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Abstract. Radar has consistently proven to be the most reliable source of information for the remote detection of hail within

storms in real-time. Currently, existing hail detection techniques have limited ability to clearly distinguish storms that produce

severe hail from those that do not. This often results in a prohibitive number of false alarms that hamper real-time decision-

making. This study utilises convolutional neural network (CNN) models trained on dual-polarisation radar data to detect severe

hail occurrence on the ground. The morphology of the storms is studied by leveraging the capabilities of a CNN. Two datasets5

of images of 60 km× 60 km containing 19 different radar-derived features are built. The first is created from severe hail cases

(≥ 2cm), and the second is obtained from rain or small hail cases (rain or hail < 2cm) selected with the help of a cell-

identification algorithm above densely populated areas with no hail reports. After a tuning phase on the CNN architecture and

its input size, the CNN is trained to output one probability of severe hail on the ground per image of 30 km×30 km. A test set

of 1396 images between 2018 and 2023 demonstrates that the CNN method outperforms state-of-the-art methods according10

to various metrics. A feature importance study indicates that existing radar-based hail proxies as input features are beneficial

to the CNN, particularly the maximum estimated size of hail (MESH). The study demonstrates that many of the existing hail

proxies can be adjusted using a threshold value and a threshold area to achieve better performance. Finally, the output of ten

fitted CNN models in inference mode on a hail event is shown.
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1 Introduction

Hailstorms are severe weather phenomena that pose significant risks to agriculture, infrastructure, and human safety. Accurate

detection and monitoring of hail is crucial for issuing timely warnings and minimizing potential damages, as well as assisting

damage surveys after an event. Weather surveillance radar systems have proven to be valuable tools for detecting hail (Ryzhkov
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and Zrnic, 2019). Dual-polarisation radars use horizontally and vertically polarised electromagnetic waves transmitted to the20

atmosphere in pulses using a rotating antenna. The echoes returned from targets such as raindrops or hailstones are analysed

to compute various variables within the scanned volume. This data is used to enhance the capabilities of radar systems in

detecting and warning about the formation of hail-bearing storms in real-time.

Radar-based hail detection techniques can be divided into two distinct groups. The first group is based on reflectivity at

horizontal polarisation (ZH ). Dry hailstones typically exhibit high ZH values, although they are weaker than those of raindrops25

of the same size due to a higher dielectric constant for rain (Ryzhkov and Zrnic, 2019). For a given amount of hail contained in

a unit volume of cloud, i.e. a given hail content, the hail size distribution is shifted towards larger diameters in comparison to

rain. This results in higher reflectivities for hail compared to rain. Melting hail (or hail growing in the wet regime) is associated

to even larger reflectivities due to an increase of the dielectric constant compared to dry hail, because of the presence of liquid

water (Ryzhkov et al., 2013b; Ryzhkov and Zrnic, 2019). By analysing ZH data, either alone or with temperature profiles,30

meteorologists have attempted to identify the presence of hail and severe hail (≥ 2cm). For example, Waldvogel et al. (1979)

developed a criterion that combines echo tops (ET), i.e. the maximum height at which the reflectivity reaches a certain value,

and the height of the melting layer, to compute a probability of hail (POH). This criterion is still used in several European

countries as a proxy for hail occurrence (Delobbe and Holleman, 2006; Foote et al., 2005; Trefalt et al., 2023). In an effort to

utilise this vertical information in storms, studies have sought to produce proxies that integrate reflectivity over the vertical,35

such as the vertically integrated liquid (VIL, Greene and Clark, 1972; Pilorz et al., 2022) and the VIL density (VILd, Amburn

and Wolf, 1997). Since hail mainly forms within storm updrafts and above the melting layer, relationships between vertically

integrated ZH values and temperature profiles have been developed for hail and severe hail detection (Witt et al., 1998; Trefalt

et al., 2023; Murillo and Homeyer, 2019). Among these methods, some are based on the severe hail index (SHI) developed by

Witt et al. (1998). The SHI is derived from the weighted integral of reflectivity over the vertical, where values are weighted40

based on their relative position to the hail growth zone. Several proxies, such as the probability of severe hail (POSH) and

the maximum estimated size of hail (MESH) were developed upon it (Witt et al., 1998). These aforementioned methods using

ZH as a main variable are still widely used operationally in weather services, either for real-time applications (Smith et al.,

2016) or for the production of hail climatologies (Australia: Soderholm et al., 2017; Brook et al., 2024, US: Wang et al., 2018,

Switzerland: Nisi et al., 2020). While providing a high probability of detection depending on the validation methodology,45

these techniques are known to suffer from a relatively high amount of false alarms and moderate critical success indices (CSI

between 0.4 and 0.6, Holleman, 2001; Ortega, 2021; Pilorz et al., 2022).

The second group of techniques uses dual-polarisation radar data, also called polarimetric data, which provides valuable

information about the shape of targets and the precipitation type (Zrnić et al., 1993; Vivekanandan et al., 1999; Kumjian,

2013a, b; Ryzhkov et al., 2013a; Ryzhkov and Zrnic, 2019). Polarimetric radars allow the computation of new variables: the50

differential reflectivity (ZDR), the copolar correlation coefficient, also called cross-correlation coefficient (ρHV ), and the spe-

cific differential phase (KDP ). As polarimetric variables distributions can overlap significantly among different precipitation

types (Kumjian, 2013a), a fuzzy-logic scheme appeared well-suited to answer the problem of classification of radar echoes

(Vivekanandan et al., 1999), where hail could be detected as an independent class. A fuzzy-logic algorithm is based on as-

2



signing each precipitation type its own range of values for single and dual-polarisation variables. These ranges are determined55

through simulations or physical interpretations of the radar variables (Park et al., 2009; Ryzhkov et al., 2013b; Kumjian, 2013a).

The grade of membership to a particular type being within the radar gate, given the value of a variable, is computed using a

membership function, typically trapezoidal. The aggregation of the membership grades of each precipitation type for each

radar variable enables the determination of the most dominant precipitation type within the radar gate (Kumjian, 2013a). Based

on this principle, a significant number of fuzzy-logic algorithms using dual-polarisation variables were developed (Vivekanan-60

dan et al., 1999; Straka et al., 2000; Gourley et al., 2007; Al-Sakka et al., 2013; Ryzhkov et al., 2013b; Ortega et al., 2016;

Steinert et al., 2021). For hail, due to the wide distribution of possible axis ratios and hailstone shapes in real conditions

(Giammanco et al., 2017; Soderholm and Kumjian, 2023), there is a significant increase in the variability of the scattering

properties, particularly at C-band due to resonance scattering at large sizes. This may prevent a good discrimination between

hail and other precipitation types using a fuzzy-logic approach based solely on membership hypotheses of polarimetric vari-65

ables (Jiang et al., 2019; Shedd et al., 2021). Furthermore, classes of hail within fuzzy-logic algorithms are difficult to validate

given the scarcity of hail reports available both on the ground and aloft (Al-Sakka et al., 2013; Ortega et al., 2016). Despite

these limitations, radar-based fuzzy-logic classification remains the best method for discriminating hail from other types of

precipitation (Kumjian, 2013b; Ortega, 2013).

The common limitation of the aforementioned single- and dual-polarisation hail detection techniques is the fact that they70

are computed on a pixel-by-pixel or column-by-column basis. They can be represented as functions mapped to all radar pixels

coming either from the volumetric radar data or deduced from the vertical integration of radar variables. These pixel-based

methods do not allow the broader view of the radar variables, their spatial structure and the morphology of the storm to be

studied. Additionally, the models are unable to accurately represent potential intricate and non-linear relationships between

model variables or radar variables and hail on the ground. To tackle these limitations, techniques capable of 1) harnessing75

the morphology of spatially-coherent features within radar images or 2) studying the intricate relationships between radar

or environmental variables and ground truth were developed. In recent years, machine learning and deep learning radar hail

detection techniques have gained traction. In the work of Wang et al. (2018), they developed a convolutional neural network

(CNN, Lecun et al., 1998) applied to three-dimensional reflectivity grids in order to detect hail. Using 70 km×70 km reflectivity

images at different altitudes centered on the cell cores, they showed better discrimination of hail compared to the POSH80

method, particularly reducing the number of false alarms. In the work of Shi et al. (2020), they tracked convective cells

and trained a bagging class-weighted support-vector machine (CWSVM) using single-polarisation cell-based features and

environmental information from proximity soundings. By comparing with common reflectivity based hail proxies, they showed

better performances for their fitted model. Finally, in the work of Ackermann et al. (2024), they trained a neural network using

the severe hail index (SHI, Witt et al., 1998) and variables from ERA5 (Hersbach et al., 2020) to estimate the magnitude of85

the damage generated by hail on the ground. Using insurance data as ground-truth, they developed a hail damage estimate

variable that showed high accuracy on the estimation of damage and its intensity. Other studies have employed deep learning

and machine learning techniques, applied exclusively to environmental variables derived from numerical weather prediction

models (NWP), for the purpose of analysing or forecasting hailstorm environments (Gagne et al., 2017, 2019; Battaglioli et al.,
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2023). These prior machine learning and deep learning studies have demonstrated the potential of these techniques to partially90

address the lack of information on hail growth processes. Consequently, the consideration of hail detection as an image-based

problem where the morphology of storms can be taken into account seems a promising approach to enhance the hail detection

capabilities of radar networks.

This study aims to train different CNN models for the detection of severe hail (≥ 2cm) on the ground using polarimetric

radar data. Although studies have already explored the use of CNNs for hail occurrence detection, to the authors’ knowledge,95

none have attempted to use radar polarimetric variables for severe hail detection with CNNs. How do CNNs perform on the

task of severe hail detection when applied to polarimetric radar data? Can CNNs outperform existing hail proxies? Can CNNs

be used to extract information relevant to the detection of severe hail? To answer these questions, the framework developed

herein for the detection of severe hail on the ground comprises the training of CNNs to discriminate between severe hail

cases (≥ 2cm) and rain or small hail cases (rain or hail below 2 cm). To this end, a dataset comprising both types of cases100

is constructed, and a comparison between state-of-the-art hail proxies and the CNN approach is performed on a test dataset.

