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Abstract. Tropical and extratropical cyclones, which can cause coastal flooding, are among the most devastating natural 8 

hazards. Understanding coastal flood risk better can help to reduce their potential impacts. Global flood models play a key role 9 

in this process. In recent years, global models and methods for flood hazard simulation have improved, but they still present 10 

limitations to provide actionable information at local scales. One notable limitation is the insufficient resolution of global 11 

models to accurately capture the complexities of storms and topography of specific regions. Additionally, most large-scale 12 

hazard assessments tend to focus solely on either offshore water level simulations or overland flooding, often relying on static 13 

flood modelling approaches. In this study, we introduce the MOSAIC modelling framework, a flexible, Python-based 14 

framework designed to dynamically simulate both offshore water levels and coastal flooding. MOSAIC provides a multiscale 15 

modelling approach to automatically generate and nest high-resolution local models within a coarser global model. This 16 

approach seeks to simulate more accurate water levels, thereby enhancing coastal boundary conditions for dynamic flood 17 

modelling. We showcase the potential of MOSAIC for three historical storm events with the aim of assessing the effects of 18 

temporal and spatial resolution refinements and bathymetry data. Our findings indicate that the importance of model 19 

refinements is linked to the topography of the study area and the storm characteristics. For instance, refining temporal output 20 

resolution has a significant impact on small and rapidly intensifying tropical cyclones, but is less critical for extratropical 21 

cyclones. Additionally, the refinement of spatial output locations is particularly relevant in regions where water levels exhibit 22 

high spatial heterogeneity along the coast. In regions with complex topographies, grid refinement and higher-resolution 23 

bathymetry play a more significant role. MOSAIC provides an automated approach to provide flood maps at a local scale. Our 24 

results confirm the proof of concept that the automated approach of MOSAIC can be used to provide high-resolution flood 25 

maps without the need for calibration or other manual steps. As such, MOSAIC provides a bridge between fully global and 26 

fully local modelling approaches. In future work, further validation could be carried out to explore the optimal settings for 27 

different regions more in depth. 28 

1 Introduction 29 

Coastal flood events can have devastating impacts on societies, economies, and the environment when affecting densely 30 

populated and low-lying coastal areas (Wadey et al., 2015). Tropical cyclones (TCs) and extratropical cyclones (ETCs) are the 31 

cause of the most severe coastal flooding events (Douris et al., 2021;  Haigh et al., 2016; UNDRR, 2020; Wahl et al., 2017). 32 

For example, Hurricane Harvey, in 2017, is one of the costliest storms in the United States’ history, with an estimated damage 33 

of $125 billion. Typhoon Idai, in Mozambique 2019, caused around 600 deaths and economic damages of $770 million (Nhamo 34 

and Chikodzi, 2021; Sebastian et al., 2021). In 1953, an ETC was the cause of the most severe coastal flood event in Northwest 35 

Europe, resulting in more than 2000 deaths (Wadey et al., 2015). More recently, in 2010, ETC Xynthia hit the Atlantic coast 36 

of France, causing 47 deaths and €1.2 billion economic damages (CGEDD, 2010). 37 
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Coastal flood events are driven by extreme sea levels, resulting from a combination of mean sea level variations, tides, storm 38 

surges and waves (Kirezci et al., 2020; Marcos et al., 2019; Vousdoukas et al., 2017, 2018a; Wahl, 2017). In recent years, 39 

several studies have applied global hydrodynamic models to simulate coastal water levels (Dullaart et al., 2021; Muis et al., 40 

2016; Pringle et al., 2021; Vousdoukas et al., 2016a; Wang and Bernier, 2023). Subsequently, these water levels have been 41 

used to derive extreme water level values for various return periods. These extreme water levels have then been used as input 42 

into global overland flood models (Wing et al., 2024), and the resulting flood hazard maps have been used to assess flood 43 

exposure and risk (Vousdoukas et al., 2016b). While these global studies have greatly improved our understanding of large-44 

scale coastal flood risks, they do not yet have the accuracy to provide actionable information about coastal flood events at local 45 

scales.  46 

The accuracy of large-scale hazard assessments is limited by several factors related to the quality of the input data and 47 

assumptions underlying the modelling approaches. Until now, the vast majority of large-scale hazard assessments have 48 

primarily concentrated on either modelling extreme water levels or modelling overland floods. Each model component has its 49 

own limitations. We identify here three main methodological limitations of large-scale hazard assessments. First, coastal 50 

geometry strongly influences extreme sea levels (Mori et al., 2014; Woodruff et al., 2023), with large variability at local scale. 51 

Consequently, in regions with complex morphologies, such as estuaries, semi-enclosed bays or barrier systems, global models 52 

lack the resolution required to accurately resolve the extreme sea levels (Bunya et al., 2010; Dietrich et al., 2010; Islam et al., 53 

2021). Grid refinement and nesting of local high-resolution models within coarser global models can result in improved coastal 54 

boundary conditions. Pelupessy et al. (2017) used a multiscale approach to obtain realistic boundary conditions by nesting a 55 

global circulation model and a high-resolution barotropic model. Similarly, the Coastal Storm Modeling System (CoSMoS) 56 

combines global climate models and oceanographic models dynamically downscaled to assess compound flooding and coastal 57 

changes at regional to local scale (Barnard et al., 2025, 2019, 2014; Nederhoff et al., 2024) and Camus et al. (2011) used a 58 

dynamic downscaling approach to translate global wave data into higher spatiotemporal resolution waves for the Spanish coast. 59 

Second, the accuracy of input datasets such as the meteorological forcing and the bathymetry have large influence on the total 60 

water levels. Coarse meteorological forcings – both in terms of spatial and temporal resolution – might not be able to  resolve 61 

intense storms (Hodges et al., 2017; Murakami, 2014; Thomas et al., 2021), while errors in the bathymetric datasets will 62 

propagate to the modelling of storm surge levels (Woodruff et al., 2023). Third, coastal flooding is a dynamic process where 63 

flood duration and physical processes play a key role. However, given the high computational costs associated with using 64 

hydrodynamic flood models, their use has been limited to local application. Most large-scale hazard assessments have used 65 

static flood modelling methods, which neglect flood dynamics (Hinkel et al., 2014; Muis et al., 2016; Ramirez et al., 2016; 66 

Vafeidis et al., 2019; Vousdoukas et al., 2016b). Additionally, large-scale hazard assessments typically focus on a single flood 67 

driver (Alfieri et al., 2017; Hirabayashi et al., 2021; Tiggeloven et al., 2020; Vousdoukas et al., 2018b; Ward et al., 2020). 68 

However, TC and ETC events often produce precipitation, river discharge, storm surges and waves, all of which can contribute 69 

to flooding. When these drivers occur in combinations, they can significantly amplify flood hazards and risks. This is 70 

demonstrated by the modelling of, for example, hurricane Florence that hit the US in 2018 (Gori et al., 2020). Few large-scale 71 

studies have analysed the effects and interactions of multiple flood drivers. While Bates et al. (2021) performed a combined 72 

risk assessment of fluvial, pluvial and coastal flooding for the continental USA, Eilander et al. (2023) introduced a globally-73 

applicable compound flood modelling framework that accounts for precipitation, river discharge and storm tides.    74 

