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Abstract. Tropical and extratropical cyclones, which can cause coastal flooding, are among the most devastating natural 8 

hazards. Understanding better coastal flood risk can help to reduce their potential impacts. Global flood models play a key role 9 

in this process. In recent years, global models and methods for flood hazard simulation have improved, but they still present 10 

limitations to provide actionable information at local scales. In order to address some of those limitations we present MOSAIC, 11 

a novel modelling framework that couples dynamic water level and overland flood models. MOSAIC follows a multiscale 12 

modelling approach in which local models with high-resolution are nested within a coarser large-scale model to obtain higher-13 

resolution water levels and provide better coastal boundary conditions for dynamic flood modelling. To demonstrate the 14 

capabilities of MOSAIC we simulate three historical storm events. To merit the potential of MOSAIC’s multiscale modelling 15 

approach we perform a sensitivity analysis. Our findings indicate that various model refinements influence the simulation of 16 

total water levels and flood depths. The degree of importance of each refinement is linked to the local topography of the study 17 

area, the spatial heterogeneity of the water levels and the storm characteristics. MOSAIC provides a bridge between fully 18 

global and fully local modelling approaches, paving the way towards more actionable large-scale flood risk assessments. 19 

1 Introduction 20 

Coastal flood events can have devastating impacts on societies, economies, and the environment when affecting densely 21 

populated and low-lying coastal areas (Wadey et al., 2015). Tropical cyclones (TCs) and extratropical cyclones (ETCs) are the 22 

cause of the most severe coastal flooding events (Douris et al., 2021; Dullaart et al., 2021; Haigh et al., 2016; Reduction, 2020; 23 

Wahl et al., 2017). For example, Hurricane Harvey, in 2017, is one of the costliest storms in the United States’ history, with 24 

an estimated damage of $125 billion. Typhoon Idai, in Mozambique 2019, caused around 600 deaths and economic damages 25 

of $770 million (Nhamo & Chikodzi, 2021; Sebastian et al., 2021). In 1953, an ETC was the cause of the most severe coastal 26 

flood event in Northwest Europe, resulting in more than 2000 deaths (Wadey et al., 2015). More recently, in 2010, ETC 27 

Xynthia hit the Atlantic coast of France, causing 47 deaths and €1.2 billion economic damages (CGEDD, 2010). 28 

Coastal flood events are driven by extreme sea levels, resulting from a combination of mean sea level variations, tides, storm 29 

surges and waves (Kirezci et al., 2020; Marcos et al., 2019; Vousdoukas et al., 2017, 2018; Wahl, 2017). In recent years, 30 

several studies have applied global hydrodynamic models to simulate coastal water levels (Dullaart et al., 2021; Muis et al., 31 

2016; Pringle et al., 2021; Vousdoukas, Voukouvalas, Annunziato, et al., 2016; Wang & Bernier, 2023). Subsequently, these 32 

water levels have been used to derive extreme water level values. These extreme water levels have then been used as input 33 

into global overland flood models, and the resulting flood hazard maps have been used to assess flood exposure and risk 34 

(Vousdoukas, Voukouvalas, Mentaschi, et al., 2016). While these global studies have greatly improved our understanding of 35 

large-scale coastal flood risks, they do not yet have the accuracy to provide actionable information about coastal flood events 36 

at local scales.  37 
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The accuracy of large-scale hazard assessments is limited by several factors related to the quality of the input data and 38 

assumptions underlying the modelling approaches. Until now, the vast majority of large-scale hazard assessments have 39 

primarily concentrated on either modelling extreme water levels or overland floods. However, each model component has its 40 

own limitations. We identify here two main methodological limitations of large-scale hazard assessments. First, bathymetry 41 

and coastal geometry strongly influence extreme sea levels (Bloemendaal et al., 2019; Dullaart et al., 2020; Mori et al., 2014), 42 

with large variability at local scale. Consequently, in regions with complex morphologies, such as estuaries, semi-enclosed 43 

bays or barrier systems, global models lack the resolution required to accurately resolve the extreme sea levels (Bunya et al., 44 

2010; Dietrich et al., 2010). Grid refinement and nesting of local high-resolution models within coarser global models can 45 

result in improved coastal boundary conditions (Pelupessy et al., 2017). Second, coastal flooding is a dynamic process where 46 

flood duration and physics play a key role.  However, the high computational costs associated with using hydrodynamic flood 47 

models for large-scale hazard assessments have limited most large-scale hazard assessments to static flood modelling methods, 48 

which neglect the dynamics of flooding events for large scales (Hinkel et al., 2014; Muis et al., 2016; Ramirez et al., 2016; 49 