The study is divided in several sections. First, the data gathered for this study and the construction of severe hail cases and

rain or small hail cases are presented in section 2. Then, the methods explaining the features, the tuning phase to choose the

CNN’s architecture and its input size, and the metrics are described in section 3. Finally, the results presented in section 4 are

divided into four parts: 1) the results of the tuning phase (section 4.1), 2) the feature selection and feature importance studies105

(section 4.2), and 3) a comparison with state-of-the-art hail detection methods (section 4.3). Finally, the conclusions of this

study present a summary of the contributions made to the field of severe hail detection and suggest potential applications for

future research.

2 Data

2.1 Radar110

This study uses data from C-band radars within metropolitan France (Fig. 1). It did not include S-band and X-band radars. Only

the cases where the two nearest radars were C-band radars were considered in this study. The volume coverage pattern (VCP)

of each radar consists of super-cycles of 15min in which five to seven elevation angles are scanned, depending on the radar

(Table 1). Each 15min super-cycle contains three 5min sub-cycles with the three lowest elevation angles remaining the same

and the three upper elevation angles changing every 5min. The maximum range of the radars is 250 km. The raw volumetric115

radar data, with a range resolution of 240m and an azimuthal sampling of 0.5◦, are processed through a polarimetric processing

chain (Figueras i Ventura et al., 2012). Non-meteorological echoes are removed, partial beam blockage is corrected, and ZH

and ZDR are corrected for attenuation (Gourley et al., 2007; Figueras i Ventura et al., 2012; Figureas i Ventura and Tabary,

2013). Volumetric radar data is not corrected for advection between successive elevation angles. Radar data was collected for

severe hail cases (see section 2.3) and for rain or small hail cases (see section 2.4) to provide the radar images fed to the deep120

learning framework. Polarimetric radar variables considered in this study are ZH , ZDR, KDP and ρHV .
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Figure 1. Hail reports between 2018 and August 2023 from the ESWD (grey-blue), from the hailpad network of the ANELFA (orange) and

from the mobile application of Météo-France (small grey dots).

In addition to the corrected polarimetric radar variables available in the polar radar geometry, three-dimensional cartesian

grids are generated for the study. The interpolation algorithm implemented within the Python ARM Radar Toolkit (Helmus and

Collis, 2016) is used to generate the grids. Derived two-dimensional fields from the three-dimensional grids are then used as

input features to the CNN. The algorithm produces the grids with a specified resolution of 250m×250m×500m on a domain125

of 60 km× 60 km× 15 km by interpolating values from the two nearest radars around each case. The value of each grid point

is determined by interpolating from the collected radar points within a given radius of influence (ROI). The ROI increases

proportionnaly with distance to the radar, and the ROI value for each grid point in the target cartesian grid is determined by the

nearest radar. In order to identify the nearest radar points within the specified ROI of a given grid point, a KD-tree algorithm is

employed. The value of the grid point is calculated by summing the collected values, with each value weighted by an inverse130

distance weighting function defined by Barnes (1964). The three-dimensional grid is generated for ZH , ZDR, KDP , and ρHV .

To account for the low vertical sampling resolution of the French radars and to avoid discontinuities in the resulting 3D

fields, both above the radar and at long range, a minimum radius of influence of ROImin = 2000m was defined above each
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Table 1. Example of a 15min super-cycle for the radar of Toulouse. The 90◦ elevation angle is used for ZDR calibration.

sub-cycle Elevation angles

0min 90◦ 8.5◦ 5.5◦ 2.5◦ 1.5◦ 0.8◦

5min 10.5◦ 7.5◦ 4.5◦ 2.5◦ 1.5◦ 0.8◦

10min 9.5◦ 6.5◦ 3.5◦ 2.5◦ 1.5◦ 0.8◦

Figure 2. Time series of the 1169 filtered ESWD severe hail reports (≥ 2cm) used in this study.

radar. This minimum ROI resulted in a smoothing of the fields. A nearest-neighbour interpolation scheme was also tested (not

shown), but produced strong artefacts within the 3D fields such as holes and stripes, preventing its use. As a result, the Barnes135

interpolation with a minimum ROI of 2000m was kept.

2.2 Hail reports

This study utilises various sources of hail reports, either as ground truth for severe hail cases or to assist in constructing the

rain or small hail cases.

The European Severe Weather Database (ESWD, Dotzek et al., 2009), an initiative of the European Severe Storm Laboratory140

(ESSL), is the primary source of severe hail reports used in this study. Severe weather phenomena are reported by volunteer

observers, weather services, or individuals and are quality controlled by the ESSL into four levels of quality, ranging from

QC0 to QC4 (Groenemeijer and Kühne, 2014). To localise and estimate the maximum hail size, images from social media or

local newspapers are frequently used. From January 2018 to August 2023, the ESWD collected 3348 reports in France with a

maximum hail size information above 2 cm (Fig. 1).145
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The study also collected 1509 hailpad reports between 2018 and 2022, purchased from the Association Nationale d’Étude et

de Lutte contre les Fléaux Atmosphériques (ANELFA, Dessens et al., 2007). Its network of hailpads covers most of the south-

west of France (Fig. 1). A hailpad consists of a 30 cm× 50 cm× 7 cm layer of polyester placed on the ground or mounted

on a pole. Hail reports are generated from photographs of hailpads after hailstorms and are processed by the ANELFA using

computer vision techniques to infer hail characteristics. There is only one report per day per hailpad, and each report is150

accompanied by an estimated time of hail fall by the observer. Numerous quantities are available in the reports, such as

maximum diameter or hail size distribution. The main challenge with hailpad data is the small sampling area of the pad, which

prevents accurate measurement of maximum hailstone size, as the largest hailstone can easily be missed (Smith and Waldvogel,

1989).

Hail reports were also collected through the crowdsourcing feature of Météo-France’s mobile application between 2018 and155

August 2023. The application allows users to report weather events such as snow, strong winds and hail, which are then located

using GPS technology embedded in mobile phones. Since 2014, users can add information about the size of the hailstones and

include a picture. The hail size categories available are a) lower than 0.5 cm, b) 0.5 cm to 1.0 cm, c) 1.0 cm to 2.0 cm, d) greater

than 2.0 cm. A large quantity of hail is reported between 2018 and August 2023 (137,108 reports). However, the database may

contain a significant misrepresentation of hail occurrence due to the lack of systematic quality controls. Observers may report160

hail despite the absence of reflectivity data indicating precipitation, or there may be potential errors in space and time caused

by people reporting hail after it has fallen.

2.3 Severe-hail cases

Severe hail cases (≥ 2 cm) were created above the ESWD severe hail reports only. Due to the potential for systematic underes-

timation of the maximum diameter in hailpad data and considerable uncertainty associated with the crowdsourcing database,165

these reports were not employed in the creation of severe hail cases. Nevertheless, they remain a valuable resource for the

development of a database of rain or small hail cases (see section 2.4).

Although the ESWD management team applies quality checks to its reports, errors in the hailfall time or report localisation

may still occur. To reduce their impact, the hailfall time was adjusted by examining the reflectivities from the nearest radar

within a time range of ±30min. If needed, the report time was shifted to the time when a storm cell passed over the report. If170

multiple cells were observed over the report within the time range, the time of the closest cell to the reported time was retained.

If no cell was clearly visible at different elevation angles within that time frame, the report was discarded. A significant

proportion of reports produced by the same storm at the same time remains in the database. It artificially increases the number

of independent storm cells that produced severe hail. To avoid duplicating severe hail cases centered on ESWD reports that are

really close to each other, a density-based clustering algorithm (DBSCAN, Ester et al., 1996) is applied to find reports within175

10 km to each other every 5min. The report that is the closest to the barycenter of collected reports is kept. The total number

of severe hail reports used for training decreased from 3348 to 1169. Fig. 2 shows their distribution over time. The 1169 severe

hail reports from the ESWD are considered the only trustable source of severe hail reports for the remainder of the study. Radar

data will be gathered above them to constitute the severe hail cases of the study.
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Figure 3. Construction of the rain or small-hail cases on the 4th June 2022 at 16:50 (UTC) during a convective outbreak where hail was

reported. Green dots represent hail reports (ESWD + Mobile application + ANELFA) within a time interval of ±1h. Green squares are

‘forbidden‘ areas around hail reports (120 km× 120 km) where a rain or small hail cases cannot be created at 16:50 (UTC). The orange

and red colours represent the 42 dBZ and 56 dBZ cells cumulative contours within a time interval of ±1h. Grey dots represent the reports

from the application that are not hail reports within a time interval of ±1h. Light and dark turquoise show populated areas with more than

50 people.km−2 and 100 people.km−2, respectively. Black triangles represent negative (rain or small hail) cases created at the mentioned

timestamp. They represent the intersection of reflectivity contours and areas of more than 100 people.km−2 outside forbidden areas. Some

of them are discarded based on further filtering explained in section 2.4.

2.4 Rain or small-hail cases180

Rain or small hail cases are created as situations that produced either rain or small hail below 2 cm. In order for the CNN to

accurately distinguish between radar images that result in severe hail and those that do not, it is crucial that the training set

includes instances where severe hail did not occur on the ground. Rain or small hail cases are built to include storms that may

be conducive to hail formation but did not produce severe hail at the ground. The identification of such storms is necessary for

the validation of severe hail detection algorithms. They are considered edge cases and often produce many false alarms with185

current hail detection methods, making it difficult for forecasters to distinguish between severe hail storms and rain or small

hail storms.
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The creation of rain or small hail cases is divided into four distinct phases. The first phase involves the presentation of the

cell-identification algorithm. The second phase entails the implementation of a consistency check to filter the collaborative

reports using the cell-identification algorithm. The third phase encompasses the successive steps to identify the time and190

locations of the rain or small hail cases. The final phase comprises a filter to exclude mild precipitation cases from the dataset.

First, the cell-identification algorithm is derived from the methodology proposed by Morel and Sénési (2002) and subse-

quently applied to the national reflectivity composite product, whereby the lowest available and valid reflectivity measurement

from all the radars is selected (Caumont et al., 2021). The product is available every 5min at a 1 km horizontal resolution. The

cell-identification algorithm defines cells as a contiguous set of pixels above a certain reflectivity threshold. Cell objects with195

four different thresholds are defined: 36 dBZ, 42 dBZ, 48 dBZ and 56 dBZ. Cell splits and merges are managed by comparing

cell overlaps between consecutive images, taking into account cell motion (Morel and Sénési, 2002).

Secondly, the cell-identification algorithm facilitates the filtration of crowdsourced hail reports from the Météo-France ap-

plication. To correct for possible biases of reporting, a consistency check was carried out on the crowdsourced hail reports.