In this study, we present the open-source MOSAIC (MOdelling Sea Level And Inundation for Cyclones) modelling framework 75 

to simulate any TC and ETC water levels and coastal flooding events. Coastal flooding is dynamically modelled by coupling 76 

of two existing modelling approaches: (1) to simulate water levels generated from storm surges and tides it couples the 77 

hydrodynamic Global Tide and Surge Model (GTSM) and Delft3D Flexible Mesh software; and (2) to dynamically simulate 78 

overland flooding it couples the simulated water levels with the Super-Fast INunadation of CoastS model (SFINCS). MOSAIC 79 
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is based on Python and global datasets, and as such provides a globally-applicable and reproducible approach that can 80 

automatically build and process Delft3D Flexible Mesh and SFINCS models. As such it is well suited for a model comparison 81 

study to test different model setups.  82 

Here we showcase the potential of the MOSAIC framework by applying it to three case studies where large storm surges 83 

caused catastrophic flooding events, namely historical storm events TC Irma, TC Haiyan, and ETC Xynthia (see Figure 1; 84 

Bertin et al., 2012; Cangialosi et al., 2018; Lapidez et al., 2015). For each of these storms, we simulate the coastal water levels 85 

and flood depths using automatically build, uncalibrated models. Where available, we evaluate the model performance by 86 

comparing against observed water levels and flood maps. Moreover, we perform a sensitivity analysis of different modelling 87 

settings. This includes the effects of model resolution, output resolution and improvements in bathymetry. 88 

 89 

Figure 1. Case studies analysed on this paper. Left: Tropical cyclone Irma; middle: Tropical cyclone Haiyan; right: Extratropical 90 

cyclone Xynthia. The red area indicates the modelling domain of the flood analysis.  91 

 92 

2 The MOSAIC modelling framework 93 

The MOSAIC modelling framework, shown in Fig. 2, is a Python-based framework that integrates different packages, models 94 

and software. It consists of two main components: (1) the simulation of global coastal boundary conditions with the Global 95 

Tide and Surge Model (GTSM) (Section 2.1), including the dynamic downscaling with a local high-resolution model (Section 96 

2.1.3); and (2) the overland flood hazard simulations using the SFINCS model (Section 2.2). Python scripts that enable 97 

adjustments to the GTSM settings are used to generate different model configurations. For the flood hazard simulations, 98 

MOSAIC uses the Hydro Model Tools (HydroMT) to prepare and postprocess SFINCS model input and output data. 99 

 100 

 101 

Figure 2. Flowchart showing the input (in orange), models (in green), outputs (in blue), Python packages (in red) and the optional 102 

dynamic downscaling feature (in yellow) of MOSAIC. 103 
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2.1 Derivation of coastal boundary conditions 104 

2.1.1 Meteorological forcing 105 

The meteorological forcing datasets used in this study vary per storm. For ETC Xynthia and TC Irma, we use mean sea level 106 

pressure and 10 m meridional and zonal wind components from the ERA5 re-analysis dataset at a horizontal resolution of 0.25 107 

degrees and 1 hour temporal resolution (Hersbach et al., 2019). Because TC Haiyan is not well resolved in ERA5 (see Fig. 108 

A1), we use pressure and wind from tropical cyclone track data merged with  ERA5. The tropical cyclone track data is retrieved 109 

from the Joint Typhoon Warning Center at 6 hourly intervals (Naval Meteorology and Oceanography Command, 2022) and is 110 

converted to a polar grid with 36 radial bins, 375 arcs and a radius of 350 km using the Holland parametric wind model 111 

(Holland et al., 2010). Following the methodology of Dullaart et al. (2021) and Lin and Chavas (2012), we apply a counter-112 

clockwise rotation angle of β = 20° and set the storm translation to surface background wind reduction factor at α = 0.55. 113 

Additionally, we use an empirical surface wind reduction factor (SWRF) of 0.85 (Batts et al., 1980), and convert 1-minute 114 

average winds to 10-minute averages using a factor of 0.915 (Harper et al., 2010). The Holland model’s output provides a file 115 

that defines a polar grid containing pressure and wind fields. To extend the pressure and wind fields beyond the Holland 116 

model’s defined TC boundary, we linearly interpolate these fields on the outermost 75% to align with the ERA5 background 117 

data (Deltares, 2024). 118 

2.1.2 Global storm surge and tide model 119 

MOSAIC uses GTSMv4.1 to simulate water levels resulting from tides and storm surges, ignoring baroclinic and wave 120 

contributions. GTSM is a global depth-averaged hydrodynamic model based on Delft3D Flexible Mesh (Kernkamp et al., 121 

2011). It has a spatially-varying resolution of 25 km deep in the ocean and 2.5 km along the coasts (1.25 km for Europe) 122 

(Dullaart et al., 2020; Muis et al., 2020). The spatially-varying resolution makes it computationally efficient for simulating 123 

water levels at large scales. The bathymetry in the model is the 15 arcseconds resolution EMODnet bathymetry dataset for 124 

Europe (Consortium EMODnet Bathymetry, 2018), and the 30 arcseconds General Bathymetric Chart of Oceans 2019 dataset 125 

for the rest of the globe (GEBCO, 2014). Tides are generated internally with tide generating forces, while storm surges 126 

originate from external forcing with pressure and wind fields (Section 2.1.1; Muis et al., 2020). A constant Charnock coefficient 127 

of 0.041 is applied to translate wind speeds from the external forcing into wind drag, and a background pressure of 101,325 128 

Pa is considered. GTSM has been successfully validated using different meteorological datasets and has been shown to provide 129 

accurate extreme sea levels (Dullaart et al., 2020; Muis et al., 2020, 2016). Version 4.1 is a calibrated version of the model 130 

with also improved parametrizations for internal tides and bottom friction coefficient (Deltares, 2021; Wang et al., 2022a). 131 

GTSM provides as output water level timeseries over a grid in the ocean and for locations along every ~5 km of the coast. 132 

To validate the coastal component of our modelling framework, we compare water levels from GTSM against observed water 133 

levels from tide gauge stations of the Global Extreme Sea Level Analysis (GESLA) dataset (Haigh et al., 2023). This 134 

comparison is made for case studies where the GTSM output locations are found nearby tide gauge stations from GESLA (see 135 

Figure 3). GTSM output is referenced to mean sea level (MSL). We reference the GESLA water levels to the MSL by removing 136 

the annual average water level for each year, and subsequently removing the mean over the 1985-2005 period from the de-137 

trended time series. To assess the accuracy of GTSM, we calculate the Pearson’s correlation coefficient and the root mean-138 

squared error (RMSE; see Table A1). Figure 4 and Fig. 5 show the time series of water levels at different tide gauge stations 139 

during landfall of TC Irma and ETC Xynthia, respectively. The Pearson’s correlation between the GTSM-simulated and 140 

observed water levels is high for both events, indicating a good agreement. For TC Irma, the average correlation across the 141 

nine stations is 0.93 with a  standard deviation of 0.06 m. For ETC Xynthia, the average correlation across the six stations is 142 

1.00 with a standard deviation of 0.01. Additionally, TC Irma has an average RMSE of 0.28 m with a standard deviation of 143 

0.09 m. ETC Xynthia has a RMSE of 0.22 m with a standard deviation of 0.08 m. The stations performing less well are those 144 

located in enclosed harbours or behind the barrier islands. The RMSE values of GTSM for both storms show results comparable 145 
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to other large-scale studies that have used hydrodynamic models to simulate storm tides of storm events. Marsooli and Lin 146 

