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Abstract.  

Permafrost contains a variety of ground ice types (e.g., pore, segregated, intrusive, vein, or massive ice) that have a diversity 

of cryotextures which organise to form  distinctive cryostructures. The distribution and abundance of those ground ice types 

determines the potential for thaw subsidence and terrain effects of permafrost landscapes. Analysis of permafrost samples 

allows improved understanding of ground ice formation, internal and external permafrost processes, and improved tools to 

predict thaw settlement and consolidation. However, most methods to characterise permafrost are destructive and of low 

resolution.  Here, some of the limitations of traditional destructive methods are overcome using an industrial Computed 

Tomography scanner (CT). We use this laboratory-based method to systematically characterize five permafrost samples.  We 

visualise cryostructures, measure frozen bulk density, and estimate volumetric and excess ice contents non-destructively and 

compare these results with traditional destructive analyses at similar spatial scales. 

The results show strong agreement between traditional destructive analyses (RMSE’s for density, volumetric ice, and excess 

ice contents are 0.12 g/cm3, 3% and 6%, respectively) as well as recent developments using a Multi-Sensor Core Logger 

(MSCL) (RMSE’s for density and volumetric ice contents are 0.08 g/cm3 and 7%, respectively).  These results demonstrate 

that these non-destructive approaches can produce consistent results, and provide the added benefit of archiving images and 

enhancing digital permafrost datasets. Development of standardised and interoperable methods for permafrost characterization 

has the potential to build more robust permafrost datasets and strengthen efforts to understand future thaw trajectories of 

permafrost landscapes. 
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1 Introduction 

Permafrost is rock or soil that has remained below 0°C for at least two consecutive years.  Within permafrost, several different 

types of ground ice can form: pore ice within the void spaces between soil or rock particles; segregation ice as distinct lenses 

formed through migration of water within permafrost; aggradational ice, a type of segregation ice, that forms as the permafrost 

table rises; vein or wedge ice that forms within thermal contraction cracks; intrusive ice that forms when water is injected 

under pressure; or massive ice that refers to relatively pure bodies of ice within permafrost (Subcommittee on Permafrost., 

1988). These differing types of ground ice have distinctive associations of cryotextures, which refer to the appearance and 

characteristics of ice crystals, gas bubbles and their interfaces with soil particles at a more microscopic scale; and cryostructures 

which refer to the three-dimensional patterns and arrangements of ice bodies within the frozen ground (such as layered, 

lenticular, or reticulate patterns) (Murton and French, 1994; French and Shur, 2010).  Taken together, these ice-related features 

help identify the genesis of perennially frozen sediments and can provide insights into the conditions under which the 

permafrost formed, which can aid in understanding potential ground ice distribution. Of particular importance is excess ice – 

or ground ice that exceeds the natural pore volume that the sediment would have under unfrozen conditions (Brown et al., 

1997; Zhang et al., 1999; Cai et al., 2020; Van Everdingen, 1998). When excess ice melts, it causes thaw settlement and ground 

subsidence, making its quantification increasingly critical as warming temperatures degrade permafrost across permafrost 

regions (e.g. Kokelj et al., 2024). Projections of widespread permafrost thaw by the end of this century (e.g. Cai et al., 2020) 

highlight an urgent need for standardised methods to measure and map excess ice distribution to better predict future landscape 

changes. 

Cryostructural approaches to ground ice classification aim to understand permafrost development by systematically analyzing 

the shape, size, and spatial patterns of ice inclusions in frozen ground. These methods contrast with more commonly used 

engineering-focused descriptive systems, which rely primarily on visual descriptions and simple field tests, such as thawing 

samples to observe supernatant water content. While the descriptive approach provides practical field-based classifications 

useful for engineering applications, the cryostructural approach offers more process-based insight into permafrost formation 

processes and potential ground ice distribution, which is increasingly important for predicting thaw settlement and landscape 

response to climate warming (French and Shur 2010). 

Traditional approaches to permafrost characterization rely heavily on visual description of exposures and cores (Kanevskiy et 

al., 2011; Stephani et al., 2014). While these approaches have advanced our understanding of permafrost, they require 

substantial experience of the analyst, and are difficult to standardise. Quantitative methods typically require destruction of 

samples to measure ice and moisture contents, which works well for ice-rich mineral soils but presents challenges for organic-

rich materials where water may be retained in thawed samples. These limitations have driven the development of non-

destructive methods like Computed Tomography (CT) scanning that can systematically analyse intact frozen cores, providing 
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standardised, quantitative data on ground ice while preserving samples for additional analyses (Calmels and Allard 2004, 2008, 

Calmels et al., 2010). This approach offers the potential to better understand permafrost formation, internal structure, and likely 

response to thaw while developing more consistent and interoperable methods applicable across different permafrost materials. 

