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Abstract. Wetlands are major contributors to global methane emissions. However, their budget and temporal variability re-

main subject to large uncertainties. This study develops the Satellite-based Wetland CH4 model (SatWetCH4), which simulates

global wetland methane emissions at 0.25°x0.25° and monthly temporal resolution, relying mainly on remote sensing products.

In particular, a new approach is derived to assess the substrate availability, based on Moderate-Resolution Imaging Spectrora-

diometer data. The model is calibrated using eddy covariance flux data from 58 sites, allowing for independence from other5

estimates. At the site level, the model effectively reproduces the magnitude and seasonality of the fluxes in the boreal and

temperate regions, but shows limitations in capturing the seasonality of tropical sites. Despite its simplicity, the model provides

global simulations over decades and produces consistent spatial patterns and seasonal variations comparable to more complex

Land Surface Models.
::::
Such

::
an

:::::::::::
independent

:::::::::
data-driven

::::::::
approach

:::::
based

::
on

:::::::::::::
remote-sensing

:::::::
products

::
is
::::::::
intended

::
to

::::
allow

::::::
future

::::::
studies

::
of

::::::::::
intra-annual

:::::::::
variations

::
in

:::::::
wetland

:::::::
methane

:::::::::
emissions.

:
In addition, our study highlights uncertainties and issues in10

wetland extent datasets and the need for new seamless satellite-based wetland extent products. In the future, there is potential

to integrate this one-step model into atmospheric inversion frameworks, thereby allowing optimization of the model parameters

using atmospheric methane concentrations as constraints, and hopefully better estimates of wetland emissions.

1 Introduction

The article 1.1 of the Ramsar Convention (1971) defines wetlands as "areas of marsh, fen, peatland, or water, whether natural15

or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish, or salt, including marine water areas

the depth of which at low tide does not exceed six meters". Each wetland exhibits very specific local conditions, such as water

source (ombrotrophic or minerotrophic source) and quantity (groundwater level, soil moisture), vegetation (types, density), and
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soil properties (pH, carbon content, microbial communities). These areas harbor a rich biodiversity of flora and fauna and play

a significant role in regulating water resources, water purification, and flood prevention (Denny, 1994; Meli et al., 2014).20

Wetlands are also a crucial element for climate. On the one hand, waterlogged conditions in wetlands lead to a reduction in

the rate of decomposition of soil organic carbon (SOC) and thus to a significant accumulation of carbon, such as in peatlands.

This wetland SOC stock has been estimated at around 520 to 710 PgC worldwide (Poulter et al., 2021). On the other hand,

anaerobic conditions favor the production of methane (Torres-Alvarado et al., 2005), a powerful greenhouse gas with a global

warming potential of 80 ±26 over 20 years (IPCC 2021 AR6 Chap.7, Table 7.15). In the last Global Methane Budget (GMB)25

(Saunois et al., 2020), it has been estimated that methane emissions from wetlands contribute for approximately 12 to 36%

of the total methane sources. These estimates have been established from bottom-up (102-182 Tg CH4 yr−1, 12-31% of total

annual sources) and top-down approaches (159-200 Tg CH4 yr−1, 27-36% of total annual sources).

Top-down approaches rely on a prior estimate of the ensemble of methane fluxes, including prior knowledge of wetland

emissions, and are therefore dependent on bottom-up estimates. Bottom-up approaches estimate methane fluxes from wetlands30

using formulations ranging from the simplest to the most complex, such as in Land Surface Models (LSMs). LSMs represent

the budgets of water, energy, and carbon under some meteorological constraints. They account for soil processes in a series of

successive steps that explicitly simulate part or all of the following processes: methane production, oxidation, and transport by

diffusion, ebullition or higher plants (Riley et al., 2011; Morel et al., 2019; Salmon et al., 2022).

In the context of climate change, understanding past and predicting future trends in global wetland methane emissions are35

key issues, but these trends are still uncertain (Jackson et al., 2020). Although they try to represent complex pathways involved

in methane emissions, LSMs models still lead to significant uncertainties in terms of global total emissions, seasonal cycle and

spatial patterns (Melton et al., 2013; Saunois et al., 2020). In particular, the internal wetland surface area varies considerably

from one LSM to another (Melton et al., 2013). Moreover, a large part of the studies (Zhu et al., 2013; Bohn et al., 2015;

Guimberteau et al., 2018; Peltola et al., 2019; Qiu et al., 2019; Salmon et al., 2022; Tenkanen et al., 2021; Kuhn et al., 2021;40

Rößger et al., 2022) focus only on boreal and temperate regions. In fact, the boreal regions are of great interest because

temperatures there are rising faster than the global average (England et al., 2021; Post et al., 2019; Previdi et al., 2021) and

permafrost is thawing, which could lead to large increases in carbon dioxide and methane emissions (Schuur et al., 2022).

However, about three quarters of global wetland methane emissions actually occur in tropical regions (Saunois et al., 2020),

where wetland methane emissions are still poorly understood (Meng et al., 2015), partly due to the scarcity of measurements45

in tropical wetlands compared to boreal and temperate regions (Delwiche et al., 2021).

Simpler formulations than LSMs, operating on a global scale (Gedney, 2004; Bloom et al., 2017; Albuhaisi et al., 2023)

implicitly represent soil processes in a one-step approach between soil organic carbon content, which is the main substrate for

methanogenesis, and CH4 emissions. While these models may not provide greater accuracy compared to LSMs, they have the

advantage of operating faster (within a few seconds) and relying on only a few parameters and variables. They provide quick50

estimates and can be valuable for sensitivity testing or trend analysis. Typically, the variables considered in the different models

are the wetland area, the soil temperature, a proxy for carbon substrate and sometimes a local water variable (water table depth,
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WTD, or soil water content, SWC). The differences between these simple models depend on the equation formulation, the

choice of data sets used to constrain the variables and the calibration method.

Methanogenic bacteria use organic carbon from litterfall, root exudates, dead plants and dissolved organic carbon that has55

already been broken down to low molecular weight molecules by other microorganisms (Nzotungicimpaye et al., 2021; Torres-

Alvarado et al., 2005; Bridgham et al., 2013). Quantifying the organic matter available for methanogenesis is not trivial, as

it cannot be measured directly. Many proxies are used in the literature without a consensus being found (Wania et al., 2013;

Melton et al., 2013): Some models use NPP as a proxy (e.g. UW-Vic, Walter and Heimann (2000)), while others consider

that methane production could be derived by multiplying heterotrophic respiration by a CO2:CH4 ratio (e.g. LPJ, CLM4Me,60

SDGVM). Other models use SOC as a proxy for carbon available for methanogenesis (Gedney, 2004). However, not all SOC

can be used for respiration by methanogenic bacteria. Carbon pool models are embedded in some LSMs such as ORCHIDEE

(Ringeval et al., 2010; Salmon et al., 2022) to distinguish readily available SOC from recalcitrant SOC.