(2018) and Gori et al. (2023), for example, used the ADvanced CIRCulation model (ADCIRC) to simulate storm tides with an 147 

average RMSE over stations of 0.31 and 0.29 m, respectively. Vogt et al. (2024) used the GeoCLaw solver and reported an 148 

average RMSE of 0.24 m over 213 tide gauge stations, but with a Pearson’s correlation of 0.5, showing less good agreement 149 

with observed storm tides than the MOSAIC model setup presented in this study.  150 

 151 

Figure 3. GESLA tide gauge stations for the case studies Irma (panel a) and Xynthia (panel b). 152 

 153 

Figure 4. Validation of water levels for the case study Irma, for the nine tide gauge stations depicted in Fig. 3. 154 
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 155 

Figure 5. Validation of water levels for the case study Xynthia for the six tide gauge stations depicted in Fig. 3. 156 

2.1.3 Dynamic downscaling 157 

The dynamic downscaling within MOSAIC consists of two parts. First, MOSAIC generates a local high-resolution model with 158 

Delft3D Flexible Mesh using the Python package dfm_tools (Veenstra, 2024). Dfm_tools allows to automatically create a local 159 

modelling grid with a spatially-varying resolution based on the specified maximum and minimum grid cell sizes as well as the 160 

Courant’s number derived from the bathymetry data provided (Veenstra, 2024). The bathymetry of the local model can be 161 

updated by interpolating a new bathymetric dataset into the newly generated grid. The settings to automatically generate the 162 

local high-resolution models used in this study can be found in Section 2.3. Second, MOSAIC uses an offline coupling 163 

approach to nest the local Delft3D Flexible Mesh model within GTSM. A Python script is used to first identify the boundaries 164 

of the local Delft3D Flexible Mesh model. These boundaries are then used to determine the specific locations where GTSM 165 

output should be extracted. Subsequently, GTSM provides the water level timeseries at the boundaries of the local model. 166 

Finally, the local high-resolution model is executed using the water levels derived from GTSM as forcing input, together with 167 

the same meteorological forcing as for GTSM.  168 

2.2 Hydrodynamic flood hazard modelling setup 169 

MOSAIC uses the Super-Fast INundation of CoastS (SFINCS) model to simulate overland storm surge flood depths. SFINCS 170 

is a reduced-physics hydrodynamic model developed for a more computationally efficient dynamic flooding approach than 171 

full shallow water equation models (Leijnse et al., 2021). It solves simplified equations of mass and momentum, similar to the 172 

LISFLOOD-FP model (Bates et al., 2010). SFINCS has been successfully applied to model compound flooding for tropical 173 

cyclone Irma in 2017 (Eilander et al., 2023; Leijnse et al., 2021). Its modelling output results in similar results to those from 174 

full shallow water equation models, while reducing computational expenses by a factor of 100 (Leijnse et al., 2021). To speed 175 

up the flood model simulations, we use the subgrid schematization from SFINCS for all the simulations (Leijnse et al., 2020). 176 

For this study, we use GEBCO 2020 (15 arc seconds spatial resolution; (Weatherall et al., 2020)) as input dataset for the 177 

bathymetry and FABDEM (30 m spatial resolution; (Hawker et al., 2022)) as input dataset for the land elevation. Except for 178 

ETC Xynthia. For ETC Xynthia we use the 5 m resolution LiDAR-based DEM developed by the French National Geographic 179 

Institute (IGN) because it better represents dikes in the region, leading to better flood estimates than FABDEM (see Fig. A14). 180 

The spatially varying roughness coefficients used within SFINCS are derived from the land use maps of the Copernicus Global 181 

Land Service (Buchhorn et al., 2020). Within MOSAIC, SFINCS is coupled offline with water levels from GTSM at 1-hourly 182 
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resolution for the default settings. The Mean Dynamic Topography (DTU10MDT; (Andersen and Knudsen, 2009) is used to 183 

convert the vertical reference of the water levels from mean sea level to the EGM2008 geoid. The resulting flood hazard maps 184 

have a resolution of 30 m. 185 

To build the SFINCS models and couple them with GTSM, MOSAIC uses the HydroMTv0.7.1 (Hydro Model Tools) package 186 

(Eilander et al., 2023). HydroMT is an open-source Python package, which provides automated and reproducible model 187 

building and analysis of results. HydroMT uses a modular approach in which datasets and model setup configurations can 188 

easily be interchanged. In the MOSAIC framework presented in this paper, we take advantage of HydroMT in several ways: 189 

(1) to automatically convert the forcing files from GTSM and the other input into the model specific input format; (2) to easily 190 

build a reproducible SFINCS model; and (3) to perform the analysis of the SFINCS model output. SFINCS is forced with 191 

GTSM water level timeseries at locations along every ~5 km of the coastline, and provides as output water level timeseries for 192 

each grid cell. Finally, flood depth maps are derived from the maximum water levels by subtracting the DEM. 193 

To validate the hydrodynamic flood hazard modelling component of the modelling framework, we compare the modelled flood 194 

extents with observed flood extents derived from field measurements. This comparison is done for Xynthia, the only case study 195 

for which observed flood extent data are available (Breilh et al., 2013; DDTM, 2011). We measure the model skill using: (1) 196 

the hit rate (H), defined as the flood area correctly simulated over the observed flooded area (Eq (1)); (2) the false-alarm ratio 197 

(F), defined as the area wrongly simulated over the observed flooded area (Eq (2));  and (3) the critical success index (C), 198 

defined as the area correctly simulated to be flooded over the union of the observed and modelled flooded area (Eq (3)). Figure 199 

6 shows the skill of the modelled maximum flood extents by SFINCS using the GTSM water levels as forcing. The hit rate is 200 

0.78, correctly representing the flooding in most regions, only underestimating it in regions further inland. The false-alarm 201 

ratio of the model is 0.62. Flooding is overestimated in the north, likely due to the lack of flood protection measures included 202 

in the model that are present in reality. The critical success index is 0.48, as a result of the areas well simulated and those over 203 

and underpredicted. While the performance of the flood model is negatively affected by the quality of the topography and the 204 

representation of local features such as dikes, we consider the performance sufficient for large-scale modelling and comparable 205 

to other studies such as Ramirez et al. (2016) and Vousdoukas et al. (2016b). 206 

H =  
Fmodelled∩ Fobserved

Fobserved
        (1) 207 

F =  
Fmodelled/ Fobserved

Fobserved
        (2) 208 

C =  
Fmodelled∩ Fobserved

Fmodelled∪Fobserved
        (3) 209 
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 210 

Figure 6. Validation of the flood hazard modelling component of the modelling framework for the case study Xynthia, using the 211 

water levels of the default configuration of GTSM as a forcing. The maps compare the modelled and observed maximum flood 212 

extents, where: green indicates flood areas correctly simulated; blue flood areas not simulated but observed; and red flood areas 213 

simulated but not observed. Performance indicators for the hit rate (H), false-alarm ratio (F) and critical success index (C) are shown 214 

in the panel. 215 

2.3 Sensitivity analysis 216 

Using the MOSAIC modelling framework, we analyse the effects of refining the resolution of GTSM on the simulated water 217 

levels and assess how these propagate into the results for the flood hazard simulated by SFINCS. As described in Table 1, we 218 

categorise model configurations in two distinct groups. The first group, which contains the global model configurations (G), 219 

includes the default model configuration (G1) and configurations that modify only the global GTSM model (G2 and G3). In 220 

this group, the refinements applied are: (1) the temporal output resolution, which is different than the implicitly calculated 221 

simulation timestep of GTSM, is refined from 1-hourly to 10-minute, allowing to capture more changes in water levels, 222 

including the peaks of the water levels (G2); and (2) the spatial output resolution is refined from locations along the coast 223 

every ~5 km to ~2 km, providing more coastal boundary conditions for the hydrodynamic flood hazard model (G3). The second 224 

group, which contains the nested model configurations (N), includes those model configurations that use a nested local model 225 

within the global model GTSM by performing dynamic downscaling. These model configurations include: (1) the nesting of 226 

local high-resolution models with refined grids into GTSM (N1); and (2) the nesting of local high-resolution models with 227 

refined grids and updated bathymetry into GTSM (N2). Finally, we evaluate the combined effects of all these refinements 228 

through the “fully refined” configuration (N3), which integrates both the enhanced temporal and spatial resolutions as well as 229 

the nested high-resolution models and updated bathymetry. The validation of GTSM and SFINCS shows sufficient 230 

performance for all the model configurations from Table 1 and Fig. 7 (see Table A1 and Figs. A2, A3 and A15).   231 
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Table 1. GTSM model configurations used in the sensitivity analysis.  232 