Vafeidis et al., 2019; Vousdoukas, Voukouvalas, Mentaschi, et al., 2016). Consequently, to date the use of hydrodynamic 50 

models has been mainly limited to local applications.  51 

To address these two main limitations, we introduce the MOSAIC (MOdelling Sea Level And Inundation for Cyclones) 52 

modelling framework. MOSAIC is a flexible Python-based modelling framework designed to dynamically simulate TC and 53 

ETC coastal flooding events. To enhance the accuracy in complex regions, MOSAIC applies a multiscale modelling approach 54 

in which local models with high-resolution (~45 m to 25 km) are nested within a large-scale model with a coarser resolution 55 

(~2.5 km to 25 km). To enable hydrodynamic flood modelling, MOSAIC couples two main existing modelling approaches: 56 

(1) to simulate water levels generated from storm surges and tides at global to local scale it couples the hydrodynamic Global 57 

Tide and Surge Model (GTSM) and Delft3D Flexible Mesh software ; and (2) to dynamically simulate overland flooding at 58 

local scale it couples the simulated water levels with the Super-Fast INunadation of CoastS model (SFINCS). We use a 59 

reproducible approach that is globally applicable and that can automatically generate local Delft3D Flexible Mesh models as 60 

well as local SFINCS models. In this study, we showcase the potential of the MOSAIC framework by applying it to three case 61 

studies where large storm surges caused catastrophic flooding events, namely historical storm events TC Irma, TC Haiyan, 62 

and ETC Xynthia (see Fig. 1; Bertin et al., 2012; Cangialosi et al., 2018; Lapidez et al., 2015). For each of these storms, we 63 

simulate the coastal water levels and flood depths. Moreover, we perform a sensitivity analysis of different modelling settings 64 

with the goal to present the potential merits of the multiscale approach. 65 

 66 

Figure 1. Case studies analysed on this paper. Left: Tropical cyclone Irma; middle: Tropical cyclone Haiyan; right: Extratropical 67 

cyclone Xynthia. The red area indicates the modelling domain of the flood analysis.  68 
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2 The MOSAIC modelling framework 69 

The MOSAIC modelling framework, shown in Fig. 2, is a Python-based framework that integrates different packages, models 70 

and software. It consists of two main components: (1) the simulation of global coastal boundary conditions with the Global 71 

Tide and Surge Model (GTSM) (Section 2.1), including the dynamic downscaling with a local high-resolution model (Section 72 

2.1.3); and (2) the overland flood hazard simulations using the SFINCS model (Section 2.2). Python scripts that enable 73 

adjustments to the GTSM settings are used to generate different model configurations. For the flood hazard simulations, 74 

MOSAIC uses the Hydro Model Tools (HydroMT) to prepare and postprocess SFINCS model input- and output data. 75 

 76 

 77 

Figure 2. Flowchart showing the input (in orange), models (in green), outputs (in blue), Python packages (in red) and the optional 78 

dynamic downscaling feature (in yellow) of MOSAIC. 79 

2.1 Derivation of coastal boundary conditions 80 

2.1.1 Meteorological forcing 81 

The meteorological forcing datasets used in this study vary per storm type. We force ETC events with mean sea level pressure 82 

and 10 m meridional and zonal wind components from the ERA5 re-analysis dataset at a horizontal resolution of 0.25 degrees 83 

and 1 hour temporal resolution (Hersbach et al., 2019). We force TC events with pressure and wind from tropical cyclone track 84 

data merged with mean sea level pressure and wind components from ERA5. The wind and pressure from tropical cyclone 85 

track data are retrieved from the National Hurricane Center from NOAA and the Joint Typhoon Warning Center at 6 hourly 86 

intervals (Naval Meteorology and Oceanography Command, 2022; NOAA, 2023) and are converted to a polar grid with 36 87 

radial bins, 375 arcs and a radius of 500 km using the Holland parametric wind model (Holland et al., 2010). The pressure and 88 

wind fields derived from track data are linearly interpolated from their outermost 33% with the ERA5 data in the background 89 

(Deltares, 2024). 90 

2.1.2 Global storm surge and tide model 91 

MOSAIC uses GTSMv3.0 to simulate total water levels resulting from tides and storm surges, ignoring baroclinic and wave 92 

contributions. GTSM is a global depth-averaged hydrodynamic model based on Delft3d Flexible Mesh (Kernkamp et al., 93 