In the absence of global data on substrate availability, Gedney (2004) proposed a simple equation based on wetland fraction,

temperature, and total soil carbon. These three variables were modelled using the Met Office climate model (Gordon et al.,65

2000) coupled to the land surface scheme MOSES-LSH (Gedney and Cox, 2003), and their model was run for the period 1990-

1998. Bloom et al. (2017) also used a simplified approach based on an equation relying on wetland fraction, soil temperature,

soil heterotrophic respiration, and fed with different datasets, forming the WetCHARTs 1.0 ensemble for 2001-2015. The

heterotrophic respiration data were derived by terrestrial biosphere models. In general, the proxies used in these studies are

derived from models (LSMs, hydrological models...) and in some rare cases from remote sensing data. Recently, Albuhaisi70

et al. (2023) proposed a methane emission formulation fed only by satellite and satellite-derived data sets for soil moisture and

SOC. However, this approach was carried out only in the boreal region for the period 2015-2021.

The calibration methods of these approaches have varied in recent years due to important changes in the available data.

The first attempt by Gedney (2004) assumed that the global atmospheric concentration anomalies were solely due to wetlands.

This approximation is highly questionable according to current estimates of anthropogenic and natural methane emission75

trends (Jackson et al., 2020). Too few flux data measurements were available in the early 2000s to be used for calibration. In

WetCHARTs (Bloom et al., 2017), the model calibration was performed by constraining total wetland methane emissions to

the GMB ensemble mean (Saunois et al., 2016), and as such was not independent of other LSM approaches. However, recent

efforts by the FLUXNET community (Delwiche et al., 2021) have led to the construction of a unified database of methane

fluxes measured by eddy covariance worldwide, offering the possibility of new independent calibration methods. The eddy80

covariance method provides stable and continuous in situ flux measurements over relatively large areas (>100m2) with limited

environmental disturbance (Baldocchi et al., 2001; Kumar et al., 2017). The FLUXNET-CH4 database includes some ancillary

data such as soil temperature, gross primary productivity, WTD or SWC, but not for all sites. An important issue is still the

inhomogeneous distribution of flux towers across the globe, with sites mainly located in temperate and boreal regions. Albuhaisi

et al. (2023) used 12 flux stations available between 2015 and 2018 from the FLUXNET-CH4 database to calibrate the scaling85

parameter of their boreal emission models, but the two other parameters (Q10 and T0) were set according to literature values.
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In addition to this improvement in available methane flux data, new dynamic estimates of wetland area have emerged

since the studies of Gedney (2004) and Bloom et al. (2017). These estimates are based on either satellite observations or

hydrological models.
:::
The

:::::::
Wetland

::::
Area

::::
and

::::::::
Dynamics

:::
for

::::::::
Methane

::::::::
Modeling

:::::::
product

:
(WAD2M

:
), published by Zhang et al.

(2021a), provides a complete dynamic map of wetlands, including peatlands. It is partly based on satellite data and is widely90

used in the community, especially for the GMB (Saunois et al., 2020). Xi et al. (2022) produced an ensemble of 28 wetland

extent products derived from TOPMODEL, a hydrological model.

Recently, McNicol et al. (2023) developed a random forest framework (UpcH4) to predict CH4 fluxes based on 43 wetland

sites from the FLUXNET-CH4 database. This approach combined with WAD2M wetland surfaces estimates allowed them to

provide independent global data-driven empirical upscaling of wetland CH4 emissions.95

Our study aims to revise the simplified process-based modelling approach for wetland methane emissions proposed by Ged-

ney (2004), taking advantage of recent developments. The objective is to develop a model framework capable of assessing

the main features of wetland methane emissions (annual budget, seasonal cycle, spatial distribution) on a global scale with

a resolution of 0.25°x0.25°, with a focus on methane fluxes inter-annual variability. The Satellite-based Wetland CH4 model

(SatWetCH4) is based on a data-driven approach, mostly fed with satellite-derived datasets, to allow fast and easy sensitivity100

calculations. SatWetCH4 provides an independent estimate, and uses in situ eddy covariance data for model calibration. Par-

ticular attention has been paid to the proxy for available carbon. As methanogenic activity has been shown to be related to

plant productivity (Bridgham et al., 2013), here we use a MODIS plant photosynthesis product to derive a Csubstrate dataset

to assess the organic matter available for methanogenesis, as described in Sect. 2.1. The aim of deriving the Csubstrate product

is to obtain a carbon product that 1) best represents the carbon available for methanogenesis, 2) is dynamic, 3) is based on105

satellite data, and 4) is independent of LSMs.

Section 2 presents the materials and methods, including the model, the satellite-based input datasets and the calibration pro-

cedure. Optimization results are presented in Sect. 3.1, followed by a site-level evaluation of the model in Sect. 3.2. The global-

scale results for the period 2003-2020 are presented in Sect. 3.3. Section 4 examines the model’s limitations and prospects for

improvement given the current state of modeling.110

2 Materials and Methods

2.1 Model description

We estimate the methane flux using the following formulation, similar to that of Gedney (2004):

FCH4 = kfwCsubstrateQ10(T )
(T−T0)/10 (1)

where k is a scaling factor, fw the wetland fraction of the pixel, Csubstrate the carbon content that is available for methanogen-115

esis, and T the soil temperature. Q10(T ) depends on Q0
10 the temperature sensitivity of methanogenesis and T . It is defined by

Q10(T ) =Q0
10

T 0/T . T 0 is set to 273.15◦K
::::::::
273.15K, resulting in low emissions for frozen or near frozen soils. Consequently,

Q0
10 and k are the two parameters to be calibrated.
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The substrate available in the soil for methanogenesis, Csubstrate, is calculated independently, upstream of the model. It is

constructed as a litter pool model scheme and depends on temperature, Net Primary Productivity (NPP) and varies with time.120

This Csubstrate is computed using the following equation :

dCsubstrate

dt
=NPP −K(T )Csubstrate (2)

In this scheme, the available substrate is assumed to originate mainly from photosynthesis, which is approximated as NPP.

The second term represents the carbon loss due to soil heterotrophic respiration, which depends on a turnover rate function

K(T ) =KrefQ
(T−T ref

K )/10
10K . Kref reflects the reference turnover time, Q10K the temperature sensitivity coefficient of respi-125

ration, and T ref
K the reference temperature. Incubation experiments (Parton et al., 1987; Khvorostyanov et al., 2008; Schädel

et al., 2014) provided estimates of K between 0.2 and 2.5 yr−1, corresponding to a residence time of carbon in soils be-

tween 0.4 and 5.5 years. Therefore, to obtain a consistent K, the model parameters are set to Kref = 1/2yr = 0.5yr−1,

T ref
K = 303.15◦K

::::::::::::::
T ref
K = 303.15 K, and Q10K = 2.

