕ(xi,W,b).

12: Compute target loss: losstarget = MSE(yi, ŷi).

13: Back-propagation: update weights and biases using optimizer, with losstarget as the cost function.

14: end for

15: end for

16: Set dropout to active during inference

17: Perform Monte Carlo dropout for M forward runs:

18: ŷensemble
j = ϕ(xj ,W,b,dropout_maskT )

19: Predicted TOC%, ŷj for xj = 1
M

∑M
m=1 ŷensemble

j

Algorithm 2 Calculating information gain for the predictions

Require: Monte Carlo dropout prediction ensemble, ŷensemble, for each grid cell

1: for each grid cell do

2: Fit a gaussian probability density function Qj(x) for ŷensemble
j using histograms and curve fitting algorithm.

3: Generate original distribution Pj(x) with mean ŷj and standard deviation 0.05 (sampling error).

4: Calculate Kullback-Leibler divergence:

DKL(Pj∥Qj) =
∑

i Pj(xi) log
(

Pj(xi)

Qj(xi)

)
5: end for
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Appendix E: Model interpretability using SHAP values

Explaining and understanding why a model makes a certain prediction is as crucial as accuracy and uncertainty in the pre-

dictions. This becomes particularly challenging in high-dimensional spaces, where interpreting complex models can be more

intricate compared to simpler yet less accurate models. Lundberg and Lee (2017) proposes a unified framework for interpreting

predicitons, SHAP (SHapley Additive exPlanations). SHAP assigns importance values to each feature for a particular predic-300

tion, providing a comprehensive understanding of the model’s decision-making process. In our supervised learning model f

trained on features X ∈ X ⊆ Rd to predict outcomes Y ∈ Y ⊆ R, SHAP, a feature attribution method, considers the model

predictions to be decomposed as a sum: f(x) = ϕ0 +
∑d

j=1 ϕ(j,x), where ϕ0 is the baseline expectation (i.e., ϕ0 = E[f(x)])

and ϕ(j,x) denotes the Shapley value of feature j at point x.

In our analysis, we aim to simplify the interpretation process by presenting the average importance of features across all305

predictions, from the deep sea and the continental shelves. All effects describe the behavior of the model and are not necessarily

causal in the real world.
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Figure E1. Summary plot of Shapley values of the deep sea DNN model. The global porosity grid (Martin et al., 2015) has the highest feature

importance. Regions with high porosity lead to higher TOC concentrations, and vice versa. The biological features that includes biomass

meiofauna (Wei et al., 2010), sea oxygen utilization (Boyer et al., 2013), daily average PAR (NASA, 2014) show that higher biomass lead

to higher TOC concentrations. On the other hand, higher oxygen saturation leads to oxic conditions, resulting in the oxidation of the organic

carbon and hence lesser TOC concentration. The other features which dominate are the physical oceanographic features, where higher feature

values result in lower TOC concentration, such as tidal features (Q1 loading, M2 constituent) (Hart-Davis et al., 2021), Sea bulk modulus

(Boyer et al., 2013), average sea conductivity (Boyer et al., 2013) and bottom current magnitude (The HYCOM+NCODA Ocean Reanalysis,

2014) (strong bottom currents that inhibit sediment deposition).
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Figure E2. Summary plot of Shapley values of the continental shelf DNN model. The total oxygen uptake (Jørgensen et al., 2022) of the

sea bed has the highest feature importance, with regions of higher oxygen uptake resulting in lower TOC concentrations, denoting oxic

conditions. Regions with higher porosity (Martin et al., 2015) result in higher TOC concentrations, while regions with lower porosity result

in lower TOC concentration, but with lesser impact. The lithology map is a binary map. Regions with fine sand, with the grain size between

0.05 mm and 0.5 mm(1, being the higher feature value) has low impact on the TOC concentration. Higher sediment thickness in the

earth’s crust lead to lower TOC concentration because of dilution (Berner, 1982). Higher sea surface POC and absorption of 443 nm ocean

color wave length results in higher TOC concentration, while lower values of the features do not impact the model output greatly. Physical

oceanographic features such as higher wind speed and bottom currents result in lesser TOC concentration, due to higher resuspension of

sediments. It can be seen that the feature importance is not clearly defined as the deep ocean, because of the complex dynamics in continental

shelves. Similar to the deep sea, the higher average seawater conductivity results in lower TOC concentration.
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The summary plot in Figures E1 and E2 combines the feature importance with feature effects. The summary plot displays

Shapley values representing the impact of features on predictions. Each point represents a Shapley value for a feature and an

instance. The y-axis position indicates the feature, while the x-axis position corresponds to the Shapley value. Feature values310

are represented by color, ranging from low(blue) to high(red). To visualize feature importance, points are spread along the

y-axis to reveal the distribution of Shapley values per feature. The features are ordered based on their importance, determined

by the mean absolute Shapley values across all predictions. The Shapley value is expressed in the same units as the TOC

concentration. This indicates the extent to which a specific feature value influences the TOC concentration, whether it drives it

towards higher or lower values.315
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Appendix F: TOC stock in different marine regions

The table in Table 2 breaks down how much TOC stock is found in different parts of the ocean. Each region is listed, showing

how much TOC is there. Here we show a visualisation of the different regions in Figure F1.

In Figure F2, we use a waffle chart to make it easier to see how the TOC is split among these regions. It’s like dividing a pie

into slices, but here we use squares. With a total of about 171 Pg of TOC worldwide, the South Pacific Ocean gets the biggest320

share, while the Baltic Sea gets the smallest.

Figure F1. TOC stocks in different oceans

Figure F2. TOC stocks in different oceans: Waffle chart
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