2011). It has a spatially-varying resolution of 25 km deep in the ocean and 2.5 km along the coasts (1.25 km for Europe) 94 

(Dullaart et al., 2020; Muis et al., 2020). The spatially-varying resolution makes it computationally efficient for simulating 95 

water levels at large scales. The bathymetry in the model is the 15 arcseconds resolution EMODnet bathymetry dataset for 96 

Europe (Consortium EMODnet Bathymetry, 2018), and the 30 arcseconds General Bathymetric Chart of Oceans 2014 dataset 97 

for the rest of the globe (GEBCO, 2014). Tides are generated internally with tide generating forces, while storm surges 98 

originate from external forcing with pressure and fields (Section 2.1.1; Muis et al., 2020). GTSM has been successfully 99 

validated using different meteorological datasets and has been shown to provide accurate extreme sea levels (Dullaart et al., 100 

2020; Muis et al., 2016, 2020). 101 

2.1.3 Dynamic downscaling 102 

The dynamic downscaling within MOSAIC consists of two parts. First, MOSAIC generates a local high-resolution model with 103 

Delft3d Flexible Mesh using the Python package dfm_tools (Veenstra, 2024). Dfm_tools allows to automatically create a local 104 
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modelling grid with a spatially-varying resolution based on the specified maximum and minimum grid cell sizes as well as the 105 

Courant’s number derived from the bathymetry data (Veenstra, 2024). The settings to automatically generate the local high-106 

resolution models used in this study can be found in Section 2.3. Second, MOSAIC uses an offline coupling approach to nest 107 

the local Delft3D Flexible Mesh model within GTSM. GTSM provides the water level timeseries at the model boundaries of 108 

the local model. Then, the local high-resolution model is executed using the water levels derived from GTSM as forcing input, 109 

together with the same meteorological forcing as for GTSM.  110 

2.2 Hydrodynamic flood hazard modelling setup 111 

MOSAIC uses the Super-Fast INundation of CoastS (SFINCS) model to simulate overland storm surge flood depths. SFINCS 112 

is a reduced-physics hydrodynamic model developed for a more computationally efficient dynamic flooding approach than 113 

full shallow water equation models (Leijnse et al., 2021). It solves simplified equations of mass and momentum, similar to the 114 

LISFLOOD-FP model (Bates et al., 2010). SFINCS has been successfully applied to model compound flooding for tropical 115 

cyclone Irma in 2017 (Eilander et al., 2022; Leijnse et al., 2021). Its modelling output results in similar results to those from 116 

full shallow water equation models, while reducing computational expenses by a factor of 100 (Leijnse et al., 2021). To speed 117 

up the flood model simulations, we use the subgrid schematization from SFINCS for all the simulations (Leijnse et al., 2020). 118 

For this study, we use GEBCO 2020 (15 arc seconds spatial resolution; (Weatherall et al., 2020) and FABDEM (30 m spatial 119 

resolution; (Hawker et al., 2022) as input datasets for the bathymetry and the land elevation respectively. The spatially varying 120 

roughness coefficients used within SFINCS are derived from the land use maps of the Copernicus Global Land Service 121 

(Buchhorn et al., 2020). Within MOSAIC, SFINCS is coupled offline with water levels from GTSM at 1-hourly resolution for 122 

the default settings. The Mean Dynamic Topography (DTU10MDT; (Andersen & Knudsen, 2009)) is used to convert the 123 

vertical reference of the water levels from mean sea level to the EGM2008 geoid, which is the datum of FABDEM. The 124 

resulting flood hazard maps have a resolution of 30 m. 125 

To build the SFINCS models and couple them with GTSM, MOSAIC makes use of the HydroMTv1.0.0 (Hydro Model Tools) 126 

package (Eilander et al., 2023). HydroMT is an open-source Python package, which provides automated and reproducible 127 

model building and analysis of results. HydroMT uses a modular approach in which datasets and model setups can easily be 128 

interchanged. In the MOSAIC framework presented in this paper, we take advantage of HydroMT in several ways: (1) to 129 

automatically convert the forcing files from GTSM and the other input into their relevant format; (2) to easily build a complete 130 