The global estimate of Csubstrate is established in advance by discretizing Eq.2 at monthly time steps. The Csubstrate was130

primarily run for 100 years to reach an equilibrium stage, constrained with 2001 NPP values obtained from remote sensing

data (Zhang et al., 2017) detailed in Sect. 2.3. NPP data between 2003 and 2020 were then used to estimate Csubstrate over the

same period on a monthly scale.
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2.2 In situ data
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Figure 1. Sites distribution per a. length of available observation period, b. wetland type and c. geographic location. In map c., because of

their close location (few km) some sites overlaps. Site color depends a. and b. on site latitude : boreal (55°N-90°N), temperate (30-55°N or

°S), or tropical (30°S-30°N), and c. on wetland type.

Eddy covariance time series of methane fluxes from different databases were combined in order to use robust, continuous135

and the longest methane flux monitoring period recorded at each site. In situ data from 58 wetland sites were collected from

FLUXNET-CH4 (Delwiche et al., 2021), AmeriFlux (Baldocchi et al., 2001), EuroFlux (Valentini, 2003). In addition, data

for BW-Gum and BW-Npw sites were obtained from the UK Centre for Ecology & Hydrology website, and IN-Pic data were

provided through personal exchanges with the principal investigator, P. Gnanamoorthy. Some ancillary variables of interest for

methane emission modelling (e.g. soil temperatures, WTD, SWC, precipitation) are available at some of the sites. Links to the140

sources used are given in Supplementary Table S1 and the full list of sites and details are listed in Supplementary Table S2.

The length of the time series, wetland types, and location of the sites are presented in Fig. 1. Despite the construction of

the most comprehensive database from recent literature, the global distribution of methane eddy covariance tower sites shows

significant heterogeneity. The majority of sites, 46, are located at latitudes greater than 30°N, with 36 sites in North America
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and 10 sites in Europe. Only 11 sites (19%) are located in the tropical band 30°S-30°N, including, for example, only 2 sites145

on the entire African continent, which are only a few kilometers apart, and 2 sites in South America. In addition, Fig. 1.a

highlights the heterogeneity in measurement duration, with tropical sites having a median measurement duration of 1.6 years,

as contrasted with 2.7 and 3.2 years for boreal and temperate sites, respectively. It is also important to note that sites can be

very close to each other (within a few kilometers). This uneven distribution of sites introduces a bias in the global calibration

of the model. In particular, tropical wetlands are severely underrepresented, although they are expected to account for about150

∼75% of global wetland methane emissions (Saunois et al., 2020).

To ensure a homogeneous dataset, the same data processing was applied to the raw data. The 30 min raw data points

were extracted, and the variable units were unified. Outliers are removed for all variables, including ancillary data, notably

for methane fluxes, for each site and day, data outside of FCH4day ± 5stdFCH4
day are excluded. Finally, daily averages are

calculated for all variables, and monthly averages are only calculated if more than 4 days of data are available in a given155

month. A monthly time scale was chosen
:::
for

:::
this

:::::
study

:
because it effectively captures seasonal variations while minimizing

the influence of variables that operate at shorter time intervals, such as daily or multi-day changes in atmospheric pressure,

or diurnal cycles in vegetation and temperature (Knox et al., 2021). Furthermore, as our model is a one-step model without

differentiation between production and emissions, the monthly time scale also mitigates potential errors due to time lags

between methane production and transport (Ueyama et al., 2023).160

This results in a dataset of 2354 monthly mean methane fluxes associated to their available ancillary data.

2.3 Global forcing datasets

2.3.1 MODIS PSnet data

To derive Csubstrate estimates, as defined in Eq.2 in Sect. 2.1, we use PsnNet from the MODIS MOD17A2HGF v6.1 dataset

(Running and Zhao, 2021). The PsnNet dataset represents NPP, except that it excludes growth and maintenance respiration165

costs. This product is based on satellite Fraction of Photosynthetically Active Radiation (FPAR) data, a reanalysis meteorolog-

ical dataset, and land cover classification.

The data cover the period from 2000 to the current year, but data for 2002 are not available, so only the period from 2003 to

2020 has been used in this study. The PsnNet product has been regridded from the native 500 m resolution to a 0.05° product

used for model optimization at the site level, and to a 0.25° resolution product used for the global simulation. In terms of170

timescale, monthly averages were estimated from the initial 8-day product.

2.3.2 ERA5
::::::::::
ERA5-Land

:
soil temperature

For the soil temperature variable, monthly averaged data from ERA5-Land
:::::::::::::::::::::::
(Muñoz-Sabater et al., 2021), available at https://cds.climate.copernicus.eu/https:

//cds.climate.copernicus.eu/, are used. The temperature in the 7-28 cm soil layer is selected, denoted as lay2. These data are

available from 1950 to the present with a resolution of 0.1°x0.1°. A comparison of in situ soil temperature measurements with175

ERA5 land
::::::
monthly

:::::::::::
ERA5-Land lay2 closest 0.1° pixel is detailed in the Supplementary Fig.S1

::
S2, showing good agreement
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between in situ and ERA5
::::::::::
ERA5-Land soil temperatures, with in particular a high temporal correlation (r>0.9) and low RMSD

(<2° K) for 37 of the 42 sites equipped with temperature probes.

2.3.3 Global wetland extent datasets

Two wetland areas are used to estimate global methane emissions. The Wetland Area and Dynamics for Methane Modeling180

(WAD2M) version 2.0 (Zhang et al., 2021a) describes the fraction of wetlands per pixel globally at a resolution of 0.25°x0.25°

for the period 2000-2018 with a monthly time step. The dynamics of WAD2M are driven by the Surface Water Microwave

Products Series (SWAMPS) (Jensen and Mcdonald, 2019), which relies on passive and active microwave satellite observations.

Several static datasets are used to add non-inundated wetlands, such as peatlands, and to remove lakes, irrigated rice paddies

(Zhang et al., 2021b). The second wetland map used is based on the TOPography-based hydrological MODEL (TOPMODEL).185

Xi et al. (2022) built an ensemble of 28 maps describing globally the fraction of wetlands per pixel at a resolution of 0.25°x0.25°

for the period 1980-2020 at a monthly time step (Xi et al., 2021). A combination of 7 different soil moisture reanalysis datasets

and 4 different surface wetland extent products were used to calibrate the model. Among the 28 products, we select here the

version calibrated with ERA5
::::::::::
ERA5-Land

:
soil moisture data and the GIEMS-2 (Prigent et al., 2020) long-term maximum, as

it shows the highest correlations of wetland area with the original wetland product (Xi et al., 2022).190

2.4 Calibration method

The in situ methane fluxes at the sites were used to calibrate the SatWetCH4 model parameters k and Q0
10. Model calibration

at site level implies that each site is considered to be completely covered by wetland, resulting in a wetland fraction of 1

(fw = 1). The flux equation to be optimized at site level is then FCH4
= kCsubstrateQ10(T )

(T−T0)/10. The Csubstrate product

(described in Sect. 2.1) and ERA5
:::::::::
ERA5-Land

:
soil temperature (described in Sect. 2.3) are used as input variables by selecting195

the nearest pixels to the sites, at 0.05° for Csubstrate and 0.1° for ERA5
::::::::::
ERA5-Land soil temperature respectively.