Model configuration Nomenclature GTSM grid 

resolution 

Bathymetry Spatial output 

resolution 

Temporal output 

resolution 

Default 

configuration 

G1 ~25 to 

2.5/1.25km 

GEBCO2019

* 

Original  

(~5 km) 

1h 

Refined temporal output resolution G2 ~25 to 

2.5/1.25km 

GEBCO2019

* 

Original  

(~5 km) 

10min 

Refined spatial output G3 ~25 to 

2.5/1.25km 

GEBCO2019

* 

Refined  

(~2 km) 

1h 

Dynamic downscaling (Refined grid) N1 ~25 to 

0.45km 

GEBCO2019

* 

Original  

(~5 km) 

1h** 

Dynamic downscaling (Refined grid 

+ Updated bathymetry) 

N2 ~25 to 

0.45km 

GEBCO2023 Original  

(~5 km) 

1h** 

Fully refined  

configuration 

N3 ~25 to 

0.45km 

GEBCO2023 Refined  

(~2 km) 

10min** 

* EMODnet2018 for Europe (Xynthia case study) 233 

**For the model configurations N1, N2 and N3, the temporal output resolution is also the temporal resolution of the coupling between 234 

GTSM and the local high-resolution model. 235 

 236 
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 237 

Figure 7. Overview of the model domains for the local high-resolution model and SFINCS, for the three case studies (panels a, b, c);  238 

default GTSM grid zoomed in (d, e, f); local high-resolution model grid zoomed in (g, h, i) and; GTSM spatial output locations for 239 

the default configuration and the refined spatial output configuration, zoomed into the SFINCS study area (j, k, l). 240 
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3 Sensitivity analysis of the model results 241 

3.1 Multiscale storm surge modelling 242 

Figure 8 panels a, e and i show the maximum water levels simulated by G1 for the three case studies, and depict the maximum 243 

observed water levels for various GESLA tide gauge stations. To understand the effect of each individual refinement in the 244 

maximum water levels, Figure 8 presents the differences in maximum water levels between each refinement and the model 245 

configuration G1. Figure 9 presents the differences in maximum water levels between the fully refined model configuration 246 

N3 and the model configuration G1. 247 

3.1.1 Effects of higher resolution on water levels 248 

Figure 8 panels b, f, j show that the refinement of temporal output resolution of GTSM from 1-hourly to the 10-minute intervals 249 

of G2 results in higher maximum water levels across the entire model domain for all three case studies. For TC Irma (Fig. 8 250 

panel b), the sensitivity of the water levels to the temporal refinement is relatively small, less than 10 cm. The small effect of 251 

the temporal refinement for TC Irma can be observed as well in Table A1 and Fig. A2, where G1 and G2 present similar 252 

timeseries and performance coefficients when compared to observed water levels. For TC Haiyan (Fig. 8 panel f), the 253 

sensitivity of the water levels is significant. Water levels increase due to the temporal refinement up to 2 m along the coastlines 254 

where TC Haiyan made landfall, showing that 1-hourly resolution is too coarse to accurately capture the water level response. 255 

The cause for this is that TC Haiyan had a rapid intensification, and when modelling water levels at 1-hourly resolution we 256 

overlook the storm’s peak, resulting in an underestimation of the maximum water levels. G2 however, can capture the peak of 257 

TC Haiyan more precisely (see Figs. A4 and A5). For ETC Xynthia (Fig. 8 panel j), the sensitivity of the water levels to the 258 

temporal refinement is relatively small, less than 10 cm on average, and slightly higher in enclosed basins and estuaries near 259 

La Rochelle. The small changes in water levels for ETC Xynthia are due to the inherent characteristics of ETCs, which typically 260 

have larger dimensions, lower intensity, and a slower rate of intensification compared to TCs. This means that the changes in 261 

water levels can be well captured at a 1-hourly resolution. The small effect of the temporal refinement for ETC Xynthia can 262 

be observed as well in Table A1 and Fig. A3, where G1 and G2 present similar timeseries and performance coefficients when 263 

compared to observed water levels.  264 

The model configuration G3, where the spatial output resolution is refined, is not shown in Fig. 8 because increasing the 265 

number of water level locations does not change the water level values themselves. However, this refinement becomes 266 

significant when these values are applied as coastal boundary conditions to SFINCS (see Section 3.2.1), as a greater number 267 

of coastal boundary conditions offer additional information for the flood model. 268 

3.1.2 Effects of dynamic downscaling with original bathymetry on water levels 269 

Figure 8 panels c, g, k show that the model configuration N1 results in significant changes in water levels for all case studies. 270 

The largest differences occur along the coasts, where the largest changes in model grid size resolution occur. For TC Irma 271 

(Fig. 8 panel c), the nesting of a local model at high-resolution with GEBCO2019 results in maximum water levels that are up 272 

to 0.3 m higher than G1 in the southwest of Florida. These differences between N1 and G1 gradually increase over time and 273 

are maximum at the peak of TC Irma (Fig. A10). While higher grid resolution affects the tidal propagation mainly along the 274 

coast of Florida (Fig. A6 and Figure A7), storm surge propagation is more sensitive to the used bathymetry (Fig. A8 and Figure 275 

A9). High resolution is needed in areas with steep bathymetry. In contrast to the coarser grid of G1, N1 better resolves complex 276 

topographic features around the barrier islands (Fig. A11), allowing water to flow more freely through these barriers. At 277 

timestep 10-09-2017 in Figure A10, when there is a negative surge north of the barrier island, G1 produces higher water levels 278 

because water remains trapped in the north. Conversely, during the peak of TC Irma, on the 11-09-2017, the water levels in 279 

G1 are lower than N1 because less water is able to travel northwards. The increased northward surge of N1 propagates further 280 

into the Gulf of Mexico, leading to higher water levels that also propagate further into the Gulf of Mexico (see Figure A10). 281 

Water levels for nine tide gauge stations along the coast indicate that while G1 underestimates the peak of TC Irma in most 282 
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locations (Fig. A2, all stations but station 7), N1 simulates on average higher peaks, resulting sometimes in overestimations 283 

(Fig. A2, station 9). The improved resolution of topographic features in the barrier island region allows stations nearby (Fig. 284 