SFINCS model; and (3) to perform the analysis of the flood model output.   131 

2.3 Sensitivity analysis 132 

Using the MOSAIC modelling framework, we analyse the effects of refining the resolution of GTSM on the simulated water 133 

levels and how those propagate into the results for the flood hazard simulated by SFINCS. As described in Table 1, we define 134 

a fully refined model configuration by combining three different refinements that can lead to more accurate results than those 135 

for the default GTSM: (1) the temporal output resolution, which is different than the implicitly calculated timestep of GTSM, 136 

is refined from 1-hourly to 10-minute, allowing to capture more changes in water levels, including the peaks of the water 137 

levels; (2) the spatial output resolution is refined from locations along the coast every ~5 km to ~2 km, providing more coastal 138 

boundary conditions for the hydrodynamic flood hazard model; and (3) the dynamic downscaling is performed to nest local 139 

high-resolution models into GTSM, allowing to resolve better the water levels on areas with complex topographies. 140 

Subsequently, we compare the coastal water levels and flood depths of the “fully refined”- against the results of the default 141 

configuration of GTSM. To understand how each of the three model refinements affect the output of the fully refined 142 

configuration, we also analyse the effects of each individual refinement against the results of the default configuration. These 143 

comparisons will provide insights in the potential merits of refining the global modelling approach and dynamic downscaling. 144 

Figure 3 provides a detailed overview of the different modelling configurations for the three case studies.  145 
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Table 1. GTSM model configurations used in the sensitivity analysis.  146 

Model configuration GTSM grid 

resolution 

Bathymetry Spatial output 

resolution 

Temporal output 

resolution 

Default 

configuration 
~25 to 2.5/1.25km GEBCO2014* Original (~5 km) 1h 

Fully refined 

configuration 
~25 to 0.45km GEBCO2023 Refined (~2 km) 10min** 

Refined temporal 

output resolution 
~25 to 2.5/1.25km GEBCO2014* Original (~5 km) 10min 

Refined spatial output ~25 to 2.5/1.25km GEBCO2014* Refined (~2 km) 1h 

Dynamic  

downscaling 
~25 to 0.45km GEBCO2023 Original (~5 km) 1h** 

* EMODnet for Europe 147 

**When applying dynamic downscaling, the temporal output resolution is also the temporal resolution of the coupling between GTSM and 148 

the local high-resolution model. 149 
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 150 

Figure 3. Overview of the model domains for the local high-resolution model and SFINCS, for the three case studies (panels a, b, c);  151 

default GTSM grid zoomed in (d, e, f); local high-resolution model grid zoomed in (g, h, i) and; GTSM spatial output locations for 152 

the default configuration and the refined spatial output configuration, zoomed into the SFINCS study area (j, k, l). 153 
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3 Sensitivity analysis of the model results 154 

3.1 Multiscale storm surge modelling 155 

As a first step in the sensitivity analysis, we compare the maximum total water levels of the fully refined configuration and the 156 

default configuration. In Fig. 4 we observe that the maximum water level differences between the fully refined and the default 157 

configurations lead to significantly different results for each case study. For TC Irma the fully refined configuration provides 158 

higher maximum water levels throughout almost the whole the domain, with maximum water levels up to 7.9 m, while the 159 

default configuration reaches 7.5 m. The maximum differences in maximum water levels are up to approximately 0.5 m. For 160 

TC Haiyan the fully refined and default configurations provide maximum water levels up to 13.5 m. However, there are 161 

differences in maximum water levels for Haiyan of more than 1 m both higher and lower than the default configuration 162 

depending on the region of the model domain. Finally, for ETC Xynthia the fully refined configuration provides lower 163 

maximum water levels across the whole domain, being up to 0.3 m lower than the default configuration.  164 

 165 

Figure 4. Maximum water levels for the three case studies, for the default configuration (panels a, d, g) and for the fully refined 166 

configuration (panels b, e, h). Difference between the maximum water level for the fully refined model configuration and the 167 

default configuration (panels c, f, i). 168 
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To understand the contribution of each refinement in the maximum water level differences between the fully refined 169 

configuration and the default configuration, Fig. 5 presents the differences in maximum water levels between each refinement 170 

and the default configuration. Refining the temporal output resolution of GTSM from 1-hourly to 10-minute intervals (Fig. 5 171 

panels b, e, h) results in higher maximum water levels across the entire model domain for all three case studies. For TC Irma 172 