Micro-computed tomography (μCT), which offers much higher spatial resolution than conventional CT, has emerged as a 

promising solution to the limitations of traditional permafrost characterization methods since the pioneering work of Calmels 

and Allard (2004, 2008), who demonstrated its utility for measuring ice and gas contents in permafrost and linking these to 

processes of ground ice formation. Subsequent studies have expanded the application of μCT scanning to examine 

cryostructures (Calmels et al., 2010; Fan et al., 2021), excess ice (Lapalme et al., 2017), soil degradation in freeze-thaw cycles 

(Nguyen et al., 2019; Wang et al., 2018, 2017; Roustaei et al., 2022, Roustaei et al., 2024), quantification of micro-lenticular 

ice lens formation (Darrow and Lieblappen, 2020), unfrozen water content (Roustaei et al., 2022), soil-ice relations (Torrance 

et al., 2008), and permafrost composition (Nitzbon et al., 2022).  

Although the method has developed, there have been few systematic comparisons of high-resolution μCT scanning (< 100 

μm) with established methods for differentiating excess ice from pore ice across different permafrost materials. μCT typically 

offers very high spatial resolution (down to a few microns) for small samples, while industrial CT provides a balance of higher 

power and the ability to scan larger samples at slightly lower resolution, and medical CT is generally optimized for human-

sized imaging at lower resolution and power. This study addresses this gap by using industrial CT scanning, which offers 

higher peak power and resolution than medical CT scanners, to analyse five different permafrost cores representing a range of 

typical properties (e.g., density and ice contents). We develop a new approach using an internal water standard to calibrate 

linear attenuation coefficients to real density values, and systematically compare CT-derived measurements of frozen bulk 

density, excess ice, and volumetric ice contents with both destructive physical measurements and Multi-Sensor Core Logging 

(MSCL).We include a sensitivity analysis to examine how spatial resolution affects excess ice estimation. While our sample 

set does not capture the full heterogeneity of permafrost materials and ground ice abundance, it provides a rigorous test of CT 

methods for quantifying ground ice in common permafrost materials. 
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2 Methods and Materials 

2.1 Site and sampling  

Five cores were investigated in this study, each representing common materials encountered in permafrost regions, such as silt 

(ice-poor and ice-rich), peat, silty peat, and diamicton (a coarser, mixed-grain material), and containing a relatively simple 

vertical cryostratigraphy to minimize the impact of lateral heterogeneity (Table 1). Minimizing lateral heterogeneity is 

important because such variations can introduce noise when comparing multiple data acquisition methods applied to different, 

but nearby, sample volumes within the same core (Figure 1). This consideration and its implications are explained further by 

Pumple et al. (2024), who discuss how variations in measured densities of permafrost cores may reflect real heterogeneities in 

physical properties or artifacts introduced due to core preparation or mounting of frozen materials.  

These cores were collected as during two separate field campaigns in 2013 and 2019 with some cores being collected in 

southwestern Yukon along the Alaska Hwy and other in Central Yukon along the Dempster Hwy. All cores were collected in 

a sub-arcitic setting. Following extraction, the cores were bagged, labelled and stored at subzero temperatures via a pre chilled 

cooler and quickly transported to the field base where a chest freezer was present. The chest full of cores was then transported 

to the Permafrost ArChives Science (PACS) Laboratory and archived into walk-in archive freezer space. Samples were 

prepared for two different stages; non-destructive scans and destructive physical measurements. As such for the non-

destructive scans, physical cores were cut in half and run through all non-destructive data collection methods. For the second 

stage,  a duplicate transect of cuboid samples was collected from the middle of the core to allow non-destructive data analysis 

at a higher resolution on one set of the subsampled cubes. As seen in Figure 1, this resulted in the cuboids flanking either side 

of the MSCL and CT results which were collected from a central transect on the half-core samples. 

2.2 Industrial Micro Computerised Tomography 

Micro Computed tomography (μCT) is a non-destructive technique that has been useful in the investigation of geological 

porous media (Ashi, 1997; Ketcham and Carlson, 2001; Kozaki et al., 2001; Flisch and Becker, 2007; Calmels and Allard, 

2004; Van Geet et al., 2005; Tanaka et al., 2010; Nitzbon et al., 2022). This imaging method captures radiograph images 

through the production of x-rays which pass through a cabinet and are recorded by the detector panel opposite the source. The 

sample is placed between the source and the detector panel and the resulting relative absorption of the x-rays energy is recorded 

by the detector panel creating the radiograph image. To collect a 3 dimensional image, a set of two-dimensional X-ray 

radiographs are collected at multiple angles, and secondly reconstructed to form a 3D image.  The final measurement unit, 

commonly visualized as a histogram, is the linear attenuation coefficient, which depends on both the density and the electron 

density of the material (Ketcham and Carlson, 2001).  

The scans presented here were captured using a helical scan with a Nikon XTH 225 ST cabinet-based industrial 

computed tomography micro-CT scanner.  The system uses an electronically adjustable 225Kv 225W power source (Figure 
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2). This system includes both a tungsten rotating reflection target source and a tungsten fixed reflection target source coupled 

with a 16-bit 2000x2000 pixel detector capable of a focal spot size range of 3-121 µm depending on the size of the area of 

interest and size of the object being scanned. The 10 cm diameter frozen permafrost half cores were scanned with the reflection 

target source at 200 Kv 35 μa with an exposure time of 125 ms and a voxel (3D volume element representing pixel resolution 

and slice thickness) size of 65 μm. Scan times ranged from 30 to 45 minutes per core, with a maximum height of ~12 cm 

scanned per core due to vertical stage movement limitations and inclusion of calibration materials. The subsampled cubes from 

the cores were scanned with the rotating reflection target source at 225 Kv 133 μa with an exposure time of 125 ms and a voxel 

size of 25 μm. Scan times for the subsampled cubes were 30 minutes per cuboid. The images were reconstructed into three-

dimensional grey-scale volumes using the Nikon CT pro 3D software and analyzed using ORS Dragonfly 2022 image 

processing software (ORS 2021). 

