Large Spatiotemporal Variability in Aerosol Properties over Central Argentina during the CACTI Field Campaign

Jerome D. Fast1, Adam C. Varble1, Fan Mei1, Mikhail Pekour1, Jason Tomlinson1, Alla Zelenyuk1, Art J. Sedlacek III2, Maria Zawadowicz2, and Louisa Emmons3

1Pacific Northwest National Laboratory, Richland, Washington, United States
2Brookhaven National Laboratory, Upton, New York, United States
3NSF National Center for Atmospheric Research, Boulder, Colorado, United States

Correspondence to: Jerome D. Fast (jerome.fast@pnnl.gov)

Abstract

Few field campaigns with extensive aerosol measurements have been conducted over continental areas in the southern hemisphere. To address this data gap and better understand the interactions of convective clouds and the surrounding environment, extensive in situ and remote sensing measurements were collected during the Cloud, Aerosol, and Complex Terrain Interactions (CACTI) field campaign conducted between October 2018 and April 2019 over the Sierras de Córdoba range of central Argentina. This study describes measurements of aerosol number, size, composition, mixing state, and cloud condensation nuclei (CCN) collected at the ground and from a research aircraft during seven weeks of the campaign. Large spatial and multi-day variations in aerosol number, size, composition, and CCN were observed due to transport from upwind sources controlled by mesoscale to synoptic-scale meteorological conditions. Large vertical wind shears, back trajectories, single particle measurements, and chemical transport model predictions indicate that different types of emissions and source regions, including biogenic emissions and biomass burning from the Amazon and anthropogenic emissions from Chile and eastern Argentina, contribute to aerosols observed during CACTI. Repeated aircraft measurements near the boundary layer top reveal strong spatial and temporal variations in CCN and demonstrate that understanding the complex co-variability of aerosol properties and clouds is critical to quantify the impact of aerosol-cloud interactions. In addition to quantifying aerosol properties in this data-sparse region, these measurements will be valuable to evaluate predictions over the mid latitudes of South America and improve parameterized aerosol processes in local, regional, and global models.

1. Introduction

Earth system models (ESMs), high-resolution models, and observations are key tools for improving our understanding of the natural and human-influenced atmospheric processes affecting Earth’s climate. Despite recent scientific advances, models still contain biases arising from knowledge gaps and imperfect parameterizations of important atmospheric processes. The impacts of these biases are multifaceted, but they make important contributions to uncertainties in the net change of the Earth system energy balance between preindustrial and present-day periods. Much of this uncertainty has been attributed to current understanding and/or representation of aerosol–cloud interaction (ACI) processes and the magnitude of this uncertainty among ESM predictions has remained unchanged for Intergovernmental Panel on Climate Change (IPCC) assessments since 1995 (Seinfeld et al., 2016; Carslaw et al., 2018).

Aerosols are known to perturb cloud hydrometeors, albedo, growth, dissipation, lifetime, and precipitation (Twomey 1974; Albrecht 1989; Rosenfeld et al., 2014) that subsequently influence climate over long time scales. ACI processes depend on the co-variability of aerosol and cloud properties. While the impact of aerosols on shallow marine stratocumulus has been studied extensively (e.g., Twomey et al., 2005; Wood et al., 2011; Feingold et al., 2024), there are few measurements that characterize the spatiotemporal variability of key aerosol properties in the presence of convective cloud populations that can be observed routinely by satellites. One challenge for models is that the spatiotemporal variability of aerosols and convective clouds is often subgrid-scale (e.g. Fast et al., 2022). While models often contain parameterizations of subgrid-scale variability for certain cloud types they usually assume aerosols are constant within a grid cell which could lead to erroneous estimates of the impact of ACI. In addition to
model resolution of intersecting aerosol and cloud properties, there are complex ACI pathways for convective clouds that are still highly uncertain (Fan et al., 2016; Varble et al., 2023) for many reasons. Aircraft in situ and remote sensing data provide key spatiotemporal measurements of aerosol properties needed to develop an improved understanding of aerosol processes and evaluate and improve models. Aircraft campaigns are usually relatively short (i.e. a few weeks or less) and do not have the global coverage of satellite and ground measurements. Most aircraft field campaigns that include aerosol measurements have been conducted over the northern hemisphere (Reddington et al., 2017; Watson-Parris et al., 2019). Field campaigns in the southern hemisphere have been conducted in the tropics, such as the Green Ocean Amazon Experiment, (GoAmazon, Martin et al., 2017) or over the southern hemisphere ocean, such as the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-Rex, Wood et al., 2011), Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES, McFarquhar et al., 2021), and the combined CLouds–Aerosol–Radiation Interaction and Forcing for Year 2017 (CLARIFY-2017), ObseRvations of Aerosols above CLouds and their interactionS (ORACLES), and Layered Atlantic Smoke and Interactions with Clouds (LASIC) experiments conducted over the southeast Atlantic Ocean (Barrett et al., 2022). Global aircraft campaigns, such as the HIAPER Pole-to-Pole Observations (HIPPO, Wofsy et al., 2011) and the Atmospheric Tomography Mission (AToM, Brock et al., 2019) obtained snapshots of aerosol measurements over both hemispheres, primarily over the ocean. Few aerosol field campaigns with extensive aerosol measurements, however, have been conducted over subtropical and midlatitude continental areas in the southern hemisphere.

To address this data gap and better understand the interactions of convective clouds and the surrounding environment, extensive in situ and remote sensing measurements were collected during the Cloud, Aerosol, and Complex Terrain Interactions (CACTI) field campaign conducted between October 2018 and April 2019 over the Sierras de Córdoba range of central Argentina (Varble et al., 2021). The U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) mobile facility (AMF, Mather and Voyles, 2013) and G-1 research aircraft (Schmid et al., 2014) were deployed during CACTI. The field campaign was designed to address science questions related to how orographic convective clouds interact with and depend on environmental conditions, thermodynamics, aerosols, and surface properties. CACTI occurred at the same time and in the same region as the National Science Foundation (NSF)-led Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign (Nesbitt et al., 2021). Observations from CACTI have been used to characterize the range of deep convective cloud life cycles and their relationships with ambient environments (Feng et al., 2022, 2023), determine the environmental conditions favorable for deep convection initiation (Marquis et al., 2021, 2023; Nelson et al., 2022), identify factors affecting rain rates in warm clouds (Borque et al., 2022), examine the relationship between depth of convective cores and aerosol concentrations (Veals et al., 2022), evaluate the ability of kilometer scale simulations to represent the characteristics of mesoscale convective systems (Zhang et al., 2021), and determine the influence of the South American low-level jet on the convective environment (Sasaki et al., 2023).

In contrast with the previous studies that focus on clouds, this paper describes measurements of aerosol number, size, composition, mixing state, and cloud condensation nuclei (CCN) collected by the AMF and G-1 platforms during the CACTI campaign. It is important to understand the spatiotemporal variation of aerosol properties before assessing how those properties influence convective clouds forming along the Sierras de Córdoba (SDC) range. CACTI measurements are analyzed to demonstrate the multi-day and diurnal variations in aerosol properties at the ground as well as the vertical and horizontal variations of aerosols aloft. As will be shown later, large multi-day variations in aerosol number, size, composition, and CCN was observed due to regional to long-range transport from upwind sources that is controlled by mesoscale to synoptic-scale meteorological processes. Since repeated aircraft measurements near the boundary layer top reveal strong spatial and temporal variations in CCN, inferring the impact of aerosols on convective clouds over the region will be challenging.
2. Measurements and Models

2.1 Ground measurements

A wide range of continuous meteorological, radiation, and aerosol measurements were collected at the ground by the ARM mobile facility (AMF, Mather and Voyles, 2013) during CACTI between 15 October 2018 and 30 April 2019. As shown in Fig. 1a, the AMF was located along the eastern slope of the SDC at an elevation of 1141 m MSL. The mountains along the continuous ~300-km long north-south crest of the SDC are as high as ~2790 m MSL. About 100 km northeast of the AMF site is Córdoba, the largest city in the region with an urban population of ~2.1 million. Rio Cuarto, ~130 km southeast of the AMF site, is the second largest city in the region with a population of nearly 180,000. Alta Gracia and Rio Tercero are ~60 km to the northeast and east, respectively, each having a population of ~45,000, while Villa Carlos Paz 80 km to the north has a population of 75,000. Villa Dolores, 50 km to the west on the other side of the SDC crest, has a population of 30,000. The SDC and the lower slopes surrounding mountain range, however, are much less populated with no more than a handful of towns having populations near 10,000.

