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Abstract. Weather types are used to characterise large–scale synoptic weather patterns over a region. Long–standing records

of weather types hold important information about day–to–day variability and changes of atmospheric circulation and the as-

sociated effects on the surface. However, most weather type reconstructions are restricted in their temporal extent as well as

in the accuracy of the used methods. In our study, we assess various machine learning approaches for station–based weather

type reconstruction over Europe based on the CAP9 weather type classification. With a common feedforward neural network5

performing best in this model comparison, we reconstruct a daily CAP9 weather type series back to 1728. The new reconstruc-

tions constitute the longest daily weather type series available. A detailed validation shows considerably better performance

compared to previous statistical approaches and good agreement with the reference series for various climatological analyses.

Our approach may serve as a guide for other weather type classifications.

1 Introduction10

Weather type (WT) or circulation type classifications are a widespread tool to characterize the prevailing large–scale synoptic

weather patterns over a specific region (Philipp et al., 2010). In Europe, where daily weather is mainly governed by transient

high and low pressure systems driven by the westerly jet stream, such classifications prove particularly useful to describe the

prevailing atmospheric conditions. WT time series yield important information about variability and changes of atmospheric

patterns (Jones et al., 2014; Rohrer et al., 2017; Kučerová et al., 2017) and the surface effects associated with them (Paegle,15

1974; O’Hare and Sweeney, 1993; Kostopoulou and Jones, 2007; Lorenzo et al., 2008; Jones and Lister, 2009; Casado et al.,

2010; Küttel et al., 2011). Various studies have assessed the links between WTs and extreme events such as droughts (Fleig

et al., 2010), temperature extremes (Hoy et al., 2020; Sýkorová and Huth, 2020) or extreme precipitation and floods (Minářová

et al., 2017; Petrow et al., 2009). Moreover, WT classifications are applied for evaluating weather forecasting model simulations

(Stryhal and Huth, 2019; Weusthoff, 2011) or forecasting in the renewable energy sector (Wang et al., 2022; Drücke et al., 2021;20

Li et al., 2020), among others.

The first WT classifications were created by experienced meteorologists who classified the atmospheric situation employing

manually drawn weather charts derived from station observations (Hess and Brezowsky, 1952; Lamb, 1972; Schüepp, 1979).

While these subjective classifications represent real synoptic features, they are often subject to inconsistencies and ambiguities

(e.g. James, 2007; Cahynová and Huth, 2009; Jones et al., 2014; Wanner et al., 2000). In more recent decades, hybrid (mixed) or25

1

https://doi.org/10.5194/egusphere-2024-1346
Preprint. Discussion started: 21 May 2024
c© Author(s) 2024. CC BY 4.0 License.



objective (automatized) WT classifications have been introduced, that classify atmospheric patterns numerically using various

statistical approaches, such as clustering algorithms, class attribution based on a distance measure, or even machine learning

approaches (Huth et al., 2008; Mittermeier et al., 2022). Such automatized WT classification is usually based on gridded

meteorological data (Huth et al., 2008). Because the temporal coverage of such gridded datasets is limited, WT classifications

usually only reach back several decades. In order to study long–term changes (i.e. over multiple decades or even centuries) in30

atmospheric circulation patterns and associated surface effects, long–term time series of WT classifications are needed.

With the newest generation of reanalysis datasets, many WT records could already be extended back to the 19th century

(Philipp et al., 2010; Jones et al., 2014). Currently, the limit for WT classifications based on atmospheric fields is set by the

20th Century Reanalysis version 3 (20CRv3; Slivinski et al., 2019; Compo et al., 2011), which extends back to 1806. Prior

to that, historical station observations and qualitative descriptions of the atmospheric conditions from weather diaries are the35

only sources available for classifying WTs. Recent data rescue and digitisation efforts (Brunet and Jones, 2011; Brönnimann

et al., 2019; Pfister et al., 2019; Brugnara et al., 2019, 2020b, 2022b) brought to light a vast amount of early instrumental

meteorological records which can be used for this purpose, particularly in central Europe. Only a small number of studies have

used this data so far, resulting in some long–term, station–based WT reconstructions starting in the middle of the 18th century

(Schwander et al., 2017; Delaygue et al., 2019). However, the main limitation of the station–based reconstructions that are40

currently available is that they use relatively simple statistical approaches (i.e. the shortest Mahalanobis distance (SMD) from a

defined centroid) that only capture the most prominent features of atmospheric circulation patterns and that they are restricted

to using continuous data such as pressure and temperature. Especially during the early instrumental period, such quantitative

data is scarce, whereas qualitative meteorological information from weather diaries is more widely available. More complex

approaches that can detect patterns in more detail and make use of qualitative data could improve existing WT reconstructions45

and might even allow for extending them backwards in time, where even less quantitative information is available.

Whereas common statistical approaches seem to have reached their limit for this purpose, supervised machine learning

(ML) classification methods present a promising approach in this regard, as they are suited for recognising complex non–linear

patterns, which pertain to the distribution of atmospheric variables. Furthermore, they can handle mixed data types, i.e. they

could also include qualitative data on past weather in a categorised form. Nowadays, artificial intelligence is commonly used for50

classification and pattern recognition in meteorological and climatological research, ranging from detection of extreme events

(Racah et al., 2017; Chattopadhyay et al., 2020), frontal systems (Dagon et al., 2022; Bochenek et al., 2021; Biard and Kunkel,

2019), blocking situations (Muszynski et al., 2021; Thomas et al., 2021) or storms and cyclone tracks (Accarino et al., 2023;

Kumler-Bonfanti et al., 2020; Mittermeier et al., 2019; Williams et al., 2008). In the context of WT classifications, ML is still

a rather novel approach. Schlef et al. (2019) used neural networks to detect circulation patterns associated with extreme floods55

in the US. Luferov and Fedotova (2020) used a convolutional neural network to reconstruct Dzerdzeevskii weather types for

the northern hemisphere (Dzerdzeevskii, 1962). Mittermeier et al. (2022) studied WT pattern changes in the context of climate

change using ML classifications of the Grosswetterlagen (general weather types) for central Europe after Hess and Brezowsky

(1952). Whereas this pioneering work of WT reconstruction is entirely based on gridded data from atmospheric reanalyses,
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an application of ML approaches to station–based WT classification in order to reconstruct long–term WT series is currently60

lacking.

In our study, we address this gap by assessing different machine learning approaches for station–based WT reconstruction

over Europe. For this method intercomparison, we use the CAP7 WT classification created by Schwander et al. (2017), which

is a simplification of the CAP9 WT classification representative of central Europe (Weusthoff, 2011). As CAP7 is an objective

WT classification based on a cluster analysis of principal components from reanalysis pressure data, it does not suffer from65

the aforementioned issues with subjective WT classes and thus provides an ideal testbed for training and evaluating our ML

approaches. Our study pursues two aims: i) providing an encompassing assessment of different ML approaches for the pur-

pose of objective WT classification using station observations and ii) extending the CAP9 WT reconstruction to the period

1728–2022. Our assessment of the ML approaches is performed with the same input data that Schwander et al. (2017) used for

their Mahalanobis distance–based approach, which serves as a baseline for comparison. We assess logistic regression, random70

forests, as well as classical, recurrent and convolutional neural network approaches. The most powerful model from this com-

parison is then retained to reconstruct daily CAP9 weather types back to 1728 from an extended set of station data. For this

reconstruction, additional station series that became available in recent years were included (see Sect. 2.2). The reliability of

the WT reconstructions is evaluated in detail to provide a robust basis for eventual applications of this WT series, as well as to

explore possible room for improvement for future attempts in WT classification. Furthermore, we provide a short assessment75

of the impact of including time series of wet days as model input. A more encompassing analysis of the effect of using qualita-

tive data for WT reconstruction – especially data on wind direction which would provide valuable information on atmospheric

circulation – must be left for future research as currently long–term, homogeneous time series are virtually inexistent.