An insulated sample holder was developed for this project to ensure samples remained frozen during CT scanning. Both cubes 

and cores were housed in the same style of a styrofoam container, however, the internal setup varied due to the size of the 

sample under investigation. Full cores were taken from a nearby chest freezer and placed vertically into a larger container (12 

cm inner diameter), with a -80 °C ice pack positioned directly above (Figure 2B and C).  In contrast, the cubes were placed in 

smaller containers (9 cm inner diameter), held in plastic vials beneath a foam divider, and cooled with dry ice on a perforated 

foam layer to circulate cold air over the sample (Figure 2D). These configurations were tested in advance using internal, 

surface, and air temperature probes, confirming that both setups maintained sub-zero temperatures for the full scan duration. 

It should also be noted that full core scans produced partial results due to vertical stage height limitations in the CT scanner. 

While the scanner can hold samples up to ~30 cm wide by 35 cm high, the maximum scan height depends on voxel resolution 

and sample width. This limitation was resolved once the cores were subsampled for destructive testing. As a result, for some 

cores, such as the peat core, it was not possible to compare full vertical data sets across MSCL, CT, and destructive methods. 

 

2.2.1  CT Calibration 

The linear attenuation coefficient (µ) represents the energy attenuated within a single voxel volume while the voxel population 

is the population of voxels within a scan volume (Ketcham & Carlson, 2001). By creating a histogram (linear attenuation 

coefficient vs voxel population) with these values, distributions of relative grey values can be presented. If uncalibrated, the 

resulting grey values observed in the histogram of a CT scan appear as linear attenuation coefficients. The medical field has 

developed methods for converting linear attenuation coefficients to Hounsfield units and as a result, the Hounsfield unit has 

become commonly used in CT research (Hounsfield, 1973; Wellington and Vinegar, 1987; Duliu, 1999; Knoll, 2000; Ketcham 

and Carlson, 2001; Duchesne et al., 2009). Lee et al., 2015 took it one step further and converted mean Hounsfield unit values 

to bone mineral density values (mg/cm3) via a linear regression analysis. A similar approach was used in this study by collecting 

the CT scans with an internal standard of known density (water) later used to calibrate the resulting linear attenuation 
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coefficients into g/cm3 using the Nikon CT Pro 3D software (CT Pro version 5.4). It should be noted that all cores were scanned 

with ice, water, and aluminum calibration pieces of which water proved to be in closest agreement with destructive analyses. 

The water and aluminum were located outside of the insulated container during the core scans to avoid freezing. The cube 

scans had only the water located directly above the cube sample but isolated from the sample and dry ice by insulated foam to 

minimize the exposure to the cold air temperature within the developed insulated container. The aluminum calibration piece 

generally underestimated the bulk density while the ice calibration piece resulted in a slight overestimation. Aluminum was 

chosen for its consistent density of 2.71 g/cm3 representing an upper limit of the expected bulk density within the selected 

materials. The ice calibration was a 15 ml falcon tube filled and frozen at -5C to minimize expansion issues and bubbles. 

Overall the water calibration produced the most accurate results apart from ice-poor sediments. The Nikon CT Pro 3D software 

uses a linear two-point calibration with the first fixed point being air (equal to zero) and the second a user-defined value based 

on a user-selected pixel population. A representative (local) population of pixels was selected from our water sample in a 2D 

slice of the scan and informed the expected average target value (1 g/cm3). This results in displaying grey values in g/cm3. 

These densities can then be presented in a histogram, the shape of which reflects the volumetric content of the components in 

the sample (Calmels et al. 2010). 

2.2.2  Image Processing 

Image preprocessing usually consists of two main stages; 1) selection of the Region of Interest or (ROI), 2) segmentation. In 

this study both stages were done using Dragonfly software (ORS 2021). This software enabled us to process the three-

dimensional reconstructed X-ray tomographs of the frozen materials to segment, quantify, calculate, and illustrate the cores' 

physical properties. For the first stage, a series of ROIs were created in the half core CT results down the central vertical axis 

of the cores to mimic the data collection points of the MSCL as presented in Pumple et al. (2024). Figure 1 displays the relative 

location of these ROIs which were sized to match the spot size of the gamma-ray at the surface of the core, ~10 mm in diameter. 

The central point of each ROI was placed 5 mm apart resulting in a significant overlap between adjacent data points, again 

similar to the data collection process for the MSCL. In this study, all cores were calibrated so the histogram values were 

displayed in g/cm3. Following calibration, the histograms served not only as visualization tools but also as a means to extract 

quantitative information. To extract the frozen bulk density from each ROI, the mean grey values were extracted in calibrated 

density values (g/cm3).  