Figure 1. a) Topography of Sierras de Córdoba and the location of AMF ground site and horizontal G-1 flight paths and b) west-east cross section of topography at the AMF latitude and the altitude of the G-1 flight paths. In a), the white cells denote urban areas and magenta dashed lines denote three analysis domains for the G-1 data.
Near-surface winds (Kyrouac et al., 2018) during the CACTI campaign were predominately from the northeast; otherwise, the winds were usually from the east to southeast (Fig. S1a). At about 2.5 km MSL which is often within the afternoon convective boundary layer, winds obtained from the radiosondes (3 – 5 per day; Keeler et al. 2018) were mostly from the north to northeast (Fig. S1b). Winds were usually from the northwest in the transition zone between the daytime convective boundary layer and free troposphere at 3 km MSL (Fig. S1c) and were predominantly from the west at higher altitudes such those at 4.5 km MSL (Fig. S1d). The lower frequency of easterly winds suggests that aerosols originating from the most populated areas of Argentina near Buenos Aires are not often directly transported to the AMF site. However, they may be transported to the site by more complex circulations. The common directional vertical wind shear indicates that aerosols measured at the AMF site could originate from different locations at the same time, as will be discussed later.

The AMF aerosol measurements used in this study are listed in Table 1. Measurements of aerosol optical depth at five wavelengths, total aerosol number concentration, aerosol chemical composition, aerosol size distribution, and CCN concentrations at six supersaturations were collected during the 6.5-month period. Measurements of scattering (nephelometer) and absorption (particle soot absorption photometer) by aerosols were also collected but are not used in this study. Aerosol optical depth at five wavelengths is derived from the multifilter rotating shadowband radiometer (MFRSR) during the day when the sky is relatively free of clouds (Koontz et al. 2018a). Two particle condensation counters (CPC) obtained aerosol number concentration for particle diameters greater than 3 (Koontz et al. 2018b) and 10 nm (Koontz et al. 2018c). The aerosol chemical speciation monitor (ACSM, Ng et al. 2011) measures bulk non-refractory organic matter, sulfate, nitrate, ammonium, and chloride for particle sizes less than 1 μm (Zawadowicz et al., 2018). Refractory black carbon (rBC) concentrations and size distributions are measured by a single particle soot photometer (SP2, Schwarz et al., 2006). The scanning mobility particle sizer (SMPS) obtained aerosol concentration for 106 size bins ranging from 10.9 to 495.8 nm (Kuang et al., 2018). The ultrahigh sensitivity aerosol spectrometer (UHSAS) collected aerosol concentrations for 299 size bins between 55.81 and 985.5 nm (Uin et al., 2018). The SMPS and UHSAS size distribution was combined to obtain a single aerosol size distribution, with the SMPS and UHSAS values merged around diameters of 260 nm. The first column of the CCN counter cycles through six supersaturations with measurements at each supersaturation lasting ~10 min (Koontz et al. 2018d) and the second column continuously samples CCN at 0.4% supersaturation (Koontz et al., 2018e). Trace gas measurements consisted of carbon monoxide (CO; Koontz et al., 2018f) and ozone (O₃, Springston et al., 2018) and did not include aerosol precursor gas-phase species. Additional details on these instruments and a description of the meteorological and radiation measurements are presented in Varble et al. (2019, 2021).

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Instrumentation</th>
<th>Sampling Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>aerosol optical depth</td>
<td>multifilter rotating shadowband radiometer (MFRSR) at 415, 500, 615, 673, 870 nm</td>
<td>20 s</td>
</tr>
<tr>
<td>aerosol number concentration</td>
<td>ultratine (>3 nm) and fine (>10 nm) condensation particle counters (CPC)</td>
<td>1 s</td>
</tr>
<tr>
<td>aerosol chemical composition</td>
<td>aerosol chemical speciation monitor (ACSM), single-particle soot photometer (SP2)</td>
<td>~30 min, ~1 min</td>
</tr>
<tr>
<td>aerosol size distribution</td>
<td>ultrahigh sensitivity aerosol spectrometer (UHSAS), scanning mobility particle sizer (SMPS), best estimate aerosol size distribution (BEASD)</td>
<td>1 s, 64 s interpolated to 1 s</td>
</tr>
<tr>
<td>cloud condensation nuclei (CCN) concentration</td>
<td>dual column CCN counter (0.1, 0.2, 0.4, 0.6, 0.8, 1% supersaturation)</td>
<td>1 s</td>
</tr>
<tr>
<td>trace-gas concentrations</td>
<td>O₃, CO monitoring systems</td>
<td>1 s</td>
</tr>
</tbody>
</table>

Table 1. Aerosol measurements, instruments, and sampling rates between 15 October 2018 and 30 April 2019 at the AMF site.
2.2 Aircraft measurements

The G-1 aircraft (Schmid et al. 2014) collected a wide range of meteorological, radiation, trace gas, and aerosol measurements around the AMF site over 79.4 h on 22 days between 4 November and 8 December 2018. Flight durations were usually ~4 h, although flight durations on a few days were closer to ~2 h. All flights were conducted between 0915 and 1715 LT and flights were either during the morning, mid-day, or afternoon. All the flight paths that originated at the Berg Cuarto airport where aircraft operations were based are depicted in Fig. 1a. Most of the science flight time was spent along north-south transects at constant altitudes over the AMF site, over the crest of the mountain range, and over the western slope of the of the SDC. The constant altitude flight legs were conducted below ~4 km MSL although some profiles were made up to 6 km MSL as shown in Fig. 1b. These aircraft measurements describe the spatiotemporal variability of aerosol properties in the boundary layer and free troposphere over the same region where deep convection frequently forms (Feng et al., 2022).

One of the objectives of CACTI was to determine how environmental conditions (including aerosol properties) influence convective cloud life cycles and how those convective clouds in turn alter aerosol properties; therefore, many of the constant altitude flight legs were at or just below cloud base. Cloud sampling was usually done within shallow cumulus or cumulus congestus, most frequently observed to form along the crest of the SDC. Three out of the 22 G-1 flights were conducted on clear-sky days to sample boundary layer and lower free troposphere aerosol properties.

Profiles of aerosol properties in the vicinity of the AMF site were likely influenced by vertical wind shears, boundary layer mixing, convective updrafts and downdrafts, and cloud processing. However, few true profiles through the depth of the boundary layer and lower free troposphere were made since the flight paths usually consisted of constant altitude legs connected by short vertical ascents/descents between those legs. As described later, the aircraft sampling strategy combined with the large spatiotemporal variability of aerosol properties complicates the interpretation of vertical profiles of aerosol properties within a short time window.

Table 2 lists the G-1 aircraft aerosol measurements used in this study. Two CPC instruments, with 3 and 10 nm lower cutoffs, were deployed on the aircraft to provide the same type of total aerosol number concentrations as the ground site (Koontz et al. 2018g,h). The miniSPLAT (Zelenyuk et al., 2015) instrument was deployed to measure the chemical composition of thousands of individual particles. While miniSPLAT does not produce bulk concentrations of aerosol composition like a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, DeCarlo et al. 2006), it does provide information on size and composition of individual aerosol particles, which determine aerosol activation into cloud droplets (e.g., Saliba et al., 2023). miniSPLAT measures the size, nonrefractory composition, and refractory composition (e.g., soot, sea salt, dust) of several hundreds of individual particles per minute to Table 2. G-1 aircraft aerosol measurements, instrumentation, and sampling rate between 4 November and 8 December 2018.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Instrumentation</th>
<th>Sampling Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>aerosol number concentration</td>
<td>ultrafine (> 3 nm) and fine (> 10 nm) condensation particle counters (CPC)</td>
<td>1 s</td>
</tr>
<tr>
<td>aerosol chemical composition</td>
<td>single-particle mass spectrometer (miniSPLAT), derived particle class information</td>
<td>0.05 s, 300 s</td>
</tr>
<tr>
<td>aerosol size distribution</td>
<td>scanning mobility particle sizer (SMPS), ultrahigh sensitivity aerosol spectrometer (UHSS), cloud aerosol spectrometer (CAS), fast cloud droplet probe (FCDP), best estimate aerosol size distribution (BEASD)</td>
<td>1 s</td>
</tr>
<tr>
<td>cloud condensation nuclei (CCN) concentration</td>
<td>dual column CCN counter (0.2, 0.5% supersaturation)</td>
<td>1 s</td>
</tr>
<tr>
<td>trace-gas concentrations</td>
<td>O3, CO, SO2 monitoring systems</td>
<td>1 s</td>
</tr>
</tbody>
</table>
obtain information on aerosol mixing state. The single particle mass spectra were classified into hundreds of clusters, which for simplicity have been subsequently combined into 14 distinct, physically meaningful, aerosol types or classes (Zelenyuk et al. 2015). Aerosol size distribution was obtained from SMPS (Mei and Pekour, 2018), UHSAS (Tomlinson, 2018), passive cavity aerosol spectrometer (PCASP; Marinovici and Tomlinson, 2018), cloud aerosol spectrometer (CAS; Cromwell et al., 2018), and fast cloud droplet probe (FCDP; Mei et al., 2018) instruments. CAS and FCDP are usually used to obtain droplet size distribution, but they also provide coarse mode aerosol number concentration outside of clouds with additional data processing. The merged aerosol size distribution ARM data product (Pekour and Ermold, 2023) combines data from these four instruments to produce 35 size bins from 15 nm to 9.69 µm and is used for our analyses of aircraft aerosol size distributions. In contrast to the ground CCN instrument, continuous measurements of CCN were obtained at 0.2 and 0.5% supersaturations (Koontz et al., 2018i,j). Trace gas measurements included sulfur dioxide (SO\textsubscript{2}; Burk et al., 2018a) in addition to CO (Berk and Ermold, 2018) and O\textsubscript{3} (Burk et al., 2018b). The SO\textsubscript{2} monitor was able to detect large sulfur dioxide plumes greater than ~1 ppb. SO\textsubscript{2} data below ~1 ppb was quite noisy and cannot be used to examine spatial variability at ppt levels. As with the ground instrumentation, there were no measurements of trace gas aerosol precursors. The 1-s sampling rate combined with G-1 flight speed of 100 m s-1 results in aerosol measurements over 100 m distances.