The article is organised as follows: Sect. 2 gives an overview of the data and machine learning approaches used for WT

reconstruction, as well as the model tuning strategy. Results and discussion are presented in Sect. 3. The first part shows a80

detailed intercomparison of the station–based WT reconstruction methods on the example of CAP7 WTs. The second part

analyses the extended CAP9 reconstruction using the best model from the comparison. Summary and conclusions are given in

Sect. 4.

2 Data & Methods

2.1 Weather types85

From the abundant number of WT classifications for Europe (see Philipp et al., 2010, 2016, for an overview), we use the

CAP9 WT classification as produced and continuously updated by MeteoSwiss (Weusthoff, 2011). The CAP9 classification

was chosen as it is objective (see discussion in Sect. 1) and because it has been shown to be a reliable predictor of surface

climatic conditions in the Alpine region (Schiemann and Frei, 2010). Furthermore, a manageable amount of nine WTs – e.g.

compared to the 29 WTs after Hess and Brezowsky (1952) – was found to be more suitable for assessing our ML approaches.90

Given the scarcity of meteorological records in the early instrumental period, classifications with abundant WTs could not be

accurately represented by the few observation sites.
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This WT classification is based on the CAP (Cluster Analysis of Principal Components) method (for details see Weusthoff,

2011; Philipp et al., 2010; Comrie, 1996; Ekström et al., 2002): in a first step, atmospheric variables are decomposed into

their principal components. The principal component time series are then clustered in a second step to derive WT classes. The95

CAP9 classification by MeteoSwiss was derived from mean sea level pressure from the ERA40 reanalysis (Kållberg et al.,

2004; Uppala et al., 2005), whereas the attribution to the nine WTs in operational use is based on the Euclidean distance from

the respective pressure centroids of the ERA40–derived WTs (Weusthoff, 2011).

Figure 1. Left: climatological average of sea level pressure 1957–2020 for CAP9 weather types. White filled circles indicate station loca-

tions (see Sect. 2.2). The dotted rectangle represents the wider Alpine area for which the CAP9 WT classification is representative. Right:

description of CAP9 WTs (top) and their average monthly occurrence 1957–2020 (bottom).

The daily time series of CAP9 weather types from 01.09.1957–31.12.2020 used as predictand for the model training and

as reference series for the analyses in Sect. 3 was obtained from MeteoSwiss. An overview of the synoptic situation of the100

different WTs is given in Fig. 1 (left). Shown are filled contours of average sea level pressure derived from the ERA5 reanalysis

(Hersbach et al., 2020; Bell et al., 2021) over the period 1957–2020. Whereas there are seven types associated with advective

patterns for the Alpine region, only WTs 5 and 8 are dominated by convective circulation (Fig. 1, top right; see also Weusthoff,

2011). Note that the CAP9 WTs have different occurrence frequencies with some showing strong seasonal patterns (Fig. 1,

bottom right). For our model comparison (Sect. 3.1), we use a reduced set of seven weather types (CAP7) in order to compare105

the results directly with the Mahalanobis distance approach in Schwander et al. (2017). They found types 5 and 8, as well as 7
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and 9 in the CAP9 classification hard to distinguish and merged the respective WT pairs. While we merge the same pairs for

the analyses in Sect. 3.1, the machine learning models are trained on the original CAP9 WTs.

2.2 Station observations

Meteorological observations used for WT reconstruction are located around and within the greater Alpine region in central110

Europe, for which the CAP9 classification is representative (Fig. 1; see also Weusthoff, 2011). Note that the available stations

are well distributed across most parts of Europe, which is crucial to capture the large–scale synoptic situation. However, in

southern and eastern Europe available digitised station records unfortunately were scarce. Whereas the CAP9 classification is

based solely on pressure data, the station observations used for our reconstructions also include other variables, i.e. temper-

ature and categorical rain data. Pressure data represents the synoptic atmospheric flow, whereas the other variables represent115

the associated surface effects and thus may provide valuable additional information for WT reconstruction (Schwander et al.,

2017), especially in the context of the early instrumental period with scarce data availability. A summary of the available daily

station records is given in Table 1 with the data source indicated in the last column.

Table 1: daily meteorological data used for WT reconstructions. t = temperature, p = pressure, ∆p = temporal pressure gradient,

rr = wet days

ID Name Lat Lon Alt (m a.s.l.) Variables Period Source / Comments

BAS Basel 47.541 7.584 316 t, 1756–2020 CHIMES (Brönnimann and Brugnara, 2020, 2021),

MeteoSwiss (Füllemann et al., 2011; Begert et al.,

2005)

p, ∆ p 1764–2020

rr 1864–2020

BER Bern 46.991 7.464 552 t, 1781–2020 CHIMES (Brugnara et al., 2022a), MeteoSwiss

(Füllemann et al., 2011; Begert et al., 2005)p, ∆ p 1781–2020

BRL Berlin 52.456 13.300 40 p, ∆ p 1728–2020 DWD (Behrendt et al., 2011; Kaspar et al., 2013);

gap in pressure series 1771–1875rr 1876–2020

BOL Bologna 44.497 11.353 53 t 1728–2020 Camuffo et al. (2017), ECA&D (Klein Tank et al.,

2002)rr 1818–2020

CAD Cadiz 36.500 –6.260 1 t 1790–2020 IMPROVE (Camuffo and Jones, 2002; Barriendos

et al., 2002), ECA&D (Klein Tank et al., 2002)p, ∆ p 1818–2020

DBL DeBilt 52.100 5.180 1 t 1738–2020 ECA&D (Klein Tank et al., 2002), Brandsma et al.

(2000)p, ∆ p 1738–2020

ENG Engelberg 46.822 8.411 1035 rr 1864–2020 MeteoSwiss (Füllemann et al., 2011; Begert et al.,

2005)

GVA Geneva 46.248 6.128 410 t 1771–2020 CHIMES/DigiHom (Häderli et al., 2020;

Brönnimann et al., 2020), MeteoSwiss (Füllemann

et al., 2011; Begert et al., 2005)

p, ∆ p 1818–2020

rr 1864–2020

HPE Hohenpeissenberg 47.800 11.020 995 t 1781–2020
Winkler (2006, 2009), DWD (Behrendt et al., 2011;

Kaspar et al., 2013)
p, ∆ p 1781–2020

rr 1818–2020

KAR Karlsruhe 49.039 8.365 112 t 1764–2020 Brugnara et al. (2015), DWD (Behrendt et al., 2011;

Kaspar et al., 2013), ECA&D (Klein Tank et al.,

2002); gaps 1790–1818, 1864–18765
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LOH Lohn 47.752 8.678 585 rr 1864–2020 MeteoSwiss (Füllemann et al., 2011; Begert et al.,

2005)

LDN London 51.515 –0.120 1035 p, ∆ p 1728–2020 Cornes et al. (2012a), ECA&D (Klein Tank et al.,

2002)

LUG Lugano 46.000 8.970 273 t 1864–2020
MeteoSwiss (Füllemann et al., 2011; Begert et al.,

2005)
p, ∆ p 1864–2020

rr 1864–2020

MIL Milan 45.470 9.180 132 t 1764–2020 IMPROVE (Moberg et al., 2000; Maugeri et al.,

2002), ECA&D (Klein Tank et al., 2002)p, ∆ p 1874–2020

OXF Oxford 51.760 –1.260 63 rr 1864–2020 ECA&D (Klein Tank et al., 2002)