The second stage, segmentation or the ability to differentiate materials, depends on their respective linear attenuation 

coefficients, meaning materials with divergent densities and/or atomic numbers are easier to differentiate (Kyle and Ketcham, 

2015). Analysing a multi-modal histogram of a CT image is straightforward for material differentiation while materials with 

similar unimodal density distributions may appear as a single peak in the histogram (Wang et al., 2024). In addition to the 

relative density of the scanned materials, the image resolution or voxel size also directly impacts the image segmentation 

process. The voxel size can impact the image segmentation through the partial volume effect which relates directly to the 
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resolution or voxel size of the scan and for geological samples, to grain size, minimal pore size, and organic content (Soret et 

al., 2007; Nitzbon et al., 2022). 

In this study, an automatic image thresholding method named “Otsu '' was used. The algorithm of this method, proposed by 

Nobuyuki Otsu (1979), performs automatic clustering-based image thresholding, assuming that there are two classes of pixels 

which are “foreground” and “background” pixels of the image. The optimum thresholding is calculated by distinguishing the 

two classes so that the minimum class variance is obtained (Kumar and Tiwari, 2019). This method was applied to the selected 

regions of interest from stage one to differentiate sediment and ice. In each image processing step, we tried  to isolate the 

materials within our scans based on density and slowly slice away the lighter density portion (ice) until we are certain we have 

collected the target material range (often a mixture of ice and sediment). Figure 3 shows the ice (less dense material) being 

segmented from the surrounding sediment through multiple image processing steps using the Otsu method where only the 

background (less dense) portion of the previous step is added to the final result. This approach shows that applying the first 

image processing step will mainly extract the visible ice while using multiple Otsu analyses additional lower-density ice-rich 

mixtures (mainly pore ice) are extracted, e.g., the area shown inside the red circle of Figure 3B-D. Note that all the above 

mentioned segmentation steps can also be done by visual inspections instead of automatic thresholding method but it can vary 

significantly between users, leading to inconsistent results. 

 

2.3 Physical Density Measurements 

Ground-ice content is typically expressed either as the gravimetric moisture/ice content (the ratio of the mass of the ice in a 

sample to the mass of the dry sample) or the volumetric moisture/ice content (the ratio of the volume of ice in a sample to the 

volume of the whole sample) (Van Everdingen, 1998). Excess ice refers to the amount of ice in the soil that exceeds the volume 

of the pore space in the unfrozen state (Subcommittee on Permafrost., 1988). Similar to thaw-strain measurements in 

geotechnical investigations (Crory, 1973; Shur, 1988; Pullman et al., 2007; Kanevskiy et al., 2012), Kokelj and Burn (2003) 

and O’Neill and Burn (2012) both applied a method for destructively extracting excess ice content measurements from frozen 

samples. This method includes the complete thaw, homogenization, and settling time of the sample to extract the supernatant 

water content and estimate excess ice content. Their method does not require measurement of frozen sample volume since the 

volumes of sediment as well as the supernatant water should be recorded from the graduated beakers containing the samples 

once completely thawed. The excess ice content (Ei) of the samples can then be estimated by the equation (Kokelj and Burn, 

2003): 

(𝐸𝑖) =
(𝑊𝑣∗1.09)

(𝑆𝑣+𝑊𝑣∗1.09)
∗ 100                         (1) 

where Wv is the volume of supernatant water (cm3), multiplied by 1.09 to estimate the equivalent volume of ice, and Sv is the 

volume of saturated sediment (cm3). 
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This study takes an approach similar to Kokelj and Burn (2003) in that the supernatant moisture content is 

destructively assessed in order to calculate excess ice content. However, since the volume of soil samples was precisely 

measured through the following steps (Pumple et. al, 2024), volumetric ice contents were also measured.  

To independently assess density and ice content measurements and also being able to perform scans at higher 

resolutions, the cores were subsampled as 2x2x4cm cubes. The subsampling process was done in a walk-in freezer maintained 

at −7°C. The initial step involved removing material from the outer edges of the whole core that might have thawed during 

coring or been affected by sample storage. Core segments were split lengthwise with a rock saw equipped with a 35 cm 

diameter diamond-cutting wheel. Cuboid aliquots were cut from one half of the split core, while the other half was retained as 

an archive. The rounded edges were removed from the half core to expose an internal slab. For this study, a duplicate set of 

cuboids was obtained by cutting the internal slab in half. Approximately 3 cm³ aliquots were subsampled from the cores for 

samples with low ice contents to ensure that the cuboids did not fracture or disintegrate during sampling. Digital callipers 

(±0.01 mm) and a digital analytical balance (±0.01 g precision) were used to measure physical dimensions and mass, 

respectively, to calculate the frozen bulk density. The cuboids were then thawed at room temperature for 24 hours in glass 

beakers covered with Parafilm to minimize evaporative loss. Excess moisture was removed from the beakers containing the 

thawed samples, and the sample weight was recorded again to calculate excess moisture content. The cuboids were then dried 

in an oven for 24 hours at 105°C and reweighed to determine both volumetric ice content and gravimetric moisture content. 