A2, stations 4 and 9) to better capture the event’s peak compared to G1. Additionally, the performance of N1 is slightly better 285 

than G1 for six tide gauge stations (stations 1-6), as reflected in Table A1, which shows lower RMSE values. However, for 286 

stations 7-9, G1 shows slightly higher RMSE and Pearson’s correlation. For TC Haiyan (Fig. 8 panel g), the differences in 287 

maximum water levels are up to 1 m higher than G1 near the landfall regions. These differences occur due to the refinement 288 

of the grid from 2.5 km to 45 m, which results in a significant increase in the number of model grid cells that define regions 289 

of shallow bathymetry, especially around the bay near Tacloban, resulting in a more detailed representation of water levels in 290 

that region. Thanks to the increase on grid cells, the strait north of Tacloban for N1 is defined with multiple grid cells in 291 

comparison to the two grid cell width of G1 (see Fig. A12). Therefore, in that region N1 allows us to better resolve the 292 

topography of the region, and water can travel more easily northwards. For ETC Xynthia (Fig. 8 panel k), the water levels 293 

from the nested local model at high-resolution are overall lower than water levels for the G1. Near La Rochelle, those water 294 

levels are up to 0.2 m lower. When comparing the performance of N1 with G1 (Table A1 and Fig. A3), both model 295 

configurations can predict the timeseries pattern well, with high Pearson’s correlation coefficients. Overall, the RMSE for 296 

Xynthia is similar for most tide gauge stations, except for two stations located in the mouth of estuaries (stations 3 and 6). 297 

3.1.3 Effects of dynamic downscaling with updated bathymetry on water levels 298 

Figure 8 panels d, h, l show that the model configuration N2 results in relatively large changes in the water levels for all the 299 

case studies. The largest differences occur along the coasts and provide figures similar to those from N1. For TC Irma (Fig. 8 300 

panel d), the nesting of a local model at high-resolution with updated GEBCO2023 bathymetry results in maximum water 301 

levels that are 0.3 m higher than G1 in the south of Florida. Compared to N1, model configuration N2 provides slightly higher 302 

water levels south of Florida. Those differences come from differences between GEBCO2023 and GEBCO2019 in the region. 303 

N2 shows a similar performance to G1 and N1 across nine tide gauge stations (Table A1 and Fig. A2). For TC Haiyan (Fig. 8 304 

panels h), the differences in maximum water levels are up to 1 m higher than G1 at the landfall regions. Compared to N1, N2 305 

provides on average higher maximum water levels, except in the bay of Tacloban where N1 presents on average higher 306 

maximum water levels. These differences come from the differences in GEBCO2019 and GEBCO2023. For ETC Xynthia 307 

(Fig. 8 panels l), the water levels from the nested local model at high-resolution with GEBCO2023 are lower overall than water 308 

levels for G1. Compared to N1, the model configuration N2 provides a similar pattern of water level decrease, however, the 309 

maximum water level reduction compared to G1 is slightly less than for N1. The performance of N2, as shown in Table A1 310 

and Fig. A3, is comparable to that of G1 and N2, except at two tide gauge stations (station 3 and 6) where GEBCO2023 does 311 

not accurately capture the bathymetry of the river channels in the estuaries. In contrast, EMODNET2018, the bathymetry used 312 

in model configuration N1, better resolves these details (see Fig. A13). 313 
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 314 

Figure 8. Maximum water levels for the three case studies for G1 (panels a, e, i). Difference between the maximum water level for 315 

each specific model configuration (see Table 1) and G1. Panels a, e, i show observed maximum water level from tide gauge stations 316 

of GESLA. Difference in water levels for G2 (panels b, f, j), N1 (panels c, g, k) and N2 (panels d, h, l). 317 

3.1.4 Effects of a fully refined model on water levels 318 

In Fig. 9 we observe that the maximum water level differences between N3 and G1 lead to significantly different results for 319 

each case study. For TC Irma N3 provides higher maximum water levels throughout almost the whole the domain, resulting 320 

in a picture similar to N2 but with higher water levels along the southeast coast. The maximum differences in maximum water 321 

levels between N3 and N1 are up to 0.3 m. For TC Haiyan N3 provides maximum water levels that resemble a combination of 322 

G2 in the regions where temporal refinement is relevant, and N2 in the rest of the study area. The differences between N3 and 323 

G1 in maximum water levels for Haiyan are more than 2 m in the coast near Tacloban. Finally, for ETC Xynthia N3 provides 324 

slightly higher maximum water levels in the south of the domain compared to G1, where the effects of G2 predominate, and 325 

lower maximum water levels in the north, where the effects of N2 are more dominant.  326 
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 327 

Figure 9. Maximum water levels for the three case studies, for the default configuration G1 (panels a, d, g) and for the fully refined 328 

configuration N3 (panels b, e, h). Difference between the maximum water level for N3 model configuration and G1 (panels c, f, i). 329 

3.2 Hydrodynamic flood modelling 330 

As a second step in the sensitivity analysis, we analyse how the effects of the different storm surge model configurations 331 

propagate to the SFINCS flood model. In Figure 10 we compare the maximum flood depths of each refinement and G1. Figure 332 

11 shows the maximum flood depth differences between N3 and G1. 333 

3.2.1 Effects of higher resolution on flood depths 334 

Figure 10 panels b, g, l show that the refinement of GTSM’s temporal output resolution from 1-hourly to 10-minute intervals 335 

of G2 provides different results for each case study. For TC Irma (Fig. 10 panel b), the small increase in water levels as a result 336 

of the temporal output refinement (Section 3.1.1) also results in a small increase in flood depths. Conversely, TC Haiyan (Fig. 337 

10 panel g) experiences much higher water levels along the coast at higher temporal resolution. As a result, it also experiences 338 

significantly higher flood depths, surpassing G1 by 1m in regions near Tacloban. ETC Xynthia  (Fig. 10 panel l) experiences 339 

an increase in water levels along the coast for the 10-minute temporal output resolution, especially in the study region of 340 

SFINCS. This results in an increase in flood depths of up to 0.1 m. For ETC Xynthia, G2 shows a higher hit rate and false-341 

alarm ratio compared to G1, but the same critical success index (see Fig. A15). 342 
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Figure 10 panels c, h, m show that refinement of the spatial output locations of G3 provides coastal boundary conditions to 343 

SFINCS at additional locations, thereby providing more water level input to the flood model. Figure 10 panel c shows that this 344 

refinement results in lower flood depths north and around Jacksonville for TC Irma. Conversely, for TC Haiyan (Fig. 10 panel 345 

h), the increase in spatial inputs results in higher flood depths in most of the study area, particularly exceeding more than 1 m 346 

the G1 flood depths around Tacloban. For ETC Xynthia (Fig. 10 panel m) the refinement of spatial water level inputs leads to 347 

higher flood depths north of La Rochelle of up to 0.1 m, while south of La Rochelle there are barely any changes compared to 348 

G1. For ETC Xynthia, G3 shows the same hit rate as G1, higher false-alarm ratio and the same critical success index (see Fig. 349 

A15). 350 

3.2.2 Effects of dynamic downscaling with original bathymetry on flood depths 351 

Figure 10 panels d, i , n show that the model configuration N1 results in significant changes in the flood depths for all the case 352 

studies. For TC Irma (Fig. 10 panel d), model configuration N1 leads to slightly higher water levels in comparison to G1. 353 

Consequently, the resulting flood depths are also larger and are more than 0.2 m above those of G1. Maximum water levels 354 

for TC Haiyan (Fig. 10  panel i) are generally higher along the bay of Tacloban when applying dynamic downscaling with the 355 

original bathymetry. This results on average in higher flood depths of more than 1 m compared to G1. Finally, ETC Xynthia 356 