Least squares regression is performed simultaneously on all sites using the Broyden-Fletcher-Goldfarb-Shanno algorithm

(Byrd et al., 1995). For sites with less than 12 months of data, a weight proportional to the number of monthly measurements

is assigned to the site data. Sites with more than 12 months of data are given equal weights. The minimized cost function is :

J =
∑
sites

wsiteMSDsite =
∑
sites

wsite(FCH4obs −FCH4sim)2site (3)200

where wsite is the site weight, MSD is the Mean Square Deviation, FCH4obs is the in situ methane flux observed at the

sites, and FCH4sim is the methane fluxes simulated by the model. If the number of monthly methane flux measurements at

the site, nsite, is greater than or equal to 12, wsite = 1 otherwise wsite =
nsite

12 . Different initial parameter sets for kfirstguess

(0.01, 0.1, 1, and 10) and Q0
10firstguess (1.5, 2.5, 3, and 4) are tested to evaluate the influence of the calibration initialization

and to ensure the global nature of the found minimum.205
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3 Results

3.1 Optimized model parameters
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Figure 2. a. Comparison of Q10(T ) formulation with Walter and Heimann (2000), Gedney (2004), WETMETH Nzotungicimpaye et al.

(2021), and Albuhaisi et al. (2023). b. Effect of the different Q10(T ) formulations when incorporated in the temperature dependency function.

The calibration is performed according to the method described in Sect. 2.4. The minimum cost function is found for Q0
10,opt =

2.99 and kopt = 3.097 10−2 µgCH4/m2/s. The value of kopt has no numerical meaning, as it is highly dependent on the units

and order of magnitude of the substrate proxy we use. The Q10(T ) formulation obtained from this calibration is compared210

with the literature values in Fig. 2a. Figure 2.b shows the influence of Q10(T ) expressions when inserted in the temperature

formulation Q10(T )
(T−T0)/10.

Walter and Heimann (2000) used a Q10 value of 6, based on the observations range available at the time. Nzotungicimpaye

et al. (2021) in WETMETH proposed a Q10(T ) formulation such that, when incorporated into the equation Q10(T )
(T−T0)/10,

it indicates an optimal temperature range for methanogenesis around 25-30°C. Although we attempted a similar approach to215

formulate Q10(T ), it resulted in minimal changes in the flux outcomes while increasing the complexity of the formulation

and hindering the convergence of the cost function. Albuhaisi et al. (2023) used a fixed Q10 = 3, with a reduced value to

Q10 = 2 for temperatures above 5°C or above 30°C to account for an optimal range. However, this results in abrupt transitions

at these temperature thresholds (Fig. 2.b). This implementation may not be appropriate for global analysis, as tropical wetlands

experience temperatures above 30°C, and such sudden changes do not reflect of physical reality.220

Therefore, the Gedney (2004) formulation Q10(T ) =Q0
10,opt

T0/T was used in SatWetCH4, resulting in Q10(T ) from 3.12

(-10°C) to 2.60 (40°C), which is slightly lower than the Gedney (2004) value (3.89 at -10°C to 3.13 at 40°C). Our Q10(T )

value contrasts with that of Walter and Heimann (2000) (Q10 = 6.0, no temperature dependence), but closely matches with

the value chosen by Albuhaisi et al. (2023) for the 5°C-30°C range (Q10 = 3.1 for T between 5°C and 30°C, Q10 = 2.0 below

5°C or above 30°C). Consequently, similar Q10(T )
(T−T0)/10 curves are observed in Fig. 2.b between our estimate and those225

of Gedney (2004), and the 5-30°C range of Albuhaisi et al. (2023), although our formulation exhibits slightly lower values.
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This would result in a slightly lower increase in methane fluxes with soil temperature. The Q10(T ) found in this study is also

in agreement with meta-analysis of Q10 defined from in situ data, e.g., 2.8 in Kuhn et al. (2021) and 2.57 in Delwiche et al.

(2021).

3.2 Evaluation of the model performance at site scale230

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

r

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

R
M

S
D

 (
g

C
H

4
s⁻

¹m
⁻²

)

a.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0

5

n
b

 o
f 

si
te

s

0 5

nb of sites

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

0.0 0.5 1.0 1.5 2.0 2.5

site observation std 
( gCH4s⁻¹m⁻²)

0.0

0.5

1.0

1.5

2.0

2.5

m
o
d

e
l 
o
n
 s

it
e
 s
td

 
(

g
C

H
4
s⁻

¹m
⁻²

)

b.

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

FCH4 site observation mean 
( gCH4s⁻¹m⁻²)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

F C
H

4
m

o
d

e
l 
o
n
 s

it
e
 m

e
a
n
 

(
g

C
H

4
s⁻

¹m
⁻²

)

c.

region

boreal

temperate

tropical

measures
12

36

76

Figure 3. Comparison of
:::::::
methane fluxes modeled at site level with observations. Each site is represented by a point, its location by its color,

while site number of measurements are represented by point sizes. a. Temporal correlation (r) and RMSD between model and observation.

b. Standard deviation (std) of model fluxes in function of standard deviation of observation. c. Mean of model fluxes in function of mean of

observation.

To evaluate the SatWetCH4 model, we run it at the site scale with the optimized parameters, setting fw = 1 in Eq.1, and using

the variables values from the pixels closest to the site, i.e. at 0.05° for Csubstrate and at 0.1° resolution for ERA 5 temperature

::::::::::
ERA5-Land

::::::::::
temperature

::::::::
(resulting

::::::::
monthly

::::::::
estimates

:::
can

:::
be

:::::
found

:::
in

::::::::::::
Supplementary

::::
Fig.

::::
S1). Note that the difference in

spatial resolution between the site level, i.e. the footprint of the flux towers (up to 1km2), and the resolution of the available

substrate (0.05°x0.05°∼25km2) limits the comparison. The temperature is more homogeneous and its aggregation at 0.1° is less235

10



problematic. Figure 3 compares the in situ flux data with the modeled site-level output. Figure 3.a. shows the Root Mean Square

Deviation (RMSD) and the temporal correlation (r) between the observations and the simulated flux. It indicates a generally

lower average RMSD in the boreal zones (average RMSD of 0.23 µgCH4s−1m−2) compared to the temperate zones (average

RMSD of 0.8 µgCH4s−1m−2) and the tropics (average RMSD of 1.1 µgCH4s−1m−2). It shows that the model captures the

seasonality of emissions well for boreal sites (r > 0.7 for 16/22 boreal sites), less well for temperate sites (r > 0.7 for 11/25240

sites) and poorly for tropical sites (r > 0.7 for 4/11 sites, with 5/11 sites having r < 0). Figure 3.b and Fig. 3.c display the

amplitude variations (standard deviation) and mean values of the observed and modelled fluxes. The mean fluxes are consistent

with the in situ values (Fig. 3.c), while the standard deviation (std), which represents the amplitude of the seasonal variation,

is underestimated for fluxes with std greater than 1 µgCH4s−1m−2 (Fig. 3.b).