PAD Padua 45.398 11.800 12 t 1781–2020 IMPROVE (Camuffo and Jones, 2002; Camuffo

et al., 2006), Brugnara et al. (2015), ECA&D

(Klein Tank et al., 2002)

p, ∆ p 1728–2020

PAR Paris 48.817 2.322 77 t 1876–2020 Cornes et al. (2012b), ECA&D (Klein Tank et al.,

2002)p, ∆ p 1749–2020

PRA Prague 50.090 14.420 190 t 1781–2020 Kyselý (2007), Stepanek (2005), ECA&D

(Klein Tank et al., 2002)

SAM Samedan 46.526 9.879 1708 rr 1864–2020 MeteoSwiss (Füllemann et al., 2011; Begert et al.,

2005)

STK Stockholm 59.350 18.050 44 t 1756–2020
IMPROVE (Moberg et al., 2000), ECA&D

(Klein Tank et al., 2002)
p, ∆ p 1756–2020

rr 1864–2020

SPE St. Petersburg 59.967 30.300 3 t 1756–2020 IMPROVE (Camuffo and Jones, 2002), ECA&D

(Klein Tank et al., 2002)

TOR Turin 45.070 7.680 281 t 1756–2020 Di Napoli and Mercalli (2008), ECA&D

(Klein Tank et al., 2002)p, ∆ p 1818–2020

UPP Uppsala 59.861 17.641 15 t 1728–2020 IMPROVE (Moberg et al., 2000; Bergström and

Moberg, 2002), ECA&D (Klein Tank et al., 2002)p, ∆ p 1728–2020

WIE Vienna 48.249 16.356 198 t 1781–2020
GeoSphere Austria (2021); gap in temperature

series 1818–1864
p, ∆ p 1864–2020

rr 1864–2020

ZAG Zagreb 45.820 15.980 156 t 1864–2020
ECA&D (Klein Tank et al., 2002)

p, ∆ p 1864–2020

SMA Zurich 47.378 8.566 555 t 1764–2020 CHIMES (Brugnara et al., 2022a), MeteoSwiss

(Füllemann et al., 2011; Begert et al., 2005); gap in

pressure series 1790–1818

p, ∆ p 1764–2020

rr 1864–2020

For the comparison of reconstruction methods (Sect. 3.1), we use the same set of stations and variables that were used by120

Schwander et al. (2017) without any further preprocessing (see the SMD station sets in Fig. 2). This encompasses station

records from London (Cornes et al., 2012a), Milan, Uppsala, Stockholm (Moberg et al., 2000; Maugeri et al., 2002), Turin
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(Di Napoli and Mercalli, 2008), Prague (Kyselý, 2007; Stepanek, 2005; Brázdil et al., 2012), Hohenpeissenberg (Winkler,

2009), De Bilt (Klein Tank et al., 2002), Paris (Cornes et al., 2012b, only temperature), Bern, and Lugano (Füllemann et al.,

2011; Begert et al., 2005). Using the same data allows for a direct comparison between our machine learning approaches125

and the Mahalanobis distance–based method used in Schwander et al. (2017). In accordance with the latter study, daily mean

temperature, sea level pressure and the computed pressure difference to the previous day were used as input variables for this

comparison.

Further early instrumental station series have been made available as a result of data rescue efforts in recent years (Brön-

nimann et al., 2019; Brugnara et al., 2020b), enhancing the data coverage in our area of interest and extending the period130

for which WTs can be reconstructed. Unfortunately, the majority of available records covers only a few years and thus is not

suitable for our purpose. Using short observation records would lead to varying sets of stations, which on the one hand would

introduce inconsistencies in reconstructed WTs and on the other hand constitute immense computational efforts, as for each

set of stations a new model has to be trained. Further issues arise from inhomogeneities in the observation series in time (e.g.

observation errors, artificial trends or shifts), which originate from changes in instruments or observation sites, as well as var-135

ious error sources related to early instrumental data (see e.g. Brugnara et al., 2020a; Winkler, 2006; Böhm et al., 2010). Such

inhomogeneities would again lead to errors or biases in the reconstructed WT series.

Where possible, long–term, homogenised station records that contain no or only few and short gaps were used for our

approach. For some locations, however, multiple historical observation records from the same location had to be merged into a

single time series. For the temperature series from Bern, Basel, Geneva and Zurich, we could benefit from previous efforts to140

merge and homogenise daily temperature series (Brugnara et al., 2022a). Only stations at close locations, i.e. within a radius of

less than 15 km, have been merged, with the exceptions of Cadiz (merged with T and p data from Huelva) and De Bilt (merged

with T data from Haarlem and p data from Zwanenburg, Haarlem, Den Helder and Delft), where the existing series could not be

complemented with nearby station records. Complementary series have been retrieved from the ECA&D database (Klein Tank

et al., 2002), as well as from the databases of MeteoSwiss (Füllemann et al., 2011; Begert et al., 2005), the German weather145

service DWD (Behrendt et al., 2011; Kaspar et al., 2013), the Royal Netherlands Meteorological Institute KNMI (Brandsma

et al., 2000), and (GeoSphere Austria, 2021, formerly Austrian Central Institution for Meteorology and Geodynamics ZAMG).

The station sets used for the reconstruction of CAP9 WTs (Sect. 3.3.1) are summarised in Fig. 2 labeled according to their

respective start date.

Whereas in Schwander et al. (2017) observation records had not been homogenised, we deemed it suitable to apply such150

a procedure to all pressure and temperature series that had not been homogenised, as well as to the merged series. We used

the break point detection approach by Wang and Feng (2018) combining a penalised maximal t test (Wang et al., 2007) and

a penalised maximal F test (Wang, 2008). As reference series, we used monthly pressure and temperature series extracted for

the respective station locations from the EKF400v2 reanalysis (Valler et al., 2022). For further details on this homogenisation

approach, see Imfeld et al. (2023). Most of the homogenised station records exhibit no or smaller gaps with a median of 31155

days. All gaps up to a length of 5 years were imputed with a k nearest neighbor approach following Batista and Monard (2002).

This is the same approach also used by Schwander et al. (2017) for their WT reconstructions, thus keeping the consistency
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Figure 2. Station sets of a) pressure and b) temperature used for the model comparison. The top three rows (SMD, grey shaded) refer to

the station sets in Schwander et al. (2017) with 5, 7 and 11 stations, respectively. Station sets indicated with a date are used for the CAP9

reconstruction. The date refers to the start date of the respective station set. Data availability is indicated by the filled blue (pressure) and red

(temperature) squares.

in our datasets. Tests for the imputation approach with 25 % randomly introduced gaps revealed an average bias of –0.063

hPa (–0.05 °C) and a mean absolute error of 1.83 hPa (1.46 °C) for pressure (and temperature). We thus deemed this method

suitable for the task of WT reconstruction. The series from Berlin, Karlsruhe, Vienna (temperature) and Zurich (pressure) have160

longer gaps in their station record, which were kept.

Further preprocessing was necessary to use the station observations in the different machine learning models (the results

of the respective assessments are not shown). First of all, a global warming trend is visible in all temperature records. In

order to establish robust classification models, such non–stationarities in the data had to be removed. Temperature trends were

removed individually for each series using a 3rd order polynomial fit. Furthermore, the pronounced seasonality of temperature165

might blur temperature signals originating from atmospheric dynamics and lead to an inhomogeneous treatment of weather

types throughout the year. Thus, temperature data were corrected for their seasonality by fitting the first two harmonics to

each temperature record, which was then subtracted from the data. Pressure and precipitation data have not been corrected

for a trend or seasonality, as their contribution to the total variability of these variables was assumed negligible. All variables
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from all stations were standardised (i.e. by subtracting their average and dividing by their standard deviation). As pressure170

gradients and thus atmospheric patterns are less pronounced in summer than in winter (see e.g. Fig. 5 in Sect. 3.3), a monthly

standardisation of pressure was tested (not shown). However, this deteriorated the reconstructions and was thus dismissed.