2.3 CAM-Chem description

The Community Atmosphere Model with chemistry (CAM-chem), a component of the Community Earth System Model (Danabasoglu et al., 2020) is used to illustrate transport pathways of smoke during CACTI. This version of the model uses the MOZART-TS1 chemical mechanism (Emmons et al. 2020) and the Modal Aerosol Model version 4 (MAM4, Liu et al., 2016; Tilmes et al., 2019). The meteorological fields are nudged to the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) meteorological analyses. Simulation output with a horizontal grid spacing of 1.25 x 0.94 degrees is available (Tilmes et al., 2022) at 6-hour intervals from 2001 – 2020.

3. Results

3.1 Multi-day and diurnal variability of ground aerosol measurements

Even though the SDC is not heavily populated, Fig 2a shows large multi-day variations in aerosol mass for particles less than 1 µm in diameter (PM1) from the ACSM and black carbon from the SP2. For example, PM1 concentrations were as high as 15.8 µg m-3 on November 2 and close to zero on days with rain (October 25-26, November 11-12, 26-27). The highest PM1 concentrations occurred between the rain events on October 25-26 and November 11-12 (period A, Figs. S2a and S2b). Between the November 11-12 and 26-27 rain events (period B), the lowest PM1 concentrations occurred. After November 27 (period C), PM1 concentrations increase somewhat but are still lower than during period A. In addition to wet scavenging, the large day-to-day variability is likely due to interactions of synoptic and terrain-induced circulations that transport biogenic, anthropogenic, and biomass burning aerosols from different source regions to the site. The temporal variation of PM1 is somewhat correlated (r = 0.56 and 0.52 for 415 and 500 nm, respectively) with AOD (Fig. S3a), suggesting that aerosols in the boundary layer contribute to a large fraction of the column integrated extinction. Note that AOD measurements are missing on 43% of the daytime periods due to partly to mostly cloudy conditions as indicated by the KAZR-ARSCl (K-band ARM Zenith Radar, Active Remote Sensing of CLouds) ARM product (Johnson et al., 2018; Fig. S3b). Relatively high and low PM1 concentrations and AOD are often associated with northerly and southerly winds, respectively, as will be shown later. While midday trends in PM1 and AOD are similar, they differ over several hours on some days (e.g., November 23) indicating the presence of aerosol layers in the free troposphere that significantly contribute to column extinction.

Figure 2b shows that most of the PM1 mass is comprised of organic matter (OM, 53% on average) and sulfate (SO\textsubscript{4}, 29% on average). The relative contribution of OM is larger on days with relatively high PM1 concentrations, while the relative contribution of SO\textsubscript{4} is usually larger on days when PM1
concentrations are less than 1 µg m⁻³. Nitrate (NO₃) and ammonium (NH₄) each comprise 8% of the PM1 concentrations on average between October 23 and December 15. While the fraction of NH₄ does not vary significantly during the campaign, the fraction of NO₃ varies substantially. Though NO₃ is very small on many days, it contributes to over 20% of the total mass during 6% of this measurement period. OM, SO₄, NH₄, and NO₃ concentrations all exhibited similar variations as PM1 among periods A, B, and C (Figs. S2a - S2e).

Figure 2. Time series of a) PM1 and rBC concentration, b) ACSM composition fraction, c) aerosol volume distribution, d) aerosol number distribution, e) total number concentration, and f) CCN concentration at three supersaturations, focusing on G-1 flights during the first two months of CACTI.

Temporal variations in the volume size distribution (Fig. 2c) are consistent with the variability in PM1, with volume decreasing dramatically during rain events. Outside of rain events, peak aerosol volume usually occurs between 200 and 300 nm. The 25th to 75th percentiles of accumulation mode particles (> 100 nm) are the largest during periods A and C and the lowest during period B (Fig. S2f) consistent with the variations in PM1 from the ACSM. Nevertheless, there are a few times during period B with the highest accumulation mode number concentrations as indicated by the largest 95th percentile. Temporal variations in aerosol number distributions (Fig. 2d) and total aerosol number concentrations (Fig. 2e)
reveal that new particle formation (NPF) events occur on many days that produce large numbers of
ultrafine particles (UFP, diameter < 50 nm). While rain removes a large fraction of accumulation mode
particles, smaller particles are not removed entirely by wet scavenging. In addition to differences in the
meteorology and trace gas precursors between the rain events, NPF and growth is mostly likely controlled
by the presence or absence of accumulation mode aerosols. Since gas-phase aerosol precursors
preferentially condense on the largest particles, the higher PM1 concentrations during period A
suppresses the formation and growth of UFP (Fig. S2g). Conversely, the lower PM1 concentrations
during period B permit more particles to form and grow by condensation of trace gas precursors. While
NPF events resume a few days after the rain on November 26 and 27, accumulation mode aerosols and
PM1 concentrations slowly increase after December 6 and suppress the formation and growth of UFP.
Thus, UFP and Aiken mode number concentrations during period C are somewhat lower than during
period B but higher than during period A.

CCN is a function of aerosol number, size, and hygroscopicity (Kohler, 1936; Petters and Krien denweis,
2007). As with PM1 and accumulation mode aerosols, CCN concentrations decrease dramatically during
rain events (Fig. 2f). The temporal variations in CCN are similar to variations in number concentrations of
particles larger than 100 nm with a correlation coefficient (r) of 0.68, 0.88, and 0.86 for supersaturations
0.1, 0.2, and 0.4%, respectively. Therefore, differences in CCN concentrations (Figs. S4a) among the
three periods are similar to those from the accumulation mode aerosols (Fig. S2e); however, the 95th
percentile for CCN at 0.4% supersaturation is the highest during period B because particles with smaller
diameters (usually with higher concentrations) can activate. The ARM CCNKAPPA product (Kulkarni et
al., 2018), that combines Kohler theory with CCN and SMPS measurements, is used to examine the
critical diameter for activation and aerosol hygroscopicity (kappa, κ) between October 23 and December
15. As expected, critical diameters for activations decrease with increasing supersaturation. The median
critical diameters for 0.1, 0.2, and 0.4% supersaturation are, 195 to 210, 118 to 126, and 76 to 82 nm,
respectively (Fig. S4b); however, the interquartile variations among periods A, B, and C are usually small
(less than 7%). Hygroscopicity is also relatively low and invariant during the campaign period (Fig. S4c),
with median values ranging from 0.19 to 0.29. As indicated by the 95th percentiles, hydrophilic aerosols
occur most often during period B followed by periods A and C. Determining the relative importance of
aerosol number, size, hygroscopicity, and mixing state factors on the temporal variations in CCN seen in
Fig. 2f will require a closure study (e.g. Kulkarni et al., 2023).