Thus, the model reproduces boreal fluxes better than temperate and tropical fluxes. This results in higher RMSD values for245

tropical and temperate zones, as shown in Fig. 3.ca., although these higher RMSD values are also due to generally larger fluxes

in the tropics. The underestimation of fluxes in the tropics is partly due to the sampling bias mentioned in Sect. 2.2: only a

small proportion (19%) of the sites are located between 30°S and 30°N, and they have shorter monitoring periods, resulting

in a cumulative weight of 18.5% in the cost function J (boreal sites weight 38% and temperate sites 43%). Furthermore, the

mechanisms driving the temporal variations in tropical methane flux are certainly poorly represented in the model, as discussed250

in Sect. 4.

3.3 Methane emissions from wetlands on a global scale

After calibrating kopt and Q0
10,opt, we run the SatWetCH4 model (Eq.1) on a global scale for the period 2003-2020 at a

resolution of 0.25°x0.25° with forcing datasets Csubstrate, ERA 5
::::::::::
ERA5-Land soil temperature and either WAD2M or TOP-

MODEL product for wetland extent at the same resolution. In the following, we compare the wetland emissions derived from255

SatWetCH4 in terms of total global methane emissions, spatial distribution and temporal variations with Bloom et al. (2017)
:
,

::::::
UpCH4

:::::::::::::::::::
(McNicol et al., 2023),

:
and the ensemble mean of the GMB (Saunois et al., 2020).
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3.3.1 Comparison of the spatial distribution of the wetland extents
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Figure 4. Wetland fraction 2003-2020 mean annual mean of a. WAD2M and b. the model TOPMODEL.

For both products, the monthly average of surface extent served to derive a Mean Annual Mean (MAmean) and Mean Annual

Maximum (MAmax) by selecting for each 0.25° pixel the mean or maximum of the typical 12-month seasonality. The maps of260

MAmean of both wetland extent products are presented in Fig. 4. WAD2M has a global MAmean of 4.21 Mkm2 and a MAmax

of 6.76 Mkm2 over 2003-2020, while TOPMODEL is lower with 3.04 Mkm2 and 5.12 Mkm2 respectively.

This discrepancy in the value of the total area is mainly due to the methodology employed to construct the products. First,

WAD2M is known to overestimate coastal areas due to ocean contamination by nearby ocean pixels in the original SWAMPS

data (Pham-Duc et al., 2017; Bernard et al., 2024). Second, WAD2M includes non-inundated wetlands, such as peatlands,265

whereas TOPMODEL represents only inundated wetlands. Indeed, Xu et al. (2018) estimate that peatlands cover around 4.23

Mkm2. In fact, WAD2M wetland fraction over peatland areas (e.g. Hudson Bay, Congo, Siberian lowlands, Amazon floodplain)

is larger than in TOPMODEL (Fig. 4). Note that some boreal peatlands in WAD2M are masked by snow cover in winter, which

explains the lower MAmean than the global peatland extent. There are other large spatial differences between the two datasets.

Of concern in WAD2M is the substantial detection of water over Australia, a predominantly desert and semi-arid region,270

and subequatorial Africa (Sahel). Wetlands and deserts have similar microwave signatures, explaining the possible confusion

(Pham-Duc et al., 2017). Finally, TOPMODEL shows higher scattered extents over North America, India, and China than

WAD2M.
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3.3.2 Csubstrate :::::::
Csubstrate:spatial distribution
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Figure 5. 2003-2020 mean of the derived
::::::
Derived Csubstrate product (

:::
top left) and its latitudinal profile (middle) and the latitude profile

normalized by
::::::
showing the latitudinal maximum (right) along with

::::::::
2003-2020

:::::
mean,

:::::::
alongside

:
two SOC databases

::::::
(bottom

:::
left

:::
and

::::::
middle)

for the 0-100 cm layer: HWSD (Wieder, 2014) and Soilgrids (Hengl et al., 2017).
:::
The

:::::::::::
corresponding

:::::::
latitudinal

:::
and

:::::::::
normalized

::::::::
latitudinal

:::::
profiles

:::
are

:::::::
displayed

:::::
(right

::::::
panels).

:::::::::::
Normalization

:
is
:::::::
achieved

::
by

:::::::
dividing

::
by

:::
the

::::::::
latitudinal

:::::::
maximum

:::
for

::::
each

::::::
product.

The 2003-2020 mean map of the Csubstrate product is shown in Fig. 5. This product is used as a representation of the soil275

carbon substrate available for methanogenesis. It should be noted that there are no analogous products for evaluation. We

suggest a comparison with global estimates of 0-100cm SOC stocks derived from the World Soil Database (HWSD) (Wieder,

2014) and SoilGrids (Hengl et al., 2017) to see differences between our proxy for available substrate compared to total organic

carbon stocks. The latitudinal distribution and the latitudinal distribution normalized by the latitudinal maximum of the three

products are shown on the right side of the figure.280

The numerical values of Csubstrate tend to be consistently lower than those of the SOC estimates, differing by about an order

of magnitude. This observation aligns with the fact that elevated SOC values, which are particularly common in peatlands, do

not translate into a proportionally increased production of CO2 or CH4 emissions. In fact, the slow decomposition of organic

matter in peatlands leads to carbon sequestration in soils over millennia (Clymo et al., 1998). It is important to emphasize that
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the order of magnitude of the numerical value of Csubstrate is of limited significance, since the calibration of the k factor is285

used for the methane flux calculation. The critical focus is on the spatial variations and temporal dynamics of Csubstrate for

accurate methane flux assessments.

The Csubstrate product shows a small seasonal variation (about 5% at global and basin scales), implying that its contribution

is mainly of spatial nature. Indeed, we observe a different spatial distribution between the three products. SoilGrids and HSWD

tend to show more localized high carbon values in regions where peatlands are abundant, such as the western Siberian lowlands290

or the northern part of America, or for SoilGrids in Indonesia. Csubstrate presents a more homogeneous distribution, with

moderate values in boreal and temperate regions. It consistently shows no or low available substrate values over bare soil

regions (Sahara, Australia). In light of these considerations, Csubstrate appears to be a valuable candidate for estimating soil

carbon availability.
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3.3.3 Spatial variations of methane emissions295

Figure 6. SatWetCH4 modeled mean methane emission using
::::::::
emissions:

:
a.

::::
using

:
WAD2M and b. TOPMODEL wetland surfaces.

SatWetCH4 emissions obtained using
:
;
:::
and

::::
with

:
a uniform substrate —

:
(i.e.,

:
Csubstrate = 1— and

:
)
:
c.

:::
using

:
WAD2M or

:::
and

:
d.