Cell-objects of 42 dBZ from the cell identification algorithm were collected within a time period of −120min to +30min200

around each report. If the distance between the report and the nearest 42 dBZ cell within that period was more than 15 km,

the report was discarded. The 42 dBZ reflectivity threshold was chosen because small and melting hail above 5mm is hardly

reported at reflectivity values lower than 45 dBZ (Ryzhkov and Zrnic, 2019). The selected time interval is needed to consider

potential delays between the reported time and the actual hailfall time. A delay of two hours prior to the reported time was

deemed adequate to account for this. Finally, a distance of 15 km between a report and the nearest 42 dBZ contour was chosen205

to represent the median commuting distance travelled by the rural French population each day (INSEE, 2023). Using that

consistency check, the quantity of reports decreased from 137108 to 62854, still covering 45% of the days within the study.

Furthermore, only 28% of the remaining 62854 reports contain hail size information, and about 1.1% is severe hail (≥ 2cm).

Because of the database’s size, manual filtering was not possible within the scope of this work. Therefore, the final quality

of the collaborative reports remains uncertain. As a result, it is only used to assist the construction of the rain or small hail210

database.

Thirdly, once crowdsourced reports were filtered, rain and small hail cases were searched every 20min during hail seasons

(March-September) between 2018 and August 2023. A number of measures were implemented to prevent the inclusion of

irrelevant cases where hail was deemed unlikely and to ensure the integrity of the rain or small hail database, which shall not

include severe hail cases. An initial filtering was applied every 20min using cell objects, where the following locations were215

kept:

– locations below cell objects that had a maximum ZH above 45 dBZ.

– locations at the intersection between cell objects and a highly populated area of at least 100 peoplekm−2, as in Kopp

et al. (2024).

– locations within working hours (7:00am-10:00pm).220

9



– locations outside ’forbidden’ areas, defined as squares of 120 km×120 km around all available hail reports within a time

interval of ±1h. The hail reports considered here are a combination of raw severe hail reports from the ESWD (3348),

hailpad measurements from the ANELFA (1509) and filtered collaborative reports from the Météo-France mobile appli-

cation (62854).

225

An example of the rain or small hail reports produced by such filters applied to a convective outbreak on the 4th June 2022

at 16:50 (UTC) is shown in Fig. 3. Using a filter that combines all available hail reports to exclude ’forbidden’ areas where

rain or small hail cases cannot be created was considered the best option, given the significant uncertainty in the size and

hailfall time in the hailpad measurements and in the overall robustness of the collaborative reports. However, a risk remains

that avoiding such forbidden areas around hail reports may result in the withdrawal of several small hail cases (< 2cm). The230

filtering assumed that all missed severe hail by the ESWD database was correctly observed in highly populated areas within

working hours by other databases, even with a wrongly observed hail size, as it attracts more attention from both the media

and the public (Punge and Kunz, 2016). This hypothesis is contingent upon the presence of a sufficient number of individuals

capable of recording hail. It can be demonstrated that a non-negligible number of non-hail observations are produced by the

mobile application within the French territory every two hours (Fig. 3), reducing the risk of missing severe hail. These steps235

serve to ensure that rain or small hail cases are not contaminated by severe hail, which is of the utmost importance for the

relevance of the method and the interpretation of its results.

Finally, in order to reduce the number of cases that produced moderate ZH values, an additional filter was applied. Since mild

precipitation events are climatologically predominant compared to severe and extreme precipitation events, they can populate

most of the rain or small hail cases, even if a minimum threshold of 45 dBZ was set. In order to prevent the CNN from learning240

with a disproportionate number of mild cases, a filter was applied to cases that had cell-objects with a maximum ZH below

56 dBZ. These cases were divided into two categories: those produced by cells with a maximum ZH 1) between 45 dBZ and

48 dBZ, and 2) between 48 dBZ and 56 dBZ. The cases with the largest cell area per bin of 0.2 dBZ for each category were then

retained. This was done to ensure that rain or small hail cases were produced by large enough storms where hail is plausible,

as severe hail is mainly produced in supercell and multicell convective systems (see Appendix B). In the event that cases were245

situated at a distance of less than 15 km from one another, only the case produced by the cell exhibiting the highest reflectivity

was included. In the event that they originated from the same cell, one was selected at random. This methodology ensured that

rain or small hail cases were extracted from independent stages of a storm’s life cycle.

After these different steps of filtering, the rain or small hail database contained 2605 cases during hail seasons between 2018

and August 2023. Cell objects formed by the cell identification algorithm were also gathered for the severe hail cases. The250

fitted probability density functions (PDF) of max(ZH) within the cell and the cell area above 56dBZ are compared in Fig.

4. Despite the efforts to gather intense storms in the rain or small hail dataset, Fig. 4 shows only a partial overlap between

the distributions on both datasets, indicating that the biggest cases in terms of maximum reflectivity and cell area were mostly

produced by severe hail storms. This behaviour may be a consequence of the storm modes embedded in each dataset, where
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Figure 4. Fitted probability density functions (PDF) for storm cell objects identified above severe hail and rain or small hail cases. (a) PDF

of the maximum reflectivity (max(ZH)) within storm cells. (b) PDF of the area for storm cells with the 56 dBZ threshold.

severe hail is nearly systematically produced by large, intense and highly organised systems such as supercells (see Appendix255

B).

It is crucial to acknowledge that it was not feasible to ensure that small hail was included in the rain or small hail dataset.

Indeed, small hail is less likely to be reported by observers, and a significant degree of uncertainty contaminates the existing

databases that have the capacity to report it (Météo-France crowd-sourcing application, ANELFA hailpads). Consequently, it

is assumed that by selecting the strongest storm cases outside areas where hail was reported, using the aforementioned filters,260

it was possible to include potential instances of small hail. In the most unfavourable scenario, the rain or small hail database is

populated with instances of rain or heavy rain only, which still contributes to the generation of false alarms in existing severe

hail detection algorithms.
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2.5 Reference hail proxies

This section presents the existing radar-based hail proxies that are compared with the CNN approach. They are separated in265

three different kinds.

The first hail proxy being compared is the output of an updated version of the fuzzy-logic hydrometeor classification algo-

rithm from Al-Sakka et al. (2013), which is available at S, C, and X bands. The original version of the algorithm discriminates

between six different hydrometeor classes using dual-polarisation radar variables and temperature: biological scatters or ground

clutter (BS-GC), rain (RA), wet snow (WS), dry snow (DS), icy particles (IC) and hail (HA). A revised version enables the270

classification of hail into three distinct categories: small hail (SH; < 0.5cm), medium hail (MH; 0.5 cm to 2 cm), and large hail

(LH; > 2cm). Details on the updated version can be found in Appendix C. It is called A13 thereafter.

The second family of hail proxies uses the severe hail index (SHI) developed by Witt et al. (1998) to produce two proxies

capable of detecting hail: the probability of severe hail (POSH, Witt et al., 1998) and the maximum estimated size of hail

(MESH, Witt et al., 1998; Murillo and Homeyer, 2019). The SHI is calculated by the weighted sum of 3D reflectivities over275

the vertical, based on the position of radar gates to the hail growth zone (0 ◦C and −20 ◦C, Witt et al., 1998) as follows:

SHI = 0.1

Ht∫
H0

WT (H)ĖdH, (1)

with

Ė = 5× 10−6 × 100.084ZHW (ZH), (2)

280

WT (H) =


0 for H ≤H0

H −H0

H−20 −H0
for H0 <H <H−20,

1 for H ≥H−20

(3)

W (ZH) =


0 for ZH ≤ ZL

ZH −ZL

ZU −ZL
for ZL < ZH < ZU ,

1 for ZH ≥ ZU

(4)

where SHI is in Jm−1s−1, H is the altitude, Ht is the altitude of the top of the storm, H0 and H−20 are the altitudes of the

0 ◦C isotherm and −20 ◦C isotherm respectively, ZL = 40dBZ and ZU = 50dBZ, and Ė the hail kinetic energy. The POSH285

12



and MESH relationships, derived from the SHI, are defined as follows:

POSH = 29ln
SHI
WT

+50, with WT = 57.5H0 − 121 (5)

MESH = 2.54×
√

SHI (6)

MESH75 = 15.096×SHI0.206 (7)

MESH95 = 22.157×SHI0.212 (8)290

with WT being a warning threshold calibrated for the POSH to produce the best critical success index (CSI) for the U.S.

S-band radars (Witt et al., 1998), MESH coming from Witt et al. (1998) and MESH75 and MESH95 coming from Murillo

and Homeyer (2019). The variables are calculated based on the three-dimensional reflectivity grid and the 0 ◦C and −20 ◦C

altitudes are extracted from the nearest forecast hour within the AROME model (Brousseau et al., 2016). The AROME model

provides hourly forecasts with a horizontal resolution of 0.01◦. The isotherms are regridded to the 250m× 250m horizontal295

resolution of the three-dimensional grid and interpolated in time to the time of the severe hail and rain or small hail cases.

The third family of hail proxies compared in this study are based on echo tops, i.e. the maximum altitude at which a

reflectivity threshold is reached. The probability of hail (POH) from Delobbe and Holleman (2006) and Foote et al. (2005) are

compared in this study and are constructed as follows:

POHDelobbe = 0.319+0.133∆H, (9)300

POHFoote = −1.20231+1.00184∆H − 0.17018∆H2 +0.01086∆H3, (10)

where ∆H is the difference between the echo top at 45 dBZ (ET45) and H0 in kilometer. Echo tops are computed using the

three-dimensional reflectivity grid (see section 2.1).

Finally, the maximum reflectivity over the vertical Zmax
H (see section 3.1) is added as a comparison baseline to all the

methods compared in this study.305

3 Methods

This section outlines the experimental design used to evaluate the performance of the CNNs. To align with machine-learning

terminology, the term ’radar variable’ has been replaced with ’feature’. A feature represents a 2D radar-derived variable that is

fed to the CNN.

3.1 Input features310

For each severe hail case and rain or small hail case, two different sets of inputs are generated: 1) 2D features obtained from

the 3D grid, and 2) 2D features extracted directly from the volumetric radar data. Both groups are fed into the CNN. The input

features are summarised in Table 2. They are produced using the nearest radar timestep from the time mentioned in each case.

The 3D grids are used to generate a number of storm and hail proxies, which are known for their ability to help in the

detection of hail. First, the ZDR column is calculated from the 3D grid to account for potential hail formation processes above315
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Table 2. Input features to the CNN divided in three categories: polarimetry, storm proxy and hail proxy.