Figure 3a shows the average diurnal variations in aerosol composition, which reflect the impact of local
processes such as boundary layer mixing and photochemistry. SO2 and NH3 have little diurnal variability
during this seven-week period, suggesting multi-day transport may be the dominate process influencing
those concentrations over the AMF site. NO2 has peak concentrations around sunrise that are twice as
high (0.4 μg m⁻³) as those during the late afternoon (0.2 μg m⁻³). This diurnal variability is likely due to
temperature dependent condensation/evaporation processes because the lowest temperatures occur at
sunrise and NO2 tends to evaporate during warmer temperatures. Peak OM concentrations usually occur
during the afternoon, probably due to secondary organic aerosol (SOA) formation that depends on a wide
range of photochemical processes. The net increase in surface OM suggests that photochemistry and/or
entrainment of higher OM from the free troposphere more than compensates for the effects of growing
boundary layer dilution. The peak rBC concentration at night is more difficult to explain since there are
no local emissions of black carbon in the vicinity of the AMF site. Since rBC is chemically inert and can
be treated as a passive tracer, the diurnal variability is due to the combination of horizontal transport and
the effects of boundary layer mixing.

Ultrafine particle number concentrations from the SMPS (Fig. 3b) show maximum concentrations
occurring during the late afternoon at 20 UTC (17 LT). The diurnal variations in the UHSAS (Fig. 3c)
also indicate modest concentration increases during the later afternoon for particle diameters greater than
100 nm; however, there is no diurnal variability for particle diameters greater than 200 nm. This indicates
that most of the diurnal variability in aerosol number is driven by ultrafine and Aiken mode aerosols.
Since NPF events vary during the sampling period (Fig. 2d), we divide the diurnal variability in aerosol number concentration into 19 days with concentrations always lower than 4000 cm\(^{-3}\) ("low-UFP"), 11 days (1 during period A, 6 during period B, 4 during period C) with number concentrations greater than 8000 cm\(^{-3}\) for at least one hour ("high-UFP"), and the 24 remaining days that fall in between the low-UFP and high-UFP days. The high-UFP days exhibit the largest diurnal variability, the low-UFP days exhibit no diurnal variability, and the remaining 24 days have modest diurnal variability that is closer to the average over the entire period.

The diurnal variations in CCN shown in Figs. 3d – 3f are closely related to the diurnal variability in aerosol number. Both particles with diameters greater than 200 nm and CCN at 0.1% supersaturation exhibited no diurnal variability (Fig. 3c and 3d), Smaller particles start to activate at 0.2% supersaturation (Fig. 3e); therefore, CCN at this supersaturation exhibits a modest diurnal variation on average with afternoon concentrations ~28% higher than earlier in the day. However, CCN concentrations during the late afternoon on high UFP days are twice as high as those around 15 UTC (12 LT). Finally, particles smaller than 100 nm start to activate at CCN at 0.4% supersaturation so that CCN concentrations at this supersaturation (Fig. 3f) are about double those at 0.2% supersaturation with a similar late afternoon peak. Note that for both 0.2 and 0.4% supersaturations, peak CCN concentrations on high UFP days occur ~2 h later in the day and closer to sunset than aerosol number concentrations. This suggests growth in the aerosol size distribution during the day influences CCN, consistent with the daily growth seen in Fig. 2d.

Figure 3c also shows that concentrations of particles with diameters greater than 200 nm are higher on low-UFP days and conversely high-UFP days tend to have lower concentrations of larger particles.

Figures 4a and 4b illustrate the average aerosol number and volume size distribution for 23 October to 15 December along with the averages for the low-UFP and high-UFP days. The differences in the number and volume distribution for particle diameters < 100 nm reflect the definition of these days and are
consistent with the differences in CCN among the three supersaturations. Peak number concentrations for
high-UFP days occur between 30 – 40 nm, while those on low-UFP days occur between 50 – 60 nm. In
addition, high-UFP days have lower concentrations for particle diameters between 150 – 600 nm, likely
reflecting the time between days to grow particles from UFP to accumulation mode size as indicated in
Fig. 2d. Differences in the aerosol size distribution leads to differences in the critical particle diameter for
CCN activation, which are largest for 0.4% supersaturation. The average aerosol number and volume size
distributions for periods A, B, and C are shown in Figs. 4c and 4d. Periods A and B have the lowest and
highest average UFP concentrations, respectively, since period B also contains the most high-UFP days.
Conversely, periods A and B have the highest and lowest accumulation mode concentrations,
respectively. The average aerosol size distribution for period C is between those for periods A and B, and
similar to the average size distribution between the whole October 23 and December 15 period in Figs. 4a
and 4b. As expected, the rainy days at the AMF site have the lowest aerosol concentrations for all particle
sizes.

Figure 4. Average size distributions at the ground site between 23 October and 15 December for
days with high and low UFP concentration (a and b) and periods A, B, and C (c and d).

Understanding the aerosol-cloud interactions in the region will depend on the intersection of cloud
formation and growth with the growth rates of the aerosol size distribution and diurnal variability in CCN
concentrations such as those shown in Figs. 2 and 3. Over the crest of the SDC, shallow convection
typically forms by the late morning. Feng et al. (2022) show that deep convective cells preferentially form
east of the crest between 15 and 19 UTC (12 and 16 LT), growing and intensifying until about 21 UTC
(18 LT). This coincides with the increase in CCN concentrations at 0.2 and 0.4% supersaturations which
is most pronounced on high UFP days, although peak CCN concentrations occur after most of these deep
convective events.

3.2 Sources of aerosols and trace gases observed at the ground

To explore the possible sources of aerosols over the AMF, we next compare aerosol composition with
trace gases measured at the AMF site. Not surprisingly, O₃ concentrations are relatively low (always < 45
ppb) at this remote site as shown in Fig. 5a. OM and O₃ are very weakly correlated (r = 0.15) even though
both depend on photochemical production. In contrast, the temporal variability in CO and rBC
concentrations over the sampling period are moderately correlated (r = 0.59) as shown by the time series
Temporal variability of CO and rBC is similar because they are usually co-emitted from the same anthropogenic and/or biomass burning sources, although the ratio of CO to rBC mass emitted varies from source to source. Correlations between CO and rBC often approach one near the emission source; therefore, the lower correlations suggest mixing of many emission sources during long-range transport and/or cloud processing of rBC containing particles that leads to wet removal of rBC. OM is also moderately correlated with rBC (r = 0.56, Fig. 5d) for the same reason as CO and rBC; however, biogenic sources that do not emit BC can also contribute to a significant fraction of OM. Since the near-surface winds are usually from the north to northeast (Figs. S1a and S1b), it is possible that a large fraction of OM, rBC, and CO originate from Córdoba and/or fires in the Amazon and La Plata basins (Fig. S5a) that are transported by the low-level jet to AMF site. The scatter plots in Figs. 5c and 5d are color coded by northerly (330 to 30 degrees), northeasterly (30 to 60 degrees), and southerly (150 to 210 degrees) wind directions show that the highest BC concentrations occur during northerly winds.

The effects of wind direction are further illustrated in Fig. 6. The interquartile range of rBC and CO is highest for northerly winds (Figs. 6a and 6b), followed closely by northeasterly winds. Southerly winds have the lowest concentrations and a substantially lower interquartile range. For OM, the interquartile ranges for northerly and northeasterly winds are similar while southerly winds have somewhat lower concentrations (Fig. 6c). In contrast, O3 has the highest interquartile range for northeasterly winds,
possibly due to transport of \(O_3\) produced by urban emissions from Córdoba (Fig. 6d). Despite the low correlation between OM and \(O_3\), they have a similar average diurnal variability (Fig. 6e). This suggests the low correlation is due primarily to multi-day variability. Maximum OM and \(O_3\) concentrations during the afternoon are \(\sim\)25% and \(\sim\)23% higher than at sunrise on average, respectively. OM diurnal variability is also similar to the diurnal variability of CCN at 0.2% supersaturation (Fig. 3e). The average diurnal variations for rBC and CO are similar with the highest values at night and lowest values a few hours after sunrise. While the diurnal variability for northerly and southerly winds is similar, the concentrations are significantly higher for northerly winds. OM, \(O_3\), rBC and CO concentrations are all lowest at night for northeasterly winds.

The CAM-Chem model is now used to illustrate transport pathways of biomass burning aerosols suggested by the relationships in Figs. 5 and 6. The largest CO emissions from smoke during the campaign period occur over the western Amazon basin as well as southern Brazil (Fig. S5a). Smaller fires occur across most regions outside of Patagonia and the Atacama Desert. In addition to primary carbonaceous particles, fires emit gas-phase aerosol precursors, including \(SO_2\) (Fig. S5b), with emissions rates that are a factor of \(\sim\)2 lower than CO. These \(SO_2\) emissions ultimately become sulfate and affect CCN concentrations since sulfate is more hygroscopic than OM and rBC.