(Fig. 5 panel b), the sensitivity of the water levels to the temporal refinement is relatively small, up to 20 cm. Water levels 173 

increase due to the temporal output refinement mostly at the location of landfall, south of Florida, while near Jacksonville the 174 

water level changes are much smaller. The cause for this might be the fact that TC Irma did not directly pass over Jacksonville, 175 

therefore the storm surge generated in that region is mainly being driven by less intense outer winds that are less sensitive to 176 

changes in temporal resolution. For TC Haiyan (Fig. 5 panel e), the sensitivity of the water levels is significant. Water levels 177 

increase due to the temporal refinement up to about 1 m along the coastlines where TC Haiyan made landfall, showing that 1-178 

hourly resolution is too coarse to accurately capture the water levels response. The cause for this might be that TC Haiyan had 179 

a rapid intensification, and when modelling water levels at 1-hourly resolution we might overlook the storm’s peak, resulting 180 

in an underestimation of the maximum water levels. For ETC Xynthia (Fig. 5 panel h), the sensitivity of the water levels to 181 

the temporal refinement is relatively small, up to 10 cm. The small changes in water levels for ETC Xynthia are likely due to 182 

the inherent characteristics of ETCs, which typically have larger dimensions, lower intensity, and a slower rate of 183 

intensification compared to TCs. This means that the changes in meteorological forcing can be well captured at a 1-hourly 184 

resolution. 185 

Refining the spatial output resolution is not shown in Fig. 5 because increasing the number of water level locations does not 186 

change the water level values themselves. However, this refinement becomes significant when these values are applied as 187 

coastal boundary conditions to SFINCS (see Section 3.2), as a greater number of coastal boundary conditions offer additional 188 

information for the flood model.  189 

Dynamic downscaling (Fig. 5 panels c, f, i) results in relatively large changes in the water levels for all the case studies. The 190 

largest differences occur along the coasts. For TC Irma (Fig. 5 panels c), the nesting of a local model at high-resolution results 191 

in maximum water levels that are about 0.5 m higher than the default configuration in the south of Florida. Those differences 192 

might be due to changes in the bathymetric data from GEBCO2014 to GEBCO2023, which can resolve better the shallow 193 

regions around the landfall location and due to the grid refinement of the region near landfall, which provides more accuracy 194 

around the barrier islands, allowing to resolve better the water levels. Near Jacksonville, approximately 500 km distance from 195 

the landfall location, the difference in maximum water levels instead are approximately 0.1 m higher. For TC Haiyan (Fig. 5 196 

panels f), the differences in maximum water levels are approximately up to 0.4 m higher and lower than the default 197 

configuration near the landfall regions. These differences might occur due to the update in bathymetry, where certain areas are 198 

shallower and certain areas deeper for GEBCO2023 in comparison to the default GEBCO2014 dataset. Furthermore, the 199 

refinement in the grid from 2.5 km to 45 m results in a significant increase in the number of model grid cells that define regions 200 

of shallow bathymetry, especially around the bay near Tacloban, resulting in a more detailed resolution of water levels in that 201 

region. Thanks to the increase on grid cells, on the strait north of Tacloban GTSM is able to better resolve the water levels, 202 

and therefore, water can travel northwards. For ETC Xynthia (Fig. 5 panels i), the water levels from the nested local model at 203 

high-resolution are overall lower than water levels for the default configuration. Near La Rochelle, those water levels are 204 

approximately 0.3 m lower. The reason for this might be due to differences in the bathymetry in the region around La Rochelle, 205 

and due to the fact that the refined grid has more grid cells that resolve the water travelling through the estuaries in the region. 206 
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 207 

Figure 5. Maximum water levels for the three case studies, for the default configuration (panels a, d, g). Difference between the 208 

maximum water level for each specific model configuration and the default configuration. Difference in water levels for the 209 

temporal output resolution refined configuration (panels b, e, h) and the dynamic downscaling configuration (panels c, f, i). 210 

3.2 Hydrodynamic flood modelling 211 

As a second step in the sensitivity analysis, we compare the maximum flood depth of the fully refined configuration and the 212 

default configuration. In Fig. 6 we observe that the maximum flood depth differences between the fully refined and the default 213 

configuration lead to different results for each case study. For TC Irma the fully refined configuration provides higher water 214 

levels throughout the whole the domain (Section 3.1) that translate into higher flood depths up to more than 0.2 m. For TC 215 

Haiyan, on the one hand the fully refined configuration provides lower water levels near Tacloban (Section 3.1), translating 216 

into lower flood depths, while on the other hand, regions south of Tacloban and north of the bay experience higher water levels 217 

that translate into higher flood depths as compared to the default configuration. Finally, ETC Xynthia presents lower water 218 

levels for the fully refined configuration (Section 3.1) that translate into lower flood depths along the coast, up to approximately 219 

0.3 m across the whole domain. Further inland, however, flood depths are higher than for the default configuration. 220 
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 221 