Group Acronym Unit Description

Zmax
H dBZ maximum ZH over elevations

Z∗
DR dB collocated ZDR with Zmax

H

K∗
DP °km−1 collocated KDP with Zmax

H

Polarimetry
ρ∗HV collocated ρHV with Zmax

H

Z2000
H dBZ ZH at 2000m

Z2000
DR dB ZDR at 2000m

K2000
DP °km−1 KDP at 2000m

ρ2000HV ρHV at 2000m

Storm proxy

ZDR column km ZDR column height

VIL kgkm−2 vertically integrated liquid

ET45 m echo-top at 45 dBZ

Environment H0 m altitude of freezing

POHDelobbe % probability of hail from Delobbe and Holleman (2006)

POHFoote % probability of hail from Foote et al. (2005)

POSH % probability of severe hail from Witt et al. (1998)

Hail proxy
MESH mm maximum estimated size of hail from Witt et al. (1998)

MESH75 mm 75th percentile maximum estimated size of hail from

Murillo and Homeyer (2019)

MESH95 mm 95th percentile maximum estimated size of hail from

Murillo and Homeyer (2019)

A13 updated hydrometeor classification from Al-Sakka et al.

(2013)

the freezing level, as it indicates regions with high concentrations of supercooled water and graupel, which are essential for

hail growth (Kumjian, 2013b; Kuster et al., 2019). The ZDR column height was calculated using the 3D cartesian polarimetric

grid, with candidate pixels that met the following criteria: ZH ≥ 25dBZ and ZDR ≥ 2dB. The height of a column of adjacent

candidate pixels is computed as the ZDR column height. A criterion was applied to ensure the continuity of the column above

and below H0 in the event that 500m portions of the column were missing in the middle of two candidate pixels over the320

vertical. Other 2D input features derived from 3D grids include vertically integrated liquid (VIL, Greene and Clark, 1972),

ET45, and H0. Furthermore, polarimetric features at an altitude of 2 km are incorporated to account for hail-related signatures

at low altitudes below the altitude of freezing. The 2 km height was selected as a compromise to achieve optimal 3D radar

coverage while remaining below the freezing level in the majority of cases. It is notable that low ZDR values may be indicative

of dry spherical hail. High ZDR and KDP may suggest the presence of either rain or a mixture of rain and melting hail325

(Ryzhkov and Zrnic, 2019). The features at 2 km include Z2000
H , Z2000

DR , K2000
DP an ρ2000HV . Finally, a series of hail proxies were
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Figure 5. Input features defined in Table 2 for a case producing severe hail on the ground. Image size is 60 km× 60 km and the severe hail

report is located at the center of the image.

subjected to testing as input features, with the objective of determining the extent to which they might provide additional

information within the framework of a CNN: MESH, MESH75, MESH95, POSH, POHFoote and POHDelobbe.

The utilisation of 3D interpolation may result in the loss of information present in the original volumetric fields, as it

reduces the small scale variations and the original resolution of the fields (Fig. 5). In order to more accurately represent the330

native resolution of volumetric radar data, 2D features derived from volumetric radar data are incorporated in addition to those

derived from the 3D grid. Nearest-neighbor interpolation is employed on the volumetric data at every elevation angle in order

to match the horizontal resolution of the 3D grid (250m× 250m). This interpolation is different from the 3D interpolation

scheme in section 2.1. It is performed separately for each case and for the two nearest radars independently. In order to account

for the low vertical sampling of French radars and the frequent partial beam blockage at low elevations, 2D features are created335

from the interpolated elevations. The initial feature to be considered is the maximum ZH value over the vertical (Zmax
H ). The
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other ones are called ’collocated’ polarimetric features, named respectively Z∗
DR, K∗

DP and ρ∗HV . They are selected where

Zmax
H is reached over the elevations. As hail is always detected in areas of high ZH (Kumjian, 2013a; Ryzhkov and Zrnic,

2019), it appears appropriate to examine the polarimetric signatures where reflectivity is the highest. One disadvantage of this

approach is that the resulting collocated features (2D images) may contain pixels located at different altitudes, which makes340

it challenging to interpret their values. To eliminate collocated polarimetric features produced at very high altitudes and low

Zmax
H values, only collocated values where Zmax

H was above 30 dBZ were retained. A sample of all input features for a case

that resulted in severe hail on the ground is shown in Fig. 5.

For each case, either severe hail or rain or small hail, two samples were created, each containing 2D features. One sample

was created for the nearest radar, and the other was created for the second-nearest radar. Both samples share identical 2D345

features that originate from the 3D grid. However, they differ in their Zmax
H and collocated features, as they were produced

independently for each radar. This process helped to augment the dataset, which is considered crucial, particularly given the

scarcity of severe hail reports.

A total of 7523 radar samples were produced. Among them, 2335 were created from the 1169 severe hail cases, and 5188

were created from the rain or small hail cases. A total of 3 severe hail samples and 22 rain or small hail samples were removed350

from the dataset due to issues with interpolation, primarily arising from the second-nearest radar. Fig. 6 illustrates the distri-

butions of maximum values within samples for a selection of features. It should be noted that the distribution of the maximum

reflectivity values within the images may differ from the distributions obtained with the cell identification algorithm (Fig. 4), as

the reflectivity values do not originate from the same methodology. In the context of this study, distributions of the maximum

of input features, including VIL, ET45, MESH proxies and POSH, exhibit a certain separation between cases of severe hail355

and those of rain or small hail (Fig. 6). This may provide insight into the discriminative power of these features for severe hail

detection.

To analyse the polarimetric variables, the bivariate distributions of Zmax
H and Z∗

DR are presented in Fig. 7. The distribution

of values for severe hail cases exhibits a high density of values with Zmax
H above 50 dBZ and Z∗

DR ≈ 0dBZ, in accordance

with the expected behaviour of spherical hailstones (Kumjian, 2013a). For rain and small hail cases, Z∗
DR increases with Zmax

H ,360

as the database may be populated by storms producing either rain or small melting hail that have higher ZDR values compared

to larger hail due to a higher dielectric constant for water (Kumjian, 2013a; Ryzhkov and Zrnic, 2019).

3.2 Tuning architecture and input size

Two distinct types of CNN architectures are evaluated to identify the optimal architecture and input size. The first type of

architecture is a feed-forward CNN, which draws inspiration from the AlexNet architecture (Krizhevsky et al., 2017). Two365

models were created from it: the SmallConvNet and the ConvNet. The former comprises only one convolutional layer, while

the latter is a deeper architecture with three convolutional layers (Fig. 8). The second kind of architectures tested in this study

is a residual network architecture (ResNet, He et al., 2015). The 18-layer variant of the ResNet is used and includes 18 layers

of convolutions with skipped connections that increase the accuracy of the network (He et al., 2015). Four input sizes are tested

with the different models using a centered crop around the case location: 5 km× 5 km, 15 km× 15 km, 30 km× 30 km and370
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Figure 6. Distributions of the maximum value over 60 km× 60 km images for most of the input features in the severe hail dataset and the

rain or small hail dataset.

50 km× 50 km. Every combination of model and input size is trained, and the combination that yields the best performance is

selected for the remainder of the study. The training for the tuning phase is performed using all the variables listed in Table 2

as input features to the CNNs.

The choice of hyperparameters can influence the learning phase and the final performance of a fitted model. However, in

order to focus solely on the choice of the model and the impact of input size on the performance, the models are trained375

with fixed hyperparameters. Stochastic gradient descent (SGD) is used with a learning rate of lr = 10−4, a weight decay of

wd = 10−3 and a momentum of m = 0.9. The loss function is the binary cross entropy (BCE), the training mini-batch size is

bs = 64, and the maximum number of epochs is nepochs = 300. Additional regularisation is achieved through the incorporation

of batch normalisation layers within the models. The selection of hyperparameters is highly empirical and dependent on the

specific problem being solved, as well as the quality and quantity of data used for training. The aforementioned hyperparameters380

are selected in order to ensure that the model’s loss decreases monotonically during training towards convergence.

During the tuning phase, all possible combinations of models and input sizes are trained under identical conditions. The

whole dataset containing severe hail and rain or small hail samples (7523) is separated between a training dataset, a validation

dataset and a test dataset. The different splits are presented in Table 3. The training and validation datasets are employed during

the tuning phase, while the test dataset is reserved for subsequent performance analysis. To ensure independence between the385

datasets, samples are grouped by date. This guarantees that each date is only present in one dataset. Furthermore, an additional

precaution is taken to ensure that the proportion of severe hail and rain or small hail cases remains the same in all three

datasets. In order to address the imbalance of the dataset during training, the minority class (i.e. severe hail) is oversampled

using weighted random sampling. This process artificially increases the number of severe hail cases seen by the CNN at each
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Figure 7. Bivariate distributions of Zmax
H and Z∗

DR within 60 km×60 km images for the severe hail dataset and the rain or small hail dataset.

Contours represent the frequency of values per two-dimensional bin.

Table 3. Number of samples in the training, validation and test data sets for the tuning phase in section 3.2.

Training Validation Test

Severe hail (1) 1476 413 446

Rain or small hail (0) 3100 1138 950

Total 4576 (61%) 1551 (21%) 1396(19%)

training iteration. Finally, early stopping enables the model to halt training when the validation loss fails to decrease after 20390

consecutive epochs.
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Figure 8. Two feed-forward CNN architectures tested in this study: the SmallConvNet and the ConvNet. Convolutional layers are denoted

as ’Conv’ (yellow boxes); pooling layers are denoted as ’Max. pool’ and ’Adapt. avg. pool’ for max pooling and adaptative average pooling

respectively (red boxes); fully connected layers of perceptrons are denoted as ’Dense’ (green boxes). ’p’ for padding, ’s’ for stride. Number

of filters per layer is showed below boxes. The kernel size is shown by multiplicative terms. All activation functions are ReLU. A batch

normalization layer is added after each convolutional layer for regularization (hidden). The output of the network is a real number, which is

subsequently passed to a sigmoid function to produce a probability of severe hail on the ground within the image, denoted as P ∈ [0,1].

Table 4. Contingency table

Prediction

severe hail rain of small hail

Observation severe hail True Positive (TP) False Negative (FN)

rain or small hail False Positive (FP) True Negative (TN)

3.3 Scores

The performance of the models is evaluated using a scoring methodology. For the CNNs, the output provides one probability

of severe hail at the ground, denoted as P , for each image. The image is predicted as producing severe hail (yCNN
pred = 1) or rain
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or small hail (yCNN
pred = 0) on the ground given a discrimination threshold α:395

yCNN
pred =

1 (severe hail), if P ≥ α

0 (rain or small hail), otherwise
(11)

with α ∈ [0,1].