(Fig. 10 panel n) presents lower water levels for N1 compared to G1. Those lower water levels lead to lower flood depths 357 

across the whole model domain. For ETC Xynthia, N1 shows a lower hit rate and false-alarm ratio compared to G1, and the 358 

same critical success index (see Fig. A15). 359 

3.2.3 Effects of dynamic downscaling with updated bathymetry on flood depths 360 

Figure 10 panels e, j, o show that the model configuration N2 results in significant changes in flood depths for all case studies. 361 

For TC Irma (Fig. 10 panel e), model configuration N2 compared to G1 leads to higher and lower water levels, depending on 362 

the region. Consequently, the resulting flood depths for N2 vary between 0.05 m lower to more than 0.2 m higher than G1. 363 

Maximum water levels for TC Haiyan (Fig. 10 panel j) are generally higher in the bay of Tacloban for model configuration 364 

N2 (when applying dynamic downscaling with the updated bathymetry) compared to G1. This results in larger flood depths 365 

which, in some regions, result in more than 1 m higher compared to G1. However, in the Tacloban Bay N1 results on average 366 

in higher maximum water levels than N2, which leads to lower flood depths for N2 in comparison to N1. Finally, for ETC 367 

Xynthia (Fig. 10 panel o) water levels are lower for N2 compared to G1. Those lower water levels lead to lower flood depths 368 

across the whole model domain. For ETC Xynthia, N2 shows a lower hit rate and false-alarm ratio compared to G1, and the 369 

same critical success index (see Fig. A15). 370 

 371 
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 372 

Figure 10. Panels a, f, k show the maximum flood depth for the default configuration G1, for each case study. Panels b, g, l show the 373 

difference between the maximum flood depth for the refined temporal output resolution configuration G2 and G1. Panels c, h, m 374 

show the difference between the maximum flood depth for the refined spatial output configuration G3 and G1. Panels d, i, n show 375 

the difference between the maximum flood depth for the dynamic downscaling (refined grid) configuration N1 and G1. Panels e, j, 376 

o show the difference between the maximum flood depth for the dynamic downscaling (refined grid and updated bathymetry) 377 

configuration N2 and G1.   378 

3.2.4 Effects of a fully refined model on flood depths 379 

For TC Irma N3 provides higher water levels throughout large parts of the domain (Section 3.1.4) that translate into higher 380 

flood depths up to more than 0.2 m near Jacksonville. For TC Haiyan, N3 provides high water levels near Tacloban (Section 381 

3.1.4), translating into high flood depths up to more than 1 m. Finally, ETC Xynthia presents lower water levels for N3 near 382 

La Rochelle (Section 3.1.4), which translate into lower flood depths along the coast. 383 
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 384 

 385 

Figure 11. Panels a, d, g show the maximum flood depth for the default configuration G1 for each case study. Panels b, e, h show 386 

the maximum flood depth for the fully refined configuration N3. Panels c, f, i show the difference between the maximum flood 387 

depth for N3 and G1.   388 

To analyse the changes of flood depths over time, Fig. 12 panels a, b, c show the flood depth timeseries at the SFINCS output 389 

point locations outlined in Fig. 11, for all the model configurations. The timing and shape of the flood depth timeseries remain 390 

consistent across all the model configurations for all the case studies, an only slight differences in the magnitude of the flood 391 

depths are visible. Figure 12 panel a shows that for TC Irma all the model configurations result in similar flood depths, and 392 

only N1 results in slightly higher flood depths of about 0.1 m more than the others. Figure 12 panel b shows that for TC Haiyan 393 

G1 results in the lowest flood peak, while the temporal resolution of G2 plays a key role, enhancing the flood peak up 394 

approximately 1 m higher than G1. Finally, Fig. 12 panel c shows that for all global model configurations (G1, G2 and G3) 395 

result in a first flood peak that is approximately 0.5 m higher than those of the nested model configurations (N1, N2 and N3). 396 

The second peak is simulated more similarly by all model configurations, being N1 the configuration that provides lowest 397 

flood depths.  398 

Panels a, b, c in Fig. 12 only show the results for a single SFINCS output point location. However, the refinements might have 399 

most effect in other regions different than the SFINCS output point locations. To understand the overall effect of each 400 
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refinement in the flood hazard maps, Fig. 12 panels d, e, f show the flood volume timeseries across each of the case study’s 401 

model domain. While the timing and shape of the flood volume timeseries remains consistent across all the model 402 

configurations for all the case studies, there are differences in the magnitude of the flood volumes. Figure 12 panel d shows 403 

that for TC Irma the nested models lead to the highest flood volumes, being N3 the model configuration that simulates the 404 

highest flood volume. On the other hand, the increase in spatial output of GTSM from G3 results in the lowest flood volumes. 405 

Figure 12 panel e shows that for TC Haiyan N3 also leads to the highest flood volumes, while G1 results in the lowest volumes. 406 

Finally, Fig. 12 panel f shows that for ETC Xynthia the nested model configurations lead to the lowest flood volumes, while 407 

the global models result in higher flood volumes. 408 

 409 

Figure 12. Flood depth timeseries for three observation points and flood volume timeseries for the SFINCS model domain of each 410 

case study and model configuration (see Table 1). The spatial location of the SFINCS output point locations can be observed in Fig. 411 

11 panels a, d, g. 412 

4 Discussion  413 

4.1 Sensitivity analysis and model validation 414 
The results of the sensitivity analysis reveal the complexity of hydrodynamic modelling and the sensitivity to specific local 415 

settings and storm characteristics. The effect of nesting higher resolution models on water level and flood depth varies. For 416 

instance, the fully refined model configuration N3 simulates higher water levels almost everywhere for TC Irma. However, 417 

for TC Haiyan and ETC Xynthia, certain regions show higher water levels with N3, while other regions show lower water 418 

levels compared to the default global G1 configuration. Similarly, flood depths around Jacksonville for TC Irma are generally 419 

higher with the refined model configuration N3, although some areas experience lower values. For TC Haiyan in Tacloban, 420 

flooding significantly increases with the refinements, whereas for ETC Xynthia flood depths decrease notably around La 421 

Rochelle.  422 

Refining the temporal output resolution (model configuration G2) has a significant influence on small, rapidly intensifying 423 

TCs, like Haiyan. Compared to the default global configuration G1, this results in water levels and flood depths that are 2 m 424 

and 1 m higher. For ETCs, the refinement of temporal output resolution does not lead to substantial changes in water levels or 425 

flood depths, indicating that a 1-hourly temporal resolution is sufficient. Refining the spatial output locations of GTSM (model 426 

configuration G3) provides more detailed coastal boundary conditions for SFINCS. This is most relevant for regions where 427 

the coastal water levels show large spatial variations. For TC Haiyan, for example, the increase of coastal output locations in 428 

the bay of Tacloban from 4 to 20 location (see Fig. 7), leads to flood depths 1 m higher than G1. Furthermore, regions with 429 

more complex topographies such as the south of Florida for TC Irma or the Tacloban bay for TC Haiyan are influenced by the 430 
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grid refinement of N1, leading to larger differences with G1 in terms or water levels and consequently, flooding. The updating 431 

of bathymetry also plays an important role, contributing to differences between N1 and N2 in all the case studies.  432 