Figure 6. Panels a, d, g show the maximum flood depth for the default configuration for each case study. Panels b, e, h show the 222 

maximum flood depth for the fully refined configuration. Panels c, f, i show the difference between the maximum flood depth for 223 

the fully refined and the default configuration.   224 

To understand the contribution of each refinement in the maximum flood depth differences between the fully refined 225 

configuration and the default configuration, Fig. 7 presents the differences in maximum flood depths between each refinement 226 

and the default configuration. 227 

Refining GTSM’s temporal output resolution from 1-hourly to 10-minute intervals (Fig. 7 panels b, f, j) provides different 228 

results for each case study. For TC Irma (Fig. 7 panel b), the small increase in water levels as a result of the temporal output 229 

refinement (Section 3.1) also results in a small increase in flood depths. Conversely, TC Haiyan (Fig. 7 panel f) experiences 230 

much higher water levels at higher temporal resolution. As a result, it also experiences significantly higher flood depths, 231 

surpassing the default configuration by 1m in regions near Tacloban. ETC Xynthia  (Fig. 7 panel j) experiences an increase in 232 

water levels along the coast for the 10-minute temporal output resolution, which results in a general increase in flood depths 233 

of approximately 0.1 m.  234 

Refining the spatial output locations from GTSM provides coastal boundary conditions to SFINCS at additional locations, 235 

thereby improving the accuracy of the water levels input to the flood model. Figure 7 panel c shows that this refinement results 236 

in lower flood depths north of Jacksonville for TC Irma. Conversely, for TC Haiyan (Fig. 7 panel g), the increase in spatial 237 

inputs results in higher flood depths in most of the study area, particularly exceeding 1 m the default configuration flood depths 238 
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around Tacloban. For ETC Xynthia (Fig. 7 panel k) the refinement of spatial water level inputs overall leads to higher flood 239 

depths, being north of La Rochelle approximately 0.1 m higher. 240 

Dynamic downscaling for TC Irma (Fig. 7 panel d) leads to higher water levels in comparison to the default configuration. 241 

Consequently, the resulting flood depths are also higher, exceeding approximately 0.2 m above those of the default 242 

configuration. Model results for TC Haiyan (Fig. 7 panel h) generally result in lower water levels in the bay of Tacloban when 243 

applying dynamic downscaling, resulting in lower flood depths. On the strait north of Tacloban, GTSM is able to better resolve 244 

the water levels, and therefore, water can travel north, leading to higher flood depths along the strait. Finally, ETC Xynthia 245 

(Fig. 7 panel l) has lower water levels due to the dynamic downscaling. Those lower water levels lead to lower flood depths 246 

across the whole model domain.  247 

 248 

Figure 7. Panels a, e, i show the maximum flood depth for the default configuration for each case study. Panels b, f, j show the 249 

difference between the maximum flood depth for the temporal refined configuration and the default configuration. Panels c, g, k 250 

show the difference between the maximum flood depth for the refined spatial output configuration and the default configuration. 251 

Panels d, h, l show the difference between the maximum flood depth for the dynamic downscaling configuration and the default 252 

configuration.   253 

To analyse the changes of flood depths over time, Fig. 8 panels a, b, c show the flood depth timeseries at the SFINCS output 254 

point locations outlined in Fig. 6, for the default and fully refined configurations as well as the three individual refinements. 255 

While the timing and shape of the flood depth timeseries remains consistent across all the model configurations for all the case 256 

studies, there are differences in the magnitude of the flood depths. Figure 8 panel a shows that for TC Irma the fully refined 257 

configuration leads to higher flood depths than those for the default configuration. It can be observed that the cause for that 258 

increase in flood depths is mostly triggered by the dynamic downscaling, which results in flood depths more than 0.5 m higher 259 

than those with the default configuration. On the contrary, the temporal and spatial output refinements do not have much 260 

influence on the flood depths at this SFINCS output point location. Figure 8 panel b shows that for TC Haiyan the fully refined 261 

configuration leads to similar flood depths than those for the default configuration. It can be observed that refining the temporal 262 
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and spatial output resolution results in flood depths approximately 1 m higher than the default configuration. However, the 263 

dynamic downscaling produces lower flood depths, compensating the other refinements and leading to similar results for the 264 

fully refined and default configurations at the peak of the event. A smaller flood peak occurs around 05:00 on the 8th of 265 