The reference hail proxies (see section 2.5) produce either a gridded probability or a gridded hail size as output (Fig. 5).

In order to facilitate comparison with the output of CNNs, it is necessary to reduce the proxies to a single value per image.

Two thresholds can be used simultaneously to determine if the image is associated with severe hail on the ground: a threshold400

for feature values X , designated βX , and a discrimination threshold for the area AX covered by the resulting field, designated

βAX
. If the area of pixels above βX exceeds βAX

, the hail proxy predicts severe hail on the ground within the image as follows:

yproxy
pred =

1 (severe hail), if X ≥ βX and AX ≥ βAX

0 (rain or small hail), otherwise
(12)

For example, if βX = 50% and βAX
= 10km2 for POSH, the prediction for the image will be severe hail if the area of POSH405

above 50 % in the image exceeds 10 km2. This evaluation method allows for the study of the trade-off between a threshold on

the hail proxies and the area they cover, with the objective of detecting severe hail. The various feature threshold values βX

tested in this study for the hail proxies are presented in Table 5. For A13, three different feature threshold values are employed.

These are: (i) pixels with a class above or equal to the small hail class (βX
△
= (≥ SH)), (ii) pixels with a class above or equal to

the medium hail class (βX
△
= (≥ MH)), and (iii) pixels with a class above or equal to the large hail class (βX

△
= (≥ LH)). This410

approach enables the determination of the performance for different hail class as thresholds.

The performance metrics for the predictions are defined through the use of a contingency table (Table 4). The following

metrics are employed in order to compute the performance of a model: the probability of detection (POD), also known as the

recall, the probability of false detection (POFD), also known as the false alarm rate, the Peirce skill score (PSS), the critical

success index (CSI), the Heidke skill score (HSS), and the precision, also known as the success ratio. They are defined as415

follows:

POD = recall =
TP

TP+FN
(13)

POFD =
FP

TN+FP
(14)

PSS = POD−POFD (15)

CSI =
TP

TP+FN+FP
(16)420

HSS = 2× TP×TN−FP×FN

(TP+FN)× (FN+TN)+ (TP+FP)× (FN+TN)
(17)

precision =
TP

TP+FP
. (18)
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Table 5. Interval of feature threshold values (βX ) tested to assess the performance of hail proxies, e.g if βX = 25mm for MESH, the

performance of a model where MESH ≥ 25mm is assessed for different areas covered by the resulting field. Increments tested along the βX

intervals are denoted as inc.

POSH MESH

A13POHDelobbe MESH75

POHDelobbe MESH95

βX [1, 100] % [1, 60] mm {SH, MH, LH}

inc. 1% 1mm

The precision captures how often, when a model makes a positive prediction, it turns out to be correct (Kelleher et al., 2020).

The PSS shows the tradeoff between POD and POFD. The global performance of models is evaluated by calculating the

receiver operating characteristic (ROC) curves and the precision-recall curves, which illustrate the trade-off between metrics425

at different discrimination thresholds. Each variant of the hail proxies with a given βX value is considered a classifier. The

performance of a classifier is evaluated by calculating the metrics for each possible discrimination area (βAX
). For the CNN,

each point on the curves shows the local performance for a given discrimination threshold α. For hail proxies, each point on the

curves shows the local performance for a given βX and a given βAX
. The areas under the curve for the ROC curve (AUC-ROC)

and the precision-recall curve (AUC-Pr.Re.) are computed and used as representative metrics of the global performance of a430

model. If all the predictions are wrong (resp. right), the AUC is 0.0 (resp. 1.0). In the context of a balanced dataset, an AUC of

0.5 indicates that the model’s performance is equivalent to that of a random function.

4 Results

4.1 Tuning phase

The results of the tuning phase are summarised by the learning curves of the different models (Fig. 9) and the ROC and435

precision-recall curves, which assess the performance on the validation split (Fig. 10). Models trained with an input size of

50 km× 50 km were tested but not included in the results, as they did not demonstrate any improvement in performance.

The evolution of the training loss in Fig. 9 shows a global monotonic decrease for each model and input size, implying that

some information within the features is learned by the models. However, this information may be irrelevant for severe hail

detection if the fitted models do not generalise well to unseen examples. Different behaviours are seen for certain input sizes440

and model architectures. Simple models such as the SmallConvNet lag behind in terms of minimum loss achieved on both the

training and validation sets. The SmallConvNet struggles to learn as much as the other models, and reacts on average more

incorrectly when presented with the validation set, especially for small input sizes (Fig. 10). This may be a classic case of

underfitting, where a model is too simple to learn highly abstract features in the data. In addition to underfitting, small input

sizes appear to be detrimental to the performance of CNNs, regardless of the model used. Although this was expected, it shows445
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Figure 9. Learning curves with the evolution of the train loss (a) and the validation loss (b) for the models trained during the tuning phase.

The retained model is highlighted by the solid black line. The curves are smoothed with a sliding window of 3 epochs.

that the models trained with 5 km× 5 km input features are likely to miss important information in the vicinity of the storm

cores that can be attributed to larger scale phenomena within the storms (hook echo, updraft region, downdraft region). The

decline in performance with decreasing input size is evident in Fig. 10.

Two models, the ConvNet and the ResNet18, appear to achieve equivalent performance on the validation set, despite the

ResNet18 containing a significantly greater number of parameters (Fig. 9). The models in question are deeper than the Small-450

ConvNet, which increases their likelihood of identifying information at varying levels of abstraction within the data, thereby

enhancing their performance. The fact that the ResNet18 achieves performance levels comparable to those of the ConvNet

on the validation set, despite being more complex, suggests that the size of the validation dataset may be insufficient for it to

enhance its prediction.

Although a monotonic decrease is observed for the training loss across epochs, oscillations in the validation loss are evident455

for ConvNet and ResNet18 after the 50th epoch (Fig. 9). This behaviour is observed when a minor adjustment to the weights and

biases during training results in a significant change to the value of the validation loss. This phenomenon is likely attributable

to the relatively limited size of the validation dataset, which may prompt abrupt changes in model behaviour when parameters

are updated. A direct consequence is that the models are learning additional information that may be derived from noise within

the input features rather than severe hail. Although the complexity of the ConvNet and ResNet18 networks may appear to be460

their strength, in certain situations this may outweigh the benefits, as they are more likely to learn useless information due to

their multiple layers and connections, thus overfitting. The observation that simpler models, such as SmallConvNet, do not

exhibit the same degree of oscillation in the validation loss suggests that the issue may lie in the complexity of the model (Fig.
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Figure 10. ROC curves (a) and Precision-Recall curves (b) for the models trained during the tuning phase. The retained model is highlighted

by the solid black line.

9). Nevertheless, there are methods to mitigate the adverse effects of overfitting on small datasets. One such method is cross-

validation, which entails training an ensemble of models on distinct training and validation sets, and subsequently averaging465

the predictions of all models to obtain the final output on the test set (Kelleher et al., 2020).

Consequently, the SmallConvNet exhibited suboptimal performance relative to deeper models, and complexity can impede

generalization when utilising limited datasets. Therefore, the ConvNet with input size of 30 km×30 km is deemed an optimal

compromise for the remainder of the study. Cross-validation will be employed to mitigate the risk of overfitting.

4.2 Feature selection and feature importance470

Prior to comparing the selected CNNs with hail proxies, it is necessary to explore the features. This involves the removal of

highly correlated features in order to limit them to a subset of the most useful ones and the determination of the importance of

each feature in the final prediction of the CNNs.

Feature selection is performed by exploring the correlations between the 19 input features listed in Table 2. A random

sample of one million pixels from the entire dataset was employed to compute the Spearman correlation coefficient between475

each variable. The resulting coefficient matrix is presented in Fig. 11.

It is anticipated that high positive correlations will be observed between features that are based on the same underlying

variable. The MESH, MESH75 and MESH95 demonstrate perfect Spearman correlations (1.00) due to their underlying mono-

tonic relationship with the SHI (see Equation (5)). The same rationale can be applied to the high positive correlations observed

between ET45, POHDelobbe and POHFoote, although the correlation seems higher between ET45 and POHDelobbe (0.98) due to480
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Figure 11. Spearman correlation matrix for the 19 input features computed on a subset of 1×106 pixels from the entire dataset. Warm (resp.

cold) colors correspond to positive (resp. negative) Spearman correlation coefficients.

its direct linear relationship with ET45 (Equation (9)). A strong positive correlation is observed between MESH variants and

ET45 (≈ 0.93), despite the fact that they were not produced using the same methodology. The relationship between the echo

tops and the integral of weighted reflectivities used in MESH may provide an explanation for this behaviour. Higher echo tops

indicate a greater volume of ZH ≥ 45dBZ above the −20 ◦C altitude, which carries the most weight in the construction of the
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SHI (Witt et al., 1998). Moderate positive correlations are observed between Zmax
H , VIL and all the hail proxies presented in485

Table 5, which is consistent with expectations given their dependence on ZH . The correlation between hail proxies and ρHV

at an altitude of 2 km is moderately negative (≈−0.60). This correlation is likely influenced by the effect of hail or a mixture

of rain and hail on the reduction of ρHV values at low levels (Kumjian, 2013a; Ryzhkov and Zrnic, 2019).

Once the correlations between variables have been established, a feature importance study can be conducted. The withdrawn

variables are the following: MESH, MESH95, POHDelobbe and POHFoote. In order to prevent overfitting and to account for any490

potential variability in the results, the feature importance is computed by cross-validation of the performance of ten ConvNet

models trained on a 30 km×30 km input size. A total of ten distinct combinations of training and validation sets are generated

through the application of bootstrapping to the train and validation sets employed during the tuning phase (Table 3). In order to

ensure the independence of the sets, the same precautions as in the tuning phase are taken. Following training, the performance

of the ten fitted models is assessed on the test dataset. One variant with unperturbed input is trained for each of the ten495

combinations and serves as a baseline. Feature importance is then computed for each model by sequentially perturbing features

using random permutations within mini-batches. If a particular feature is important to the model, its random permutation should

result in decreased performance compared to the baseline model. The greater the decrease in performance, the more important

the feature is for the model to detect severe hail. The performance decrease is calculated by measuring the reduction in AUC

for both the ROC curve and the precision-recall curve. Fig. 12 illustrates the average and the uncertainty of feature importance500

for each input feature.

A low feature importance does not necessarily indicate that the feature is useless for severe hail detection. On the one hand,

it may indicate that the feature plays a less important role in the output of the CNN. On the other hand, it could suggest

that the majority of the information that the CNN requires to make its decision is already embedded in other features. The

feature importance study only demonstrates the importance of a feature within the context of a CNN developed for severe hail505

detection.

The performance decline resulting from the perturbation of MESH75 is the most pronounced among all variables. MESH

was specifically developed for the detection of severe hail at S band. Consequently, despite the potential for higher reflectivity

values at S band than at C band (Ryzhkov and Zrnic, 2019), it is anticipated that MESH facilitates the identification of areas

with severe hail. Due to its capacity to account for the vertical reflectivity profile within the hail growth zone, MESH may be510

less sensitive to the effects of low vertical sampling than echo tops, and may be better at summarising information at mid- and

upper-levels that are useful to quantify the severity of hail on the ground.

Three additional features appear to be important for the CNN: Zmax
H , ρ2000HV and ET45. This is not unexpected given that ZH

is sensitive to the particle size distribution and that high ZH values above 70 dBZ are typically associated with large and giant

hail (≥ 5cm, Ryzhkov and Zrnic, 2019). The importance of Zmax
H may be attributed to the better representation of small scale515

variations of the field in comparison to 2D features extracted from the 3D grid. This may also explain the enhanced importance

of Zmax
H relative to VIL, despite the latter having stronger correlation coefficients with hail proxies (Fig. 11). As a feature that

may be negatively correlated to the presence of hail in the low levels, ρ2000HV is of significant importance for the CNN to make

its prediction. This negative correlation of ρ2000HV with various hail proxies indicates a decrease in ρHV in the presence of hail
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Figure 12. Feature importance results on the test set. Each bar corresponds to the average decrease in performance among 10 ConvNet models

fitted on different combinations of training and validation sets. Uncertainty is shown as error bars of ±σ. Ref. stands for the unperturbed

model.

which is expected, particularly in the presence of melting hail or hail growing in the wet regime (Ryzhkov and Zrnic, 2019).520

Finally, it can be seen that ET45 is of some importance. Although affected by vertical sampling (Delobbe and Holleman, 2006),

echo tops can contain useful information about storm height and remain relevant as a storm proxy, as more intense storms are

expected to produce stronger echoes at high altitudes (Trefalt et al., 2023).

The average importance of the remaining features is situated within their respective uncertainty intervals. For instance, ZDR

columns appear to be relatively inconsequential in the context of this study. However, this feature is not adequately represented525

by examining data at the time of the hailfall, as ZDR columns are expected to be visible prior to hailstones falling on the ground

(Kuster et al., 2019). It may prove advantageous to use ZDR columns in the context of storm cell tracking and the study of the

life cycle of storms, as it has been observed to be effective in the short-term forecast of severe weather (Kuster et al., 2019). The

relatively low importance of polarimetric collocated variables (Z∗
DR, K∗

DP , ρ∗HV ) may be explained by two factors. Firstly, as

collocated polarimetric variables may originate from different heights, they may insufficiently characterize the presence of hail530

and important information may be lost. Secondly, this may simply reflect the fact that the value of these variables contributes

little to the prediction compared to other, more significant variables such as MESH75 and Zmax
H .

Following the completion of a feature importance study, it is standard practice to train again a model using the most important

features in order to validate its performance on unseen data. However, due to the unavailability of more severe hail reports

within the French territory, it was not possible to retrain the models. Consequently, the feature importance study was limited535

solely to interpretation purposes.
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Table 6. Performance on the test set. Methods are compared using their five best variants producing the highest area under the ROC curve

(AUC-ROC). The precision-recall AUC (AUC-Pr.Re.), the CSI, the HSS, the best average threshold value (βX ) and the best discrimination

area (βAX ) are shown. Values shown as ’mean (±std)’. AUC values are multiplied by 100 for readability. Results for all the variants of A13

are shown directly instead of their average. They correspond to the performance of the A13 hail size output above or equal to 1) small hail

(A13small), 2) medium hail (A13medium), and 3) large hail (A13large). The ∗ symbol reminds that it is the average performance of the five best

variants (i.e. best βX ) of each algorithms

AUC-ROC (×100) AUC-Pr.Re. (×100) βX βAX (km2) CSI HSS

A13large 78.18 70.59 0.0625 0.484 0.473

A13medium 91.01 85.51 15 0.654 0.687

A13small 92.69 86.65 64 0.681 0.711

Zmax
H

∗ 92.70 (±0.14) 87.55 (±0.32) 55 (±1.41) 31 (±6.5) 0.684 (±0.008) 0.711 (±0.011)

POSH∗ 92.82 (±0.29) 90.05 (±0.16) 3 (±1.4%) 7.6 (±0.8) 0.682 (±0.003) 0.721 (±0.005)

POHDelobbe
∗ 95.76 (±0.05) 92.42 (±0.45) 62 (±5%) 30 (±5) 0.748 (±0.016) 0.783 (±0.018)

POHFoote
∗ 95.80 (±0.01) 92.35 (±0.47) 26 (±18%) 31 (±5) 0.743 (±0.018) 0.777 (±0.005)

MESH∗ 96.31 (±0.13) 92.96 (±0.16) 5 (±1.4mm) 30 (±8) 0.761 (±0.011) 0.796 (±0.012)

MESH75
∗ 96.41 (±0.08) 93.10 (±0.23) 20 (±1.4mm) 29 (±4) 0.762 (±0.008) 0.798 (±0.009)

MESH95
∗ 96.45 (±0.03) 93.25 (±0.13) 31 (±1.4mm) 26 (±2) 0.767 (±0.004) 0.803 (±0.004)

ConvNet∗ 97.87 (±0.16) 96.14 (±0.25) not applicable not applicable 0.803 (±0.012) 0.837 (±0.013)

Table 7. Confusion matrix for three different methods on the test set: POHDelobbe, MESH95 and the ConvNet. Each confusion matrix cell in

(b) contains performance of different models that are specified in (a). The different variants proposed are explained in section 4.3

(a)
POHDelobbe MESH95

best best

ConvNet
POHDelobbe MESH95

1 km2 1 km2

(b)
Predicted

1 0
404 396 42 50

1 413 33

O
bs

er
ve

d 444 444 2 2

80 68 870 882
0 61 889

552 364 398 586
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Figure 13. ROC curves and precision recall curves for models applied to the test set. The average curve obtained from the 10 fitted ConvNet

models is shown as a solid black line along with the uncertainty interval (±σ, shaded area). Colored curves show the hail proxies with the

βX value that produced the highest AUC-ROC. Dashed gray line corresponds to the best variant of A13 with severe hail detected when the

hail size is equal or above the small hail class (SH). Each point in the solid black line corresponds to a discrimination threshold α ∈ [0,1].

Each point within the colored curves and the dashed grey line corresponds to a discrimination area βAX in km2.

4.3 Comparison with state of the art

The performance of the 10 ConvNet fitted models is compared to the hail proxies on the test set. The results are summarized

in Fig. 13 as ROC and Precision-Recall curves. Table 6 summarizes the global metrics with the feature threshold values and

threshold areas leading to the best performance.540

Overall, high AUC values are observed for all the hail proxies except A13 and POSH (Table 6). This demonstrates their

capacity to optimise their performance if the threshold value above which they produce severe hail (βX ) is meticulously

selected. It is in accordance with several studies that have emphasised the significance of calibration in order to optimise

the performance of existing hail proxies (Murillo and Homeyer, 2019; Ortega, 2021; Brook et al., 2024; Kopp et al., 2024).

The validation framework developed in this study permits the further investigation of the performance of hail proxies by545

incorporating an additional discrimination threshold on the area covered by the feature (βAX
).
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The best performance for severe hail detection overall is reached by the ConvNet model, with an average AUC-ROC of

0.979 and an average AUC-Pr-Re of 0.961 (Table 6). It also reaches the best performance in CSI and HSS, with 0.803 and

0.837 respectively. The low variance around mean values demonstrates a consistent behaviour among the models trained using

cross-validation. Furthermore, the results indicate that the network generalises well when applied to unseen data within the test550

dataset. The ConvNet exhibits the optimal trade-off between POD and POFD among all models. Table 7 shows a confusion

matrix for different variants of the ConvNet and hail proxies. The number of false alarms for the best ConvNet, i.e. the ConvNet

with the highest AUC-ROC at a discrimination probability of α= 0.12, are the lowest among all methods (61 in total - Table

7). The results demonstrate that a shallow CNN architecture is capable of identifying relevant features indicative of severe hail

on the ground.555

According to Table 6, the second-best methods for detecting severe hail on the test set are the hail proxies MESH95 and

MESH75. The performance in terms of PSS for the MESH95 is the best for βX = 33mm and βAX
= 23km2. For MESH75, the

best PSS is at βX = 22mm and βAX
= 25km2. This is consistent with the findings of the feature importance study (section

4.2), which identified MESH variables as the most crucial variables for the ConvNet to detect severe hail on the ground. The

feature thresholds in Table 6 are also in accordance with what can be found in other studies (Murillo and Homeyer, 2019;560

Ortega, 2021; Brook et al., 2024). When employed either independently or as an input feature to a CNN framework, the results

on the test set demonstrate that MESH remains effective for the discrimination of severe hail on the ground, even at C band.

The POSH and the fuzzy-logic algorithm (A13) appear to be less effective when compared to other methods, as evidenced

in Table 6. In the case of POSH, the application of the warning threshold (WT) in Equation (5) may be considered a potential

explanation for the decrease in performance. The denser vertical sampling, higher ZH and lower attenuation of U.S. S-band565

radars compared to French C-band radars result in SHI values that may be smaller than the ones expected at S-band. Conse-

quently, the WT fitted to the S-band radars may remove a significant proportion of pixels with low SHI values in this study.