::::
using

TOPMODEL. Emissions obtained by e. the mean of GMB diagnostic models, f. the mean of WetCHARTs ensemble, and g. UpCH4 upscal-

ing.

The methane fluxes derived from SatWetCH4 are strongly influenced by the spatial patterns of the wetland extent used: the

differences between WAD2M and TOPMODEL mentioned in Sect. 3.3.1 are partly reflected in the output fluxes (Fig. 6a.

and b.). In fact, the parameter fw is directly a multiplicative coefficient in the flux calculation in Eq.1. In particular, peatland
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regions emit more in the WAD2M version, and the Ganges and Yangtze basins show much more intense methane emissions

when TOPMODEL is used.300

We assess the sensitivity of SatWetCH4 model to the Csubstrate product derived from the NPP (Eq.2) by comparing the

results from SatWetCH4 reference run (with Csubstrate) and a run that considers a uniform substrate (Csubstrate=1 over the

globe). Note that to do this, we had to calibrate the model parameters k and Q0
10 using the same method described in Sect. 2.4.

The found
:
,
:::::::
resulting

::
in
::
a
:::::
lower

:
Q0

10,opt is lower (1.83 instead of 2.99). Figure 6.c and d show average emissions assuming

a uniform substrate for methanogenesis, run with WAD2M or TOPMODEL. The spatial distribution is then very different305

::::
(Fig.

:::
6.c

::::
and

::
d), depending only on the wetland extent dataset and weighted by temperature. In particular, emissions are

significantly higher in subequatorial Africa
:::::
(Sahel)

:
with both wetland datasets when no substrate product is included in the

model. In fact, Csubstrate is small over this region due to a small value of the MODIS PsnNet input (Fig. 5). Over Australia we

observe significantly higher fluxes with WAD2M when Csubstrate is not considered. This shows an overestimation of WAD2M

wetland detection in the Australian desert, which is mitigated by the small Csubstrate over this region when Csubstrate is310

considered instead of the uniform substrate (Fig. 5).

The ensemble mean of the GMB LSMs simulations (Saunois et al., 2020) is shown in Fig. 6.e. Detailed maps of the in-

dividual model outputs are provided in the Supplementary Fig.S3
::
S4, together with the LSMs output standard deviation map.

Comparison is made with GMB LSMs run in diagnostic mode, i.e. all LSMs were run with the same wetland area WAD2M

standardized to the same 1°x1° grid for consistency. In addition, Fig. 6.f shows the model mean of the WetCHARTs ensemble315

(Bloom et al., 2017), which considers different wetland extent products, but not WAD2M. In the WetCHARTs ensemble, three

scaling factors are tested to amount to a global mean annual flux of 124.5, 166 or 207.5 TgCH4 yr−1 (Saunois et al. (2016)

lower, mean and upper estimates). Here we have selected only those members of the ensemble that were calibrated to the mean

budget (166 TgCH4 yr−1). The standard deviation map of methane emissions from the WetCHARTs ensemble is also included

in Supplementary Fig. S3
::
S4. Figure 6.g shows the flux estimates of UpCH4 (McNicol et al., 2023). The UpCH4 estimate is320

defined using WAD2M wetland extent and is independent of the GMB LSMs.

The spatial distribution of the SatWetCH4 emissions run with WAD2M is similar to the average of the LSMs ensemble run

with the same wetland extent over America, Australia, and Europe. However, there is considerable variability in the spatial

emissions between models in some regions, including the Siberian lowlands (Ob), Australia, India, and over sub-equatorial

Africa, even though the same water surface map is prescribed.325

In subequatorial Africa (Sahel), emissions are highly uncertain between models. The different diagnostic outputs of the GMB

LSMs (run with WAD2M) show a wide range of emissions (Supplementary Fig.S3
::
S4). Four of the diagnostic LSMs have low

emissions (<0.1 gCH4/m2/month), while the other nine have moderate to high emissions (0.1 to 0.5 gCH4/m2/month). Like

the first group of diagnostic LSMs, the ensemble mean of WetCHARTs (which is based on a different wetland extent than

WAD2M) and the SatWetCH4 model predict almost negligible emissions (<0.05 gCH4/m2/month). The GMB LSMs are also330

run in prognostic mode (Saunois et al., 2020), i.e., using their own calculation of wetland extent (not shown here). Prognostic

results from 10 out of the 11 GMB LSMs show insignificant emissions over Sahel (<0.05 gCH4/m2/month). The UpCH4

estimates, which are established with WAD2M, predict very high fluxes over the Sahel (>0.5 gCH4/m2/month). Therefore, it
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appears that this emission overestimation in the Sahel region might be due to the wetland extent, WAD2M, that is employed

for the GMB model intercomparison study and UpCH4. This wetland detection in the Sahel is due to desert contamination335

in this region (see Sect. 3.3.1) In SatWetCH4, there is a compensation between the high wetland fraction, fw, defined using

WAD2M, and the low Csubstrate value for the Sahel area. As the PsnNet parameter of the MODIS parameter is low in this

zone, the Csubstrate dataset estimates a very low available carbon. The number of measurements available to evaluate the

different methane emission simulations in the Sahel region, and in general over the tropics, is limited (difficult to access areas,

no flux towers, no in situ flux or concentration measurements).340

In Australia, desert areas are also mistaken to inundated area in WAD2M. Most diagnostic LSMs outputs show Australia

with low emissions. However, some models produce surprising spatial patterns in Australia, especially in desert regions for

LPJ-GUESS and TEM-MDM. UpCH4 also presents high fluxes in most of the country. However, other models, including ours,

certainly mitigate this issue by reducing emissions due to other parameters such as vegetation cover or hydrological settings,

thereby compensating for the problem of misclassification of wetlands.345

Northern India also exhibits lower emissions in SatWetCH4 when run with WAD2M compared to the GMB average. Sup-

plementary Fig.S3
::
S4

:
indicates that this elevated average is mainly due to one model, DLEM, with very high emissions in this

region, while the other models show emissions similar to ours. This discrepancy raises questions about the representation of

rice paddies in the DLEM model, despite the forcing of water surface dynamics.