November, where the timing of the fully refined configuration occurs earlier, probably as an effect of the temporal output 266 

resolution refinement. Finally, Fig. 8 panel c shows that for ETC Xynthia the fully refined configuration leads to lower flood 267 

depths than those for the default configuration. The results of the fully refined configuration seem mostly influenced by the 268 

dynamic downscaling but with higher flood depths at the flood peaks of the event, which could be the result of the temporal 269 

and spatial output refinements.  270 

Panels a, b, c in Fig. 8 only show the results for a single SFINCS output point location. However, the refinement that has the 271 

most effect on the fully refined configuration might be different when looking at other SFINCS output point locations. For TC 272 

Haiyan, for example, when looking at Fig. 6 and Fig. 7 we observe that the water levels and resulting flood depths for the fully 273 

refined configuration are similar to those for the dynamic downscaling near Tacloban, while south of Tacloban the temporal 274 

and spatial output refinements seem to be more dominant. For ETC Xynthia, when looking at Fig. 6 and Fig. 7 we observe that 275 

the flood depths for the fully refined configuration are similar to those for the dynamic downscaling along the coasts, but 276 

further inland the temporal and spatial output refinements seem more dominant. To understand the overall effect of each 277 

refinement in the fully refined configuration, Fig. 8 panels d, e, f show the flood volume timeseries across each of the case 278 

study’s model domain. While the timing and shape of the flood volume timeseries remains consistent across all the model 279 

configurations for all the case studies, there are differences in the magnitude of the flood volumes. Figure 8 panel d shows that 280 

for TC Irma the fully refined configuration leads to higher flood volumes than those for the default configuration. It can be 281 

observed that the cause for that increase in flood volume is mostly triggered by the dynamic downscaling, which results in 282 

flood volumes of more than 2x107 m3 than those with the default configuration. On the contrary, the temporal output refinement 283 

does not have much influence on the flood volume, and the spatial output refinement leads to lower flood volumes than the 284 

default scenario. Figure 8 panel e shows that for TC Haiyan the fully refined configuration leads to significantly higher flood 285 

volumes than those for the default configuration. At the peak of the event, the fully refined configuration leads to approximately 286 

2x108 m3 more than the default. This increase in volume seems to be the result of a combination of all the refinements, with 287 

the increase in temporal output resolution being the refinement that leads to most similar results. Finally, Fig. 8 panel f shows 288 

that for ETC Xynthia the fully refined configuration presents similar flood volumes as the default configuration. At the first 289 

flood peak, the flood volume provides similar results as the default, due to the lower flood volumes caused by the dynamic 290 

downscaling that seem to compensate the higher volumes caused by the temporal and spatial output refinements. In the second 291 

flood peak, however, the fully refined configuration shows lower flood depths than those for the default configuration. The 292 

reason for this could be the fact that compared to the first peak, the dynamic downscaling in this peak presents lower flood 293 

volumes with respect to the default configuration. 294 

 295 
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 296 

Figure 8. Flood depth timeseries for three observation points and flood volume timeseries for the SFINCS model domain of each 297 

case study. The spatial location of the SFINCS output point locations can be observed in Fig. 6. 298 

4 Discussion and Conclusions 299 

The MOSAIC modelling framework introduced in this study allows to dynamically simulate coastal flooding events. MOSAIC 300 

enables the coupling of dynamic water level and overland flood models making use of a Python environment. As such, the 301 

approach is automated and reproducible, and combined with the hydrodynamic models used, this makes the approach globally 302 

applicable. It allows us to easily simulate coastal flooding events globally, and its multiscale modelling approach also allows 303 

us to enhance the simulation at local scale by providing refined water levels. MOSAIC provides a bridge between fully global 304 

and fully local modelling approaches, and thereby paves the way for more actionable large-scale flood risk assessments.  305 

The results of the sensitivity analysis conducted in this study reveal the complexity of hydrodynamic modelling and the 306 

sensitivity to specific local settings and storm characteristics. When comparing the fully refined and the default configurations, 307 

the behaviour of each case study differs in terms of changes in water levels and flood depth, both, spatially and in magnitude. 308 

For TC Irma the fully refined configuration results in higher water levels and flood depths, while for TC Haiyan it results in 309 

region with higher and regions with lower water levels and flood depths, and for ETC Xynthia water levels become lower 310 

overall, and flood depths result lower along the coast but higher further inland. The effects of refining the temporal output 311 

resolution on the one hand seem to have large influence for TCs, resulting in water levels and flood depths more than 0.5 m 312 

and 1 m higher for TC Haiyan, respectively. On the other hand, for ETCs, the refining of the temporal output resolution does 313 

not change the water levels and flood depths significantly, being 1-hourly temporal resolution enough. Refining the spatial 314 

output locations of GTSM provides more coastal boundary conditions for SFINCS, resulting always in more accurate flood 315 

depth results. However, for regions where the water levels have more spatial heterogeneity along the coast, this refinement 316 

becomes most relevant. For TC Haiyan, for example, this refinement leads to flood depths 1 m higher than the default 317 

configuration. Furthermore, changes in water levels due to dynamic downscaling are notably affected by the bathymetry used 318 

to generate the local high-resolution models. This refinement leads to maximum water levels more than 0.5 m higher for TC 319 