The validation of our results also highlights the complexities of hydrodynamic modelling, and how each specific setting 433 

impacts overall performance. It is challenging to assess the storm surge model performance due to the limited number of tide 434 

gauge stations available with poor spatial coverage in many regions (Haigh et al., 2023). Another source of uncertainty is the 435 

location of these tide gauge stations, which are often situated in enclosed basins or harbours, where hydrodynamic models 436 

have more difficulty simulating water levels compared to open sea conditions. Besides, the validation of the flood hazard 437 

models is difficult due to the contribution of other flood drivers neglected in this study. The automated, uncalibrated MOSAIC 438 

configurations tested in this study have a storm surge modelling performance with Pearson’s correlations above 0.92 and 439 

average RMSE less than 0.3 m. These results are comparable to the well-established GTSM model (Muis et al., 2016) and to 440 

other large-scale studies (Gori et al., 2023; Marsooli and Lin, 2018; Vogt et al., 2024). Similarly, the flood hazard modelling 441 

results align with those from other studies that simulated coastal flooding from ETC Xynthia (Ramirez et al., 2016; Vousdoukas 442 

et al., 2016b). All model configuration refinements perform adequately, with similar results, making it difficult to determine 443 

which configuration consistently provides the best overall performance based on the validation. This outcome largely depends 444 

on the storm characteristics and regional topography.  445 

4.2 Limitations 446 
There are several limitations that need to be taken into account when using MOSAIC. Limitations that are linked to general 447 

flood hazard modelling and not specific to MOSAIC include the following: (1) the meteorological forcing data can be a large 448 

source of uncertainty when modelling extreme water levels (Dullaart et al., 2020). MOSAIC allows to combine the results of 449 

the Holland parametric wind model with climate reanalysis datasets to enhance the wind and pressure fields at the peripheries 450 

of the TCs. Nonetheless, the implementation of more advanced parametric wind models or high-resolution climate data could 451 

further improve the water level simulations (Emanuel and Rotunno, 2011; Hu et al., 2011). (2) the accuracy of the bathymetry 452 

has a large influence on storm surge modelling (Mori et al., 2014; Woodruff et al., 2023). Global bathymetry is rather coarse  453 

and can have large errors (Weatherall et al., 2020), but for many regions high-resolution and accurate bathymetry is not 454 

available. This will impact the effect of  dynamic downscaling, where MOSAIC uses bathymetry data to generate the model 455 

grid. Using higher-resolution local bathymetry enables finer grid refinement and higher accuracy of local data (Consortium 456 

EMODnet Bathymetry, 2018; NOAA, 2014; NOAA National Geophysical Data Center, 2001), which can enhance the 457 

accuracy of the results (Woodruff et al., 2023). (3) the accuracy of digital elevation models (DEMs) has a large influence on 458 

flood modelling (Hawker et al., 2022). In this paper we use FABDEM and IGN, but MOSAIC allows to replace the DEM with 459 

any dataset, and we recommend users of MOSAIC to use the best data available for their region of interest. In addition to the 460 

effects of DEMs, the presence of flood protection structures has substantial impact on flood hazard models. The neglection of 461 

dikes in our SFINCS model is one of the reasons our modelling framework overestimates flooding for ETC Xynthia. 462 

MOSAIC’s HydroMT component supports the implementation of levees as 1D line features into the SFINCS model, and this 463 

capability could be used when there is local information on flood protection levels.  464 

The main limitation specific to the automated approach of MOSAIC is related to the generation of the local high-resolution 465 

models. These automatically generated models can present instabilities when refined grid cells are present at the model 466 

boundaries. Therefore, care needs to be taken when applying dynamic downscaling. To solve this problem the first 0.3 degrees 467 

around the model domain are not being refined in this study. When changes in grid refinement are abrupt, for example due to 468 

steep bathymetry, model instabilities can also occur. The nesting of multiple models in each other would allow for a smoother 469 

grid transition and might solve this issue. Nevertheless, it is recommended not to place the model boundaries cutting 470 

topographic complex regions. Furthermore, it is to be noted that the models presented here (except G1) are uncalibrated. 471 
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Although they present an adequate performance, detailed calibration of the bed level, bottom friction and roughness 472 

coefficients could improve the modelling results (Wang et al., 2022b).  473 

Automated modelling tools like MOSAIC have the advantage of being efficient, reducing potential human errors and being 474 

reproducible and transparent. However, they also have their limitations. Users must be aware of the underlying modelling 475 

assumptions, and should carefully review the model outputs of their specific case study (Remmers et al., 2024). 476 

4.3 Directions for future research 477 
There are various directions to further develop and improve MOSAIC. In this study, we have implemented MOSAIC to 478 

simulate coastal flooding driven by storm surges. However, flooding typically results from a combination of various drivers. 479 

Our results underestimate flooding near estuaries and deltas due to the exclusion of precipitation and river discharge, and near 480 

steep coasts due to the exclusion of waves and overtopping. Considering that HydroMT and SFINCS can include pluvial and 481 

fluvial drivers (Eilander et al., 2023), there is potential to incorporate the modelling of compound events into MOSAIC. Waves 482 

can significantly contribute to coastal flooding and, in some regions, are the dominant driver of extreme water levels (Parker 483 

et al., 2023). However, the inclusion of wave contributions in large-scale assessments has been limited due to the computational 484 

cost of traditional wave-resolving numerical models. The development of more computationally efficient wave solvers offers 485 

an opportunity to implement dynamic wave simulations into large-scale assessments and into MOSAIC. For instance, Leijnse 486 

et al. (2024) developed an efficient solver currently being integrated within SFINCS. Furthermore, this first version of 487 

MOSAIC makes use of offline coupling for both the local-high resolution model and the SFINCS model. However, new 488 

software developments such as the Oceanographic Multi-purpose Software Environment (OMUSeE; Pelupessy et al., 2017) 489 

could be used to enable online coupling, as well as  to further expand MOSAIC by allowing for coupling with other models 490 

such as hydrological or ocean models. We envisage various directions for the future application of MOSAIC beyond the 491 

modelling of historical coastal floods presented here. By leveraging the flexibility of MOSAIC to modify input datasets, the 492 

modelling framework can be used to study events under historical- and climate change conditions. Furthermore, taking 493 

advantage of MOSAIC’s multiscale modelling approach, TC/ETC high-resolution hazard assessments can be obtained 494 

globally. When linked to impact models, such as Delft-FIAT (Slager et al., 2016), MOSAIC could also be used for risk 495 

assessments. 496 

4.4 Added value of the MOSAIC framework 497 
The main added value of MOSAIC is it flexibility to simulate anywhere in the world water levels and coastal flooding with 498 

customizable datasets and resolutions, enabling efficient, region-specific storm event simulations. Users of MOSAIC can 499 

easily simulate storm events in any region with this modelling framework. First, they can select the appropriate meteorological 500 

forcing. Within MOSAIC, users can choose gridded meteorological data from reanalysis datasets or climate models to simulate 501 

ETCs or TCs, provided that the data accurately captures the TC wind and pressure fields (as seen with ETC Xynthia and TC 502 

Irma in this study). Alternatively, they can select a hybrid approach that combines the Holland model with ERA5 in the 503 

background when modelling smaller TCs with rapid intensification (such as TC Haiyan in this study). Depending on the 504 

specific storm simulated and study area, users can select different model refinements. For rapidly intensifying storms, users 505 

can choose a more refined temporal output resolution, while nested models can help resolving the topography and bathymetry 506 

in regions with complex coastlines. If the users have coastal boundary conditions available, MOSAIC can automatically 507 

generate stand-alone local high-resolution Delft3D FM models without having to couple them with GTSM. Although 508 

uncalibrated, these model configurations demonstrate similar performance to the well-established global model GTSM, but at 509 

a significantly lower computational cost. The hydrodynamic flood modelling part of MOSAIC offers user-defined settings as 510 

well, enabling users to, for instance, choose the most suitable DEM for their study area or implement flood protection measures 511 

through MOSAIC’s HydroMT component. 512 
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5 Concluding remarks 513 
The MOSAIC modelling framework introduced in this study allows to dynamically simulate coastal flooding events through 514 

the coupling of dynamic water level and overland flood models, making use of a Python environment. This approach is 515 

automated and reproducible, and combined with the underlying global datasets used, makes it globally applicable. MOSAIC’s 516 

flexibility allows to easily simulate coastal flooding events globally, while also using local high-resolution models.  Based on 517 

our results, we conclude that the refinement of the global modelling approach can significantly impact the simulation of coastal 518 

water levels and flood depths at local scale, although the differences in local settings make that there is no one-size-fits-all 519 

approach. We recommend higher temporal output resolution for rapidly intensifying TCs, spatial output refinement for regions 520 

with heterogeneous water levels and nested local models with high-resolution bathymetry, if available, for regions with 521 

complex topographies. The flexibility and ease of use of MOSAIC  make it a valuable resource for users to further explore 522 

which are the optimal settings for their case study and region of interest.  523 
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Appendix A: Supporting tables and figures 524 
 525 

Table A1. Validation indicators that compare the maximum total water levels and observations of GESLA for the case studies Irma 526 

and Xynthia.  527 

Irma RMSE [m] Pearson correlation [-] 

Station G1 G2 N1 N2 G1 G2 N1 N2 

1 0.41 0.41 0.39 0.40 0.92 0.92 0.92 0.92 

2 0.28 0.27 0.25 0.25 0.98 0.98 0.98 0.98 

3 0.33 0.33 0.32 0.33 0.79 0.78 0.81 0.79 

4 0.27 0.26 0.21 0.24 0.96 0.96 0.96 0.94 

5 0.35 0.35 0.33 0.31 0.93 0.93 0.93 0.93 

6 0.18 0.18 0.17 0.21 0.98 0.98 0.98 0.94 

7 0.17 0.17 0.14 0.14 0.97 0.97 0.95 0.95 

8 0.39 0.39 0.42 0.45 0.92 0.92 0.90 0.88 

9 0.16 0.16 0.18 0.10 0.93 0.92 0.90 0.96 

Average 0.28 0.28 0.27 0.27 0.93 0.93 0.93 0.92 

Standard deviation 0.09 0.09 0.10 0.11 0.06 0.06 0.05 0.05 

Xynthia RMSE [m] Pearson correlation [-] 

Station G1 G2 N1 N2 G1 G2 N1 N2 

1 0.12 0.13 0.13 0.13 1.00 1.00 1.00 1.00 

2 0.27 0.29 0.22 0.26 0.99 0.99 0.99 0.99 

3 0.21 0.20 0.47 0.61 0.99 0.99 0.95 0.91 

4 0.20 0.21 0.19 0.34 1.00 1.00 1.00 0.98 

5 0.18 0.18 0.24 0.25 1.00 1.00 0.99 0.99 

6 0.34 0.31 0.49 0.92 0.99 0.99 0.98 0.90 

Average 0.22 0.22 0.29 0.42 1.00 1.00 0.99 0.96 

Standard deviation 0.08 0.07 0.15 0.29 0.01 0.01 0.02 0.04 
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 528 

Figure A1. Maximum water levels output of GTSM, for case study Haiyan, with different meteorological forcings. Left: Maximum 529 

total water levels with the Holland model combined with ERA5 as a forcing. Right: Maximum total water levels with ERA5 as 530 

forcing. 531 

 532 

 533 

Figure A2. Validation of total water levels for the case study Irma, for the nine locations depicted in Fig. 3. 534 
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  535 

Figure A3. Validation of total water levels for the case study Xynthia, for the six locations depicted in Fig. 3. 536 

 537 

 538 

Figure A4. GTSM output locations for the case study Haiyan. 539 
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 540 

Figure A5. Haiyan total water level timeseries for the GTSM output locations provided in Fig. A4. Timeseries for the default 541 

configuration (G1) and the refined temporal output resolution configuration (G2). 542 

 543 

Figure A6. Maximum water levels for the tide only simulation of G1 (panel a). Difference between the maximum water level for the 544 

tide only simulations of N1 and G1 (panel b). 545 



26 
 

 546 

Figure A7. Water levels for the tide only simulations for the case study Irma model configurations G1 and N1, for the nine locations 547 

depicted in Fig. 3. 548 

 549 

Figure A8. Maximum water levels for the storm surge only simulation of G1 (panel a). Difference between the maximum water level 550 

for the tide only simulations of N1 and G1 (panel b). 551 
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 552 

Figure A9. Water levels for the storm surge only simulations for the case study Irma model configurations G1 and N1, for the nine 553 

locations depicted in Fig. 3. 554 
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 555 

Figure A10. Difference in water levels for the storm surge only simulations of N1 and G1 for different timesteps, before TC Irma 556 

makes landfall (07-09-2017 until 09-09-2017), during the peak (between 10-09-2017 and 11-09-2017) and after the peak (12-09-557 

2017). 558 

 559 

 560 

Figure A11. Left: GEBCO2019 for the study area, black rectangle shows the barrier island region from the middle and right 561 

panels. Middle: Bathymetry in the barrier island interpolated to the grid of the model configuration N1. Right: Bathymetry in the 562 

barrier island interpolated to the grid of the model configuration G1. 563 

 564 
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 565 

Figure A12. Close look at the unstructured grid of the global GTSM model with a grid resolution up to 2.5 km along the coast (left) 566 

and the nested grid of dynamic downscaling with a grid resolution up to 0.45 km along the coast (right), for case study Haiyan. 567 

 568 

Figure A13. Close look at the bathymetry of two stations (top row: station 6 and bottom row: station 3) that provide lower 569 

performance with updated bathymetry, for the case study Xynthia. Left: Bathymetric map of EMODNet2018. Right: Bathymetric 570 

map of GEBCO2023.  571 

 572 
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 573 

Figure A14. Validation of flood extents for the case study Xynthia against observed flood extents. The maps compare the modelled 574 

and observed maximum flood extents for a SFINCS model generated with ING’s DEM (panel a) and FABDEM (panel b), where: 575 

green indicates flood areas correctly simulated; blue flood areas not simulated but observed; and red flood areas simulated but not 576 

predicted. Performance indicators for the hit rate (H), false-alarm ratio (F) and critical success index (C) are shown in each panel. 577 

 578 

Figure A15. Validation of flood extents for the case study Xynthia against observed flood extents. The maps compare the modelled 579 

and observed maximum flood extents for each model configuration, see Table 1, where: green indicates flood areas correctly 580 

simulated; blue flood areas not simulated but observed; and red flood areas simulated but not predicted. Performance indicators 581 

for the hit rate (H), false-alarm ratio (F) and critical success index (C) for each configuration are shown in each panel. 582 

 583 

Data availability 584 

The datasets compiled and/or analysed during the current study are available on Zenodo. Note: to be published with Doi 585 

upon acceptance of the paper.  586 
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Code availability 587 

The underlying code for this study is available on at https://github.com/Ireneben73/mosaic_framework (last access: 11 588 

October 2024).  589 
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