CAM-Chem predictions of CO and wind direction are evaluated with G-1 measurements as shown in Figs. S6 and S7, respectively. The vertical and temporal variations in the vicinity of the AMF site are in reasonable agreement with G-1 data, even though the coarse spatial grid does not resolve local measured variations. High CO concentrations are simulated during periods of northerly and northwesterly winds, suggesting that smoke from fires north of the AMF were transported over the site. Conversely, CO concentrations are lower when the winds were from the south. Fires and anthropogenic emissions of CO are both lower over the less populated areas of southern Argentina (Fig. S5a).

Since CAM-Chem is in reasonable agreement with the G-1 CO measurements, Fig. 7 shows horizontal cross sections of CO at \(\sim\)2.5 km MSL to illustrate transport during an episode between November 11 and 13. Figure 7a shows the transport of CO from the western Amazon to the AMF site by a low-level jet. A trough pushes the low-level jet and plume of CO towards the east on November 12 (Fig. 7b), somewhat reducing the CO concentrations. While the winds have become southerly near the AMF site, CAM-Chem suggests local recirculation on the western side of the CO plume keeps the concentrations relatively high.

As the trough continues to propagate to the east on November 13 (Fig. 7c), lower CO from the Pacific Ocean is transported over the AMF. Vertical profiles of CO from the G-1 on November 12 in Fig. 7d show that the highest concentrations occur east of the SDC. This is similar to the horizontal gradient in CO at 2.5 km MSL produced by CAM-Chem that shows the CO plume east of the AMF site (Fig. 7b).

Single particle measurements from miniSPLAT from the November 12 G-1 flight shown in Fig. 8 reveal that \(\sim\)12% of the particles originate from fires. The rest of the particles are composed of organics mixed with varying amounts of sulfate. A large portion of the organic material not identified as biomass burning aerosols is oxygenated organics, likely from biogenic sources in the Amazon that are transported by the same winds to the AMF site. As noted earlier, PM1 measured by the ground ACSM was relatively low between November 11 and 12 because of wet scavenging by rain and changing synoptic conditions. PM1 concentrations from the ACSM increased from 0.3 to 2.5 \(\mu\)g m\(^{-3}\) during the three-hour G-1 flight. Average PM1 concentrations were 1.2 \(\mu\)g m\(^{-3}\), comprised of 54% OM, 19% \(SO_4\), 11% \(NO_3\), and 16% \(NH_4\). While bulk sulfate mass was 19% on average, the miniSPLAT data sheds light on the aerosol mixing state that suggests it was mixed with \(\sim\)80% of the particles. The three particle classes that have the largest fraction of particles are made up of organics and sulfate at various ratios. This variability in aerosol mixing state could impact CCN concentrations and aerosol optical properties (e.g., Ching et al. 2017; Saliba et al., 2023).

The circulations depicted in Fig. 7 are repeated on many days during CACTI, indicating that the AMF site is periodically influenced by biomass burning. Thus, the sources of aerosols change from day to day.
Figure 7. CAM-Chem simulations of CO at ~2.5 km MSL at 18 UTC on a) November 11, b) November 12, and c) November 13 along with d) vertical profiles of CO measured by the G-1 aircraft between 17 and 20 UTC on November 12.

Figure 8. Particle classes derived from the aircraft miniSPLAT mixing state measurements on November 12.
3.3 Aircraft Measurements

The evolving size distribution of ground measured particles suggest that NPF events are followed by multi-day growth to larger sizes. However, it is not clear whether these NPF events occur near the surface or aloft (either in the upper boundary layer or lower free troposphere) with mixing to the surface as has been observed at other locations (Chen et al. 2018; O’Donnell et al. 2023; Wang et al. 2023). Therefore, it is important to examine the vertical variations in aerosol properties that are available from the G-1 aircraft.

The overall particle number concentrations observed by the two CPC instruments on flight days between November 4 and December 8 are shown in Fig. 9. Median CPC concentrations are highest within 1 km of the ground and then gradually become smaller with height, up to a factor of ~2.2 smaller by 3 km MSL (Fig. 9a). Median concentrations increase somewhat at 3.3 km MSL and then continue to gradually decrease with height so that values at 6 km MSL are almost an order of magnitude smaller than at the ground. Similar trends are produced for the interquartile and 5th to 95th percentile ranges; however, maximum concentrations that are between 10,000 and 100,000 cm⁻³ occur up to ~4 km MSL before decreasing with height. This suggests that high concentrations of UFP could occasionally be entrained into the growing daytime boundary layer and mixed to the surface. Note that number concentration percentiles at 3.3 km MSL are slightly different than those at adjacent altitudes because the number of samples at that altitude are much larger than any other altitude (Fig. 9b). While there are large temporal variations in UFP concentrations within the G-1 flight periods as will be shown later, under-sampling is not likely to affect the overall vertical variations. In addition, the number of samples above 4.5 km MSL are much lower than at other altitude, so caution is warranted in interpreting the vertical variations at those altitudes. Particle concentrations smaller than 10 nm, obtained by computing the differences between the two CPC instruments, are similar up to 5.5 km MSL (Fig. 9c).

Figure 9. a) Particle number concentration percentiles as a function of height from all the G-1 measurements during CACTI along with b) the number of samples at each altitude bin. c) is the same as a), except for particle diameters between 3 and 10 nm.
Next, we examine the vertical profiles of particle concentrations in relation to the low and high UFP days as determined by the surface CPC measurements. The median particle number concentrations for the seven G-1 flights associated with high UFP days were higher than the median among all the G-1 flights up to ~3 km MSL (Fig. S8). Conversely, the four G-1 flights on the low UFP days were lower than the median among all the G-1 flights up to ~3 km MSL. When the G-1 flights are divided into periods A, B, and C determined by the surface CPC measurements, period B has the highest median concentration near the surface, followed by periods C, A, and the rainy days. The results in Fig. S8 suggest that the boundary layer particle number concentrations are consistent with the broad variations seen at the ground. However, it is not surprising that the trends in the surface number concentrations are not representative of the temporal variability in the upper boundary layer and free troposphere.

A summary of the vertical profiles of CCN concentration for all the aircraft flights is shown in Fig. 10a. The median CCN at 0.2% supersaturation between the surface and 3.5 km MSL varies between 255 and 335 cm⁻³. At 0.5% supersaturation, CCN concentrations are about twice as high as those at 0.2% and vary between 546 and 724 cm⁻³. Above 3.5 km MSL, concentrations drop to below 100 cm⁻³ at 4 and 5.5 km MSL for 0.2 and 0.5% supersaturations, respectively. The median cloud base height of 2.6 km MSL and the interquartile range from KAZR-ARSCL computed during the G-1 flight periods (Fig. 10b) illustrates the relevant altitudes in which CCN can be entrained into clouds. The median CCN concentrations at the median cloud base height are similar to those at the surface suggesting a well-mixed boundary layer. However, additional analyses are needed to determine whether surface CCN measurements are representative of the conditions at cloud base at the same time as when the G-1 flew directly over the AMF site.

Figure 10. a) CCN concentration percentiles as a function of height from all the G-1 measurements during CACTI along with b) the number of samples at each altitude bin. Light blue shading in b) denotes the 25th to 75th percentile of cloud base height observed over the AMF site.

Median CCN concentrations for low UFP days below 4.5 km MSL are 20 – 25% lower than the median for all the flights at 0.2% supersaturation (Fig. S9a) and up to 70% lower at 0.5% supersaturation (Fig. S9b). Differences in the median CCN concentrations are also produced among periods A, B, and C; however, the vertical variations are noisy and suggest that additional flights are needed to account for the
strong spatiotemporal variations in CCN aloft. While there are only two aircraft flights on rainy days, they indicate CCN concentrations are lower than all other flights within 0.3 and 1 km of the surface for 0.2% and 0.5% supersaturations, respectively. Above that altitude, median CCN concentrations are similar to the median of all the aircraft flights.