Finally, the remaining dried material was heated at 550°C for 4 hours to determine the percent organic content via loss on 

ignition. High organic content could result in water absorption by soil matrix upon thaw and more complexity in the 

measurements of excess ice contents.  

Because in some soils, such as peat, excess ice will be absorbed by the soil skeleton upon thaw (Johnston, 1981), the 

Kokelj and Burn method was adjusted for samples with high organic contents by applying a slight pressure on the thawed cube 

and extraction of the released water. Additionally, the organic content of each sample was measured via loss on ignition (LOI) 

(Heiri et al., 2001). The cuboid method, described by Bandara et al. (2019), is similar to other volumetric and gravimetric 

methods used to measure bulk density and ice content, but takes advantage of the frozen state of the material which allows for 

a greater accuracy of volume measurement. Processing is undertaken in a walk-in freezer following methods outlined in 

Pumple et al. (2024). 

2.4 Multi Sensor Core Logger (MSCL) 

The PACS Laboratory MSCL is a floor-mounted, automated logging system, manufactured by Geotek, which can be used to 

analyse whole or split cores. This core logger is equipped with two magnetic susceptibility instruments, a line-scan camera, 

and a Caesium-137 (137Cs) gamma source and detector which provides measurements of gamma attenuation. Pumple et al. 

(2024) provides additional details on the methods used for the MSCL data collection and calibration. This analysis yields key 

physical parameters such as frozen bulk density and volumetric ice content, derived from gamma attenuation measurements 
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combined with soil density estimates and established equations (Lin et al., 2020). We used the density and volumetric ice 

content results reported by Pumple et al. (2024) as an established non-destructive reference technique to validate and compare 

with our own ice content estimations. 

 

3 Results and Discussions 

Figures 4 A and B show one slice of a small ROI and its histogram from 5 different cores of this study. The differences 

in the shapes of the histograms are due to the different sediment densities. The diamicton core has the highest sediment density 

and a bimodal histogram in which the first mode represents ice and the second is related to the sediments and clasts. Whereas 

in the other cores, ice and sediment appear as a single mode. Image segmentation of these slices using the Otsu method resulted 

in the differentiation of 5 different classes of ice/sediment ratios on the basis of their relative densities; air, low ice or sediment-

poor ice, high ice or sediment-rich ice, low sediment or ice-rich sediments, and high sediment or ice-poor sediments or clasts  

shown in Figures 4 B and C. Low ice comprises primary visual or excess ice; high ice mainly results from extraction of pore 

ice or ice proximal to sediment (sediment-rich ice). It should be noted that the pore ice inclusions within the mineral soil matrix 

are often smaller than the spatial resolution of the CT and the resulting grey value of a voxel is related to the mixture 

composition of low-density ice and high-density mineral grains. This phenomenon, called partial volume effect, is the main 

reason why the high ice appears denser. Low sediment and high sediment categories differentiate ice-rich sediments from 

sediments with lower and higher densities, respectively. Figure 5a-f illustrate the image segmentation results for the whole 

diamicton core, highlighting these distinctions. 

 

3.1 Core Results 

 

3.1.1 Ice-rich Silt Core (BH18-211): 

Figure 6 shows the destructive (cuboid) and non-destructive (CT and MSCL) results of the ice-rich silt core, illustrating that 

the CT frozen bulk densities are in strong agreement with both the cuboid (RMSE = 0.12 g/cm3) and MSCL (RMSE = 0.14 

g/cm3) results. This core has a high organic content (8-19% organic), micro-lenticular and layered cryostructures, and 66% 

silt. Cuboid physical EIC and VIC measurements range from 19-34% and 68-76%, respectively, while the CT EIC and VIC 

estimates range from 20-68% and 32-74% at the same depths where cuboid measurements were collected. The 65 μm EIC 

(redline in Figure 6C) shows good accordance with the cuboid EICs (RMSE = 9%) apart from the ice layer where the cuboid's 

relatively low sample resolution results in an averaging out of the ice content across the ice layer. The 65 μm CT-VICs (black 

line in Figure 6C) illustrate the resolution limitation in extracting the pore ice of this sandy silt core while the 25μm VICs 

shown as black cubes in the same plot tackle this limitation and agree well with VICs extracted from the Cuboid method 
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(RMSE = 7%). The MSCL VICs follow the same trend as the cuboid data (Fig 6-C) but consistently tend toward lower values 

in the ice-poor regions.  

3.1.2 Transition Core (BH12F-138):  

Figure 7 shows the results of the transition core from both destructive (cuboid) and non-destructive (CT and MSCL) methods, 

illustrating a sharp boundary between an ice-rich silty peat, containing massive and rare crustal cryostructures, and an ice-poor 

inorganic silt with a mainly micro-lenticular cryostructure. The organic content of the core’s top section, ranging from 53-

71%, highlights this transition (Figure 7D). Cuboid physical EIC and VIC measurements range from 6-28% and 64-88%, 

respectively, while the CT EIC and VIC estimates range from 9-33% and 42-95% at the same depths where cuboid 

measurements were collected. This figure also shows that the CT bulk density results are in strong agreement with both the 

cuboid (RMSE = 0.13 g/cm3) and gamma attenuation data (RMSE = 0.06 g/cm3) in agreement with the results reported by 

Pumple et al., 2024. The 65 μm EIC results (red line in Figure 7-C) follow the cuboid results (RMSE = 5%) in the silty section. 