2.3 Machine Learning Approaches

For our model comparison (Sect. 3.1) multiple machine learning models are tested and compared against a baseline WT

classification approach. This baseline model is given by the simple statistical classification approach by Schwander et al. (2017)175

for their CAP7 reconstructions and is based on the shortest Mahalanobis distance (SMD) of station observations to the centroids

(station data averages) for each WT previously calculated from the reference period data. Further details on this approach are

expounded in Schwander et al. (2017). The focus of this section lies on the ML approaches, including a multinomial logistic

regression model, a random forest model, feed forward neural networks, as well as recurrent and convolutional neural networks.

The best performing model is then selected for the reconstruction of daily CAP9 WTs back to 1728 (see Sect. 3.3).180

2.3.1 Multinomial Logistic Regression (MLG)

Multiple logistic regression is a commonly used method for classification problems with categorical outcome. With a multiple

logistic regression model, we can predict the occurrence probability p of a weather class WT as a function of several different

station observations x1,x2, ...,xn as independent variables (Hosmer and Lemeshow, 2000). Whereas multiple logistic regres-

sion can predict only a binary dependent variable y, multnomial logistic regression can handle several response classes (given185

that they have no natural order). The occurrence probability p(x) is defined as:

y = p(x) =
1

1 + e(−g(x))
, where 0≤ p(x)≤ 1

The model is based on a linear regression function g(x):

g(x) = β0 +β1x1 +β2x2 + ...+βnxn

The regression coefficients βn are computed applying the maximum likelihood method to maximise the probability, meaning

that the coefficients are determined iteratively. For details see the documentation of R’s caret package (Kuhn, 2008).

Compared to complex and more advanced machine learning methods, logistic regression has the advantage of interpretabil-190

ity, as the relationships between predictors and predictand can be directly inferred. One major drawback, however, is that often

only a small number of covariates can be used in a model, as an increasing number of covariates may be subject to multi-

collinearity and can lead to overfitting of the model. To avoid this, we limited the number of predictors to five and constrained

the variance inflation factor (VIF) to values below four. Furthermore, one has to keep in mind that logistic regression only al-

lows for a linear combination of covariates, thus non–linear features in the predictor data with respect to WTs are not captured195

by MLG.
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2.3.2 Random Forests (RF)

The second machine learning approach assessed in this paper are random forests (RF) (Ho, 1995; Breiman, 2001). In contrast

to single decision trees, RF use an ensemble of decision trees built from subsamples of the training data. With an increasing

number of trees, the generalisation error of RF models decreases and robust predictions can be established. In the case of200

our classification application, RF can provide a probabilistic estimate of the true WT using their ensemble of decision trees.

Compared to other machine learning approaches, RF are fast to train (depending on the number of trees), but can suffer from

overfitting. In order to find a RF architecture with an optimal balance between accuracy and generalisability, several parameter

sets are tested. These encompass the number of trees (between 10 and 400), the maximum depth (between 5 and 30), the

minimum sample size for splitting (between 2 and 10) and the minimum sample size for a leaf (between 1 and 4). Furthermore,205

the Gini impurity and entropy were tested for determining the splits. For further information see the documentation of the

scikit–learn python package (Pedregosa et al., 2011).

2.3.3 Feedforward Neural Networks (NN)

The second approach are feedforward neural networks (NN) (Rosenblatt, 1958; Hastie et al., 2009). Similar to the RF ap-

proach, NN provide estimates of probability for each class, represented by the normalised weights of the output layer. The210

NN architecture used for our work is not based on a pre–designed NN model. While we prescribed the use of multiple layers,

including a dropout layer before the output layer to avoid overfitting, optimal architectural properties such as the number of

layers and their sizes were determined from scratch with a hyperparameter search on the training data (see also Sect. 2.4). In

particular, networks with a number of layers between 2 and 8 were tested with layer sizes between 32 and 256 (in steps of

32). Furthermore, dropout rates between 0.05 and 0.2 (in steps of 0.05), as well as learning rates between 10−4 and 10−2 were215

tested during model tuning. The models were trained using the Adam optimisation algorithm (Kingma and Ba, 2014) and the

categorical crossentropy loss function. We set the batch size to 200 and the maximum number of epochs to 50 (with early

stopping with a patience of five epochs). The NN approach, as well as the other neural network approaches were implemented

using Tensorflow (Abadi et al., 2016a, b) and Keras (Chollet, 2021) libraries.

2.3.4 Recurrent and Convolutional Neural Networks (RNN & CNN)220

Both, the RF and the NN models described above use input data from the same day as predictors. As circulation patterns can

persist for several days, it might be beneficial to also include information from preceeding days in our models. For this reason,

we assess both recurrent neural networks (RNN) and 1D–convolutional neural networks (CNN) in this study. For the RNN we

used so–called long–short–term memory networks (LSTM) that can retain or discard information from previous time steps,

thus being able to propagate relevant information over multiple time steps (Hochreiter and Schmidhuber, 1997). Our RNN225

architecture follows the one of the NN, again with a dropout layer before the output layer and the same settings for model

training. For reasons of computational costs, less architectural configurations were assessed than for the NN (i.e. between 2

and 5 layers with sizes between 32 and 128).
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Similar to RNNs, convolutional neural networks (CNN) can also make use of data from previous timesteps. Whereas CNN

is mostly applied to image data or other multi–dimensional datasets for pattern detection using trained filters (Fukushima,230

1980), we used its 1–dimensional equivalent for time series analysis (Kiranyaz et al., 2021). Like for the RNN, a reduced set

of architectural properties (i.e. between 2 and 5 layers with sizes between 32 and 128) has been assessed, while the rest of the

tunable parameters were kept identical to the other networks.

For both time–dependent neural networks (RNN and CNN), we used data from two days prior to the day of interest (three

days in total) to predict the WTs. A longer time window was found not to yield improvements in the results (not shown).235

Analogous to NN, RNN and CNN were also trained using the Adam optimisation algorithm with the categorical crossentropy

loss function, a batch size of 200 and a maximum of 50 epochs with early stopping.

2.4 Hyperparameter Tuning and Validation

Training and validation of the machine learning approaches was performed with the data described in Sect. 2.1 and 2.2 using

the station observations as predictors and the CAP9 WT classification as predictand. After preliminary tests with certain sub-240

sets of stations and atmospheric variables (not shown), which did not yield any clear gain in performance, we chose to use all

available pressure and temperature series. For their approach, Schwander et al. (2017) used a reduced set of seven WTs (CAP7).

Two pairs of WTs, 5 (high pressure over the Alps) and 8 (high pressure over central Europe), as well as 7 (west–southwest,

cyclonic) and 9 (westerly flow over southern Europe, cyclonic) were combined to single WTs, as they were found to be too

similar to distinguish. In order to compare our machine learning models to the SMD approach in Schwander et al. (2017) in245

our model comparison, they are trained on the same station data as used in the original study, but with the CAP9 WTs as pre-

dictand. To make validation measures comparable to the baseline model, CAP9 classes are subsequently converted to CAP7 by

combining the pairs of WTs accordingly. Also the reference period for the model comparison (Sect. 3.1) was chosen similar to

the baseline study by Schwander et al. (2017), spanning 01.01.1961–31.12.1998. For our new WT reconstructions (Sect. 3.3),

we made use of the full available period for model training spanning 01.09.1957–31.12.2020 and used the CAP9 classification250

for the evaluation.

Note that the same data is used for both, hyperparameter tuning and validation of the models. In order to ensure indepen-

dence between model tuning and evaluation, a nested cross–validation (Cawley and Talbot, 2010) is implemented. For the RF

and neural network approaches, an outer loop splits the data into a training and an independent test set. An inner loop is applied255

to the training set for hyperparameter tuning, again splitting off part of the data for validation of the model configurations in

order to find the optimal hyperparameters independent from the training data. The outer loop then serves to independently

estimate the validation metrics. Optimal hyperparameters are determined using Bayesian optimisation (Snoek et al., 2012). A

total number of 8 folds for the outer loop and 7 folds for the inner loop without shuffling and without overlap are applied. For

the MLG model, we followed the same structure of outer and inner loops, but with 10 outer and 10 inner folds (with overlap)260

instead of 8 and 7. The outer loop splits the data randomly into 80 % training and 20 % independent testing datasets. The inner

loop uses the 80 % folds for finding the best combination of station variables, again splitting into 70 % of the data for training
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and 30 % for validation. We find the best combination and best number of predictors manually with a bidirectional stepwise

approach, looking at mean performance, significance and z values of predictors. Once a model was found that worked well on

all 10 inner folds and showed a good balance between over– and underfitting, we retrained it with the 80 % sets and evaluated265

with the independent test sets (20 %) in the outer loop.

As Schwander et al. (2017) did not perform an independent validation of their approach, validation measures are not com-

parable. For this reason, we reconstructed their approach and applied a cross–validation with the same training and test splits

as in the eight outer loops described above. Results from this independent cross–validation can be directly compared to our270

approaches. When reconstructing the Mahalanobis distance approach of Schwander et al. (2017), an error in their model setup

became apparent: when calculating the distance to each WT centroid using the covariance matrix derived for the respective WT,

considerably lower accuracies than indicated in the original study were obtained (not shown). However, using the covariance

matrix from the true (observed) WT, which of course would be unknown for the reconstructions, accuracies reached the values

from the original study. For our validation of the SMD approach, the distance was calculated for each WT centroid using the275

correct covariance matrix of the respective WT.

Model performance is estimated with the overall accuracy and average Heidke skill score (HSS; Heidke, 1926; Cohen,

1960) values for all weather types and all seasons. The overall accuracy represents the fraction or percentage of days for which

the WTs were correctly classified. The HSS represents the proportion of correct predictions scaled by the expected correct280

forecasts due to chance for categorical forecasts (see Hyvärinen, 2014) and is calculated for each WT. In contrast to overall

accuracy, the HSS accounts for differences in the occurrence of individual WTs. To obtain a robust and independent estimate

of the true performance of the best models, an average of these validation measures is taken over the outer folds of the nested

cross–validation (i.e. ten and eight test sets for MLG and the other approaches, respectively). Note that the model used for the

WT time series reconstruction is retrained with the full available dataset within the validation period. Indicated accuracies for285

the individual models are thus arguably pessimistic.

3 Results & Discussion

3.1 Model Intercomparison for CAP7 weather types

The performance of the WT classification approaches presented in Sect. 2.3, as well as the SMD approach by Schwander et al.

(2017) for the CAP7 WT classification is indicated in Table 2. Shown accuracies and HSS represent an average from the k–fold290

cross–validation over the period 01.01.1961–31.12.1998 (see Sect. 2.4) based on three different subsets with data from five,

seven and eleven stations, respectively, as used in (Schwander et al., 2017, see also Table 3 therein). For the logistic regression

model, only results from the optimal selection of station series is shown (see Sect. 2.3). This best–performing model uses the

following six variables: pressure in Milan and Paris, temperature in Prague and Stockholm, and the temporal pressure gradient

in Milan and Stockholm.295
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Table 2: Average accuracy (acc) in percent and average Heidke skill scores (HSS) of all applied approaches for CAP7 WT

reconstruction, as well as the baseline model (SMD, grey shaded) using different data subsets. Shown are values for the whole

year (ANN), and the individual seasons (winter: DJF, spring: MAM, summer: JJA, autumn: SON). Highest values per station

set are marked in bold

Station Set Model ANN DJF MAM JJA SON

custom selection of

variables & stations

MLG Acc = 74.5 Acc = 74.3 Acc = 74.4 Acc = 73.8 Acc = 75.3

HSS = 0.70 HSS = 0.71 HSS = 0.70 HSS = 0.67 HSS = 0.71

SMD (5 stations) SMD Acc = 64.7 Acc = 73.3 Acc = 62.9 Acc = 56.3 Acc = 66.3

HSS = 0.58 HSS = 0.60 HSS = 0.56 HSS = 0.45 HSS = 0.58

RF Acc = 74.3 Acc = 78.4 Acc = 71.8 Acc = 72.2 Acc = 75.1

HSS = 0.70 HSS = 0.70 HSS = 0.67 HSS = 0.63 HSS = 0.69

NN Acc = 76.1 Acc = 79.9 Acc = 73.7 Acc = 73.7 Acc = 77.1

HSS = 0.72 HSS = 0.72 HSS = 0.70 HSS = 0.65 HSS = 0.72

RNN Acc = 76.8 Acc = 80.6 Acc = 75.1 Acc = 73.8 Acc = 77.9

HSS = 0.73 HSS = 0.72 HSS = 0.71 HSS = 0.65 HSS = 0.73

CNN Acc = 76.0 Acc = 79.2 Acc = 74.8 Acc = 72.4 Acc = 77.7

HSS = 0.72 HSS = 0.71 HSS = 0.71 HSS = 0.63 HSS = 0.72

SMD (7 stations) SMD Acc = 67.4 Acc = 75.7 Acc = 66.3 Acc = 59.0 Acc = 68.8

HSS = 0.61 HSS = 0.64 HSS = 0.61 HSS = 0.48 HSS = 0.61

RF Acc = 78.4 Acc = 80.9 Acc = 77.6 Acc = 75.8 Acc = 79.2

HSS = 0.75 HSS = 0.73 HSS = 0.74 HSS = 0.67 HSS = 0.74

NN Acc = 81.6 Acc = 84.5 Acc = 81.1 Acc = 78.3 Acc = 82.4

HSS = 0.78 HSS = 0.78 HSS = 0.78 HSS = 0.71 HSS = 0.78

RNN Acc = 80.5 Acc = 83.1 Acc = 79.5 Acc = 78.1 Acc = 81.3

HSS = 0.77 HSS = 0.76 HSS = 0.76 HSS = 0.71 HSS = 0.77

CNN Acc = 81.3 Acc = 83.3 Acc = 80.4 Acc = 79.4 Acc = 81.9

HSS = 0.78 HSS = 0.76 HSS = 0.77 HSS = 0.72 HSS = 0.78

SMD (11 stations) SMD Acc = 62.9 Acc = 70.6 Acc = 61.1 Acc = 55.1 Acc = 64.8

HSS = 0.56 HSS = 0.56 HSS = 0.55 HSS = 0.44 HSS = 0.56

RF Acc = 82.6 Acc = 83.6 Acc = 82.0 Acc = 81.2 Acc = 83.7

HSS = 0.79 HSS = 0.77 HSS = 0.79 HSS = 0.73 HSS = 0.80

NN Acc = 85.7 Acc = 87.8 Acc = 84.8 Acc = 83.8 Acc = 86.6

HSS = 0.83 HSS = 0.82 HSS = 0.82 HSS = 0.78 HSS = 0.83

RNN Acc = 85.4 Acc = 88.2 Acc = 84.6 Acc = 83.1 Acc = 85.8

HSS = 0.83 HSS = 0.83 HSS = 0.82 HSS = 0.78 HSS = 0.82

CNN Acc = 85.5 Acc = 87.2 Acc = 84.7 Acc = 84.4 Acc = 85.8

HSS = 0.83 HSS = 0.82 HSS = 0.82 HSS = 0.79 HSS = 0.82

Evidently, all ML approaches outperform the baseline model (SMD, grey shaded) for all sets of stations. With an independent

validation and correcting the error in the SMD model (see Sect. 2.4), accuracies are by far lower than indicated in Schwander

et al. (2017) dropping below 70 % overall and below 60 % in the summer months. The machine learning approaches show
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accuracies of about 75 % even for the smallest set of stations (and the selection of the MLG). Validation measures improve

with the number of stations, reaching a maximum overall accuracy of 85.7 % for the NN model with 11 stations. Note that in300

contrast, the SMD approach shows lower accuracy values for the largest station set than for the other two, pointing to issues

arising from data quality or the spatial distribution of the station network for this approach. Heidke Skill Scores (HSS) show a

similar pattern with scores between 0.7 and 0.83 (compared to values between 0.56 to 0.61 for SMD). The superiority of the

machine learning approaches might be explained by their ability to capture details in the data and non–linear effects better than

common statistical approaches (see also Sect. 2.3)305

From the seasonal validation measures we see a slight drop in accuracy (stronger for the HSS) for spring and summer, which

was also found in Schwander et al. (2017), especially for summer. Weaker pressure gradients hamper a robust detection of

weather types for these months. The difference between spring/summer and autumn/winter, however, is much smaller for the

machine learning approaches compared to SMD. All of our models are thus better capable of coping with seasonal differences.

310

Random forests and multinomial logistic regression allow some inference about the stations and variables that prove to be the

most crucial for WT classification. Regarding the spatial distribution of the stations, it is less a high density of stations within

the area for which the CAP9 classification is representative (see Fig. 1), but rather an even distribution of stations around the

borders of this area that lead to the most accurate predictions. This becomes evident for the optimal selection in the MLG

approach with all predictors being highly significant in the model (p≤ 0.05). The MLG coefficients for each covariant and315

for each weather type are listed in the supplement (Sect. S.2), together with further illustrations displaying the relationship of

each predictor to the probability of each class response in the model. Also, RF results underpin that a spatially well distributed

station network is crucial for a robust WT classification. This is not surprising, as for WT classification the models benefit

not from the localised effects in the station observations but rather the overall atmospheric signal seen in a combination of

information. In this context, more stations located in southern and eastern Europe (compare Fig. 1) could improve the accuracy320

of the models. Looking at the feature importance (i.e. for each feature (predictor) the average reduction of the Gini impurity or

entropy in the split classes over all trees) in RF, pressure data show the highest importance, followed by temperature (see Sect.

S.3 in the supplement). The temporal pressure gradient on the other hand showed lower importance values by one order of

magnitude compared to the other variables. These results are robust also to the MLG model, where pressure showed the high-

est importance, followed by temperature and pressure gradient. We want to note, however, that the MLG models still always325

preferred a combination of all three types of information instead of using just pressure data. This holds equally for the other

approaches where preliminary tests using only pressure data vs. using all variables confirmed the use of our multivariate input

data (not shown).

The model comparison revealed the feedforward neural network (NN) to exhibit the highest accuracy and HSS estimates,330

although on average only slightly better than for RNN and CNN. However, the NN can be considered as the best model for

another reason: in contrast to RNN (and a bit less so for CNN), it is considerably faster to train, making it favourable also

from the computational resources perspective. Regarding this aspect, it is important to mention that the simplest approaches
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we tested (MLG, RF) are much less costly in terms of computation hours than neural networks. Depending on the task and the

related goal of accuracy, using these simpler methods is thus highly recommended. From this point on, we will only use the335

feedforward neural network model for further analyses and the final reconstruction.

3.2 The Effect of Categorical Weather Data

As stated in the introduction, ML approaches have the advantage that they can simultaneously process continuous and categor-

ical information. In this section, we assess the effect of including time series of wet days based on rain information (see Sect.

2.2) as additional model input, as they have proven to be very valuable for statistical weather reconstructions (Imfeld et al.,340

2023). For this purpose we trained an NN model for two different station sets used for our new reconstruction (Sect. 3.3), once

without and once with adding the categorical rain series. Model building and validation has again been performed as described

in Sect. 2.4. We used the station set available from 1728 (fewest predictors: 4 pressure & 2 temperature series; see Fig. 2) and

the one available from 1864 (most predictors: 17 pressure & 18 temperature series; see Fig. 2) to analyse the impact of adding

categorical data for different numbers of predictors. Both station sets were complemented with 13 series of wet days (Sect.345

2.2). Note that these categorical rain records do not go as far back as 1728, but mostly only back to 1864 (see Table 1). In order

to better illustrate the effect of adding categorical data, we decided to use all available wet day series for both experiments.

For the 1728 station set without wet day series, the overall accuracy is estimated at 77.8 % (see also Table 3). By adding wet

days, this increased by 0.5 % to 78.3 %. While for the autumn and winter months, the accuracy increased by 1 %, it declined

by 0.5 % for the summer months. For the 1864 station set, adding wet days to the predictors decreased total accuracy by 0.8350

% to 86.5 % (compared to 87.3 % without wet days). Also, all seasonal accuracies show a decrease between 0.4 % and 1.3

%. This shows that adding wet day series to the model input leads to negligible changes in accuracy which are mostly within

the range of uncertainty of model training. With very few pressure and temperature records available (i.e. for the 1728 station

set), wet days can provide supplementary information for WT classification. However, in our case improvements were limited

to autumn and winter where precipitation is largely determined by large–scale circulation, whereas for summer, the results are355

slightly less accurate when including rain observations, which is arguably linked to precipitation being more frequently driven

by local convection. If abundant pressure and temperature series are available (i.e. for the 1864 station set), using wet days as

predictors yields no benefits. In this context, we decided to omit wet day series for our final CAP9 reconstructions in Sect. 3.3.

3.3 Reconstructing CAP9 weather types 1728–2020

3.3.1 Model Performance and Reconstruction Quality360

With the feedforward Neural Network (NN) outperforming the other approaches (Sect. 3.1), we extended the current WT se-

ries for the CAP9 classification back to 1728. In order to provide an estimate for the model performance and by that of the

reliability of our CAP9 reconstructions, a validation procedure as described in Sect. 2.4 was applied. The station series that

have been used as predictors are described in Sect. 2.2. A summary on the resulting model architectures can be found in the

supplement (Sect. S.4). Table 3 gives an overview of the validation results in the form of overall accuracy and average HSS365
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for predicted CAP9 WTs vs. the original predictand time series (1957–2020) by MeteoSwiss for all station sets. Results are

again given for the whole period and distinguished by season. The accuracy for the earliest period between 01.01.1728 and

31.12.1737 is already remarkably high with a value of 77.8 % despite the limited set of available stations. Adding more station

series generally improves the accuracy and skill score values (with some remaining variability depending on model training

runs). Whereas reconstructions for most station sets show slightly less skill and lower accuracies for the summer months (JJA),370

differences to the overall average remain small with values of approximately 1 % for accuracy and 0.1 for the HSS.

Table 3: validation results for the feedforward NN models with different station sets (named after their start year). Acc =

average accuracy, HSS = Heidke skill score. Shown are estimates over the whole year (ANN), and the individual seasons

(winter: DJF, spring: MAM, summer: JJA, autumn: SON)

Station Set ANN DJF MAM JJA SON

1728 Acc = 77.8 Acc = 78.9 Acc = 77.0 Acc = 77.8 Acc = 77.6

HSS = 0.76 HSS = 0.75 HSS = 0.75 HSS = 0.69 HSS = 0.74

1738 Acc = 78.9 Acc = 80.0 Acc = 78.2 Acc = 79.5 Acc = 77.8

HSS = 0.77 HSS = 0.77 HSS = 0.77 HSS = 0.72 HSS = 0.75

1749 Acc = 82.8 Acc = 84.0 Acc = 82.7 Acc = 81.6 Acc = 82.9

HSS = 0.81 HSS = 0.81 HSS = 0.81 HSS = 0.73 HSS = 0.80

1756 Acc = 83.2 Acc = 84.3 Acc = 82.8 Acc = 82.8 Acc = 82.9

HSS = 0.82 HSS = 0.82 HSS = 0.82 HSS = 0.78 HSS = 0.80

1764 Acc = 84.8 Acc = 85.6 Acc = 85.2 Acc = 83.4 Acc = 85.1

HSS = 0.84 HSS = 0.83 HSS = 0.84 HSS = 0.76 HSS = 0.83

1771 Acc = 83.9 Acc = 83.8 Acc = 83.9 Acc = 83.6 Acc = 84.4

HSS = 0.83 HSS = 0.81 HSS = 0.83 HSS = 0.75 HSS = 0.83

1781 Acc = 84.8 Acc = 84.6 Acc = 85.0 Acc = 84.8 Acc = 84.8

HSS = 0.83 HSS = 0.82 HSS = 0.84 HSS = 0.77 HSS = 0.83

1790 Acc = 84.7 Acc = 84.8 Acc = 84.8 Acc = 84.3 Acc = 84.9

HSS = 0.84 HSS = 0.82 HSS = 0.84 HSS = 0.77 HSS = 0.83

1818 Acc = 84.3 Acc = 84.1 Acc = 84.6 Acc = 83.9 Acc = 84.7

HSS = 0.83 HSS = 0.81 HSS = 0.83 HSS = 0.73 HSS = 0.83

1864 Acc = 87.3 Acc = 87.6 Acc = 87.8 Acc = 86.9 Acc = 87.0

HSS = 0.86 HSS = 0.85 HSS = 0.87 HSS = 0.82 HSS = 0.85

To provide more insight into the patterns of correctly and wrongly classified WTs and the reasons why the model is not able

to assign certain WTs correctly, further analyses have been performed. Fig. 3 shows the confusion matrices for the station sets

1728 and 1864 for the reference period. Whereas accuracies may vary between the models, training runs and station sets, the375

actual WTs that are wrongly assigned for each true class are similar. For a true WT 8 most false predictions show WT 5, and

for WT 9 most false predictions show WT 7. Already Schwander et al. (2017) found these two pairs hard to distinguish, leading

them to reduce the number of WTs accordingly. However, this confusion does not necessarily hold reciprocally, as WTs 5 and

16

https://doi.org/10.5194/egusphere-2024-1346
Preprint. Discussion started: 21 May 2024
c© Author(s) 2024. CC BY 4.0 License.



7 represent a weaker form of WTs 8 and 9, respectively, and are more likely to be confused with other similar WTs (see Fig.

3).380

Figure 3. confusion matrices for reconstructions (columns) with station sets 1728 (left) and 1864 (right) against reference CAP9 series (rows)

for the reference period. Values are given in percent of the respective WT occurrence.

Figure 4 shows the patterns of pressure deviations from the average of the time series (in standard deviations) for each sta-

tion and weather type within the reference period. Indicated are the average values for correctly assigned (blue) and wrongly

assigned (red) WTs, as well as the range between the 5 % and 95 % quantiles (shaded areas) from the reconstruction with

the 1864 station set. Evidently, some WTs have very similar patterns with a large overlap (e.g. WT 5 and WT 8) making a

distinction difficult. For most WTs dominated by extremely high or low pressure (e.g. WTs 5, 8, and 9), wrongly assigned WTs385

are linked to more moderate values in the pressure data. Furthermore, regional differences in the pressure distribution can be

identified as a source of error. For example, WT 6 is more likely to be confused with other WTs for days with stronger low

pressure systems over northern Central Europe. Such regional patterns can also be found for WTs 3, 4, and 7. The correspond-

ing temperature profiles (see supplement Fig. S5.1) show similar patterns with observed temperatures for days with wrongly

assigned WTs closer to the mean (WTs 2, 3, and 6) or regional differences (WTs 7, 8, and 9), although these patterns are much390

less distinct. The same evaluation for the other station sets provides similar results (not shown).

Figure 5 shows average sea level pressure maps for the period 1957–2020 derived from ERA5 (Hersbach et al., 2020; Bell

et al., 2021). The maps are separated by season, namely winter (DJF, Fig. 5a) and summer (JJA, Fig. 5b), as well as by reference

series (top), correctly attributed WTs (centre) and false predictions (bottom). Note that WT 8 does not occur during the summer395
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Figure 4. station data pressure patterns for correct (blue) and false (red) predictions from the 1864 station set for all nine WTs. Shown are

average (lines) and the 5 % – 95 % quantile interval (shaded areas) in units of standard deviations.

months (see the seasonality in Fig. 1, as well as Fig. S5.2 in the supplement) and that no day was wrongly assigned to WT 9 in

the reference period, hence the empty panels in Fig. 5b. Whereas false predictions for the winter months are strongly dominated
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by weaker–than–average pressure distribution rather than regional shifts, results are less clear for the summer months. Whereas

slight regional shifts are apparent (e.g. for WTs 1, 3, and 7), the reason for false predictions in summer seems to originate from

other sources, arguably patterns in temperature or general difficulties of the model to capture the smaller pressure gradients in400

this season.

Figure 5. climatological average of sea level pressure 1957–2020 for CAP9 WTs for a) the winter and b) the summer months. Shown are the

averages according to the official WT series by MeteoSwiss (top, obs), correctly predicted WTs (centre, true) and wrongly predicted WTs

(bottom, false)

As the synoptic circulation is constantly changing, weather types might change over the course of one day. This has to be

taken into account when analysing daily weather type reconstructions, as such WT transitions may be a source of error. In

the reference CAP9 series, 19.1 % of days are persistent weather situations with the same WT on the days before and after.

A majority of days (46.4 %) is a partly transient situation with the same WT on one of the neighboring days and a different405

one on the other and in 34.5 % of the cases, different WTs occur on both neighboring days (transient situation). Taking
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reconstructions using station set 1864 as an example, the correctly classified WTs show the same percentages. For the days

with false predictions, however, transient WTs are overrepresented (48.0 %), whereas only 7.6 % show persistent conditions.

We can conclude that transient WTs play an important role as a source of uncertainty in daily WT reconstructions. The chosen

WT for these cases might be arbitrary depending on slightly stronger patterns (i.e. dominating by a small margin) visible in the410

daily averages of station observations. This issue might be solved by introducing a neutral (transient) class or by calculating

WTs for a specific time of the day (e.g. 12:00 UTC) using subdaily data which is, however, less readily available for the early

instrumental period.

Figure 6. a) 365–day running mean of the daily maximum probability (fraction) of the reconstructed CAP9 WT series (in black) and CAP7

WT series by Schwander et al. (2017) (in grey) and b) boxplots of the probability for correctly (true) and wrongly (false) attributed WTs

within the reference period for the respective reconstructions.