3.4 December 3 Case Study
The percentiles in Figs. 9 and 10 reflect both large spatial and temporal variations in CPC and CCN concentrations around the AMF site. Measurements during the afternoon on December 3 are shown in Fig. 11 to demonstrate the spatiotemporal variability of aerosol number, size distribution, CCN, and trace gases for a particular flight. The flight path color coded by CPC concentrations indicates that particle number varied by over an order of magnitude both horizontally and vertically during the 4-h flight period (Fig. 11a). By comparing the flight altitude (Fig. 11b), the time series of particle number concentration (Fig. 11c), and the aerosol size distribution (Fig. 11d), one can see that the highest UFP number concentrations with diameters < 30 nm occurred along ~3.3 km MSL flight legs (1, 2, 5-7, 11-13, 17-19). While clear skies were observed directly over the AMF site on this day, a line of orographic cumulus formed over the crest of the SDC. While there was widespread cumulus over the ridge, the time spent flying through clouds was less than 2.7% total time at 3.3 km MSL. There were few ultrafine particles (diameters < 30 nm) for flight legs at lower (legs 3, 4, 8, 9, 20, 21) and higher (legs 14-16) altitudes. For the lower and higher altitude legs, the highest particle concentrations occurred at diameters of ~80-100 nm and ~30-60 nm, respectively. The spatiotemporal variability in CCN concentrations (Fig. 11e) is similar to the accumulation mode aerosols with the highest CCN concentrations occurring for the lowest

Figure 11. a) Spatial variations in particle number concentration (> 3 nm) for the December 3 aircraft flight along with temporal variations in b) altitude, c) particle number concentrations from CPC and SMPS instruments, d) aerosol number distribution from BEASD, e) CCN and particle number concentrations from PCASP, and f) CO and SO₂ concentrations. E, C, and W in b) denote legs east of the crest, over the crest, and west of the crest as shown in a).
flight legs where the highest concentrations of larger particles occur. Outside of the Rio Cuarto airport, the highest CO concentrations occur along the lowest flight legs (Fig. 11f) and spatiotemporal variations in CO are similar to spatiotemporal variations in accumulation mode aerosols.

On this day, the G-1 encountered two SO$_2$ plumes with concentrations as high as 12 ppb denoted as plume #1 and #2 in Figs. 11a and 11f. The G-1 passed through plume #2 twice at different altitudes. The narrow plume width and high concentrations suggest that a local source is responsible for these two plumes. Local maxima in particle number and CCN concentrations occurred at the same location as the SO$_2$ plume, suggesting that SO$_4$ was also present. SO$_4$ is more hydrophilic than other aerosol species, which may be why CCN concentrations are higher within the plume. Other than one other small plume of SO$_2$ (~3 ppb) on December 3, no other SO$_2$ plumes of this magnitude were observed by the G-1 during the campaign. The detection limit of the instrument is too high to describe variability of SO$_2$ at the ppt level.

The advantage of the multiple constant altitude flight legs is that they can be compared to determine how aerosol properties aloft evolve in time. Figure 12 depicts the variations in total particle number and CCN concentrations for three periods: 1620-1730 UTC, 1806-1833 UTC, and 1911-1914 UTC, each with flight legs west, over, and east of the crest of the SDC. During the first period between 1620 and 1730 UTC, particle concentrations exceed 15000 cm$^{-3}$ along most of the four flight legs (Fig. 12a). CCN concentrations vary by a factor of three (300 to 900 cm$^{-3}$) over the region during the same period (Fig. 12b). The observed winds at this altitude are southerly and usually between 8 to 10 m s$^{-1}$.

![CPC (> 3 nm) concentrations at ~3.3 km MSL](image1)

![CCN (0.5% supersaturation) concentrations at ~3.3 km MSL](image2)

Figure 12. Spatial variations in a) particle number concentrations > 3 nm (a, c, and e) and CCN concentrations (b, d, and f) for all the ~3.3 km MSL constant altitude transects on December 3. Blue arrows depict wind speed and direction at 30 s intervals. Gray shading denotes cloud optical depth > 2 obtained from GOES satellite (~Δx = 2 km).
The second period between 1806 and 1833 UTC took place 36 to 133 minutes after the first period; therefore, aerosols sampled along legs 2, 5, 6, and 7 would be transported ~17-80 km to the north by the time the aircraft conducted legs 11 to 13. Since the flight legs are ~40 km long, aerosols measured during the second period are not likely to be the same as those sampled during the first period. During the second period, most of the particle concentrations remain above 15000 cm$^{-3}$ for the flight legs west and east of the SDC crest (Fig. 12c). However, lower concentrations between 2000 to 5000 cm$^{-3}$ are being transported by southwesterly winds towards the AMF site along the southern third of leg 13. At this time, CCN concentrations are the highest for legs 11 and 12 and lower along leg 13 closer to the AMF site (Fig. 12d). Interestingly, winds over the crest along legs 6 and 12 switched from southerly to southwesterly and particle number concentrations became a factor of two lower between during periods one and two. As will be shown in more detail later, this is likely due to both the growing boundary layer and subsidence that transports lower particle number concentrations to this altitude. While winds in the lower boundary layer along legs 3 and 8 and from the AMF radiosonde at 18 UTC (not shown) are from the north to northeast, southwesterly winds observed near the top of the boundary layer top along leg 12 and from the 18 UTC AMF radiosonde at 3.3 km reflect the wind direction shear between the boundary layer and free troposphere.

The same wind pattern for period two persists through period three between 1911-1941 UTC. Strong gradients in total aerosol number and CCN concentrations are observed for all three flight legs during this period (Figs. 12e and 12f). CCN concentrations are the highest along leg 18 over the crest during period three. It is possible that recycling of aerosols through clouds change the size and hygroscopicity of aerosol populations and thus CCN in this region, but that requires further analysis.

While Fig. 12 illustrates the strong spatial and temporal variations in aerosol properties at 3.3 km MSL on December 3, Fig. 13 shows the vertical variations in number and CCN concentrations that are divided into flight paths west, over, and east of the crest of the SDC. West of the crest, the highest number concentrations occur in two layers, one between 2.3 and 2.7 km MSL and the other between 2.9 and 3.3 km MSL.
km MSL (Fig. 13a). Note that the smallest particles (CPC > 3 nm) concentrations vary for a given altitude due to both spatial and temporal variability along the flight legs. The differences for the larger particles > 10 nm are much smaller at these altitudes; however, there are large differences below 2.3 km MSL. Thus, the spatial variability for UFP and larger particles is not necessarily the same. East of the crest, a layer of high number concentrations occurred between 3.1 and 3.5 km MSL; however, there is not a distinct second layer as seen west of the crest and the two CPC instruments have similar spatiotemporal variability below 3.1 km MSL. While the spatial variability in aerosol number is similar west, over, and east of the crest at 3.3 km MSL, the variability at 3.9 km MSL west of the crest is lower than over and east of the crest. In general, Fig. 13 illustrates that aerosol number concentrations and variability can be different west and east of the SDC crest.

As shown in Fig. 13b, there are also differences in CCN concentrations between the west and east sides of the mountain range. There are two layers of high CCN concentrations that were sampled by the aircraft west of the crest, one between 2.6 and 2.9 km MSL and the other between 2.3 and 2.5 km MSL. The highest SO$_2$ concentrations also occur within these layers, suggesting that SO$_2$ produced by the SO$_2$ plume #2 (Figs. 11a and 11f) lead to higher number concentrations and more hydrophilic aerosols. SO$_2$ concentrations were low at all altitudes east of the crest. Note that the layer between 2.6 and 2.9 km MSL occurs between the constant altitude transects; therefore, the spatial extent of this layer cannot be determined, and other layers could be missed between the constant altitude transects. In addition, CCN concentration profiles at both 0.2 and 0.5% supersaturations are somewhat lower east of the crest below 2.5 km MSL and somewhat higher east of the crest above 3.5 km MSL. Thus, CCN also exhibits differences west and east of the crest.

To examine whether the aerosol size distribution is different across the SDC, the average number and volume distributions as functions of altitude and location relative to the crest are shown in Fig. 14. For the highest aircraft constant altitude flight legs at 3.9 km MSL, the number and volume distributions west, over, and east of the crest are very similar. At 3.3 km MSL, particle number concentrations and volumes for diameters less than 40 nm are the lowest over the crest and highest west of the crest. But for particles greater than 80 nm in diameter, particle number concentrations are highest over the crest and the size distributions for the flight legs west and east of the crest are similar. For flight legs below 2.65 km MSL, there are significant differences in the number and volume distributions west and east of the crest and those differences vary with height. At the lowest flight legs at 1.5 km MSL (~0.4 km above ground east of the crest), the particle number concentrations and volumes for particles diameters greater than 80 nm is very similar to those measured at the ground AMF site. The differences for particles smaller than 80 nm indicate large spatial variability in UFP concentrations in the region. Differences between the AMF and aircraft size distributions at higher altitudes suggest that the ground measurements are not representative of conditions aloft. The spatiotemporal variability in size distribution likely contributes to variability in CCN concentrations, similar to the differences in critical diameters shown in Fig. 4.

To further understand the role of boundary layer growth over the crest, we next examine variations in potential temperature and vertical velocity among the 3.3 km MSL aircraft flight legs in relation to the AMF radiosonde profiles as shown in Fig. 15. Between 12 and 21 UTC, the convective boundary layer at the AMF site grows from 1.9 to 2.3 km MSL (Fig. 15a,b). At 21 UTC, the inflection of potential temperature at ~3.3 km MSL and the higher relative humidity and southwesterly winds just below that level reflect the advection of the boundary layer air from the higher terrain towards the AMF site that produces a layer of constant potential temperature between 2.3 and 3.2 km MSL. The increase in potential temperature between 15 to 18 UTC just above 3.3 km MSL is likely due to subsidence as southwesterly air is transported across the leeward side of the crest.