The 65 μm VIC (black line in Figure 7C) resolves more than 50% of pore ice, while the higher resolution (25 μm, black cubes 

in Figure 7C), estimates up to 100% (RMSE = 3%).  

3.1.3 Diamicton Core (BS19-3-6): 

Figure 8 illustrates the destructive (cuboid) and non-destructive (CT and MSCL) results of the diamicton core. This ice-rich 

diamicton contains both suspended and crustal cryostructures and more than 50% silt (Table 1). Overall the bulk density and 

ice measurements from CT display high concordance with the gamma attenuation (RMSE = 0.14 g/cm3), and cuboid (RMSE 

= 0.14 g/cm3) methods (Figure 8). Cuboid physical EIC and VIC measurements range from 30-50% and 48-66%, respectively, 

while the CT EIC and VIC estimates range from 22-57% and 36-77% at the same depths as the cuboid measurements. The 65 

μm EIC results (red line in Figure 8C) follow the cuboid results (RMSE = 8%). The only point where the datasets differ notably 

is at 2-4 cm depth where the MSCL values shifts towards lower densities due to the core's lateral heterogeneity while the CT 

density still lines up well with the cuboid results. The ice contents of this cube are also much lower than CT and MSCL results. 

This is due to the collection procedure of the cubes which were just off-center to accommodate a duplicate run of cubes down 

the middle of the core for CT imaging and destructive measurements (as shown in Figure 1). This single cube highlights the 

effect of differences in the locations of ROIs between CT/MSCL and the cuboid methods. Moreover, at this depth in the core 

cuboid sample, there was a clast which resulted in a local density high and lower ice content. 

In this core, the 65 μm VICs agree well with the cuboid-VICs, MSCL (RMSE = 4%) ice contents, and 25 μm cube 

scan results (RMSE = 3%) while in the transition core, the 65 μm VICs underestimated the other VIC results. The difference 

between the 65 um VIC results and other VIC results for all cores except the diamict could be a result of the sample's grain 

size as the diamict has high clay content (~18%) relative to the other cores (~8-12%) (Table 1). 
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3.1.4 Ice-poor Silt Core (BH20B-337): 

Figure 9 shows the results of the ice-poor silt core from both destructive (cuboid) and non-destructive (CT and MSCL) 

methods, illustrating a massive (non-visible) cryostructure within this inorganic silt that highlights the relatively low overall 

ice content throughout the core. This core has little variability throughout its profile. The CT bulk densities are consistent with 

both the cuboid (RMSE = 0.14 g/cm3) and gamma attenuation data (RMSE = 0.14 g/cm3). The 65 μm EIC results compare 

well with the cuboid EIC results (RMSE = 5%) while the 25 μm cube scan ice contents show strong agreement (RMSE = 3%) 

with the volumetric cuboid ice content estimates. It should be noted that based on the EIC results of 65 μm scans, the core has 

a small percentage of ice (around 5%) in the form of microstructures beyond the natural pore space within the host sediment. 

However, upon thawing, the surrounding sediment absorbs the moisture into the available pore space, resulting in no EIC 

during the destructive analysis.  

3.1.5 Peat Core (DH13-589): 

Figure 10 illustrates the destructive (cuboid) and non-destructive (CT and MSCL) characterization results of the peat core, 

with little variability throughout its profile. The core is formed of homogenous organics, with an organic-matrix cryostructure 

of visible ice within the densely packed peat. The CT bulk density results are similar to both the cuboid (RMSE = 0.05 g/cm3) 

and gamma attenuation results (RMSE = 0.03 g/cm3) (Figure 10). The 65 μm ice content results (39-48% of EIC) are also in 

accordance with the cuboid excess ice results (RMSE = 4%). The 65 μum and 25 μum VICs are both showing good estimates 

of VICs (RMSE = 1%). It should be considered that the adjusted method for extraction of supernatant water, using slight 

pressure to release water from the organic matrix, was applied to the cubes of this core. As it was previously discussed, this 

pressure will release the excess water that was absorbed by the peat skeleton upon thaw (Johnston, 1981). 

3.2 Sensitivity analysis 

In this study in order to do a sensitivity analysis and investigate the impact of resolution on the delineation between ice and 

sediment, repeat scans were conducted on the same cube. Initially, the half cores (10 cm diameter) were scanned with a 65 μm 

voxel size. This was due to the physical size (width) of the imaging window. The smaller size of the cubes, however, presented 

an opportunity to collect data from the same material but at a resolution of 25 μm. Some of the cubes were also scanned at the 

same 65 μm resolution as the half cores to make a direct comparison. Figure 11 shows the same slice location and orientation 

from the same cube at two different resolutions.  