Overall, the spatial distribution of SatWetCH4 run with WAD2M globally aligns with the ensemble of LSMs, WetCHARTS,350

UpCH4 and their uncertainties. We have discussed that when SatWetCH4 is run with TOPMODEL, different spatial patterns

emerge, which are no less surprising when compared to the variations observed within the GMB LSMs ensemble, WetCHARTs

ensemble, and UpCH4 simulations.
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3.3.4 Total methane emissions, latitudinal and seasonal variation of methane emissions
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Figure 7. Latitudinal distribution depending on the season of wetland methane emissions from SatWetCH4 run with WAD2M (red) or

TOPMODEL (orange), from LSMs (filled grey) with LSMs average (black), from WetCHARTS models calibrated with 166 Tg CH4/yr

budget (filled green) with ensemble average (green), and from UpCH4 (violet). WAD2M and TOPMODEL wetland extents seasonal mean

are also presented in
:::::::::
bottom-right

:::
box

:
inserts (blue resp. solid and dashed lines). LSMs estimates are those contributing to the GMB (Saunois

et al., 2020), all run with the same wetland extent product (WAD2M). All representations are 2003–2020 seasonal means.
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Figure 8. 2003-2020 CH4 emission mean per month per latitudinal band from SatWetCH4 run with WAD2M (red) or TOPMODEL (orange),

from LSMs (filled grey) with LSMs average (black), from WetCHARTS models calibrated with 166 Tg CH4/yr budget (filled green) with

ensemble average (green), and from UpCH4 (violet). WAD2M and TOPMODEL monthly wetland extent 2003-2020 means are presented in

blue. LSMs estimates are those contributing to the GMB (Saunois et al., 2020), all run with the same wetland extent product (WAD2M).

Figure 7 shows the latitudinal distribution per season for SatWetCH4 run with WAD2M and TOPMODEL, as well as the GMB355

LSMs, WetCHARTs ensemble, and UpCH4 estimates. The monthly variation for emissions estimates and wetland extent per

latitudinal band is shown in Fig. 8. Note that the WetCHARTs models are calibrated to the GMB annual budget and are therefore

not independent in terms of methane emission amplitude. SatWetCH4 is in the lower range of the GMB LSMs (grey areas),

or even slightly below this range in the 30°S-30°N band. The total annual budget of SatWetCH4 wetland emission estimate

averages 85.6 Tg CH4 yr−1 with WAD2M (resp. 70.3 with TOPMODEL), which is lower than the range of the GMB LSMs360

estimates (102 to 181
:::
182

:
Tg CH4 yr−1) and the UpCH4 estimates (146 Tg CH4 yr−1) even if the same wetland extent is used.

This discrepancy can be explained by 1. an underestimation of methane fluxes by SatWetCH4 especially of tropical fluxes

(discussed in Sect. 3.2 and in the following paragraph) and 2. the consideration by WAD2M of desert regions as inundated

areas, leading to methane fluxes overestimation in Australia and Sahel in UpCH4 and some diagnostic LSMs (see discussion

Sect. 3.3.3, Fig. 6, S3
::
S4 and 7). Indeed, Sahel and Australia represent 33.4 out of the 146 Tg CH4 yr−1 estimated by UpCH4365

using WAD2M, while these regions represent 4.5 Tg CH4 yr−1 in SatWetCH4 using WAD2M.

The scarcity of site-level data in tropical regions, coupled with the absence of tropical peatlands and floodplain sites, has

undoubtedly contributed to the uncertainty associated with the calibration of parameters. Furthermore, the use of site-level
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calibration for tropical wetland emission may result in an underestimation at the regional or global scale. This is due to the fact

that dynamic wetland mapping products account for saturated or inundated areas, whereas site-level measurements conducted370

during the dry season are likely to underrepresent the emission intensity of saturated areas. Consequently, the parameters

calibrated from dry season measurements may underestimate emission intensity when multiplied by the area of saturated

wetlands. This is a less significant issue in temperate and Arctic regions, where the wet seasons occur in summer and there is

minimal emission in winter. As the number of tropical sites increases, future studies could consider refining the calibration for

the tropics, for example, by only using wet season measurements for calibration.375

Note that this difference in total emissions could be easily resolved by calibrating the k parameter to the total emissions of

the mean GMB LSMs if we need to constrain total emissions, as it has been done previously by Bloom et al. (2017); Gedney

et al. (2019).

SatWetCH4 simulation with TOPMODEL estimates lower emissions in the tropical and boreal bands compared to the sim-

ulation with WAD2M (Fig. 7). This is consistent with the smallest wetland extent of TOPMODEL over these regions, as380

non-inundated peatlands are not considered in TOPMODEL. Note also the higher fluxes obtained in the simulation with TOP-

MODEL than with WAD2M around 25-30°N, due to the larger wetland extent of TOPMODEL over Asia. The latitudinal dis-

tribution of SatWetCH4 (Fig. 7) is consistent with the distribution of the LSMs ensemble, except for the African subequatorial

::::
Sahel

:
band mentioned earlier. SatWetCH4 reproduces similar seasonal changes as the GMB LSMs (Fig. 7), while the latitudinal

distribution of the WetCHARTs ensemble presents larger emissions in the 10°S-5°N band in the DJF, MAM and SON seasons385

(mainly due to high emissions in the Congo region, visible in Fig. 6). UpCH4 presents a different latitudinal distribution, with

higher fluxes in the 15°N and 35°S-15°S bands. These are respectively due to the Sahel and Australia artifacts mentioned

above. UpCH4 has lower fluxes in the tropical 10°S-5°N band (due to the Amazon and the Congo basins).

This different seasonal cycle in the tropical band (30°S-30°N) for WetWHARTs
::::::::::
WetCHARTs

:
ensemble is also visible on

Fig. 8, while there is an absence of a pronounced seasonal pattern, both in terms of emissions and in terms of wetland extent390

for our model and the GMB models. This difference in tropical seasonal cycle could be due to the wetland extent used in

WetCHARTs. For the boreal region (55-90°N), we find that the seasonal variation of the simulated emissions from our model

is close to that of most GMB LSMs, as it is in the northern temperate band (30-55°N). However, the wetland extents of WAD2M

and TOPMODEL show very different seasonality, particularly in the northern temperate band (30-55°N), where WAD2M has

a more stable wetland extent than TOPMODEL. Indeed, the methane emission seasonality in the boreal and temperate regions395

is mainly driven by temperature, which explains these similar seasonal cycles in emissions, although the seasonal cycles in

wetland extent are different. For the southern temperate band (60°S-30°S), WAD2M and TOPMODEL exhibit contrasting

seasonality in wetland extent, but the simulated seasonal variations in emissions are close because, as expected, temperature

drives the variability of methane fluxes in this temperate region.
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3.3.5 Inter-annual variability in methane emissions at basin scale400

0

1

Em
iss

io
ns

(T
gC

H 4
/m

on
th

) time series

2004
2006

2008
2010

2012
2014

2016
2018

0.00

0.25

0.25
0.00
0.25

Em
iss

io
ns

 a
no

m
al

y
(T

gC
H 4

/m
on

th
) anomalies

2004
2006

2008
2010

2012
2014

2016
2018

0.2

0.0

0.2

GMB LSM diagnostic mean

UpCH4 - WAD2M

This study - WAD2M

This study - TOPMODEL

0

2

time series

2004
2006

2008
2010

2012
2014

2016
2018

0.0

0.5

0.25
0.00
0.25

anomalies

2004
2006

2008
2010

2012
2014

2016
2018

0.1
0.0
0.1

GMB LSM diagnostic mean

UpCH4 - WAD2M

This study - WAD2M

This study - TOPMODEL

0

1

time series

2004
2006

2008
2010

2012
2014

2016
2018

0.0

0.2

W
E 

(M
km

²)

WAD2M
TOPMODEL

0.2

0.0

0.2
anomalies

GMB model diagnostic mean
UpCH4 - WAD2M
This study - WAD2M
This study - TOPMODEL

2004
2006

2008
2010

2012
2014

2016
2018

0.025
0.000
0.025

W
E 

an
om

al
y 

(M
km

²)

GMB LSM diagnostic mean

UpCH4 - WAD2M

This study - WAD2M

This study - TOPMODEL 0.1

0.2

0.3

0.4

0.5

F C
H

4 (
gC

H 4
/m

2 /m
on

th
)

Figure 9. Methane emissions for different basins: the Ob, the Amazon, and the Congo. The maps show the spatial pattern of methane

emissions from the GMB LSMs mean, UpCH4 run with WAD2M, and SatWetCH4 simulations with WAD2M or TOPMODEL. The lower

panels represent the sum of methane emission time series and deseasonalized anomalies over the basins of SatWetCH4 simulations with

WAD2M (red) or TOPMODEL (orange), LSMs diagnostic mean (black), and UpCH4 simulation with WAD2M (Violet). All LSMs were run

with the same WAD2M wetland extent. WetCHARTs ensemble is excluded here because its methane emissions estimates are rescaled to the

average values of the GMB LSMs estimates.
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Figure 9 depicts SatWetCH4 model, GMB LSMs and UpCH4 emissions simulated with WAD2M and their anomalies for three

basins: the Amazon, the Ob, and the Congo. Also shown are wetland areas and their anomalies over these basins.

In the Amazon and Congo basins, notable amplitude irregularities were observed when using WAD2M in SatWetCH4 or

UpCH4. Two regime changes are observed in the WAD2M extent around 2009 and 2014, probably due to inter-calibration

problems caused by satellite changes in the original SWAMPS surface water product. Surprisingly, the average of the LSMs405

is less affected, even though the LSMs are forced with the same water surface. However, on closer examination of individual

LSMs (see Supplementary Fig. S4
::
S5), we see that some LSMs are as affected as SatWetCH4 by these inconsistent water surface

changes, while others are less affected. We deduce that these models, which are not affected by the WAD2M temporal changes,

must have parameters that interfere with the consideration of the wetland surface. TOPMODEL suggests more consistent time

series in terms of wetland extent (softer variations), which also allows for more realistic variations in terms of emissions.410

4 Model limitations and outlook

The simplified approach used here as a one-step model allows for some quick and easy simulations, representing major first

order phenomena affecting methane emissions from wetlands. While presenting a smaller annual budget, due to a possible

underestimation of the magnitude of emissions, we found that this formulation presents realistic spatial and temporal variations

when compared to other more complex and computationally intensive models. By scaling the k factor to a target estimate, the415

discrepancy in global emissions could be easily resolved.

23



Figure 10. Correlation of residuals (observation-prediction) with a. in situ WTD, b. in situ SWC, c. 0.25° ERA5
:::::::::
ERA5-Land

:
SWC and d.

0.25° WTD (Fan et al., 2013). These residuals are calculated for a single site calibration of SatWetCH4 in order to remove the seasonal cycle

that the model can capture through its variables (soil temperature and substrate availability). Grey background represents r>0.75.

Some refinements could be considered to improve the accuracy of the model. We found that the simulated temporal vari-

ability is less well captured at tropical sites than at temperate and boreal sites, as temperature does not drive seasonality in

these regions. In fact, some studies (Kuhn et al., 2021; Knox et al., 2021) suggest that methane emissions in tropical regions

are influenced by WTD. To investigate the flux dependence on a local water parameter, we calculated residuals from the single420

site calibration presented in Sect. 3.2. A residual is the difference between observed and predicted methane fluxes, and thus

represents the error of the model at a given site at a given time. Figure 10 illustrates the correlation of different hydrological

variables with the residuals. In the tropics, the missing variability appears to be strongly linked to soil water variations: 2 out

of 2 (MY-MLM and ID-Pag) tropical sites monitoring SWC show a strong temporal correlation (r > 0.75) of residuals with

locally measured SWC, and 3 out of 4 sites monitoring WTD (HK-MPM, MY-MLM, ID-Pag and BR-Npw) show a strong425

temporal correlation (r > 0.75) of residuals with locally measured WTD.

To test whether this site-level correlation could be used in SatWetCH4 model, we repeat this experiment using global datasets

at 0.25° of SWC and WTD. For each site, we selected the nearest 0.25° pixel of the ERA5-Land monthly averaged SWC dataset

(available at https://cds.climate.copernicus.eu/)), and the nearest pixel of the WTD from Fan et al. (2013) aggregated at 0.25°

(as only one typical year is provided, this year is replicated for all years of the in situ flux measurement period). Figure 10.c430

and d. show the resulting correlation of these two variables at 0.25° with the residuals. None of the 11 tropical sites show an

r > 0.75 between residuals and ERA5
::::::::::
ERA5-Land SWC and only one site (PE-QR) shows an r > 0.75 between residuals and
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0.25° WTD. This is due to the fact that these 0.25° datasets poorly represent the temporal variations measured in situ, as shown

in Supplementary Fig. S2 for the ERA5
::
S3

:::
for

:::
the

::::::::::
ERA5-Land SWC. SWC and WTD in wetlands have very spatially localized

specificities and variations. Furthermore, the small number of sites available in the tropics (11) makes it even more difficult to435

find an empirical relationship with a water variable. We were unable to include this important parameter at SatWetCH4 model

resolution of 0.25°. The 100m satellite-derived SWC obtained by Planet (De Jeu et al., 2014) could be examined and the model

run at finer resolution. In fact, Albuhaisi et al. (2023) found an improvement in their model for the boreal region when using

this high resolution product. Further research could be conducted to see if similar results are obtained in the tropics, where this

parameter is most needed. Unfortunately, this product is not freely available.440

It is worth noting that the site level comparison of modeled fluxes with observations assumes that the sites are all wetlands

(fw = 1), without any temporal variation. However, when the SatWetCH4 model is run, this wetland fraction is dynamic,

introducing seasonality due to water and partially compensating for the lack of a local water parameter.

Another limitation is that the consistency of the time series of methane emission estimates at the catchment scale is strongly

affected by errors in the WAD2M database. This makes it difficult to study inter-annual variability or trends. The TOPMODEL445

time evolution does not have these major temporal inconsistencies, but it is based on a hydrological model and not on satellite

observations. It also does not include non-inundated peatlands. An improved satellite-derived dynamic wetland surface map

would be crucial to address these issues while maintaining observational data in our data-driven approach.

The simplified SatWetCH4 model we have developed makes important approximations that imply important shortcuts. In

particular, no distinction is made between methane production and emissions. This supposes that SatWetCH4 one-step equation450

includes production, oxidation, and transport in a single formulation, which are sometimes distinguished in some of the more

complex LSMs (Wania et al., 2013; