
Severe hail detection with C-band dual-polarisation radars using
convolutional neural networks
Vincent Forcadell1, 4, Clotilde Augros1, Olivier Caumont1, 2, Kevin Dedieu4, Maxandre Ouradou1,
Cloé David1, Jordi Figueras i Ventura3, Olivier Laurantin3, and Hassan Al-Sakka5

1CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
2Météo-France, Direction des opérations pour la prévision, Toulouse, France
3Météo-France, Direction des systèmes d’observation, Centre de Météorologie Radar, Toulouse, France
4Descartes Underwriting, Paris, France
5Leonardo Germany GmbH, Neuss, Germany

Correspondence: Vincent Forcadell (vincent.forcadell@gmail.com)

Abstract. Radar has consistently proven to be the most reliable source of information for the remote detection of hail within

storms in real-time. Currently, existing hail detection techniques have limited ability to clearly distinguish storms that produce

severe hail from those that do not. This often results in a prohibitive number of false alarms that hamper real-time decision-

making. This study utilises convolutional neural network (CNN) models trained on dual-polarisation radar data to detect severe

hail occurrence on the ground. The morphology of the storms is studied by leveraging the capabilities of a CNN. A database5

of images of 60 km× 60 km containing 19 different radar-derived features is built above severe hail reports (≥ 2cm) and

above rain or small hail reports (rain or hail < 2cm) created for the occasion with the help of a cell-identification algorithm.

After a tuning phase on the CNN architecture and its input size, the CNN is trained to output one probability of severe hail

on the ground per image of 30 km× 30 km. A test set of 1396 images between 2018 and 2023 demonstrates that the CNN

method outperforms state-of-the-art methods according to various metrics. A feature importance study indicates that existing10

hail proxies as input features are beneficial to the CNN, particularly the maximum estimated size of hail (MESH). The study

demonstrates that many of the existing radar hail proxies can be adjusted using a threshold value and a threshold area to achieve

similar performance to that of the CNN for severe hail detection. Finally, the output of ten fitted CNN models in inference mode

on a hail event is shown.

1 Introduction

Hailstorms are severe weather phenomena that pose significant risks to agriculture, infrastructure, and human safety. Accurate

detection and monitoring of hail is crucial for issuing timely warnings and minimizing potential damages, as well as assisting

damage surveys after an event. Weather surveillance radar systems have proven to be valuable tools for detecting hail (Ryzhkov
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and Zrnic, 2019). Dual-polarisation radars use horizontally and vertically polarised electromagnetic waves transmitted to the20

atmosphere in pulses using a rotating antenna. The echoes returned from targets are analysed to compute various variables

within the scanned volume. This data is used to enhance the capabilities of radar systems in detecting and warning about the

formation of hail-bearing storms in real-time.

Radar-based hail detection techniques can be divided into two distinct groups. The first group is based on reflectivity at

horizontal polarisation (ZH ). Dry hailstones typically exhibit high ZH values, although they are weaker than those of raindrops25

of the same size due to a higher dielectric constant for rain (Ryzhkov and Zrnic, 2019). However, due to the fact that for a given

content, hail exhibit a particle size distribution that is shifted towards larger diameters in comparison to rain, the reflectivities

of dry hail are larger than those of rain for an equivalent content. Melting hail is associated to even larger reflectivities due to

an increase of the dielectric constant compared to dry hail, because of the presence of liquid water on its surface (Ryzhkov

et al., 2013b; Ryzhkov and Zrnic, 2019). By analysing ZH data, either alone or with temperature profiles, meteorologists have30

attempted to identify the presence of hail and severe hail (≥ 2cm). For example, Waldvogel et al. (1979) developed a criterion

that combines echo tops (ET), i.e. the maximum height at which the reflectivity reaches a certain value, and the height of the

melting layer, to compute a probability of hail (POH). This criterion is still used in several European countries as a proxy

for hail occurrence (Delobbe and Holleman, 2006; Foote et al., 2005; Trefalt et al., 2023). In an effort to utilise this vertical

information in storms, studies have sought to produce proxies that integrate reflectivity over the vertical, such as the Vertically35

Integrated Liquid (VIL, Greene and Clark, 1972; Pilorz et al., 2022) and the VIL density (VILd, Amburn and Wolf, 1997).

Since hail mainly forms within storm updrafts and above the melting layer, relationships between vertically integrated ZH

values and temperature profiles have been developed for hail and severe hail detection (Witt et al., 1998; Trefalt et al., 2023;

Murillo and Homeyer, 2019). Among these methods, some are based on the severe hail index (SHI) developed by Witt et al.

(1998). The SHI is derived from the weighted integral of reflectivity over the vertical, where values are weighted based on40

their relative position to the hail growth zone. Several proxies, such as the probability of severe hail (POSH) and the maximum

estimated size of hail (MESH) were developed upon it (Witt et al., 1998). These aforementioned methods using ZH as a main

variable are still widely used operationally in weather services, either for real-time applications (Smith et al., 2016) or for the

production of hail climatologies (US: Wang et al., 2018, Australia: Soderholm et al., 2017; Brook et al., 2024, Switzerland:

Nisi et al., 2020). While providing a high probability of detection depending on the validation methodology, these techniques45

are known to suffer from false alarms (Holleman, 2001; Ortega, 2021; Pilorz et al., 2022).

The second group of techniques uses dual-polarisation radar data, also called polarimetric data, which provides valuable

information about the shape of targets and the precipitation type (Zrnić et al., 1993; Vivekanandan et al., 1999; Kumjian,

2013a, b; Ryzhkov et al., 2013a; Ryzhkov and Zrnic, 2019). Polarimetric radars allow the computation of new variables: the

differential reflectivity (ZDR), the copolar correlation coefficient, also called cross-correlation coefficient (ρHV ), and the spe-50

cific differential phase (KDP ). As polarimetric variables distributions can overlap significantly among different precipitation

types (Kumjian, 2013a), a fuzzy-logic scheme appeared well-suited to answer the problem of classification of radar echoes

(Vivekanandan et al., 1999), where hail could be detected as an independent class. A fuzzy-logic algorithm is based on as-

signing each precipitation type its own range of values for single and dual-polarisation variables. These ranges are determined
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through simulations or physical interpretations of the radar variables (Park et al., 2009; Ryzhkov et al., 2013b; Kumjian,55

2013a). The grade of membership to a particular type being within the radar gate, given the value of a variable, is computed

using a membership function, typically trapezoidal. The aggregation of the membership grades of each precipitation type for

each radar variable enables the determination of the most dominant precipitation type within the radar gate (Kumjian, 2013a).

Based on this principle, a significant number of fuzzy-logic algorithms using dual-polarisation were developed (Vivekanandan

et al., 1999; Straka et al., 2000; Gourley et al., 2007; Al-Sakka et al., 2013; Ryzhkov et al., 2013b; Ortega et al., 2016; Steinert60

et al., 2021). For hail, due to the wide distribution of possible axis ratios and hailstone shapes in real conditions (Soderholm

and Kumjian, 2023; Giammanco et al., 2017), there is a significant increase in the variability of the scattering properties,

particularly at C-band due to resonance scattering at large sizes. This may prevent a good discrimination between hail and

other precipitation types using a fuzzy-logic approach based solely on membership hypotheses of polarimetric variables (Jiang

et al., 2019; Shedd et al., 2021). Furthermore, classes of hail within fuzzy-logic algorithms are difficult to validate given the65

scarcity of hail reports available both on the ground and aloft (Al-Sakka et al., 2013; Ortega et al., 2016). Despite these limita-

tions, radar-based fuzzy-logic classification remains the best method for discriminating hail from other types of precipitation

(Kumjian, 2013b; Ortega, 2013).

The common limitation of the aforementioned single- and dual-polarisation hail detection techniques is the fact that they

are computed on a pixel-by-pixel or column-by-column basis. They can be represented as functions mapped to all radar pixels70

coming either from the volumetric radar data or deduced from the vertical integration of radar variables. These pixel-based

methods do not allow the broader view of the radar variables, their spatial structure and the morphology of the storm to be

studied. Additionally, the models are unable to accurately represent potential intricate and non-linear relationships between

model variables or radar variables and hail on the ground. To tackle these limitations, techniques capable of 1) harnessing

the morphology of spatially-coherent features within radar images or 2) studying the intricate relationships between radar75

or environmental variables and ground truth were developed. In recent years, machine learning and deep learning radar hail

detection techniques have gained traction. In the work of Wang et al. (2018), they developed a convolutional neural network

(CNN, Lecun et al., 1998) applied to three-dimensional reflectivity grids in order to detect hail. Using 70 km×70 km reflectivity

images at different altitudes centered on the cell cores, they showed better discrimination of hail compared to the POSH

method, particularly reducing the number of false alarms. In the work of Shi et al. (2020), they tracked convective cells80

and trained a bagging class-weighted support-vector machine (CWSVM) using single-polarisation cell-based features and

environmental information from proximity soundings. By comparing with common reflectivity based hail proxies, they showed

better performances for their fitted model. Finally, in the work of Ackermann et al. (2024), they trained a neural network using

the severe hail index (SHI, Witt et al., 1998) and variables from ERA5 (Hersbach et al., 2020) to estimate the magnitude of

the damage generated by hail on the ground. Using insurance data as ground-truth, they developed a hail damage estimate85

variable that showed high accuracy on the estimation of damage and its intensity. These prior machine learning and deep

learning studies have demonstrated the potential of these techniques to partially address the lack of information on hail growth

processes. Consequently, the consideration of hail detection as an image-based problem where the morphology of storms can

be taken into account seems a promising approach to enhance the hail detection capabilities of radar networks.
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Table 1. Example of a super-cycle for the radar of Toulouse. The 90◦ elevation angle is used for ZDR calibration.

sub-cycle Elevation angles

0min 90◦ 8.5◦ 5.5◦

2.5◦ 1.5◦ 0.8◦5min 10.5◦ 7.5◦ 4.5◦

10min 9.5◦ 6.5◦ 3.5◦

This study aims to train different CNN models for the detection of severe hail (≥ 2cm) on the ground using polarimetric90

radar data. Although studies have already explored the use of CNNs for hail occurrence detection, to the authors’ knowledge,

none have attempted to use radar polarimetric variables for severe hail detection with CNNs. The framework developed herein

is based on a dataset of severe hail cases (≥ 2cm) and negative cases including rain or small hail (< 2cm). First, the data

gathered for this study are presented in section 2. Then, the methods explaining the features, the tuning phase to choose the

CNN’s architecture and its input size, and the metrics are described in section 3. Finally, the results presented in section 4 are95

divided into four parts: 1) the results of the tuning phase (section 4.1), 2) the feature selection and feature importance studies

(section 4.2), and 3) a comparison with state-of-the-art (section 4.3). Finally, the conclusions of this study present a summary

of the contributions made to the field of severe hail detection and suggest potential applications for future research.

2 Data

2.1 Radar100

This study uses data from C-band radars within metropolitan France (Fig. 1). The volume coverage pattern (VCP) of each

radar consists of super-cycles of 15 min in which five to seven elevation angles are scanned, depending on the radar (Table 1).

Each 15 min super-cycle contains three 5 min sub-cycles with the three lowest elevation angles remaining the same and the

upper elevation angles changing every 5 min. The raw volumetric radar data, with a range resolution of 240 m and an azimuthal

sampling of 0.5◦, are processed through a polarimetric processing chain (Figueras i Ventura et al., 2012). Non-meteorological105

echoes are removed, partial beam blockage is corrected, and ZH and ZDR are corrected from attenuation (Gourley et al., 2007;

Figueras i Ventura et al., 2012; Figureas i Ventura and Tabary, 2013). Volumetric radar data are not corrected for advection

between successive elevation angles. The corrected radar data was collected above severe hail reports (see section 2.3) and

above rain or small hail reports (see section 2.4) to provide the radar images fed to the deep learning framework. Polarimetric

radar variables considered in this study are ZH , ZDR, KDP and ρHV .110

2.2 Storm-cell identification

Two independent storm-cell identification algorithms are used in this study. The first cell-identification algorithm is used to

assist in the production of rain or small hail reports (< 2cm). The algorithm is adapted from Morel and Sénési (2002), and
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Figure 1. Hail reports between 2018 and August 2023 from the ESWD (grey), the hail pad network of the ANELFA (orange) and the mobile

application of Météo-France (small black dots).

applied to the national reflectivity composite product available every 5 min at a 1 km horizontal resolution (Caumont et al.,

2021). The algorithm defines cells as a contiguous set of pixels above a certain reflectivity threshold. Cell objects with four115

different thresholds are defined: 36 dBZ, 42 dBZ, 48 dBZ and 56 dBZ. Cell splits and merges are managed by comparing

cell overlaps between consecutive images, taking into account cell motion (Morel and Sénési, 2002). This basic thresholding

scheme allows a fast computation of cell cores with different degrees of severity, but can suffer from discontinuity in time

compared to more sophisticated algorithms (Lakshmanan et al., 2009).

A more advanced cell-tracking algorithm was employed on a single event to illustrate the inference process for the methods120

developed herein. The use of a different cell tracking algorithm for inference is necessary because the former algorithm is

not always able to accurately locate cell centroids. In the first cell tracking algorithm, centroids are defined as the geometric

mean within the contours and are not weighted by the reflectivity values within the cell. As a result, centroids may not be

within the cell core, but far away from it, preventing continuous tracking of cells every 5 min. The more sophisticated cell-

tracking algorithm is based on the open-source Python package tobac (Heikenfeld et al., 2019). It comprises a toolbox where125
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Figure 2. Time series of the 1169 filtered ESWD severe hail reports (≥ 2cm) used in this study.

cell tracking and segmentation algorithms can be applied using different parameters. In this study, the cell tracking feature

is employed exclusively. Cells are identified within the national composite reflectivity as one or more contiguous regions

of reflectivity values that meet or exceed a threshold. The thresholds used in this study are 36 dBZ, 42 dBZ and 48 dBZ.

Additional parameters are used to set a minimum cell size per threshold: 30 km2, 10 km2 and 2 km2 respectively. As multiple

reflectivity thresholds are specified, the centroid of each 42 dBZ cell that exist within a 36 dBZ region supersede and replace130

the centroid detected for the encompassing 36 dBZ cell, as explained in Heikenfeld et al. (2019). The combination of different

thresholds allows for the detection of cell centroids for cells at their initial or decay stage, as well as the identification of cell

cores during the mature stage.

2.3 Severe-hail reports

This study utilises various sources of hail reports, either as ground truth for severe hail or to assist in constructing the rain135

or small hail database. The European Severe Weather Database (ESWD, Dotzek et al., 2009), an initiative of the European

Severe Storm Laboratory (ESSL), is the primary source of severe hail reports used in this study. Severe weather phenomena

are reported by volunteer observers, weather services, or individuals and are quality controlled by the ESSL into four levels of

quality, ranging from QC0 to QC4 (Groenemeijer and Kühne, 2014). To localise and estimate the maximum hail size, images

from social media or local newspapers are frequently used. From January 2018 to August 2023, the ESWD collected 3348140

reports in France with a maximum hail size information above 2 cm (Fig. 1). Although the ESWD management team applies

quality checks to the reports, errors in the hailfall time or report localisation may still occur. To reduce their impact, the hailfall

time was adjusted by examining the reflectivities from the nearest radar within a time range of ±30min. If needed, the report

time was shifted to the time when a storm cell passed over the report. If multiple cells were observed over the report within

the time range, the time of the closest cell to the reported time was retained. If no cell was detected within that time frame,145
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the report was discarded. A significant proportion of reports produced by the same storm at the same time remains in the

database. It artificially increases the number of independent storm cells that produced severe hail. To avoid duplicating radar

images centered on reports that are really close to each other, a density-based clustering algorithm (DBSCAN, Ester et al.,

1996) is applied to find reports within 10 km to each other every 5 min. The report that is the closest to the barycenter of

collected reports is kept. The total number of severe hail reports used for training decreased from 3348 to 1169. Fig. 2 shows150

their distribution over time. The filtered ESWD reports are considered the only trustable source of severe hail reports for the

remainder of the study.

The study also collected 1509 hail pad reports between 2018 and 2022, purchased from the Association Nationale d’Étude

et de Lutte contre les Fléaux Atmosphériques (ANELFA, Dessens et al., 2007). Its network of hail pads covers most of the

south-west of France (Fig. 1). A hail pad consist of a 30 cm×50 cm×7 cm layer of polyester placed on the ground or mounted155

on a pole. Hail reports are generated from photographs of hail pads after hailstorms and are processed by the ANELFA

using computer vision techniques to infer hail characteristics. There is only one report per day per hail pad, and each report

is accompanied by an estimated time of hail fall by the observer. Numerous quantities are available in the reports, such as

maximum diameter or hail size distribution. The main challenge with hail pad data is the small sampling area of the pad, which

prevents accurate measurement of maximum hailstone size, as the largest hailstone can easily be missed (Smith and Waldvogel,160

1989). The possible systematic underestimation of the maximum diameter due to this sampling error makes it impossible to

consider such data as severe hail reports above 2 cm. However, they remain important for the construction of the database of

rain or small hail reports.

Hail reports were also collected through the crowdsourcing feature of Météo-France’s mobile application between 2018 and

August 2023. The application allows users to report weather events such as snow, strong winds and hail, which are then located165

using GPS technology embedded in mobile phones. Since 2014, users can add information about the size of the hailstones and

include a picture. The hail size categories available are a) lower than 0.5 cm, b) 0.5 cm to 1.0 cm, c) 1.0 cm to 2.0 cm, d) greater

than 2.0 cm. A large quantity of hail is reported between 2018 and August 2023 (137,108 reports). However, the database may

contain a significant misrepresentation of hail occurrence due to the lack of systematic quality controls. Observers may report

hail despite the absence of reflectivity data indicating precipitation, or there may be potential errors in space and time caused170

by people reporting hail after it has fallen. To correct for possible biases, a consistency check was carried out. Cell-objects of

42 dBZ from the first cell identification algorithm (section 2.2) were collected within a time period of −120 min to +30 min

around each report. If the distance between the report and the nearest 42 dBZ cell within that period was more than 15 km,

the report was discarded. The 42 dBZ reflectivity threshold was chosen because small and melting hail above 5 mm is hardly

reported at reflectivity values lower than 45 dBZ (Ryzhkov and Zrnic, 2019). The selected time interval is needed to consider175

potential delays between the reported time and the actual hailfall time. A delay of two hours prior to the reported time was

deemed adequate to account for this. Finally, a distance of 15 km between a report and the nearest 42 dBZ contour was chosen

to represent the median commuting distance travelled by the rural French population each day (INSEE, 2023). Using that

consistency check, the quantity of reports decreased from 137108 to 64051, still covering 45 % of the days within the study.

In certain highly populated areas, the frequency of hail occurrence reported by the application remains significantly higher180

7

https://doi.org/10.5194/egusphere-2024-1336
Preprint. Discussion started: 22 May 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 3. Construction of the rain or small-hail reports on the 4th June 2022 at 16:50 (UTC) during a convective outbreak where hail was

reported. Green dots represent hail reports (ESWD + Mobile application + ANELFA) within a time interval of ±1h. Green squares are

‘forbidden‘ areas around hail reports (120 km× 120 km) where a rain or small hail report cannot be created at 16:50 (UTC). The orange

and red colours represent the 42 dBZ and 56 dBZ cells cumulative contours within a time interval of ±1h. Grey dots represent the reports

from the application that are not hail reports within a time interval of ±1h. Light and dark turquoise show populated areas with more than

50 people.km−2 and 100 people.km−2, respectively. Black triangles represent negative (rain or small hail) reports created at the mentioned

timestamp. They represent the intersection of reflectivity contours and areas of more than 100 people.km−2 outside forbidden areas. Some

of them are discarded based on further filtering explained in section 2.4.

than what known climatologies suggest (Dessens, 1986; Punge et al., 2017). Furthermore, only 28 % of the remaining 64051

reports contain hail size information, and about 1.1 % is severe hail (≥ 2cm). Because of the database’s size, manual filtering

was not possible within the scope of this work. Therefore, the final quality of the collaborative reports remains uncertain. As a

result, it was not used as ground truth for severe hail but it assisted the construction of the rain or small hail database.

2.4 Rain or small-hail reports185

Rain or small hail reports are created as reports produced by either rain or small hail below 2cm. In order for the CNN to

accurately distinguish between radar images that result in severe hail and those that do not, it is crucial that the training set

includes instances where severe hail did not occur on the ground. Rain or small hail reports are built to include storms that may
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be conducive to hail formation but did not produce severe hail at the ground. The identification of such storms is necessary for

the validation of severe hail detection algorithms. They are considered edge cases and often produce many false alarms with190

current hail detection methods, making it difficult for forecasters to distinguish between severe and non-severe hail storms.

Rain and small hail reports were searched every 20 min during hail seasons (March-September) between 2018 and August

2023. Several precautions were taken to build this database. First, times and locations with no potential for hail formation were

excluded based on a minimum reflectivity threshold. Thus, a disproportionate number of useless cases to train the CNN were

discarded. Second, locations in sparsely populated areas and times of day when hail cannot be reported were excluded, as was195

done in the study by Kopp et al. (2024). Finally, entire areas during time intervals around hail reports were forbidden to avoid

domains where severe hail was highly probable. As a result, an initial filtering was applied every 20 min using cell objects,

where the following locations were kept:

– locations below cell objects that had a maximum ZH above 45 dBZ.

– locations at the intersection between cell objects and a highly populated area of at least 100 peoplekm−2.200

– locations within working hours (7:00am-10:00pm).

– locations outside ’forbidden’ areas, defined as squares of 120 km×120 km around all available hail reports within a time

interval of ±1h. The hail reports considered here are a combination of raw severe hail reports from the ESWD (3348),

hail pad measurements from the ANELFA (1509) and filtered collaborative reports from the Météo-France mobile ap-

plication (62854).205

An example of the rain or small hail reports produced by such filters applied to a convective outbreak on the 4th June 2022 at

16:50 (UTC) is shown in Fig. 3. Using a filter that combines all available hail reports to exclude ’forbidden’ areas where rain or

small hail reports cannot be created was considered the best option, given the significant uncertainty in the quality of hail pad

measurements and collaborative reports. However, a risk remains that avoiding such forbidden areas around hail reports may210

result in the withdrawal of several small hail cases (< 2cm). The filtering assumed that all missed severe hail by the ESWD

database was correctly observed in highly populated areas within working hours by other databases, even with a wrongly

observed hail size, as it attracts more attention from both the media and the public (Punge and Kunz, 2016). This hypothesis

is contingent upon the presence of a sufficient number of individuals capable of recording hail. It can be demonstrated that

a non-negligible number of non-hail observations are produced by the mobile application within the French territory every215

two hours (Fig. 3), reducing the risk of missing severe hail. These steps serve to ensure that rain or small hail reports are not

contaminated by severe hail, which is of the utmost importance for the relevance of the method and the interpretation of its

results.

In order to reduce the number of cases that produced moderate ZH values, an additional filter was applied. Since mild

precipitation events are climatologically predominant compared to severe and extreme precipitation events, they can populate220

most of the rain or small hail cases, even if a minimum threshold of 45 dBZ was set. In order to prevent the CNN from learning
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with a disproportionate number of mild cases, a second filter was applied to cases that had cell-objects with a maximum ZH

below 56 dBZ. These cases were divided into two categories: those produced by cells with a maximum ZH 1) beetween 45 dBZ

and 48 dBZ, and 2) between 48 dBZ and 56 dBZ. The reports with the largest cell area per bin of 0.2 dBZ for each category

were then retained. This was done to ensure that rain or small hail reports were produced by large enough storms where hail225

is plausible, as severe hail is mainly produced in supercell and multicell convective systems (see section 2.5). In the event

that reports were situated at a distance of less than 15 km from one another, only the report produced by the cell exhibiting

the highest reflectivity was included. In the event that they originated from the same cell, one was selected at random. This

methodology ensured that rain or small hail reports were extracted from independent stages of a storm’s life cycle.

After these different steps of filtering, the rain or small hail database contained 2605 reports during hail seasons between230

2018 and August 2023. Cell objects formed by the cell identification algorithm were also gathered above the filtered severe

hail reports (section 2.1). The fitted probability density functions (PDF) of max(ZH) within the cell and the cell area above

56dBZ are compared in Fig. 4. Despite the efforts to gather intense storms in the rain or small hail dataset, Fig. 4 shows only a

partial overlap between the distributions on both datasets, indicating that the the biggest cases in terms of maximum reflectivity

and cell area were mostly produced by severe hail storms. This behaviour may be a consequence of the storm modes embedded235

in each dataset, where severe hail is nearly systematically produced by large, intense and highly organised systems such as

supercells. A storm mode assessment is performed in section 2.5.

It is crucial to acknowledge that it was not feasible to make sure that small hail was included in the rain or small hail dataset.

Indeed, small hail is less likely to be reported by observers, and a significant degree of uncertainty contaminates the existing

databases that have the capacity to report it (Météo-France crowd-sourcing application, ANELFA hail pads). Consequently, it240

is assumed that by selecting the strongest storm cases outside areas where hail was reported using the aforementioned filter, it

was possible to include potential instances of small hail. In the most unfavourable scenario, the rain or small hail database is

populated with instances of rain or heavy rain only, which still contributes to the generation of false alarms in existing severe

hail detection algorithms.

2.5 Storm mode245

In order to gain further insight into the database, a storm mode assessment was conducted. The storms responsible for the

production of severe hail reports and rain or small hail reports were categorised into four distinct modes: supercell, multicell,

isolated cell and unknown. However, it was deemed impractical to label the storms that produced all the reports presented

above. Indeed, a certain proportion of the reports were isolated, and manually labelling them would have required too much

time. As a result, only the clusters of reports comprising at least two reports were labelled. For the severe hail reports, all were250

kept. For the rain or small hail reports, only the most severe with a cell producing a maxZH ≥ 56dBZ were kept. This likely

introduces a bias towards more severe storm modes and provides an inaccurate representation of the occurrence of certain

storm modes, particularly isolated cells. Nevertheless, it was deemed necessary to examine the data, despite the potential for

inaccuracy, in order to ascertain whether a discernible signal existed with regard to specific storm modes in relation to storms

accompanied by severe hail.255
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Figure 4. Fitted probability density functions (PDF) for storm cell objects identified above severe hail and rain or small hail reports. (a) PDF

of the maximum reflectivity (max(ZH)) within storm cells. (b) PDF of the area for storm cells with the 56 dBZ threshold.

The clusters of reports were created using a spatio-temporal DBSCAN algorithm (ST-DBSCAN, Birant and Kut, 2007). The

severe hail reports are clustered with δx = 15km and δt = 10min. The rain or small hail reports are clustered with δx = 30km

and δt = 60min. A higher spatio-temporal tolerance was selected for the rain or small hail reports, as they are geographically

scarcer than the severe hail reports. The national composite reflectivity product (Caumont et al., 2021) and the cells detected by

the first cell identification algorithm (Morel and Sénési, 2002) are gathered around ±90min before and after the first and the260

last report of the cluster, respectively. All the data is superimposed in a visualisation tool that enables navigation through time

during the life cycle of the storm, facilitating the identification of relevant signatures for labelling. The labelling was performed

independently by two meteorologists, and the results were cross validated.

For supercells, typical signatures in the reflectivity composite were searched: a hook echo, a cell splitting, and/or a deviation

of the cells to the right (or to the left) of the main flux (Markowski and Richardson, 2011; Houze, 2014). In the event that a265
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Table 2. Storm mode on 224 severe hail storms (≥ 2cm) and 113 rain or small hail storms (< 2cm).

Severe hail (≥ 2cm) Rain or small hail (< 2cm)

Supercell 69.9% 3.4%

Multicell 19.3% 86.6%

Isolated cell 4.4% 4.3%

Unknown 6.4% 5.7%

Total 224 113

clear line of cells was discernible, the cluster was designated as being part of a multicell system. Conversely, if a cell exhibited

a brief lifespan and was isolated from any broader convective system, it was classified as an isolated cell. In the absence of any

of the aforementioned criteria or in the event that a determination was precluded due to the passage of multiple cells above the

cluster in a brief period of time, the cluster was designated as unknown.

A total of 224 severe hail clusters and 113 rain or small hail clusters were labelled. The results are presented in Table 2.270

Supercells produce 69.9 % of the severe hail on the ground within this study. This shows the predominance of supercells in the

production of severe weather compared to other storm modes, which is in accordance with previous studies (Markowski and

Richardson, 2011). The rain or small hail dataset is mainly populated by multicell convective systems (86 %) while only 3.4 %

were produced by supercells.

The conclusions in this paragraph remain highly entitled to the data used and the portion of cases selected to perform the275

storm mode assessment.

2.6 Cartesian 3D polarimetric grid

The interpolation algorithm implemented within the Python ARM Radar Toolkit (Helmus and Collis, 2016) is used to generate

three-dimensional Cartesian grids above each report. Derived two-dimensional fields from the three-dimensional grids are then

used as input features to the CNN. The algorithm produces the grids with a specified resolution of 250 m× 250 m× 500 m on280

60 km× 60 km× 15 km by interpolating values from the two nearest radars from each report. The value of each grid point is

determined by interpolating from the collected radar points within a given radius of influence (ROI). The ROI increases with

distance to the radar, and the ROI value for each grid point in the target cartesian grid is determined by the nearest radar. In

order to identify the nearest radar points within the specified ROI of a given grid point, a KD-tree algorithm is employed.

The value of the grid point is calculated by summing the collected values, with each value weighted by an inverse distance285

weighting function defined by Barnes (1964). The three-dimensional grid is generated for ZH , ZDR, KDP , and ρHV .

To account for the low vertical sampling resolution of the French radars and to avoid discontinuities in the resulting 3D

fields, both above the radar and at long range, a minimum radius of influence of ROImin = 2000m was defined above each

radar. This minimum ROI resulted in a smoothing of the fields. A nearest-neighbour interpolation scheme was also tested (not

12

https://doi.org/10.5194/egusphere-2024-1336
Preprint. Discussion started: 22 May 2024
c© Author(s) 2024. CC BY 4.0 License.



shown), but produced strong artefacts within the 3D fields such as holes and stripes, preventing its use. As a result, the Barnes290

interpolation with a minimum ROI of 2000 m was kept.

2.7 Reference algorithms

This section presents the existing radar-based algorithms that are compared with the CNN approach. They are separated in

three different kinds. The first algorithm being compared is an updated version of the fuzzy-logic hydrometeor classification

algorithm from Al-Sakka et al. (2013), which is available at S, C, and X bands. The original version of the algorithm discrimi-295

nates between six different hydrometeor classes using dual-polarisation radar variables and temperature: biological scatters or

ground clutter (BS-GC), rain (RA), wet snow (WS), dry snow (DS), icy particles (IC) and hail (HA). A revised version enables

the classification of hail into three distinct categories: small hail (SH; < 0.5cm), medium hail (MH; 0.5 cm to 2 cm), and large

hail (LH; > 2cm). Details on the updated version can be found in appendix A. It is called A13 thereafter.

The second family of algorithms uses the severe hail index (SHI) developed by Witt et al. (1998) to produce two proxies300

capable of detecting hail: the probability of severe hail (POSH, Witt et al., 1998) and the maximum estimated size of hail

(MESH, Witt et al., 1998; Murillo and Homeyer, 2019). The SHI is calculated by the weighted sum of 3D reflectivities over

the vertical, based on the position of radar gates to the hail growth zone (0 ◦C and −20 ◦C, Witt et al., 1998). The POSH and

MESH relationships are defined as follows:

POSH = 29ln
SHI
WT

+ 50, with WT = 57.5H0− 121 (1)305

MESH = 2.54×
√

SHI (2)

MESH75 = 15.096×SHI0.206 (3)

MESH95 = 22.157×SHI0.212 (4)

with WT being a warning threshold calibrated for the POSH to produce the best critical success index (CSI) for the U.S. S-band

radars (Witt et al., 1998), H0 being the altitude of freezing in km, MESH coming from Witt et al. (1998) and MESH75 and310

MESH95 coming from Murillo and Homeyer (2019). The variables are calculated based on the three-dimensional reflectivity

grid and the 0 ◦C and −20 ◦C altitudes are extracted from the nearest forecast hour within the AROME model (Brousseau

et al., 2016). The AROME model provides hourly forecasts with a horizontal resolution of 0.01◦. The isotherms are regridded

to the 250 m× 250 m horizontal resolution of the three-dimensional grid and interpolated in time to the time of the report.

The third family of algorithms is hail detection algorithms based on echo tops, i.e. the maximum altitude at which a re-315

flectivity threshold is reached. The probability of hail (POH) from Delobbe and Holleman (2006) and Foote et al. (2005) are

compared in this study and are constructed as follows:

POHDelobbe = 0.319 +0.133∆H, (5)

POHFoote = −1.20231 +1.00184∆H − 0.17018∆H2 + 0.01086∆H3, (6)

where ∆H is the difference between the echo top at 45 dBZ (ET45) and H0. Echo tops are computed using the three-320

dimensional reflectivity grid.
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Table 3. Input features to the CNN divided in three categories: polarimetry, storm proxy and hail proxy.

Group Acronym Unit Description

Zmax
H dBZ maximum ZH over elevations

Z∗DR dB collocated ZDR with Zmax
H

K∗
DP °km−1 collocated KDP with Zmax

H

Polarimetry
ρ∗HV collocated ρHV with Zmax

H

Z2000
H dBZ ZH at 2000m

Z2000
DR dB ZDR at 2000m

K2000
DP °km−1 KDP at 2000m

ρ2000
HV ρHV at 2000m

Storm proxy

ZDR column km ZDR column height

VIL kgkm−2 vertically integrated liquid

ET45 m echo-top at 45 dBZ

Environment H0 m altitude of freezing

POHDelobbe % probability of hail from Delobbe and Holleman (2006)

POHFoote % probability of hail from Foote et al. (2005)

POSH % probability of severe hail from Witt et al. (1998)

Hail proxy
MESH mm maximum estimated size of hail from Witt et al. (1998)

MESH75 mm 75th percentile maximum estimated size of hail from

Murillo and Homeyer (2019)

MESH95 mm 95th percentile maximum estimated size of hail from

Murillo and Homeyer (2019)

A13 updated hydrometeor classification from Al-Sakka et al.

(2013)

Finally, the maximum reflectivity over the vertical Zmax
H (see section 3.1) is added as a comparison baseline to all the

methods compared in this study.

3 Methods

This section outlines the experimental design used to evaluate the performance of the CNNs. To align with machine-learning325

terminology, the term ’radar variable’ has been replaced with ’feature’. A feature represents a 2D radar-derived variable that is

fed to the CNN.
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Figure 5. Input features defined in Table 3 for a case producing severe hail on the ground. Image size is 60 km× 60 km and the severe hail

report is located at the center of the image.

3.1 Input features

For each severe hail report and rain or small hail report, two different sets of inputs are generated: 1) 2D features obtained from

the 3D grid, and 2) 2D features extracted directly from the volumetric radar data. Both groups are fed into the CNN. The input330

features are summarised in Table 3.

The 3D grids are used to generate a number of storm and hail proxies, which are known for their ability to help in the

detection of hail. First, the ZDR column is calculated from the 3D grid to account for potential hail formation processes above

the freezing level, as it indicates regions with high concentrations of supercooled water and graupel, which are essential for

hail growth (Kumjian, 2013b; Kuster et al., 2019). The ZDR column height was calculated using the 3D polarimetric grid, with335

candidate pixels that met the following criteria: ZH ≥ 25dBZ and ZDR ≥ 2dB. The height of a column of adjacent candidate

pixels is computed as the ZDR column height. A criterion was applied to ensure the continuity of the column above and
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below H0 in the event that 500 m portions of the column were missing in the middle of two candidate pixels over the vertical.

Other 2D input features derived from 3D grids include vertically integrated liquid (VIL, Greene and Clark, 1972), ET45, and

H0. Furthermore, polarimetric features at an altitude of 2 km are incorporated to account for hail-related signatures at low340

altitudes below the altitude of freezing. The 2 km height was selected as a compromise to achieve optimal 3D radar coverage

while remaining below the freezing level in the majority of cases. It is notable that low ZDR values may be indicative of dry

spherical hail. High ZDR and KDP may suggest the presence of either rain or a mixture of rain and melting hail (Ryzhkov

and Zrnic, 2019). The features at 2 km include Z2000
H , Z2000

DR , K2000
DP an ρ2000

HV . Finally, a series of hail proxies were subjected

to testing as input features, with the objective of determining the extent to which they might provide additional information345

within the framework of a CNN: MESH, MESH75, MESH95, POSH, POHFoote and POHDelobbe. A sample of all input features

for a case that resulted in severe hail on the ground is shown in Fig. 5.

The utilisation of 3D interpolation may result in the loss of information present in these features, as it reduces the texture of

the fields (Fig. 5). In order to more accurately represent the native resolution of volumetric radar data, 2D features derived from

volumetric radar data are incorporated in addition to those derived from the 3D grid. Nearest-neighbor interpolation is employed350

on the volumetric data at every elevation angle in order to match the horizontal resolution of the 3D grid (250 m×250 m). The

nearest-neighbour interpolation is performed separately for each report and for the two nearest radars. In order to account for

the low vertical sampling of French radars and the frequent partial beam blockage at low elevations, 2D features are created

from the interpolated elevations. The initial feature to be considered is the maximum ZH value over the vertical (Zmax
H ). The

other ones are called ’collocated’ polarimetric features, named respectively Z∗DR, K∗
DP and ρ∗HV . They are selected where355

Zmax
H is reached over the elevations. As hail is always detected in areas of high ZH (Kumjian, 2013a; Ryzhkov and Zrnic,

2019), it appears appropriate to examine the polarimetric signatures where reflectivity is the highest. One disadvantage of this

approach is that the resulting collocated features (2D images) may contain pixels located at different altitudes, which makes

it challenging to interpret their values. To eliminate collocated polarimetric features produced at very high altitudes and low

Zmax
H values, only collocated values where Zmax

H was above 30 dBZ were retained.360

For each report, either severe hail reports or rain or small hail reports, two samples were created, each containing 2D features.

One sample was created for the nearest radar, and the other was created for the second-nearest radar. Both samples share 2D

features that originate from the 3D grid. However, they differ in their Zmax
H and collocated features, as they were produced

independently for each radar. This process helped to augment the dataset, which is considered crucial, particularly given the

scarcity of severe hail reports.365

A total of 7523 radar samples were produced from the 1169 severe hail reports and the 2605 rain or small hail reports,

comprising 2335 severe hail and 5188 rain or small hail cases. Fig. 6 illustrates the distributions of maximum values within

samples for a selection of features. It should be noted that the distribution of the maximum reflectivity values within the

images may differ from the distributions obtained with the cell identification algorithm (Fig. 4), as the reflectivity values do not

originate from the same methodology. In the context of this study, distributions of the maximum of input features, including370

VIL, ET45, MESH proxies and POSH, exhibit a certain separation between cases of severe hail and those of rain or small hail

(Fig. 6). This may provide insight into the discriminative power of these features for severe hail detection.
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Figure 6. Distributions of the maximum value over 60 km× 60 km images for most of the input features in the severe hail dataset and the

rain or small hail dataset.

To analyse the polarimetric variables, the bivariate distributions of Zmax
H and Z∗DR are presented in Fig. 7. The distribution

of severe hail exhibits a high density of values with Zmax
H above 50 dBZ and Z∗DR ≈ 0dBZ, in accordance with the expected

behaviour of spherical hailstones (Kumjian, 2013a). For rain and small hail cases, Z∗DR increases with Zmax
H , as the database375

may be populated by storms producing either rain or small melting hail that have higher ZDR values compared to larger hail

due to a higher dielectric constant for water (Kumjian, 2013a; Ryzhkov and Zrnic, 2019).

3.2 Tuning architecture and input size

Two distinct types of CNN architectures are evaluated to identify the optimal architecture and input size. The first type of

architecture is a feed-forward CNN, which draws inspiration from the AlexNet architecture (Krizhevsky et al., 2017). Two380

models were created from it: the SmallConvNet and the ConvNet. The former comprises only one convolutional layer, while

the latter is a deeper architecture with three convolutional layers (Fig. 8). The second kind of architectures tested in this study

is a residual network architecture (ResNet, He et al., 2015). The 18-layer variant of the ResNet is used and includes 18 layers

of convolutions with skipped connections that increase the accuracy of the network (He et al., 2015). Four input sizes are tested

with the different models: 5 km× 5 km, 15 km× 15 km, 30 km× 30 km and 50 km× 50 km. Every combination of model385

and input size is trained, and the combination that yields the best performance is selected for the remainder of the study. The

training for the tuning phase is performed using all the variables listed in Table 3 as input features to the CNNs.

The choice of hyperparameters can influence the learning phase and the final performance of a fitted model. However, in

order to focus solely on the choice of the model and the impact of input size on the performance, the models are trained

with fixed hyperparameters. Stochastic gradient descent (SGD) is used with a learning rate of lr = 10−4, a weight decay of390

wd = 10−3 and a momentum of m = 0.9. The loss function is the binary cross entropy (BCE), the training mini-batch size is
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Figure 7. Bivariate distributions of Zmax
H and Z∗DR within 60 km×60 km images for the severe hail dataset and the rain or small hail dataset.

Contours represent the frequency of values per two-dimensional bin.

bs = 64, and the maximum number of epochs is nepochs = 300. Additional regularisation is achieved through the incorporation

of batch normalisation layers within the models. The selection of hyperparameters is highly empirical and dependent on the

specific problem being solved, as well as the quality and quantity of data used for training. The aforementioned hyperparameters

are selected in order to ensure that the model’s loss decreases monotonically during training towards convergence.395

During the tuning phase, all possible combinations of models and input sizes are trained under identical conditions. The

whole dataset containing severe hail and rain or small hail samples (7523) is separated between a training dataset, a validation

dataset and a test dataset. The different splits are presented in Table 4. The training and validation datasets are employed during

the tuning phase, while the test dataset is reserved for subsequent performance analysis. To ensure independence between the

datasets, samples are grouped by date. This guarantees that each date is only present in one dataset. Furthermore, an additional400
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Figure 8. Two feed-forward CNN architectures tested in this study: the SmallConvNet and the ConvNet. Convolutional layers are denoted

as ’Conv’ (yellow boxes); pooling layers are denoted as ’Max. pool’ and ’Adapt. avg. pool’ for max pooling and adaptative average pooling

respectively (red boxes); fully connected layers of perceptrons are denoted as ’Dense’ (green boxes). ’p’ for padding, ’s’ for stride. Number

of filters per layer is showed below boxes. The kernel size is shown by multiplicative terms. All activation functions are ReLU. A batch

normalization layer is added after each convolutional layer for regularization (hidden). The output of the network is a real number, which is

subsequently passed to a sigmoid function to produce a probability of severe hail on the ground within the image, denoted as P ∈ [0,1].

Table 4. Number of samples in the training, validation and test data sets for the tuning phase in section 3.2.

Training Validation Test

Severe hail (1) 1476 413 446

Rain or small hail (0) 3100 1138 950

Total 4576 (61%) 1551 (21%) 1396(19%)

precaution is taken to ensure that the proportion of severe hail and rain or small hail cases remains the same in all three

datasets. In order to address the imbalance of the dataset during training, the minority class (i.e. severe hail) is oversampled

using weighted random sampling. This process artificially increases the number of severe hail cases seen by the CNN at each

training iteration. Finally, early stopping enables the model to halt training when the validation loss fails to decrease after 20

consecutive epochs.405
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Table 5. Contingency table

Prediction

severe hail rain of small hail

Observation severe hail True Positive (TP) False Negative (FN)

rain or small hail False Positive (FP) True negative (TN)

3.3 Scores

The performance of the models is evaluated using a scoring methodology. For the CNNs, the output provides one probability

of severe hail at the ground, denoted as P , for each image. The image is predicted as producing severe hail (yCNN
pred = 1) or rain

or small hail (yCNN
pred = 0) on the ground given a discrimination threshold α:

yCNN
pred =





1 (severe hail), if P ≥ α

0 (rain or small hail), otherwise
(7)410

with α ∈ [0,1].

The comparison algorithms produce either a gridded probability or a gridded hail size as output (Fig. 5). In order to facilitate

comparison with the output of CNNs, it is necessary to reduce the data of hail proxies to a single value per image. Two

thresholds can be used simultaneously to determine if the image is associated with severe hail on the ground: a threshold for

feature values X , designated βX , and a discrimination threshold for the area AX covered by the resulting field, designated415

βAX
. If the area of pixels above βX exceeds βAX

, the algorithm predicts severe hail on the ground within the image as follows:

yproxy
pred =





1 (severe hail), if X ≥ βX and AX ≥ βAX

0 (rain or small hail), otherwise
(8)

For example, if βX = 50% and βAX
= 10km2 for POSH, the prediction for the image will be severe hail if the area of POSH

above 50 % in the image exceeds 10 km2. This evaluation method allows for the study of the trade-off between a threshold on420

the hail proxies and the area they cover, with the objective of detecting severe hail. The various feature threshold values βX

tested in this study for the hail proxies are presented in Table 6. For A13, three different feature threshold values are employed.

These are: (i) pixels with a class above or equal to the small hail class (βX
△
= (≥ SH)), (ii) pixels with a class above or equal to

the medium hail class (βX
△
= (≥MH)), and (iii) pixels with a class above or equal to the large hail class (βX

△
= (≥ LH)). This

approach enables the determination of the performance for different hail class as thresholds.425

The performance metrics for the predictions are defined through the use of a contingency table (Table 5). The following

metrics are employed in order to compute the local performance of a model: the probability of detection (POD), also known
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Table 6. Interval of feature threshold values (βX ) tested to assess the performance of hail proxies, e.g if βX = 25mm for MESH, the

performance of a model where MESH≥ 25mm is assessed for different areas covered by the resulting field. Increments tested along the βX

intervals are denoted as inc.

POSH MESH

A13POHDelobbe MESH75

POHDelobbe MESH95

βX [1, 85] % [1, 60] mm {SH, MH, LH}

inc. 1% 1mm

as the recall, the probability of false detection (POFD), also known as the false alarm rate, the Peirce skill score (PSS) and the

precision, also known as the success ratio. They are defined as follows:

POD = recall =
TP

TP +FN
(9)430

POFD =
FP

TN +FP
(10)

PSS = POD−POFD (11)

precision =
TP

TP +FP
. (12)

The precision captures how often, when a model makes a positive prediction, it turns out to be correct (Kelleher et al., 2020).

The PSS shows the tradeoff between POD and POFD. The global performance of models is evaluated by calculating the435

receiver operating characteristic (ROC) curves and the precision-recall curves, which illustrate the trade-off between metrics

at different discrimination thresholds. Each variant of the hail proxies with a given βX value is considered a classifier. The

performance of a classifier is evaluated by calculating the metrics for each possible discrimination area (βAX
). For the CNN,

each point on the curves shows the local performance for a given discrimination threshold α. For hail proxies, each point on the

curves shows the local performance for a given βX and a given βAX
. The areas under the curve for the ROC curve (AUC-ROC)440

and the precision-recall curve (AUC-Pr.Re.) are computed and used as representative metrics of the global performance of a

model.

4 Results

4.1 Tuning phase

The results of the tuning phase are summarised by the learning curves of the different models (Fig. 9) and the ROC and445

precision-recall curves, which assess the performance on the validation split (Fig. 10).

The evolution of the training loss in Fig. 9 shows a global monotonic decrease for each model and input size, implying that

some information within the features is learned by the models. However, this information may be irrelevant for severe hail

detection if the fitted models do not generalise well to unseen examples. Different behaviours are seen for certain input sizes
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Figure 9. Learning curves with the evolution of the train loss (a) and the validation loss (b) for the models trained during the tuning phase.

The retained model is highlighted by the solid black line. The curves are smoothed with a sliding window of 3 epochs.

and model architectures. Simple models such as the SmallConvNet lag behind in terms of minimum loss achieved on both the450

training and validation sets. The SmallConvNet struggles to learn as much as the other models, and reacts on average more

incorrectly when presented with the validation set, especially for small input sizes (Fig. 10). This may be a classic case of

underfitting, where a model is too simple to learn highly abstract features in the data. In addition to underfitting, small input

sizes appear to be detrimental to the performance of CNNs, regardless of the model used. Although this was expected, it shows

that the models trained with 5 km× 5 km input features are likely to miss important information in the vicinity of the storm455

cores that can be attributed to larger scale phenomena within the storms (hook echo, updraft region, downdraft region). The

decline in performance with increasing input size is evident in Fig. 10.

Two models, the ConvNet and the ResNet18, appear to achieve equivalent performance on the validation set, despite the

ResNet18 containing a significantly greater number of parameters (Fig. 9). The models in question are deeper than the Small-

ConvNet, which increases their likelihood of identifying information at varying levels of abstraction within the data, thereby460

enhancing their performance. The fact that the ResNet18 achieves performance levels comparable to those of the ConvNet

on the validation set, despite being more complex, suggests that the size of the validation dataset may be insufficient for

it to enhance its prediction. Another potential explanation is that the input sizes tested here may be too limited for ResNet

architectures, which were developed for image classification on larger images (He et al., 2015).

Although a monotonic decrease is observed for the training loss across epochs, oscillations in the validation loss are evident465

for ConvNet and ResNet18 after the 50th epoch (Fig. 9). This behaviour is observed when a minor adjustment to the weights and

biases during training results in a significant change to the value of the validation loss. This phenomenon is likely attributable
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Figure 10. ROC curves (a) and Precision-Recall curves (b) for the models trained during the tuning phase. The retained model is highlighted

by the solid black line. Models were also trained with an input size of 50 km× 50 km, but no amelioration was obtained (not shown).

to the relatively limited size of the validation dataset, which may prompt abrupt changes in model behaviour when parameters

are updated. A direct consequence is that the models are learning additional information that may be derived from noise within

the input features rather than severe hail. Although the complexity of the ConvNet and ResNet18 networks may appear to be470

their strength, in certain situations this may outweigh the benefits, as they are more likely to learn useless information due to

their multiple layers and connections, thus overfitting. The observation that simpler models, such as SmallConvNet, do not

exhibit the same degree of oscillation in the validation loss suggests that the issue may lie in the complexity of the model (Fig.

9). Nevertheless, there are methods to mitigate the adverse effects of overfitting on small datasets. One such method is cross-

validation, which entails training an ensemble of models on distinct training and validation sets, and subsequently averaging475

the predictions of all models to obtain the final output on the test set (Kelleher et al., 2020). Models trained with an input size

of 50 km× 50 km were not included in the results, as they did not demonstrate any improvement in performance.

Consequently, the SmallConvNet exhibited suboptimal performance relative to deeper models, and complexity can impede

generalization when utilising limited datasets. Therefore, the ConvNet with input size of 30 km×30 km is deemed an optimal

compromise for the remainder of the study. Cross-validation will be employed to mitigate the risk of overfitting.480

4.2 Feature selection and feature importance

Prior to comparing the selected CNNs with hail proxies, it is necessary to explore the features. This involves the removal of

highly correlated features in order to limit them to a subset of the most useful ones and the determination of the importance of

each feature in the final prediction of the CNNs.
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Figure 11. Spearman correlation matrix for the 19 input features computed on a subset of 1×106 pixels from the entire dataset. Warm (resp.

cold) colors correspond to positive (resp. negative) Spearman correlation coefficients.

Feature selection is performed by exploring the correlations between the 19 input features listed in Table 3. A random485

sample of one million pixels from the entire dataset was employed to compute the Spearman correlation coefficient between

each variable. The resulting coefficient matrix is presented in Fig. 11.
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It is anticipated that high positive correlations will be observed between features that are based on the same underlying

variable. The MESH, MESH75 and MESH95 demonstrate perfect Spearman correlations (1.00) due to their underlying mono-

tonic relationship with the SHI (see Equation (1)). The same rationale can be applied to the high positive correlations observed490

between ET45, POHDelobbe and POHFoote, although the correlation seems higher between ET45 and POHDelobbe (0.98) due to

its direct linear relationship with ET45 (Equation (5)). A strong positive correlation is observed between MESH variants and

ET45 (≈ 0.93), despite the fact that they were not produced using the same methodology. The relationship between the echo

tops and the integral of weighted reflectivities used in MESH may provide an explanation for this behaviour. Higher echo tops

indicate a greater volume of ZH ≥ 45dBZ above the −20 ◦C altitude, which carries the most weight in the construction of the495

SHI (Witt et al., 1998). Moderate positive correlations are observed between Zmax
H , VIL and all the hail proxies presented in

Table 5, which is consistent with expectations given their dependence on ZH . The correlation between hail proxies and ρHV

at an altitude of 2 km is moderately negative (≈−0.60). This correlation is likely influenced by the effect of hail or a mixture

of rain and hail on the reduction of ρHV values at low levels (Kumjian, 2013a; Ryzhkov and Zrnic, 2019).

Once the correlations between variables have been established, a feature importance study can be conducted. The withdrawn500

variables are the following: MESH, MESH95, POHDelobbe and POHFoote. In order to prevent overfitting and to account for any

potential variability in the results, the feature importance is computed by cross-validation of the performance of ten ConvNet

models trained on a 30 km×30 km input size. A total of ten distinct combinations of training and validation sets are generated

through the application of bootstrapping to the train and validation sets employed during the tuning phase (Table 4). In order to

ensure the independence of the sets, the same precautions as in the tuning phase are taken. Following training, the performance505

of the ten fitted models is assessed on the test dataset. One variant with unperturbed input is trained for each of the ten

combinations and serves as a baseline. Feature importance is then computed for each model by sequentially perturbing features

using random permutations within mini-batches. If a particular feature is important to the model, its random permutation should

result in decreased performance compared to the baseline model. The greater the decrease in performance, the more important

the feature is for the model to detect severe hail. The performance decrease is calculated by measuring the reduction in AUC510

for both the ROC curve and the precision-recall curve. Fig. 12 illustrates the average and the uncertainty of feature importance

for each input feature.

A low feature importance does not necessarily indicate that the feature is useless for severe hail detection. On the one hand,

it may indicate that the feature plays a less important role in the output of the CNN. On the other hand, it could suggest

that the majority of the information that the CNN requires to make its decision is already embedded in other features. The515

feature importance study only demonstrates the importance of a feature within the context of a CNN developed for severe hail

detection.

The performance decline resulting from the perturbation of MESH75 is the most pronounced among all variables. MESH

was specifically developed for the detection of severe hail at S band. Consequently, despite the potential for higher reflectivity

values at S band than at C band (Ryzhkov and Zrnic, 2019), it is anticipated that MESH facilitates the identification of areas520

with severe hail. Due to its capacity to account for the vertical reflectivity profile within the hail growth zone, MESH may be
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less sensible to the effects of low vertical sampling than echo tops, and may be better at summarising information at mid- and

upper-levels that are useful to quantify the severity of hail on the ground.

Three additional features appear to be important for the CNN: Zmax
H , ρ2000

HV and ET45. This is not unexpected given that

ZH is sensitive to the particle size distribution and that high ZH values above 70 dBZ are typically associated with large and525

giant hail (≥ 5cm, Ryzhkov and Zrnic, 2019). The significance of Zmax
H may be attributed to the finer texture of the field in

comparison to 2D features extracted from the 3D grid. This may also explain the enhanced importance of Zmax
H relative to

VIL, despite the latter having stronger correlation coefficients with hail proxies (Fig. 11). As a feature that may be negatively

correlated to the presence of hail in the low levels, ρ2000
HV is of significant importance for the CNN to make its prediction. This

negative correlation of ρ2000
HV with various hail proxies indicates a decrease in ρHV in the presence of hail which is expected,530

particularly in the presence of melting hail or hail growing in the wet regime ρHV (Ryzhkov and Zrnic, 2019). Finally, it can

be seen that ET45 is of some importance. Although affected by vertical sampling (Delobbe and Holleman, 2006), echo tops

can contain useful information about storm height and remain relevant as a storm proxy, as more intense storms are expected

to produce stronger echoes at high altitudes (Trefalt et al., 2023).

The average importance of the remaining features is situated within their respective uncertainty intervals. For instance, ZDR535

columns appear to be relatively inconsequential in the context of this study. However, this feature is not adequately represented

by examining data at the time of the hailfall, as ZDR columns are expected to be visible prior to hailstones falling on the ground

(Kuster et al., 2019). It may prove advantageous to use ZDR columns in the context of storm cell tracking and the study of the

life cycle of storms, as it has been observed to be effective in the short-term forecast of severe weather (Kuster et al., 2019). The

relatively low importance of polarimetric collocated variables (Z∗DR, K∗
DP , ρ∗HV ) may be explained by two factors. Firstly, as540

collocated polarimetric variables may originate from different heights, they may insufficiently characterize the presence of hail

and important information may be lost. Secondly, this may simply reflect the fact that the value of these variables contributes

little to the prediction compared to other, more significant variables such as MESH75 and Zmax
H .

Following the completion of a feature importance study, it is standard practice to train again a model using the most important

features in order to validate its performance on unseen data. However, due to the unavailability of more severe hail reports545

within the French territory, it was not possible to retrain the models. Consequently, the feature importance study was limited

solely to interpretation purposes.

4.3 Comparison with state of the art

The performance of the 10 ConvNet fitted models is compared to the hail proxies on the test set. The results are summarized

in Fig. 13 and in Table 7, Table 8 and Fig. 14.550

Overall, strong AUC values are observed for all the hail proxies except A13 and POSH (Table 7). This demonstrates their

capacity to optimise their performance if the threshold value above which they produce severe hail (βX ) is meticulously

selected. It is in accordance with several studies that have emphasised the significance of calibration in order to optimise

the performance of existing hail proxies (Murillo and Homeyer, 2019; Ortega, 2021; Brook et al., 2024; Kopp et al., 2024).

26

https://doi.org/10.5194/egusphere-2024-1336
Preprint. Discussion started: 22 May 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 12. Feature importance results on the test set. Each bar corresponds to the average decrease in performance among 10 ConvNet models

fitted on different combinations of training and validation sets. Uncertainty is shown as error bars of ±σ. Ref. stands for the unperturbed

model.

Table 7. Performance on the test set. Algorithms are compared using their five best variants producing the highest area under the ROC curve

(AUC-ROC). The precision-recall AUC (AUC-Pr.Re.) and the best average threshold value is shown. Values shown as ’mean (±std)’. AUC

values are multiplied by 100 for readability. ∗ represents the average metrics for three variants of A13: ≥ SH, ≥ MH and ≥ LH. The low

average values and the wide variability for metrics on A13 are attributed to the poor performance of the ≥MH and ≥ LH variants.

AUC-ROC (×100) AUC-Pr.Re. (×100) βX

A13 87.30∗ (±6.48) 80.92∗ (±7.32) not applicable

Zmax
H 92.70 (±0.14) 87.55 (±0.32) 55 (±1.41)

POSH 92.82 (±0.29) 90.05 (±0.16) 3 (±1.4%)

POHDelobbe 95.76 (±0.05) 92.42 (±0.45) 62 (±5%)

POHFoote 95.80 (±0.01) 92.35 (±0.47) 26 (±18%)

MESH 96.31 (±0.13) 92.96 (±0.16) 5 (±1.4mm)

MESH75 96.41 (±0.08) 93.10 (±0.23) 20 (±1.4mm)

MESH95 96.45 (±0.03) 93.25 (±0.13) 31 (±1.4mm)

ConvNet 97.87 (±0.16) 96.14 (±0.25) not applicable

The validation framework developed in this study permits the further investigation of the performance of hail proxies by555

incorporating an additional discrimination threshold on the area covered by the feature (βAX
).

The best performance for severe hail detection overall is reached by the ConvNet model, with an average AUC-ROC of 0.979

and an average AUC-Pr-Re of 0.961 (Table 7). The low variance around mean values demonstrates a consistent behaviour

among the models trained using cross-validation. Furthermore, the results indicate that the network generalises well when
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Figure 13. ROC curves and precision recall curves for models applied to the test set. The average curve obtained from the 10 fitted ConvNet

models is shown as a solid black line along with the uncertainty interval (±σ, shaded area). Colored curves show the hail proxies with the

βX value that produced the highest AUC-ROC. Dashed gray line corresponds to the best variant of A13 with severe hail detected when the

hail size is equal or above the small hail class (SH). Each point in the solid black line corresponds to a discrimination threshold α ∈ [0,1].

Each point within the colored curves and the dashed grey line corresponds to a discrimination area βAX in km2.

Table 8. Confusion matrix for three different methods on the test set: POHDelobbe, MESH95 and the ConvNet. Each confusion matrix cell in

(b) contains performance of different models that are specified in (a). The different variants proposed are explained in section 4.3

(a)
POHDelobbe MESH95

best best

ConvNet
POHDelobbe MESH95

1 km2 1 km2

(b)
Predicted

1 0
404 396 42 50

1 413 33

O
bs

er
ve

d 444 444 2 2

80 68 870 882
0 61 889

552 364 398 586
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applied to unseen data within the test dataset. The ConvNet exhibits the optimal trade-off between POD and POFD among560

all models. The number of false alarms for the best local variant of the ConvNet, i.e. the model with the highest AUC-ROC

at a discrimination probability of α = 0.12, are the lowest among all methods (61 in total), as shown in Table 8. The results

demonstrate that a shallow CNN architecture is capable of identifying relevant features indicative of severe hail on the ground.

According to Table 7, the second-best algorithms for detecting severe hail on the test set are the MESH95 and MESH75

algorithm. Local performance in terms of PSS for the MESH95 is the best for βX = 33mm and βAX
= 23km2. For MESH75,565

the best PSS is at βX = 22mm and βAX
= 25km2. This is consistent with the findings of the feature importance study (section

4.2), which identified MESH variables as the most crucial variables for the ConvNet to detect severe hail on the ground. The

feature thresholds in Table 7 are also in accordance with what can be found in other studies (Murillo and Homeyer, 2019;

Ortega, 2021; Brook et al., 2024). When employed either independently or as an input feature to a CNN framework, the results

on the test set demonstrate that MESH remains effective for the discrimination of severe hail on the ground, even at C band.570

The POSH and the fuzzy-logic algorithm (A13) appear to be less effective when compared to other methods, as evidenced

by an AUC-ROC of 0.928 and 0.873, respectively. In the case of POSH, the application of the warning threshold (WT) in

Equation (1) may be considered a potential explanation for the decrease in performance. The denser vertical sampling, higher

ZH and lower attenuation of U.S. S-band radars compared to French C-band radars result in SHI values that may be smaller

than expected at S-band. Consequently, the WT fitted to the S-band radars may remove a significant proportion of pixels with575

low SHI values in this study. This can be verified in Fig. 5, where the POSH values cover a smaller area than other hail proxies.

One potential solution would be to modify the fit of POSH in order to adapt it to the French radar network. The performance

of the fuzzy-logic algorithm (A13) varies significantly depending on the hail class used as a feature threshold (i.e. ≥ SH, ≥
MH, ≥ LH), given the large uncertainty on the average metric values in Table 7. In essence, the performance of the algorithm

declines significantly as the threshold for hail class is increased, as the model with small hail as a threshold is the best among580

all other classes (Fig. 13). This may indicate a propensity of the fuzzy-logic scheme to model severe hail as small hail (SH

- < 0.5cm) rather than large hail (LH - ≥ 2cm). This may demonstrate that an improvement is possible in the design of the

bi-dimensional membership functions of hail classes within A13 (see Appendix A), as the small hail and medium hail class

may in reality represent larger hail sizes than those indicated.

The variation in the local performance of hail proxies for different pairs (βX , βAX
) is also investigated in order to demon-585

strate the potential for compromise in operational use. The variations in performance are presented in the form of PSS matrices

in Fig. 14. The PSS matrix indicates that the local performance for a given feature threshold (βX ) can be modified by adjust-

ing the discrimination area (βAX
). The PSS values demonstrate that the local performance of hail proxies can be markedly

improved by implementing an optimised pair (βX ,βAX
). In fact, Fig. 14 indicates that the thresholds yielding the highest PSS

for the hail proxies are not exclusive and lie within a broad range of potential feature thresholds and discrimination areas.590

To investigate further the consequences of the threshold selection in terms of false alarms, two pair variants are evaluated

for two of the most effective hail proxies: POHDelobbe and MESH95. The pairs are the following:

1. the (βX , βAX
) pair that produced the highest PSS among all thresholds.
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2. the following pairs:

– (βX = 50%, βAX
= 1km2) for POHDelobbe595

– (βX = 30mm, βAX
= 1km2) for MESH75.

The latter pair variant was considered a baseline model for both proxies, where 30 km×30 km images are classified as produc-

ing severe hail if an area of at least 1km is found within POHDelobbe ≥ 50% and MESH95 ≥ 30mm, respectively. The results of

this local performance analysis are given as a confusion matrix in Table 8. The confusion matrix indicates a significant increase

in the number of false alarms when a small area of 1km2 is used to trigger the severe hail detection for the hail proxies, in600

comparison to their optimal variant. The number of false alarms increases from 68 to 364 (+435%) for MESH95 and from 80

to 552 (+590%) for POHDelobbe. Although anticipated, the results demonstrate that incorporating fairness into the prediction of

existing hail proxies by considering both a threshold value and the area they cover is more effective than a simple verification

that would rely on the nearest hail proxy pixel within a certain radius around a location.

Additionally, the ROC curves (Fig. 13) indicate that the majority of the hail proxies compared in this study can be considered605

to have equivalent skill for severe hail detection on the test set if the threshold value is chosen accordingly. This demonstrates

that the proper tuning of an operationally deployed hail detection technique can result in a satisfactory level of severe hail

detection, in accordance with other studies (Ortega, 2021; Brook et al., 2024; Ackermann et al., 2024; Kopp et al., 2024).

This interpretation as well as the threshold values may change according to the specifities of each national radar network,

particularly for different radar bands and scanning strategies where more vertical sampling is available.610

Finally, the inference of the ensemble of the ten ConvNet models is assessed on a hail event that occurred on the 11th June

2023 between 17:00 and 19:00 (UTC). The situation is extracted from the test dataset. The results are presented in Fig. 15. The

average probability of severe hail at the ground predicted by the ten models is denoted as P . The computation is performed

on images with dimensions of 30 km× 30 km around cell centroids every 5 min. Cell centroids are obtained using the cell

identification algorithm ’tobac’ (see section 2.2). Throughout the hail event and the life cycle of different cells, the ConvNet615

models demonstrate a consistent behaviour. The cells responsible for the severe hail reports are accurately identified, exhibiting

a high probability of severe hail (large circle). One particular cell appears to have reached a mature stage, capable of producing

severe hail on the ground for about one hour and a half, which is consistent with the characteristics of long-lasting, highly

organised convective systems such as multicell or supercell systems. A notable proportion of cells exhibiting high reflectivity

(≥ 60dBZ) are not identified as producing severe hail on the ground by the ConvNet models (P < 0.4, grey lines without620

circles). Although severe hail reports may be subject to reporting bias, this could highlight the potential of CNNs to capture

relevant information within the morphology of storms and use it to discriminate severe hail storms from other storms. The

main advantage of performing the inference with an ensemble of ConvNets is the computation of uncertainty intervals. The

uncertainty appears to increase when the predicted probability of severe hail decreases (reduced circle radius, brighter colour),

indicating a decline in prediction consistency when the ConvNets encounter an edge case, i.e where rain or small hail below625

2 cm might be produced. A small oscillation in the average probability and uncertainty is visible every 5 min within the north

eastern cell in Fig. 15, probably due to the different vertical sampling at each timestep implemented in the VCPs (Table 1) that
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Figure 14. Peirce skill score (PSS) matrix for hail proxies with varying feature thresholds (βX ) and discrimination areas (βAX ).

have an impact on important features of the CNN. However, a more comprehensive analysis of the inference on unseen events

is necessary to gain a deeper understanding of the underlying causes of error in the prediction.

5 Conclusions630

This study demonstrated the development and validation of a convolutional neural network (CNN) for the detection of severe

hail (≥ 2cm) on the ground. The framework for CNN validation, comprising a heavily filtered severe hail dataset and a rain or

small hail dataset, enabled an extensive comparison of existing hail detection algorithms on the severe hail detection problem.

The conclusions of this work are as follows:

1. a shallow CNN architecture, named ConvNet, was constructed and selected from among three different CNN archi-635

tectures. It demonstrated superior performance for severe hail detection within radar images compared to existing hail

detection algorithms on a test dataset comprising 1396 radar images with dimensions of 30 km×30 km, which included

severe hail and rain or small hail between 2018 and 2023. This was achieved while utilising the radar information of a

unique timestep.
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Figure 15. Predictions of ten ConvNet models on the 11th June 2023 between 17:00 and 19:00 (UTC). The maximum over two hours of the

national reflectivity composite is shown in background (orange). Grey lines represent the cell tracks detected with the ’tobac’ cell-tracking

algorithm (section 2.2). Green triangles represent severe hail reports (≥ 2cm) from the ESWD database within the two hours. Circles

represent the cell centroids every 5min. Their average probability of severe hail P (circle size) and its affiliated uncertainty σ (blue scale)

are computed with the predictions of ten ConvNet models applied to 30 km× 30 km images around centroids. Cell tracks without circles

(pure grey lines) contain cell centroids with P < 0.4.

2. a feature importance study demonstrated that incorporating hail proxies, such as MESH, as input features to the ConvNet640

enhanced its prediction. Other important features were Zmax
H , ET45 and ρ2000m

HV .

3. a comparison with existing hail proxies led to the conclusion that three hail proxies (MESH, POSH and POH) can be

considered equivalent for severe hail detection on the test dataset if their performance is assessed using a tuned threshold

value and a tuned discrimination area. Furthermore, the number of false alarms can also be drastically reduced if a

threshold value and a discrimination area are chosen accordingly.645

4. the study showed an example of application in real time, where the ConvNet’s inference was contingent upon the de-

tection of cell centroids via a cell identification and tracking algorithm. Its performance seemed to align with observed

hail during an event within a large geographical domain. However, a more comprehensive performance validation across

future events remains necessary.
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The hail proxies examined in this study demonstrate satisfactory performance on the severe hail detection task when their650

parameters are optimised. The optimized parameters, particularly the feature threshold values βX , align with those of previous

studies (Murillo and Homeyer, 2019; Ortega, 2021). All existing hail proxies, with the exception of two, performed similarly

on the test dataset. While their optimal local performance may be achieved through the use of varying threshold values and

discrimination areas, it appeared that storm proxies such as echo tops for POH proxies or underlying weighted integrated

reflectivity values for MESH proxies demonstrated relevance in capturing crucial information about the presence of hail aloft.655

This relevance appears to be well-suited to the challenging issue of severe hail detection on the ground, based on the results of

this study. The POSH exhibits suboptimal performance, likely due to the presence of a warning threshold that eliminates low

SHI values at C band, owing to the low vertical sampling of French radars. The fuzzy-logic algorithm developed at Météo-

France (A13), with capabilities for severe hail detection, encounters challenges due to the small and medium hail classes below

2 cm, which may represent larger hail sizes in reality.660

The feature importance study yielded insights into the decision-making process of the ConvNet. The MESH proxies were

identified as valuable input features, in addition to Zmax
H , ρ2000

HV and ET45. This aligns with the strong performance of MESH

proxies for severe hail detection (Table 7). The majority of the most significant variables are based on reflectivity, indicating

that storm proxies based on this variable remain a valuable tool for the detection of severe hail on the ground.

One limitation of the current study is that only one timestep is used to perform a prediction associated with a report and665

to compare the algorithms. The life cycle of the storm is not taken into account when performing a severe hail prediction.

This ultimately decreases the importance of input features that have a forecasting potential for storm severity, such as ZDR

columns, in this study. Nevertheless, the performance of the aforementioned methods on the test set was generally satisfactory,

suggesting that the reported time of the hailfall may be sufficient for the detection of severe hail in this study. However, even

after heavy filtering, uncertainty may remain regarding the location and time of severe hail. This uncertainty may compromise670

the generalisation of the CNN on cases that were not included in the training data, if a significant proportion of the severe

hail cases on which it was trained were misplaced in space and time, or if there was a systematic error in time and location.

However, this uncertainty was, as much as possible, taken into account by manually repositioning in time severe hail cases in

the vicinity of a visible storm. Additionally, the construction of images of 30 km×30 km around the reports allows for a more

comprehensive view of the storms, thereby reducing the impact of potential errors in reports’ location on the performance of675

the CNN.

The translation of the developed CNN into operations is contingent upon the implementation of a cell tracking algorithm.

As the CNN was trained with radar images of storms, the storms must be identified prior to applying the CNN. The potential

volatility in cell tracking due to the high sensitivity of such techniques to their input parameters can increase the inference time

of the approach, depending on the number of cells identified every five minutes. In order to detect severe hail, it is recommended680

to examine cells that have produced reflectivities of at least 45 dBZ. The principal advantage of this conditionality is that input

features must be generated for a 30 km×30 km area centered on cell centroids, which significantly reduces the computational

time required for the processing of volumetric radar data into three-dimensional grids in comparison to producing them for

the entire national territory, even in areas where there is no reflectivity data that suggests the presence of hail. Furthermore,
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limiting the inference to useful domains around cell centroids allows for the parallelisation of data processing and inference,685

which may be crucial for reducing the lag time for real-time applications.

Efforts were made to construct the input features in a way that would minimise the impact of attenuation and resolution

decline with range. The use of 3D interpolated grid and volumetric radar data from the two nearest radars enabled the model

to be less sensitive to these factors. However, it should be noted that extreme attenuation may not always be taken into account

in situations at the border of the French national domain. This may have an impact on the predictability of the ConvNet. The690

use of radar data from neighbouring countries (Germany, Switzerland, Italy, Belgium, Spain) may help to decrease the impact

of attenuation in these critical regions.

Despite the implementation of precautionary measures in this study, the challenge of developing effective solutions for

severe hail detection in France persists due to the scarcity of data, particularly severe hail reports. The results were analysed

on a test dataset of 1,396 radar images. While a consistent behaviour was visible in the metrics and on a broader hail event,695

further validation will be crucial for the CNN to validate its global performance and assess its generalisation to unseen cases.

Furthermore, the specificities of the French radar network have an impact on the importance of variables and the output of

the CNN in this study, particularly the radar band and the low vertical sampling. It is strongly advised that such deep learning

methods be developed and tested on the specific characteristics of different national data and severe hail reports databases in

order to validate the effectiveness of CNNs in detecting severe hail on the ground. The incorporation of radar data and hail700

reports from neighbouring countries could significantly enhance the relevance of deep learning methods for a common hail

warning system in real time.

This study establishes the foundation for the use of convolutional neural networks (CNNs) to study the morphology of

storms and extract relevant information for the detection of severe hail. The interpretability of such methods is a crucial aspect.

Ongoing work includes the implementation of attribution methods that will facilitate the interpretation of the prediction of705

the CNN. Attribution methods for neural networks, such as saliency maps, Sobol attribution or GradCAM (Fel et al., 2022),

are currently being explored in order to gain insight into the decision-making process of the CNN. Future work will probably

involve the gathering of more data and the increase in the number of features, particularly polarimetric features above the

melting layer. Based on the results of this study, deep learning techniques may have the potential to answer a bigger problem:

hail size estimation. Ongoing work also entails the development of a framework for the testing of such methods on the hail size710

estimation problem.
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Appendix A: Updated fuzzy-logic algorithm in C band from Al-Sakka et al. (2013)

The fuzzy-logic algorithm for hydrometeor classification (A13) currently operational at Météo-France corresponds to an up-

dated version of the algorithm developed from Al-Sakka et al. (2013), with three new hail classes. The update was performed

to tackle the lack of robustness in the membership functions for hail in the original study (see conclusions of Al-Sakka et al.,720

2013). The following classes are now computed: 1) rain (RA), 2) wet snow (WS), 3) dry snow (DS), 4) ice (IC), 5) small hail

(SH; < 0.5cm), 6) medium hail (MH; 0.5 cm to 2 cm) and 7) large hail (LH; > 2cm). The three hail classes replace the former

single hail class (HA) of Al-Sakka et al. (2013).

The fuzzy-logic scheme is based on radar variables ZH , ZDR, ρHV and KDP. The brightband (BB) location is also used

and produced using the method presented by Tabary et al. (2006), which is based on the cross-correlation coefficient ρHV at725

high elevations. Finally, the temperature T is used to discriminate regions where certain hydrometeor types are not allowed.

Temperature is deduced from the nearest NWP-derived sounding from the ARPEGE global model (Bouyssel et al., 2022) at

the radar location.

The principle of the fuzzy-logic algorithm relies on the computation of a weight for each hydrometeor class. The hydrom-

eteor class having the highest weight becomes the hydrometeor class of the radar gate. The weight is computed thanks to730

membership functions (1-dimensional and 2-dimensional) built on a-priori knowledge of the single and dual-polarisation sig-

natures for the hydrometeor classes.

The weight is defined as follows:

WF
i = F i(ZH)F i(T )F i(BB)

[
F i(ZH ,ZDR) +F i(ZH ,KCP ) +F i(ZH ,ρHV )

]
(A1)

where i stands for the hydrometeor type and F represents the membership grade (between 0 and 1) coming from both one-735

dimensional and two-dimensional membership functions.

The one-dimensional membership functions F i(ZH), F i(T ) and F i(BB) for all hydrometeor types are presented in Fig. A1.

As they are multiplicative terms in the weight, the presence of certain hydrometeor types is heavily driven by the reflectivity,

the temperature profile at the radar site and the position of the radar gate to the BB.

The two-dimensional membership functions F i(ZH ,ZDR), F i(ZH ,KDP ) and F i(ZH ,ρHV ) for hail depending on the rel-740

ative position to the BB are presented in Fig. B1. For other hydrometeor classes, refer to Al-Sakka et al. (2013). To simplify

the visualization, only regions with a membership grade superior to 0.7 were kept, but membership grade values exist outside
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Figure A1. One-dimensional membership functions of the updated fuzzy-logic classification algorithm at Météo-France (A13). (a) F i(ZH),

(b) F i(T ), (c) F i(BB). F i(BB) is shown with an altitude of freezing of HT=0◦C = 2000 masl (meters above sea level) computed by the

AROME model, and a melting layer bottom of MLB = 1800 masl computed using the BB location algorithm of Tabary et al. (2006)

the intervals shown in Fig. B1.
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Figure B1. Two-dimensional membership functions of the updated fuzzy-logic classification algorithm at Météo-France (A13) with small

hail (SH), medium hail (MH) and large hail (LH). The position relative to the BB is specified as under (−), within (∼) and above (+)

37

https://doi.org/10.5194/egusphere-2024-1336
Preprint. Discussion started: 22 May 2024
c© Author(s) 2024. CC BY 4.0 License.



Author contributions. VF designed the methodology, developed the code, validated the results and prepared this manuscript. CA and OC745

helped in the conceptualization, methodology, supervision and writing. KD contributed to the conceptualization, supervision and funding

acquisition. MO contributed to the investigation of the storm mode assessment in section 2.5. CD contributed to the conceptualization of the

second cell-tracking algorithm in section 2.2 and implemented the ZDR column detection algorithm. JF contributed to the supervision and the

software of the fuzzy-logic algorithm in Appendix. OL contributed to the accessibility of the crowdsoucring reports from the Météo-France

mobile application. HA contributed to the software of the fuzzy-logic algorithm in Appendix.750

Competing interests. No competing interests.

Acknowledgements. This work was supported by Descartes Underwriting, Météo-France and the French national program ”Les Enveloppes

Fluides et l’Environnement” (LEFE, project ASMA).

38

https://doi.org/10.5194/egusphere-2024-1336
Preprint. Discussion started: 22 May 2024
c© Author(s) 2024. CC BY 4.0 License.



References755

Ackermann, L., Soderholm, J., Protat, A., Whitley, R., Ye, L., and Ridder, N.: Radar and Environment-Based Hail Damage Estimates Using

Machine Learning, Atmospheric Measurement Techniques, 17, 407–422, https://doi.org/10.5194/amt-17-407-2024, 2024.

Al-Sakka, H., Boumahmoud, A.-A., Fradon, B., Frasier, S. J., and Tabary, P.: A New Fuzzy Logic Hydrometeor Classification Scheme

Applied to the French X-, C-, and S-Band Polarimetric Radars, Journal of Applied Meteorology and Climatology, 52, 2328–2344,

https://doi.org/10.1175/JAMC-D-12-0236.1, 2013.760

Amburn, S. A. and Wolf, P. L.: VIL Density as a Hail Indicator, Weather and Forecasting, 12, 473–478, https://doi.org/10.1175/1520-

0434(1997)012<0473:VDAAHI>2.0.CO;2, 1997.

Barnes, S. L.: A Technique for Maximizing Details in Numerical Weather Map Analysis, Journal of Applied Meteorology and Climatology,

3, 396–409, https://doi.org/10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2, 1964.

Birant, D. and Kut, A.: ST-DBSCAN: An Algorithm for Clustering Spatial–Temporal Data, Data & Knowledge Engineering, 60, 208–221,765

https://doi.org/10.1016/j.datak.2006.01.013, 2007.

Bouyssel, F., Berre, L., Bénichou, H., Chambon, P., Girardot, N., Guidard, V., Loo, C., Mahfouf, J.-F., Moll, P., Payan, C., and Raspaud,

D.: The 2020 Global Operational NWP Data Assimilation System at Météo-France, in: Data Assimilation for Atmospheric, Oceanic

and Hydrologic Applications (Vol. IV), edited by Park, S. K. and Xu, L., pp. 645–664, Springer International Publishing, Cham, ISBN

978-3-030-77722-7, https://doi.org/10.1007/978-3-030-77722-7_25, 2022.770

Brook, J. P., Soderholm, J. S., Protat, A., McGowan, H., and Warren, R. A.: A Radar-Based Hail Climatology of Australia, Monthly Weather

Review, 152, 607–628, https://doi.org/10.1175/MWR-D-23-0130.1, 2024.

Brousseau, P., Seity, Y., Ricard, D., and Léger, J.: Improvement of the Forecast of Convective Activity from the AROME-France System,

Quarterly Journal of the Royal Meteorological Society, 142, 2231–2243, https://doi.org/10.1002/qj.2822, 2016.

Caumont, O., Mandement, M., Bouttier, F., Eeckman, J., Lebeaupin Brossier, C., Lovat, A., Nuissier, O., and Laurantin, O.: The775

Heavy Precipitation Event of 14–15 October 2018 in the Aude Catchment: A Meteorological Study Based on Operational Numeri-

cal Weather Prediction Systems and Standard and Personal Observations, Natural Hazards and Earth System Sciences, 21, 1135–1157,

https://doi.org/10.5194/nhess-21-1135-2021, 2021.

Delobbe, L. and Holleman, I.: Uncertainties in Radar Echo Top Heights Used for Hail Detection, Meteorological Applications, 13, 361–374,

https://doi.org/10.1017/S1350482706002374, 2006.780

Dessens, J.: Hail in Southwestern France. I: Hailfall Characteristics and Hailstrom Environment, Journal of Applied Meteorology and Cli-

matology, 25, 35–47, https://doi.org/10.1175/1520-0450(1986)025<0035:HISFIH>2.0.CO;2, 1986.

Dessens, J., Berthet, C., and Sanchez, J. L.: A Point Hailfall Classification Based on Hailpad Measurements: The ANELFA Scale, Atmo-

spheric Research, 83, 132–139, https://doi.org/10.1016/j.atmosres.2006.02.029, 2007.

Dotzek, N., Groenemeijer, P., Feuerstein, B., and Holzer, A. M.: Overview of ESSL’s Severe Convective Storms Research Using the European785

Severe Weather Database ESWD, Atmospheric Research, 93, 575–586, https://doi.org/10.1016/j.atmosres.2008.10.020, 2009.

Ester, M., Kriegel, H.-P., and Xu, X.: A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, 1996.

Fel, T., Hervier, L., Vigouroux, D., Poche, A., Plakoo, J., Cadene, R., Chalvidal, M., Colin, J., Boissin, T., Bethune, L., Picard, A., Nicodeme,

C., Gardes, L., Flandin, G., and Serre, T.: Xplique: A Deep Learning Explainability Toolbox, https://doi.org/10.48550/arXiv.2206.04394,

2022.790

39

https://doi.org/10.5194/egusphere-2024-1336
Preprint. Discussion started: 22 May 2024
c© Author(s) 2024. CC BY 4.0 License.



Figueras i Ventura, J., Boumahmoud, A.-A., Fradon, B., Dupuy, P., and Tabary, P.: Long-Term Monitoring of French Polarimetric Radar Data

Quality and Evaluation of Several Polarimetric Quantitative Precipitation Estimators in Ideal Conditions for Operational Implementation

at C-band, Quarterly Journal of the Royal Meteorological Society, 138, 2212–2228, https://doi.org/10.1002/qj.1934, 2012.

Figureas i Ventura, J. and Tabary, P.: The New French Operational Polarimetric Radar Rainfall Rate Product, Journal of Applied Meteorology

and Climatology, 52, 1817–1835, https://doi.org/10.1175/JAMC-D-12-0179.1, 2013.795

Foote, G. B., Krauss, T. W., and Makitov, V.: Hail Metrics Using Conventional Radar, in: Proc., 16th Conference on Planned and Inadvertent

Weather Modification, 2005.

Giammanco, I. M., Maiden, B. R., Estes, H. E., and Brown-Giammanco, T. M.: Using 3D Laser Scanning Technology to Create Digital

Models of Hailstones, Bulletin of the American Meteorological Society, 98, 1341–1347, https://doi.org/10.1175/BAMS-D-15-00314.1,

2017.800

Gourley, J. J., Tabary, P., and du Chatelet, J. P.: A Fuzzy Logic Algorithm for the Separation of Precipitating from Non-

precipitating Echoes Using Polarimetric Radar Observations, Journal of Atmospheric and Oceanic Technology, 24, 1439–1451,

https://doi.org/10.1175/JTECH2035.1, 2007.

Greene, D. R. and Clark, R. A.: Vertically Integrated Liquid Water—A New Analysis Tool, Monthly Weather Review, 100, 548–552,

https://doi.org/10.1175/1520-0493(1972)100<0548:VILWNA>2.3.CO;2, 1972.805

Groenemeijer, P. and Kühne, T.: A Climatology of Tornadoes in Europe: Results from the European Severe Weather Database, Monthly

Weather Review, 142, 4775–4790, https://doi.org/10.1175/MWR-D-14-00107.1, 2014.

He, K., Zhang, X., Ren, S., and Sun, J.: Deep Residual Learning for Image Recognition, https://doi.org/10.48550/arXiv.1512.03385, 2015.

Heikenfeld, M., Marinescu, P. J., Christensen, M., Watson-Parris, D., Senf, F., van den Heever, S. C., and Stier, P.: Tobac 1.2: Towards

a Flexible Framework for Tracking and Analysis of Clouds in Diverse Datasets, Geoscientific Model Development, 12, 4551–4570,810

https://doi.org/10.5194/gmd-12-4551-2019, 2019.

Helmus, J. J. and Collis, S. M.: The Python ARM Radar Toolkit (Py-ART), a Library for Working with Weather Radar Data in the Python

Programming Language, Journal of Open Research Software, 4, https://doi.org/10.5334/jors.119, 2016.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Sim-

mons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren,815

P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J.,

Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Vil-

laume, S., and Thépaut, J.-N.: The ERA5 Global Reanalysis, Quarterly Journal of the Royal Meteorological Society, 146, 1999–2049,

https://doi.org/10.1002/qj.3803, 2020.

Holleman, I.: Hail Detection Using Single-Polarization Radar, 2001.820

Houze, R. A.: Mesoscale Convective Systems, in: International Geophysics, vol. 104, pp. 237–286, Elsevier, ISBN 978-0-12-374266-7,

https://doi.org/10.1016/B978-0-12-374266-7.00009-3, 2014.

INSEE: Le Trajet Median Domicile-Travail Augmente de Moitié En Vingt Ans Pour Les Habitants Du Rural, 2023.

Jiang, Z., Kumjian, M. R., Schrom, R. S., Giammanco, I., Brown-Giammanco, T., Estes, H., Maiden, R., and Heymsfield, A. J.: Comparisons

of Electromagnetic Scattering Properties of Real Hailstones and Spheroids, Journal of Applied Meteorology and Climatology, 58, 93–112,825

https://doi.org/10.1175/JAMC-D-17-0344.1, 2019.

Kelleher, J. D., Mac Namee, B., and D’arcy, A.: Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked

Examples, and Case Studies, MIT press, 2020.

40

https://doi.org/10.5194/egusphere-2024-1336
Preprint. Discussion started: 22 May 2024
c© Author(s) 2024. CC BY 4.0 License.



Kopp, J., Hering, A., Germann, U., and Martius, O.: A Comprehensive Verification of the Weather Radar-Based Hail Metrics POH

and MESHS and a Recalibration of POH Using Dense Crowdsourced Observations from Switzerland, EGUsphere, pp. 1–46,830

https://doi.org/10.5194/egusphere-2024-729, 2024.

Krizhevsky, A., Sutskever, I., and Hinton, G. E.: ImageNet Classification with Deep Convolutional Neural Networks, Communications of

the ACM, 60, 84–90, https://doi.org/10.1145/3065386, 2017.

Kumjian, M. R.: Principles and Applications of Dual-Polarization Weather Radar. Part II: Warm-and Cold-Season Applications, Journal of

Operational Meteorology, 1, 243–264, https://doi.org/10.15191/nwajom.2013.0120, 2013a.835

Kumjian, M. R.: Principles and Applications of Dual-Polarization Weather Radar. Part I: Description of the Polarimetric Radar Variables,

Journal of Operational Meteorology, 1, 226–242, https://doi.org/10.15191/nwajom.2013.0119, 2013b.

Kuster, C. M., Snyder, J. C., Schuur, T. J., Lindley, T. T., Heinselman, P. L., Furtado, J. C., Brogden, J. W., and Toomey, R.: Rapid-Update

Radar Observations of ZDR Column Depth and Its Use in the Warning Decision Process, Weather and Forecasting, 34, 1173–1188,

https://doi.org/10.1175/WAF-D-19-0024.1, 2019.840

Lakshmanan, V., Hondl, K., and Rabin, R.: An Efficient, General-Purpose Technique for Identifying Storm Cells in Geospatial Images,

Journal of Atmospheric and Oceanic Technology, 26, 523–537, https://doi.org/10.1175/2008JTECHA1153.1, 2009.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P.: Gradient-Based Learning Applied to Document Recognition, Proceedings of the IEEE,

86, 2278–2324, https://doi.org/10.1109/5.726791, 1998.

Markowski, P. and Richardson, Y.: Mesoscale Meteorology in Midlatitudes, John Wiley & Sons, ISBN 978-1-119-96667-8, 2011.845

Morel, C. and Sénési, S.: A Climatology of Mesoscale Convective Systems over Europe Using Satellite Infrared Imagery. I: Methodology,

Quarterly Journal of the Royal Meteorological Society, 128, 1953–1971, https://doi.org/10.1256/003590002320603485, 2002.

Murillo, E. M. and Homeyer, C. R.: Severe Hail Fall and Hailstorm Detection Using Remote Sensing Observations, Journal of Applied

Meteorology and Climatology, 58, 947–970, https://doi.org/10.1175/JAMC-D-18-0247.1, 2019.

Nisi, L., Hering, A., Germann, U., Schroeer, K., Barras, H., Kunz, M., and Martius, O.: Hailstorms in the Alpine Region: Diurnal Cycle,850

4D-characteristics, and the Nowcasting Potential of Lightning Properties, Quarterly Journal of the Royal Meteorological Society, 146,

4170–4194, https://doi.org/10.1002/qj.3897, 2020.

Ortega, K. L.: Evaluating a Hail Size Discrimination Algorithm for Dual-Polarized WSR-88Ds Using High-Resolution Reports and Fore-

caster Feedback, in: 36th Conference on Radar Meteorology (16-20 September, 2013), AMS, 2013.

Ortega, K. L.: Evaluating Multi-Radar, Multi-Sensor Products for Surface Hailfall Diagnosis, E-Journal of Severe Storms Meteorology, 13,855

1–36, https://doi.org/10.55599/ejssm.v13i1.69, 2021.

Ortega, K. L., Krause, J. M., and Ryzhkov, A. V.: Polarimetric Radar Characteristics of Melting Hail. Part III: Validation of the Algorithm for

Hail Size Discrimination, Journal of Applied Meteorology and Climatology, 55, 829–848, https://doi.org/10.1175/JAMC-D-15-0203.1,

2016.
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