For the flight legs between 1658 and 1731 UTC at 3.3 km MSL, variability in vertical velocity (Fig. 15c) and potential temperature (Fig. 15f) is small in the free troposphere west and east of the crest. During this time period, the aircraft flew just above most of the growing clouds along the ridge (leg 6). Larger variations in both quantities are measured over the crest reflecting turbulent motions generated by clouds.
just above growing boundary layer and terrain variability. By the second period between 1806 and 1833 UTC, spatiotemporal variations in vertical velocity (Fig. 15d) and potential temperature (Fig. 15g) increase over the crest as the boundary layer grew and increased the intensity of turbulent eddies. Some of the anomalies with lower potential temperatures within clouds are due to updrafts that reduce the potential temperatures near the boundary layer top. High-frequency variability in vertical velocity and potential temperature remains low west and east of the crest suggesting the convective boundary layer does not reach 3.3 MSL for those transects over lower terrain elevations. The variability during the third period between 1910-1941 UTC (Fig. 15e and 15h) is similar to the previous period. While there are few high frequency variations in potential temperature west and east of the crest, there are larger-scale variations likely due to larger-scale horizontal advection. For example, the southerly winds along the southern third of leg 12 (Fig. 12c) between 1806 and 1833 UTC coincide with both higher potential temperature and lower particle number concentrations, suggesting a different air mass. The higher potential temperatures progress northward by the third period between 1920-1941 UTC.

Figure 14. Number and volume aerosol distributions at five altitudes that are west, over, and east of the Sierras de Córdoba crest on December 3. Gray line denotes average ground measurements during the aircraft flight.
Figure 15. Radiosonde profiles of a) potential temperature and b) relative humidity at the AMF site on December 3 along with the spatial variations in vertical velocity c) – e) and potential temperature f) – h) for G-1 flight legs at ~3.3 km MSL divided transects that are west, over, and east of the Sierras de Córdoba crest. Gray shading in c) – h) denotes aircraft sampling within clouds.

CCN concentrations shown in Fig. 16 further illustrate spatial variabilities within and among the legs west, over, and east of the mountain range crest. During the first period between 1658-1731 UTC, CCN concentrations at 0.2% supersaturation are higher over the crest than those along the flight legs west and east of the crest (Fig. 16a). There are also larger spatial fluctuations along portions over the crest that might be tied to the larger vertical velocity variations (Fig. 15c). High frequency fluctuations in CCN increase as the boundary layer grows over the crest and envelopes the flight leg over the crest between 1806-1833 UTC (Fig. 16b). CCN concentrations at 0.2% supersaturation are still the highest with the largest amount of spatial variability during the third period between 1910-1941 UTC (Fig. 16c). In the free troposphere, the overall CCN concentrations west of the crest remain stable while there are large-scale variations east of the crest. CCN at 0.5% supersaturation still exhibits differences between the legs west, over, and east of the crest; however, CCN concentrations are not consistently higher or lower across the crest during the three time periods (Figs. 16d – 16f). CCN concentrations are also lower along the southern third of legs 13 and 19 east of the crest, consistent with the lower particle number concentrations transported northward along legs 13 and 19 during the second and third time periods.

The previous figures demonstrate that local meteorological processes affect the variability in observed aerosol properties. Back trajectories are used next in Fig. 17 to illustrate long-range transport pathways and possible sources of aerosols transported over the AMF site on December 3. The HYSPLIT model (Rolph et al., 2017; Stein et al., 2015) is used to compute 4-day back trajectories originating over the AMF site at 1.5, 2.3, 2.8, and 3.3 km MSL levels and at hourly intervals between 16 and 20 UTC during the G-1 aircraft flight period. Back trajectories are also computed at the corners of a 1-degree wide box around the AMF site at the same altitudes and times. The trajectories are driven by winds from the National Center for Environmental Prediction’s Global Data Assimilation System at 0.5-degree grid spacing.
Back trajectories arriving over the AMF site at 3.3 km MSL (Fig. 17a) suggest that air in the lower free troposphere over the Pacific Ocean is transported by northerly to northwesterly winds toward the coast of Chile. As the trajectories pass over the Andes, they become closer to the terrain (within 1.5 km MSL). It is possible that anthropogenic aerosols and aerosol precursors emitted over Chile and transported by upslope flows could be mixed with this air mass over the Andes. Westerly winds then transport these aerosol and precursors over the Andes into Argentina and are subsequently transported by southwesterly winds towards the AMF site. A similar transport pattern is produced for back trajectories originating at 2.8 km MSL (Fig. 17b), except that the air pass over Chile further to the south and farther from the largest anthropogenic emissions. Some trajectories suggest that low emission regions over Argentina could be lifted to that altitude. In contrast, back trajectories starting at 2.3 km MSL near the top of the growing boundary layer are more complex (Fig. 17c). Some trajectories passing over the low anthropogenic emission regions of southern Argentina are transported over the eastern slopes of the Andes where they are lofted to higher altitudes and then transported by westerly winds to the AMF site. Other trajectories exhibit a counterclockwise circulation so that air from southern Argentina is transported east and north of the AMF site northerly winds finally transport the air masses to over the AMF site. Finally for trajectories arriving near the surface at 1.5 km MSL (Fig. 17d), almost all the back trajectories exhibit the counterclockwise circulation, suggesting that the lower atmosphere over the AMF is a mixture of cleaner air passing over southern Argentina and higher concentrations of aerosols originating from more populated regions along the Paraná River between Santa Fe and Buenos Aires.

Even though back trajectories do not pass over the Amazon, miniSPLAT measurements on this day suggest that ~14% of the particles originate from biomass burning at all altitudes (Fig. S10). This is nearly the same percentage as on November 12 when smoke was transported from more distant sources in the Amazon. However, the combination of back trajectories, wind directions (Fig. S7), and low CO concentrations (Figs. 11f), suggest that biomass burning from the Amazon did not contribute significantly to aerosols on this day. Fire emissions inventories indicate smaller fires occurred over eastern Argentina.
and along the coast of Chile three days prior to December 3 (not shown); therefore, the source of biomass burning aerosols over the AMF site was different on November 12 and December 3. The transport time also suggests that primary and secondary aerosols originating from the populated regions over eastern Argentina would be aged by up to 1.5 days. In addition, the types of organic mixtures for these days were very different. On December 3, the fraction of particle class 10 containing oxygenated organics and sulfate mixtures was far less, particle class 11 containing the highest ratio of sulfate to organics was higher on December 3, and particle class 14 containing IEPOX SOA was very small relative to November 12. While many of the back trajectories passed over southern Argentina, dust contributed to less than 1% of the particles smaller than 1 µm in diameter on December 3.

![Back trajectories originating at various heights.](image)

Figure 17. Back trajectories originating at a) 3.3 km MSL, b) 2.8 km MSL, c) 2.3 km MSL, and d) 1.5 km MSL over the AMF site on December 3 during the G-1 flight between 16 and 20 UTC. Dots denote 6-h periods along one trajectory for each height.

4. Summary and Conclusions

In situ measurements of aerosol properties are needed to evaluate and improve air quality, chemical transport, and climate model predictions and to better understand complex aerosol-cloud interaction processes. While surface monitoring networks and aircraft field campaigns have collected aerosol measurements in the northern hemisphere over the past several decades, few field campaigns with extensive aerosol measurements have been conducted over subtropical and midlatitude continental areas in the southern hemisphere. This study analyzes a wide range of surface and aircraft measurements collected over a seven-week period during the recent CACTI field campaign in central Argentina.

CACTI surface observations show large multi-day variations in aerosol number, mass, composition, and size distribution. On average, PM1 aerosol mass obtained from the ACSM instrument (3.7 µg m⁻³) was comprised of 53% OM, 29% SO₂, 8% NO₃, and 8% NH₄; however, the fraction of SO₂ was significantly larger when PM1 mass was low (< 1 µg m⁻³). While multiday trends in PM1 and AOD are qualitatively
similar and suggest most aerosol mass occurs in the boundary layer, on some days these trends differ over several hours indicating that aerosol layers in the free troposphere can significantly contribute to column extinction. As expected, days with the highest precipitation (October 25 - 26, November 11 – 12, and November 26 – 27) have the lowest PM1 mass concentrations due to wet removal and/or changing regional air masses. These rainy days divide the campaign into three periods: period A between October 27 and November 10 with the highest aerosol mass and lowest aerosol number concentrations, period B between November 13 and 25 with the lowest aerosol mass and highest aerosol number concentrations, and period C after November 28 with mass concentrations similar to period A but with aerosol number concentrations between those from periods A and B. The high ultrafine particle concentrations during period B, and to a lesser extent period C, suggest that new particle formation occurred over or upwind of the AMF site. Average size distributions are also different among these three periods. All these measurements suggest that changing mesoscale to synoptic-scale meteorology alters transport patterns as well as local aerosol formation and growth processes.