A ROI, shown as a red square in Figure 11, was then selected in each CT-scanned cube to make a direct comparison 

between the delineated (Otsu split) ice contents from image processing and the ice contents determined from the destructive 

cuboid analysis of the corresponding cube sample. As reference points, the cuboid ice content results for this cube were as 

follows; 22% excess ice and 65% volumetric ice contents. Figure 12 shows the collected data from repeat image processing 

steps using the Otsu method of each cube scanned at both 25 μm and 65 μm resolutions as well as the cuboid results. The initial 
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image processing steps for both the 25 μm and 65 μm scans closely capture the expected value of the EIC. However, only the 

25 μm cube captures a representative value relative to the cuboid data for the measured volumetric ice content. This value is 

reached after 6 image processing steps using the Otsu method. These results illustrate the capability of 25 μm resolution for 

better extracting trapped ice inside pore spaces of this sandy silt sample which could be due to the smaller size of pores than 

the resolution. The nature of the curve suggests that VIC cannot be delineated from the 65 μm resolution scans however EIC 

is possible.  

Additionally, there is an observable increase in the amount of pore space or gas captured in the 25um resolution 

relative to the 65um. This difference highlights the 25um scan’s increased potential to capture, and as a result segment, the 

different components within the scanned material. 

3.3 Comparison of CT and Cuboid Density and Excess Ice Results: 

Segmentation of the CT images using the Otsu method allows comparison of CT-derived bulk densities, excess ice, and 

volumetric ice contents with estimates from the cuboid method at similar resolution. We completed these comparisons at 65 

μm and 25 μm (Figures 13, 14 and 15). These figures revealing a good agreement for density, excess ice, and volumetric ice 

measurements with RMSE of 0.12 g/cm3, 6%, and 3%, respectively. Additionally, the CT results compare well with the MSCL 

results for both density and VIC with RMSE’s of 0.08 g/cm3 and 7%, respectively (Figures 16 and 17). The differences between 

the estimated EICs from CT image processing (65 μm-whole core) and the measured ones from the cuboid method are due to 

the differing resolutions, i.e., 0.5 cm for CT and 2 cm for the cuboid method, as well as the different locations of the regions 

of interest (previously described in section 2.2). The strong accordance of the VICs highlights the opportunity for higher 

resolution scans to estimate pore ice. 

3.4 Comparison of Non-destructive Methods: 

The results of this study show strong agreement between the two non-destructive methods: CT and MSCL and highlight the 

importance of continued development and refinement of non-destructive methods for extracting physical properties from 

permafrost materials. 

The presented CT method allows for whole core high-resolution (65 μm) three-dimensional imaging of cores, 

measurement of bulk density and estimation of excess ice contents at a desired scale. This contrasts with MSCL which is 

restricted to a fixed data collection transect down the center of the core (~ 1cm wide) with a maximum sample resolution of ~ 

0.5 cm, high resolution (25 μm) 2-dimensional half-core images and currently provides only volumetric ice estimates, and no 

direct estimates of excess ice. The CT method is capable of estimating volumetric ice contents but requires cores to be 

subsampled to a smaller size (2x2x4 cm cube) to allow for finer resolution scans (25 μm). 

 It is worth noting that the MSCL provides a more rapid method for collecting bulk density and volumetric ice content 

estimations in comparison with the CT method. However, in addition to bulk density and volumetric ice content estimations, 
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the CT method can provide direct estimates of excess ice content. Visible ice can be segmented and isolated from the remaining 

sediment and pore ice when scanning split cores at 65 μm voxel size, allowing the opportunity to better estimate EIC values 

compared to MSCL methods. Therefore, in terms of a non-destructive method for identifying and quantifying excess ice within 

permafrost cores the CT method provides a more robust approach although the image processing and acquisition costs are 

significantly greater.  

 

4 Conclusions 

This study investigated the application of high-resolution industrial CT scanning as a non-destructive method to tackle the 

limitations of traditional destructive methods (e.g., visual acuity, poor reproducibility, and low resolution) in permafrost 

characterization. Investigations were done by systematically logging permafrost cores, visualising cryostructures, measuring 

bulk density, and estimating volumetric and excess ice contents, independently. Five permafrost cores, representing common 

materials encountered in permafrost regions, were scanned at voxel sizes of 65 and 25 μm. A new calibration method was used 

to extract real densities in g/cm3 directly from CT images. Image segmentation results using Otsu automatic image thresholding 

method illustrated the effectiveness of this method in generating robust segmentation results while the visual inspection method 

has its own drawbacks, e.g. inspector's visual acuity and poor reproducibility. 

The initial identification of different materials from CT images showed 3 classes; air (gas), ice, and sediments while image 

processing steps of the scans (using Otsu method) illustrated significant density differences in ice and sediment classes. Image 

segmentation results using multiple image processing steps showed visual/excess ice as a lower density relative to the pore ice 

and delineated two sediment classes based on densities.  

Since manual and visual thresholding is subject to operator experience and judgement and also not applicable in 

images with unimodal histograms related to materials with close densities (organic materials and ice), an automatic 

thresholding technique was used in this study to generate more consistent results.  