This can be verified in Fig. 5, where the POSH values cover a smaller area than other hail proxies. One potential solution would

be to modify the fit of POSH in order to adapt it to the French radar network. The performance of the fuzzy-logic algorithm

(A13) varies significantly depending on the hail class used as a feature threshold (i.e. ≥ SH, ≥ MH, ≥ LH), as evidenced in570

Table 6. In essence, the performance of the algorithm declines significantly as the threshold for hail class is increased, as the

model with small hail as a threshold is the best among all other hail classes (A13small, Table 6). This may indicate a propensity

of the fuzzy-logic scheme to model severe hail as small hail (SH - < 0.5cm) rather than large hail (LH - ≥ 2cm). This may

demonstrate that an improvement is possible in the design of the bi-dimensional membership functions of hail classes within

A13 (see Appendix C), as the small hail and medium hail class may in reality represent larger hail sizes than those indicated.575

The variation in the local performance of hail proxies for different pairs (βX , βAX
) is also investigated in order to demon-

strate the potential for compromise in operational use. The variations in performance are presented in the form of PSS matrices

in Fig. 14. The PSS matrix indicates that the local performance for a given feature threshold (βX ) can be modified by adjust-

ing the discrimination area (βAX
). The PSS values demonstrate that the local performance of hail proxies can be markedly

improved by implementing an optimised pair (βX ,βAX
). In fact, Fig. 14 indicates that the thresholds yielding the highest PSS580

for the hail proxies are not exclusive and lie within a broad range of potential feature thresholds and discrimination areas.
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To investigate further the consequences of the threshold selection in terms of false alarms, two pair variants are evaluated

for two of the most effective hail proxies: POHDelobbe and MESH95. The pairs are the following:

1. the (βX , βAX
) pair that produced the highest PSS among all thresholds.

2. the following pairs:585

– (βX = 50%, βAX
= 1km2) for POHDelobbe

– (βX = 30mm, βAX
= 1km2) for MESH75.

The latter pair variant was considered a baseline model for both proxies, where 30 km×30 km images are classified as produc-

ing severe hail if an area of at least 1km is found within POHDelobbe ≥ 50% and MESH95 ≥ 30mm, respectively. The results of

this local performance analysis are given as a confusion matrix in Table 7. The confusion matrix indicates a significant increase590

in the number of false alarms when a small area of 1km2 is used to trigger the severe hail detection for the hail proxies, in

comparison to their optimal variant. The number of false alarms increases from 68 to 364 (+435%) for MESH95 and from 80

to 552 (+590%) for POHDelobbe. Although anticipated, the results demonstrate that incorporating fairness into the prediction of

existing hail proxies by considering both a threshold value and the area they cover is more effective than a simple verification

that would rely on the nearest hail proxy pixel within a certain radius around a location.595

Additionally, the ROC curves (Fig. 13) indicate that the majority of the hail proxies compared in this study can be considered

to have equivalent skill for severe hail detection on the test set if the threshold value is optimized. This demonstrates that the

proper tuning of an operationally deployed hail detection technique can result in a satisfactory level of severe hail detection, in

accordance with other studies (Ortega, 2021; Brook et al., 2024; Ackermann et al., 2024; Kopp et al., 2024). This interpretation

as well as the threshold values may change according to the specifities of each national radar network, particularly for different600

radar bands and scanning strategies where more vertical sampling is available.

Finally, the inference of the ensemble of the ten ConvNet models is assessed on a hail event that occurred on the 11th July

2023 between 17:00 and 19:00 (UTC). The situation is extracted from the test dataset. The results are presented in Fig. 15. The

average probability of severe hail at the ground predicted by the ten models is denoted as P . The computation is performed

on images with dimensions of 30 km× 30 km around cell centroids every 5min. Cell centroids are obtained using the cell605

identification algorithm ’tobac’ (see Appendix A). Throughout the hail event and the life cycle of different cells, the ConvNet

models demonstrate a consistent behaviour. The cells responsible for the severe hail reports are accurately identified, exhibiting

a high probability of severe hail (large circle). One particular cell appears to have reached a mature stage, capable of producing

severe hail on the ground for about one hour and a half, which is consistent with the characteristics of long-lasting, highly

organised convective systems such as multicell or supercell systems. A notable proportion of cells exhibiting high reflectivity610

(≥ 60dBZ) are not identified as producing severe hail on the ground by the ConvNet models (P < 0.4, grey lines without

circles). Although severe hail reports may be subject to reporting bias, this could highlight the potential of CNNs to capture

relevant information within the morphology of storms and use it to discriminate severe hail storms from other storms. The

main advantage of performing the inference with an ensemble of ConvNets is the computation of uncertainty intervals. The
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Figure 14. Peirce skill score (PSS) matrix for hail proxies with varying feature thresholds (βX ) and discrimination areas (βAX ).

uncertainty appears to increase when the predicted probability of severe hail decreases (reduced circle radius, brighter colour),615

indicating a decline in prediction consistency when the ConvNets encounter an edge case, i.e where rain or small hail below

2 cm might be produced. A small oscillation in the average probability and uncertainty is visible every 5min within the north

eastern cell in Fig. 15, probably due to the different vertical sampling at each timestep implemented in the VCPs (Table 1) that

have an impact on important features of the CNN. However, a more comprehensive analysis of the inference on unseen events

is necessary to gain a deeper understanding of the underlying causes of error in the prediction.620

5 Conclusions

This study demonstrated the development and validation of a convolutional neural network (CNN) for the detection of severe

hail (≥ 2cm) on the ground. The framework for CNN validation, comprising a heavily filtered severe hail dataset and a rain or

small hail dataset, enabled an extensive comparison of existing radar-based hail proxies on the severe hail detection problem.

The conclusions of this work are as follows:625
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Figure 15. Predictions of ten ConvNet models on the 11th July 2023 between 17:00 and 19:00 (UTC). The maximum over two hours of the

national reflectivity composite is shown in background (orange). Grey lines represent the cell tracks detected with the ’tobac’ cell-tracking

algorithm (Appendix A). Green triangles represent severe hail reports (≥ 2cm) from the ESWD database within the two hours. Circles

represent the cell centroids every 5min. Their average probability of severe hail P (circle size) and its affiliated uncertainty σ (blue scale)

are computed with the predictions of ten ConvNet models applied to 30 km× 30 km images around centroids. Cell tracks without circles

(pure grey lines) contain cell centroids with P < 0.4.

1. a shallow CNN architecture, named ConvNet, was constructed and selected from among three different CNN archi-

tectures. It demonstrated superior performance for severe hail detection within radar images compared to existing hail

proxies on a test dataset comprising 1396 radar images with dimensions of 30 km× 30 km, which included severe hail

and rain or small hail between 2018 and 2023. This was achieved while utilising the radar information of a unique

timestep.630

2. a feature importance study demonstrated that incorporating hail proxies, such as MESH, as input features to the ConvNet

enhanced its prediction. Other important features were Zmax
H , ET45 and ρ2000m

HV .

3. a comparison with existing hail proxies led to the conclusion that three hail proxies (MESH, POSH and POH) can be

considered equivalent for severe hail detection on the test dataset if their performance is assessed using a tuned threshold

value and a tuned discrimination area. Furthermore, the number of false alarms can also be drastically reduced if a635

threshold value and a discrimination area are chosen accordingly.
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4. the study showed an example of application in real time, where the ConvNet’s inference was contingent upon the de-

tection of cell centroids via a cell identification and tracking algorithm. Its performance seemed to align with observed

hail during an event within a large geographical domain. However, a more comprehensive performance validation across

future events remains necessary.640

The hail proxies examined in this study demonstrate satisfactory performance on the severe hail detection task when their

parameters are optimised. The optimized parameters, particularly the feature threshold values βX , align with those of previous

studies (Murillo and Homeyer, 2019; Ortega, 2021). All existing hail proxies, with the exception of two, performed similarly

on the test dataset. While their optimal local performance may be achieved through the use of varying threshold values and

discrimination areas, it appeared that storm proxies such as echo tops for POH proxies or underlying weighted integrated645

reflectivity values for MESH proxies demonstrated relevance in capturing crucial information about the presence of hail aloft.

This relevance appears to be well-suited to the challenging issue of severe hail detection on the ground, based on the results of

this study. The POSH exhibits suboptimal performance, likely due to the presence of a warning threshold that eliminates low

SHI values at C band, owing to the low vertical sampling of French radars. The fuzzy-logic algorithm developed at Météo-

France (A13), with capabilities for severe hail detection, encounters challenges due to the small and medium hail classes below650

2 cm, which may represent larger hail sizes in reality.

The feature importance study yielded insights into the decision-making process of the ConvNet. The MESH proxies were

identified as valuable input features, in addition to Zmax
H , ρ2000HV and ET45. This aligns with the strong performance of MESH

proxies for severe hail detection (Table 6). The majority of the most significant variables are based on reflectivity, indicating

that storm proxies based on this variable remain a valuable tool for the detection of severe hail on the ground.655

One limitation of the current study is that only one timestep is used to perform a prediction associated with a report and

to compare the CNNs with hail proxies. The life cycle of the storm is not taken into account when performing a severe hail

prediction. This ultimately decreases the importance of input features that have a forecasting potential for storm severity, such

as ZDR columns, in this study. Nevertheless, the performance of the aforementioned methods on the test set was generally

satisfactory, suggesting that the reported time of the hailfall may be sufficient for the detection of severe hail in this study.660

However, even after heavy filtering, uncertainty may remain regarding the location and time of severe hail. This uncertainty

may compromise the generalisation of the CNN on cases that were not included in the training data, if a significant proportion

of the severe hail cases on which it was trained were misplaced in space and time, or if there was a systematic error in time

and location. However, this uncertainty was, as much as possible, taken into account by manually repositioning in time severe

hail cases in the vicinity of a visible storm. Additionally, the construction of images of 30 km× 30 km around the reports665

allows for a more comprehensive view of the storms, thereby reducing the impact of potential errors in reports’ location on the

performance of the CNN.

The translation of the developed CNN into operations is contingent upon the implementation of a cell tracking algorithm.

As the CNN was trained with radar images of storms, the storms must be identified prior to applying the CNN. The potential

volatility in cell tracking due to the high sensitivity of such techniques to their input parameters can increase the inference670

time of the approach, depending on the number of cells identified every five minutes. In order to detect severe hail, it is
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recommended to examine cells that have produced reflectivities of at least 45 dBZ. The cell-identification algorithm and the

production of input features for the CNN may require a greater investment of computational time and resources than existing

hail proxies. The necessary 3D interpolation can be particularly costly. However, this additional computational time can be

offset in real-time by the cell-identification algorithm. The input features can be generated for a 30 km× 30 km area centered675

on cell centroids, which significantly reduces the computational time required for the processing of volumetric radar data into

3D grids in comparison to producing them for the entire national territory, even in areas where there is no reflectivity data

that suggests the presence of hail. Furthermore, limiting the inference to useful domains around cell centroids allows for the

parallelisation of data processing and inference, which may be crucial for reducing the lag time for real-time applications.