Irma and 0.3 m lower for ETC Xynthia, in comparison to the default configuration. Looking at the effects of each refinement, 320 

we observe that while for TC Irma the refinement that most affects the model results is the dynamic downscaling, for TC 321 

Haiyan and ETC Xynthia the fully refined configuration seems to be a combination of all the refinements. Based on these 322 

results, we conclude that refinement of the global modelling approach can significantly impact the simulation of coastal water 323 

levels and flood depths at local scale. This highlights the potential merit of a multiscale modelling approach within local 324 

refinement as applied in MOSAIC.  325 
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There are several limitations that need to be taken into account when using MOSAIC. Limitations that are linked to general 326 

flood hazard modelling and not specific to MOSAIC include the following: (1) the meteorological forcing data can be a big 327 

source of uncertainty when modelling extreme water levels. MOSAIC allows to combine the results of the Holland model with 328 

climate reanalysis datasets in the background to enhance the wind and pressure fields at the peripheries of the TCs. Nonetheless, 329 

the implementation of more advanced wind parametric models could further improve the water level simulations (Emanuel & 330 

Rotunno, 2012; Hu et al., 2011). (2) the accuracy of the bathymetry has a large influence on storm surge modelling 331 

(Bloemendaal et al., 2019; Dullaart et al., 2020; Mori et al., 2014). When performing dynamic downscaling, MOSAIC uses 332 

bathymetry data to generate the model grid and subsequently simulate total water levels. Using higher-resolution local 333 

bathymetry enables finer grid refinement and enhances the accuracy of the results. However, such high-resolution bathymetry 334 

is not always available. MOSAIC is set up to allow the substitution of bathymetric data with alternative datasets, to adjust the 335 

grid resolution and refinement, and to define the desired domain of the local high-resolution model. (3) digital elevation models 336 

(DEMs) can have a large influence on flood model simulations, affecting the flood hazard depth map results. In this paper we 337 

use the FABDEM dataset, but MOSAIC allows to replace the DEM with higher resolution local datasets, when available.  338 

MOSAIC’s main limitation lies in the generation of the local high-resolution models for dynamic downscaling. These 339 

automatically generated local high-resolution models can present instabilities when refined grid cells are present at the model 340 

boundaries. Therefore, care needs to be taken when applying dynamic downscaling. To solve this problem the first 0.3 degrees 341 

around the model domain are not being refined in this study. When changes in grid refinement are abrupt, model instabilities 342 

can also occur. The nesting of multiple models in each other would allow for a smoother grid transition and might solve this 343 

issue. 344 

In this study, we have implemented MOSAIC to simulate TC and ETC coastal flooding as a result of storm surges. Future 345 

research on TCs and ETCs may further develop MOSAIC and include other drivers such as waves, rainfall and discharge. 346 

Considering that HydroMT and SFINCS are capable of handling compound flooding induced by pluvial and fluvial drivers 347 

(Eilander et al., 2023), there is potential for future enhancements of MOSAIC to incorporate the modelling of compound 348 

events. Furthermore, MOSAIC currently makes use of offline coupling for both the local-high resolution model and the 349 

SFINCS model. However, new software developments such as Oceanographic Multi-purpose Software Environment 350 

(OMUSE; Pelupessy et al., 2017) could be used in the future to move from offline to online coupling, and to further expand 351 

MOSAIC by allowing for coupling with other models such as hydrological or ocean models. The flexibility of MOSAIC to 352 

modify the input datasets could be leveraged to study events under historical- and climate change conditions. Furthermore, 353 

taking advantage of MOSAIC’s multiscale modelling approach, TC/ETC high-resolution hazard assessments can be obtained 354 

globally. When linked to impact models, MOSAIC could also be used for risk assessments. 355 

Data availability 356 

The datasets compiled and/or analysed during the current study are available on Zenodo. Note: to be published with Doi 357 

upon acceptance of the paper.  358 

Code availability 359 

The underlying code for this study is available on Zenodo. Note: to be published with Doi upon acceptance of the paper.  360 
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