Diurnal variation in aerosol composition, number, and CCN can be attributed to local meteorological and chemical processes. While SO2 and NH3 showed no diurnal variability on average, peak OM, NO3, and rBC concentrations occurred during mid-afternoon, around sunrise, and at night, respectfully. The daily peak in OM is likely due to photochemistry associated with SOA and the daily peak of NO3 at sunrise when the temperatures are the coldest likely inhibits partitioning of NO3 to gas phase. Particles greater than 200 nm in diameter exhibit no diurnal variations which is consistent with the weak diurnal variability in PM1 mass. Conversely, smaller particles exhibit diurnal variations with a peak at ~20 UTC (17 LT), and the strongest diurnal variations are for the smallest particles less than 10 nm in diameter. No diurnal variability in CCN at 0.1% supersaturation was observed, consistent with little diurnal variability in accumulation mode aerosols. CCN at higher supersaturations have diurnal variations with peak concentrations at 22 UTC reflecting the growth of aerosols during the afternoon.

Potential sources of aerosols can be determined by correlating aerosol composition with trace gases and wind directions. Since rBC and CO are often co-emitted, observed rBC and CO exhibits similar diurnal variability and are temporally correlated (r = 0.59). The concentrations of both quantities are largest during northerly winds, followed by northeasterly, with the lowest concentrations during southerly winds. OM concentrations are largest for northerly and northeasterly winds with somewhat lower concentrations during southerly winds. O3 is the largest during northeasterly winds and therefore may originate from anthropogenic emissions in Córdoba. The CAM-Chem global chemical transport model and single particle instrument data show that biomass burning aerosols from the Amazon are frequently transported by the South American low-level jet to the AMF region. Single particle measurements show that ~12% of particles during one of the transport events are from biomass burning particles. Aged biogenic OM may also be transported by the same winds. While SO4 is 29% of the PM1 mass on average at the ground, it is important to note that single particle measurements reveal it is mixed with organics at various ratios, illustrating a more complex mixing state than from bulk measurements.

The aircraft measurements show that the largest total aerosol number concentrations usually occur at the surface and decrease by an order of magnitude by 5 km MSL, on average. Statistics of all the flights illustrate that aerosol number concentrations vary significantly (order of magnitude or more for 5th to 95th percentiles) both temporally (multi-day and within 4-h flight periods) and horizontally within 50 km of the AMF site at all altitudes. In contrast, average CCN concentrations remain relatively constant from the surface up to 3.5 km MSL and then gradually decrease to small values by 5 km MSL. The percentiles of CCN also show temporal and horizontal variability (factor of ~2 for 5th to 95th percentiles), but that variability becomes small above 5 km MSL.

Since the aircraft data reveals large variations in aerosol properties aloft on many days, we focus on the December 3 measurements as a case study. On this day, repeated constant altitude flights reveal large spatial gradients in aerosol number and CCN concentrations that change from hour to hour. Two small plumes of SO2 with high aerosol number concentrations were observed; however, it is possible that the
The aerosol size distribution from the lowest flight transects east of the mountain crest and within the boundary layer was similar to the ground measurements, it changed with height and was also different west, over, and east of the crest of the Sierras de Córdoba range. Some flight tracks over the mountain crest occurred just as the growing boundary layer intersected those altitudes, illustrating the effects of aerosol entrainment across the top of the boundary layer. It is possible that cloud processing also affects the size, composition, and hygroscopicity of aerosols over the mountain crest, but further analysis is needed to examine this process.

Strong vertical wind shear at the AMF site results in transport pathways of aerosol sources that vary with height. Back trajectories on December 3 indicate that aerosols within the boundary layer likely originated from the more populous regions of eastern Argentina with anthropogenic and biomass burning contributions. At higher altitudes mountain venting processes could produce lofting of aerosols and aerosol precursors emitted from Chile or western Argentina on either side of the Andes, that is subsequently transported by westerly winds over the AMF site. A similar, smaller scale process may operate along the Sierras de Córdoba crest since the aircraft measurements indicate aerosols entrained into the free troposphere are transported eastward over the AMF site.

In addition to quantifying aerosol properties in a data sparse region, the aerosol property measurements presented in this study will be valuable to evaluate predictions over the mid latitudes of South America and improve parameterized aerosol processes in local, regional, and global models. For aerosol-cloud interaction studies, the measurements clearly show that accounting for the co-variabilities of aerosol properties and convective cloud populations over the Sierras de Córdoba range will be critical. Knowing aerosol properties just below and surrounding clouds is important because aerosols are entrained into the base of clouds by convective updrafts. In addition to cloud base entrainment, aerosols with different properties at higher altitudes are also entrained into the sides of clouds as they grow vertically. As clouds evaporate, the size and composition of aerosol particles that were within cloud droplets can be different than aerosol populations surrounding clouds because of cloud chemistry and coalescence of cloud droplets. Thus, the properties of aerosol populations near the top of the boundary layer and around clouds will change in time as aerosols are cycled through clouds multiple times over several hours. Given the large observed variations in both aerosol and cloud properties and complexity of their interactions, it will be challenging to develop a robust statistical signal of aerosol-cloud interactions from all the measurements. Thus, studying impacts of aerosols on cloud properties and impacts of clouds on aerosol properties on a case-by-case basis will provide critical insights.

Data Availability

In addition to citations given in the text, all CACTI data are available through links provided at www.arm.gov/research/campaigns/amf2018cacti. Citations for individual datasets are provided throughout the text.

Author Contributions

JF performed the data analyses and wrote the manuscript. AC was the PI of the CACTI campaign, assisted in the design and interpretation of the data analyses, and contributed to the manuscript. FM, MP, JT, AZ, AS, and MZ were instrument mentors during CACTI and provided comments on the manuscript when they are first mentioned.

Completing Interests

The contact author has declared that none of the authors has any competing interests.

Acknowledgments

This research was supported by the U.S. Department of Energy (DOE) Office of Science, Office of Biological and Environmental Research (BER) through the Atmospheric System Research (ASR).
Ground and aircraft measurements used in this study were provided by the Atmospheric Radiation Measurement (ARM) Climate Research Facility, a DOE user facility sponsored by BER. The Pacific Northwest National Laboratory (PNNL) is operated for DOE by Battelle Memorial Institute under contract DE-AC06-76RL01830. The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY website (https://www.ready.noaa.gov) used in this publication. CAM-Chem simulations were supported by the NSF National Center for Atmospheric Research, which is a major facility sponsored by the U.S. National Science Foundation under Cooperative Agreement No. 1852977.
References

Rosenfeld, D., Andreae, M.D., Chin, A.A.M., de Leeuw, G., Donovan, D.P., Kahn, R., Kinne, S.,

Saliba, G., Bell, D., Suski, K., Fast, J., Imre, D., Kulkarni, G., Mei, F., Muelmenstaedt, J.H., Pekour, M.,

Schmid, B., Tomlinson, J.M., Hubbe, J.M., Comstock, J.M., Mei, F., Chang, D., Pekour, M.S., Kluzek,

Schwarz, J.P., Gao, R.S., Fahey, D.W., Thomson, D.S., Watts, L.A., Wilson, J.C., Reeves, J.M.,
Darbeheshti, M., Baumgardner, D.G., Kok, G.L., Chung, S.H., Schulz, M., Hendricks, J., Lauer, A.,
Kärcher, B., Slowik, J.G., Rosenlof, K.H., Thompson, T.L., Langford, A.O., Loewenstein, M., and Aikin,

Seinfeld, J.H., Breiherton, C., Carslaw, K.S., Coe, H., DeMott, P.J. Dunlea, E.J., Feingold, G., Ghan, S.,
Guenther, A.B., Kahn, R., Kraucunas, I., Kreidenweis, S.M., Molina, M.J., Nenes, A., Penner, J.E.,
Prather, K.A., Ramanathan, V., Ramaswamy, V., Rasch, P.J., Ravishankara, A.R., Rosenfeld, D.,

https://doi.org/10.1175/BAMS-D-10-00110.1, 2015.

Tilmes, S., Hodzic, A., Emmons, L.K., Mills, M.J., Gettelman, A., Kinnison, D.E., Park, M., Lamarque,