Comparison of the image processing results and extracted physical properties of 5 permafrost cores were validated 

against a destructive method (cuboid) and MSCL non-destructive method. The results showed strong agreement between these 

three methods (CT and cuboid) considering their differing resolutions and regions of interest with overall average RMSE's of 

3%, 6% and 0.12 g/cm3 for VIC, EIC and density, respectively. This agreement demonstrates the applicability and reliability 

of non-destructive methods in tracking physical and cryostructural details of permafrost cores and producing replicable, cost-

effective measurements. A sensitivity analysis of the impact of differing resolutions on the delineation between ice and 

sediment showed that higher resolution scans generate more accurate VICs while the lower resolution scans are still sufficient 

for estimation of EICs and a rough estimation of VICs. 

The proposed approach of this study will help build more robust permafrost datasets and strengthen future permafrost 

research efforts in mapping permafrost properties and the distribution of excess ice and predicting thaw settlement. It also 

presents an opportunity to develop methods to extract more information from existing datasets based on an acute understanding 
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of the relations between key physical permafrost properties. The next steps can be followed by improving our understanding 

and techniques of scanning permafrost as well as using machine-learning-based image segmentation methods to generate 

datasets and explore the relations between physical permafrost properties. 
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Table 1: Sampling location and physical properties of cores analyzed in the study.  

 

Core ID 
Length 

(cm) 
Classification/ 

Properties 
Collection Location/ 

Depositional Environment 
Clay (%) Silt (%) Sand (%) 

BH18-
211 

23 Ice-rich silt 
Alaska HWY, Southwestern 

Yukon, Canada 
11 66 23 

BH12F-
138 

16 
ice-rich silty peat (top) and ice-

poor silt (bottom) 
Alaska HWY, Southwestern 

Yukon, Canada 

top 8 
bottom 

12 

top 52 
bottom 

57 

top 40 
bottom 

31 

BS19-3-6 19 Diamicton 
Dempster HWY, Central Yukon, 

Canada 
18 51 31 

BH20B-
337 

20 Ice-poor silt 
Alaska HWY, Southwestern 

Yukon, Canada 
8 67 25 

DH13-
589 

26 Ice-rich homogenous peat. 
Dempster HWY, Central Yukon, 

Canada 
N/A N/A N/A 
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Figure 1: Image of a core highlighting the destructive subsample locations relative to the non-destructive data collection transects 

(black: subsampled cubes for destructive measurements, purple: subsampled cubes for CT scans)  
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Figure 2: (A) The CT scanner of the PACS Lab.(B) The internal setup for the core scan. (C) X-ray image of the internal setup of the 

core (D) X-ray image of the internal setup of the cube. 
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Figure 3: Overview of a slice from ice rich silt core (A) before image processing (B) after the first step, (C) after the second step, and 

(D) after the third step of image processing using the Otsu method. 
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Figure 4: (A) overview of slices from the permafrost cores before image processing (B) histograms, and (C) image segmentation 

results 
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Figure 5: Image segmentation results of the diamicton core. 
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Table 2: Root mean square error results for the comparison between the CT, Cuboid and MSCL VIC, EIC and density results.  

 

 

 

Figure 6: (A) MSCL image of the ice-rich, organic-rich silt core; (B) bulk density; (C) ice contents; (D) organic content distribution 

in core depth; (E) black and white image of MSCL image with ice highlighted in black. 
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Figure 7: (A) MSCL image of the transition core; (B) bulk density; (C) ice contents; (D) organic content distribution in core depth; 

(E) black and white image of MSCL image with ice highlighted in black. 
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Figure 8: (A) MSCL image of the diamicton core; (B) bulk density; (C) ice contents; (D) organic content distribution in core depth; 

(E) black and white image of MSCL image with ice highlighted in black. 

 

 



29 

 

 

 

Figure 9: (A) MSCL image of the ice-poor silt core; (B) bulk density; (C) ice contents; (D) organic content distribution in core depth; 

(E) black and white image of MSCL image with ice highlighted in black. 
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Figure 10: (A) MSCL image of the peat core; (B) bulk density; (C) ice contents; (D) organic content distribution in core depth; (E) 

black and white image of MSCL image with ice highlighted in black. 
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Figure 11: CT images of a cube (BH12F-138-10-12 cm) from the transition core at 65 μm (A) and 25 μm (B).  
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Figure 12: (A) CT ROI’s taken from the 65 μm and 25 μm cube scans (BH12F-138-10-12 cm), (B) Identified ice contents at each 

image processing step using the Otsu split method. 
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Figure 13: Estimated densities from CT image processing of 65 μm scans vs calculated ones from cuboid method. 

 



34 

 

 

 
Figure 14: Estimated excess ice contents from CT image processing of 65 μm scans  vs calculated values from cuboid method. 
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Figure 15: Estimated volumetric ice contents from CT image processing of 65 μm scans vs calculated values from cuboid method. 
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Figure 16: Estimated bulk density from CT image processing vs calculated values from MSCL method. 
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Figure 17: Estimated volumetric ice contents from CT image processing vs calculated values from MSCL method. 

 