A next interesting feature to look at is the confidence of the model in its predictions, i.e. the probabilities with which the

weather types are classified. As stated in Sect. 2.3, for each day the NN attributes a probability to all WT classes and the415

respective class with the highest probability is selected as the predicted (or most likely) WT. Figure 6a shows a one–year

running mean of the daily probabilities of the predicted WTs (in black) for the whole period of reconstruction. It shows values

around 0.8 in the first two decades, increasing to values between 0.825 and 0.875 in the middle of the 18th century and to values

between 0.85 and 0.9 in 1864. Compared to the CAP7 reconstruction (in grey; see also Schwander et al., 2017, their figure

4), the NN classification shows higher probabilities and less variance pointing to a high consistency of the reconstructions420

over time. The distinction of daily maximum probabilities by correct and false classifications in the reference period (Fig. 6b)

reveals that the model used for our CAP9 reconstruction is less confident for WTs that were wrongly assigned (median = 67.4

%) than for correct attributions (median = 97.3 %). This is in line with the above finding on transient WTs that mixed signals in
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the surface observations may lead to false classifications. A comparison with the probabilities from the CAP7 reconstructions

shows the same pattern, although the SMD approach is more confident for false classifications on average.425

3.3.2 The new CAP9 Reconstructions in a Climatological Context

In this section, we look at the CAP9 WT reconstructions produced with the chosen NN approach (Sect. 2.3) for the full period

1728–2022. The aim is to analyse their quality and consistency, i.e. look for possible discontinuities in WT frequencies, as they

have e.g. been found for the Hess & Brezowski WT classification in the mid–1980s (Mittermeier et al., 2022). Furthermore,

we compare occurrence frequencies of reconstructed CAP9 WTs with the CAP9 reference series and CAP7 reconstructions on430

climatological timescales to analyse the representation of internal climate variability of WTs in the past decades to centuries.

Figure 7. Bias of yearly WT occurrence (in % of days) for all WTs (x–axis) and station sets (colors) in a) the NN reconstruction and b) the

CAP7 dataset by Schwander et al. (2017).

An important quality characteristic are biases in the occurrence of different WTs. Figure 7 illustrates the percentual bias in

yearly WT occurrence for the reference period (n = 63 years) separated by station set and weather type. For comparison, the

biases were also calculated for the original CAP7 reconstructions by Schwander et al. (2017) (Fig. 7b), although these values

might underestimate the actual bias as discussed in Sect. 2.4. The median biases remain within 1–2 % for all weather types435

and station sets with no systematic over– or underestimation of an individual weather type. Some outlier years are evident for

WTs 1, 3 and 6 (overestimation), as well as WTs 2 and 3 (underestimation). Compared against CAP7 WTs (representing the

most dense of the available station networks), a larger spread of values can be observed for some of the early station sets of

our reconstructions. A more equal comparison with station set 1864 shows reduced biases compared to CAP7 for most WTs
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and less pronounced outliers. The feed–forward NN improves the bias values especially for the rare WTs (7, 8, 9, as well the440

slightly more frequent WTs 5 and 6; see Fig. 1).

Figure 8. Yearly occurrence of reconstructed CAP9 WTs (lighter colors) with 10–year running mean (darker colors). Shown are the CAP9

reference series (red), the CAP9 reconstructions (black), and the CAP7 reconstructions (blue). Indicated are correlation and root mean

squared error for the yearly WT occurrence with respect to the reference series.

Figure 8 illustrates the full reconstructed time series of the yearly WT occurrence for each weather type (in black), again

with the CAP9 reference series (in red) for comparison. For better readability, a 10–year running average (including the CAP7

reconstructions in blue) is indicated. In general, our CAP9 reconstructions correspond better to the reference series as the pre-

vious CAP7 reconstructions. The yearly WT occurrence in our new CAP9 reconstruction shows higher correlations (average445

= 0.948) and lower root mean squared error values (average = 3.35 days) than the CAP7 reconstructions (corr = 0.77, rmse =

8.26 days) by Schwander et al. (2017). A positive bias for WTs 6 and 9, as well as a negative bias for WT 8 determined in

Fig. 7 can also be seen in the time series. Further back in the past, CAP7 and CAP9 reconstructions have some discrepancies,

especially for WTs 3 and 6. Considering the biases found for CAP7 (Fig. 7), these differences can be attributed to an un-

der(over)–estimation of WT 3(6) in these reconstructions. The results presented in Fig. 8 suggest that the reconstructed CAP9450

time series do not show any apparent artificial discontinuities that go beyond natural variability.
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Figure 9. 10–year running average of yearly weather type occurrence by season and weather type. Shown are the CAP9 reference series

(dotted lines), the CAP9 reconstructions (solid lines), and the CAP7 reconstructions (dash–dotted lines).

More detail on the occurrence frequency is given in Fig. 9, where we show the 10–year running average yearly WT occur-

rence distinguished by season. These seasonal occurrence patterns of CAP9 reconstructions generally match the occurrence in

the reference series. For WTs 6 and 9, the observed positive bias in the reconstructions can be mainly attributed to an overes-

timation of WT occurrence in spring (MAM). The negative bias of WT 8 on the other hand is linked to an underestimation of455

this WT in the winter months (DJF). Seasonal patterns of the CAP7 reconstruction show less consistency with the reference

series and even some arguably artificial trends (e.g. WT 1 in summer) can be detected. The attribution of a bias to seasonal

differences points to an important issue in WT reconstruction. As most WTs (1, 5, 7, 8, and 9) show a pronounced seasonality

they can be difficult to predict for a model that is trained over all seasons. Tests with training individual models for each season

improved the results, although for some WTs (e.g. WT 8 in summer), the available sample for model training becomes too460
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small. Another option might be to include seasons or months as categorical predictor variables, although this has not been

tested in this study.

4 Conclusions

In our study, we applied various supervised machine learning (ML) methods for station–based weather type (WT) reconstruc-

tion in order to assess their performance and to find an optimal ML approach for this purpose. With the model showing the best465

performance and using additional station observations, existing CAP9 WT series have been extended back to 1728.

Our results show that all ML approaches perform well when tested on the daily CAP7 WT classification. Independent esti-

mates of accuracy and HSS show a better performance of all tested models compared to the common statistical classification

approach used as a baseline. ML methods can thus indeed profit from their ability to detect non–linear patterns. The feedforward470

neural network slightly outperformed the other ML approaches and was therefore used to create the CAP9 WT reconstruction.

The use of qualitative rain observations did not improve our reconstructions, but instead yielded partially worse results and was

thus omitted for our reconstructions. The extension of the existing CAP9 classification back to 1728 constitutes a novelty in

WT reconstruction. The resulting WT time series proves to be accurate in various facets. No artificial trends or discontinuities

could be detected. The year–to–year variability and the seasonality of the WTs are well reproduced. Nevertheless, depending475

on the available set of stations, some over– and underestimation of WT occurrence could be determined. Our results emphasise

the importance of constantly improving WT classification methods with new options and data available.

Some challenges or limitations of our approach persist. First, the station data availability is usually scarce in the early instru-

mental period. Further data rescue efforts may provide additional observations at important locations for WT classifications.480

Although our experiment with adding qualitative rain information did not improve the reconstructions, other qualitative infor-

mation more directly linked to large–scale circulation such as wind direction might lead to improvements. Unfortunately, the

availability of digitised, long–term wind direction records is sparse and therefore could not be assessed in this study. A second

challenge is the number of samples of each WT in the reference series. WTs with low occurrence frequencies and strong sea-

sonality can pose a challenge for our WT reconstruction approach. Adding seasons as additional predictors or training different485

models per season could solve this issue, although the sample size of rare WTs might be too small. Also in general, the size

of the training dataset has to be proportionate to the number of WT classes in order to find robust model weights and biases.

A third issue is the daily resolution of input and WT data: transient weather types leave a mixed signal in the daily average

observations making the distinction on a daily resolution difficult. This issue might be solved with the use of subdaily data

which are, however, less readily available in the form of long and homogeneous time series.490

Our CAP9 reconstruction represents the longest daily WT series available and allows for studying decadal circulation vari-

ability in the context of past climatic changes, as well as the impacts of associated synoptic situations on the surface, e.g.
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extreme events. On the methodical side, future research may focus on including wind direction observations to improve and

extend WT reconstructions even further back in time, although this requires tremendous digitisation efforts. Whereas we fo-495

cused on reconstructing CAP9 WTs, our ML models may be adopted to other WT classifications and regions.
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