Efforts were made to construct the input features in a way that would minimise the impact of attenuation and resolution680

decline with range. The use of 3D interpolated grid and volumetric radar data from the two nearest radars enabled the model

to be less sensitive to these factors. However, it should be noted that extreme attenuation may not always be taken into account

in situations at the border of the French national domain. This may have an impact on the predictability of the ConvNet. The

use of radar data from neighbouring countries (Germany, Switzerland, Italy, Belgium, Spain) may help to decrease the impact

of attenuation in these critical regions.685

Despite the implementation of precautionary measures in this study, the challenge of developing effective solutions for

severe hail detection in France persists due to the scarcity of data, particularly severe hail reports. The results were analysed

on a test dataset of 1,396 radar images. While a consistent behaviour was visible in the metrics and on a broader hail event,

further validation will be crucial for the CNN to validate its global performance and assess its generalisation to unseen cases.

Furthermore, the specificities of the French radar network have an impact on the importance of variables and the output of690

the CNN in this study, particularly the radar band and the low vertical sampling. It is strongly advised that such deep learning

methods be developed and tested on the specific characteristics of different national data and severe hail reports databases in

order to validate the effectiveness of CNNs in detecting severe hail on the ground. The incorporation of radar data and hail

reports from neighbouring countries could significantly enhance the relevance of deep learning methods for a common hail

warning system in real time.695

This study establishes the foundation for the use of convolutional neural networks (CNNs) to study the morphology of

storms and extract relevant information for the detection of severe hail. The interpretability of such methods is a crucial aspect.

Ongoing work includes the implementation of attribution methods that will facilitate the interpretation of the prediction of

the CNN. Attribution methods for neural networks, such as saliency maps, Sobol attribution or GradCAM (Fel et al., 2022),

are currently being explored in order to gain insight into the decision-making process of the CNN. Future work will probably700

involve the gathering of more data and the increase in the number of features, particularly polarimetric features above the

melting layer. Based on the results of this study, deep learning techniques may have the potential to answer a bigger problem:

hail size estimation. Ongoing work also entails the development of a framework for the testing of such methods on the hail size

estimation problem.
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Appendix A: Cell-identification algorithm for inference710

An advanced cell-tracking algorithm was employed on a single event to illustrate the inference process for the methods devel-

oped herein (Fig. 15). The use of a different cell tracking algorithm for inference is necessary because the former algorithm (i.e.

the algorithm presented in section 2.4) is not always able to accurately locate cell centroids. In the first cell tracking algorithm,

centroids are defined as the geometric mean within the contours and are not weighted by the reflectivity values within the cell.

As a result, centroids may not be within the cell core, but far away from it, preventing continuous tracking of cells every 5min.715

The more sophisticated cell-tracking algorithm for inference is based on the open-source Python package tobac (Heikenfeld

et al., 2019). It comprises a toolbox where cell tracking and segmentation algorithms can be applied using different param-

eters. In this study, the cell tracking feature is employed exclusively within the inference process. Cells are identified within

the national composite reflectivity as one or more contiguous regions of reflectivity values that meet or exceed a threshold.

The thresholds used in this study are 36 dBZ, 42 dBZ and 48 dBZ. Additional parameters are used to set a minimum cell size720

per threshold: 30 km2, 10 km2 and 2 km2 respectively. As multiple reflectivity thresholds are specified, the centroid of each

42 dBZ cell that exist within a 36 dBZ region supersede and replace the centroid detected for the encompassing 36 dBZ cell, as

explained in Heikenfeld et al. (2019). The centroids are identified by calculating a weighted mean of reflectivity values within

the cells. The combination of different thresholds allows for the detection of cell centroids for cells at their initial or decay

stage, as well as the identification of cell cores during the mature stage.725

Appendix B: Storm mode assessment

In order to gain further insight into the database, a storm mode assessment was conducted. The storms responsible for the

production of severe hail cases and rain or small hail cases were categorised into four distinct modes: supercell, multicell,
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isolated cell and unknown. However, it was deemed impractical to label the storms that produced all the reports presented

above. Indeed, a certain proportion of the cases were isolated, and manually labelling them would have required too much730

time. As a result, only the clusters comprising at least two cases were labelled. For the severe hail cases, all were kept. For

the rain or small hail cases, only the most severe with a cell producing a maxZH ≥ 56dBZ were kept. This likely introduces

a bias towards more severe storm modes and provides an inaccurate representation of the occurrence of certain storm modes,

particularly isolated cells. Nevertheless, it was deemed necessary to examine the data, despite the potential for inaccuracy, in

order to ascertain whether a discernible signal existed with regard to specific storm modes in relation to storms accompanied735

by severe hail.

The clusters of cases were created using a spatio-temporal DBSCAN algorithm (ST-DBSCAN, Birant and Kut, 2007). The

severe hail cases are clustered with δx= 15km and δt= 10min. The rain or small hail cases are clustered with δx= 30km

and δt= 60min. A higher spatio-temporal tolerance was selected for the rain or small hail cases, as they are geographically

scarcer than the severe hail cases. The national composite reflectivity product (Caumont et al., 2021) and the cells detected by740

the first cell identification algorithm (Morel and Sénési, 2002) are gathered around ±90min before and after the first and the

last case of the cluster, respectively. All the data is superimposed in a visualisation tool that enables navigation through time

during the life cycle of the storm, facilitating the identification of relevant signatures for labelling. The labelling was performed

independently by two meteorologists, and the results were cross validated.

For supercells, typical signatures in the reflectivity composite were searched: a hook echo, a cell splitting, and/or a deviation745

of the cells to the right (or to the left) of the main flux (Markowski and Richardson, 2011; Houze, 2014). In the event that a

clear line of cells was discernible, the cluster was designated as being part of a multicell system. Conversely, if a cell exhibited

a brief lifespan and was isolated from any broader convective system, it was classified as an isolated cell. In the absence of any

of the aforementioned criteria or in the event that a determination was precluded due to the passage of multiple cells above the

cluster in a brief period of time, the cluster was designated as unknown.750

A total of 224 severe hail clusters and 113 rain or small hail clusters were labelled. The results are presented in Table B1.

Supercells produce 69.9% of the severe hail on the ground within this study. This shows the predominance of supercells in the

production of severe weather compared to other storm modes, which is in accordance with previous studies (Markowski and

Richardson, 2011). The rain or small hail dataset is mainly populated by multicell convective systems (86%) while only 3.4%

were produced by supercells.755

The conclusions in this paragraph remain highly entitled to the data used and the portion of cases selected to perform the

storm mode assessment.

Appendix C: Updated fuzzy-logic algorithm in C band from Al-Sakka et al. (2013)

The fuzzy-logic algorithm for hydrometeor classification (A13) currently operational at Météo-France corresponds to an up-

dated version of the algorithm developed from Al-Sakka et al. (2013), with three new hail classes. The update was performed760

to tackle the lack of robustness in the membership functions for hail in the original study (see conclusions of Al-Sakka et al.,

36



Table B1. Storm mode on 224 severe hail cases (≥ 2cm) and 113 rain or small hail cases below 2 cm.

Severe hail (≥ 2cm) Rain or small hail (< 2cm)

Supercell 69.9% 3.4%

Multicell 19.3% 86.6%

Isolated cell 4.4% 4.3%

Unknown 6.4% 5.7%

Total 224 113

2013). The following classes are now computed: 1) rain (RA), 2) wet snow (WS), 3) dry snow (DS), 4) ice (IC), 5) small hail

(SH; < 0.5cm), 6) medium hail (MH; 0.5 cm to 2 cm) and 7) large hail (LH; > 2cm). The three hail classes replace the former

single hail class (HA) of Al-Sakka et al. (2013).

The fuzzy-logic scheme is based on radar variables ZH , ZDR, ρHV and KDP. The brightband (BB) location is also used765

and produced using the method presented by Tabary et al. (2006), which is based on the cross-correlation coefficient ρHV at

high elevations. Finally, the temperature T is used to discriminate regions where certain hydrometeor types are not allowed.

Temperature is deduced from the nearest NWP-derived sounding from the ARPEGE global model (Bouyssel et al., 2022) at

the radar location.

The principle of the fuzzy-logic algorithm relies on the computation of a weight for each hydrometeor class. The hydrom-770

eteor class having the highest weight becomes the hydrometeor class of the radar gate. The weight is computed thanks to

membership functions (1-dimensional and 2-dimensional) built on a-priori knowledge of the single and dual-polarisation sig-

natures for the hydrometeor classes.

The weight is defined as follows:

WF
i = F i(ZH)F i(T )F i(BB)

[
F i(ZH ,ZDR)+F i(ZH ,KCP )+F i(ZH ,ρHV )

]
(C1)775

where i stands for the hydrometeor type and F represents the membership grade (between 0 and 1) coming from both one-

dimensional and two-dimensional membership functions.

The one-dimensional membership functions F i(ZH), F i(T ) and F i(BB) for all hydrometeor types are presented in Fig. A1.

As they are multiplicative terms in the weight, the presence of certain hydrometeor types is heavily driven by the reflectivity,

the temperature profile at the radar site and the position of the radar gate to the BB.780

The two-dimensional membership functions F i(ZH ,ZDR), F i(ZH ,KDP ) and F i(ZH ,ρHV ) for hail depending on the rel-

ative position to the BB are presented in Fig. B1. For other hydrometeor classes, refer to Al-Sakka et al. (2013). To simplify

the visualization, only regions with a membership grade superior to 0.7were kept, but membership grade values exist outside

the intervals shown in Fig. B1.

785
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Figure A1. One-dimensional membership functions of the updated fuzzy-logic classification algorithm at Météo-France (A13). (a) F i(ZH),

(b) F i(T ), (c) F i(BB). F i(BB) is shown with an altitude of freezing of HT=0◦C = 2000 masl (meters above sea level) computed by the

AROME model, and a melting layer bottom of MLB = 1800 masl computed using the BB location algorithm of Tabary et al. (2006)
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Figure B1. Two-dimensional membership functions of the updated fuzzy-logic classification algorithm at Météo-France (A13) with small

hail (SH), medium hail (MH) and large hail (LH). The position relative to the BB is specified as under (−), within (∼) and above (+)
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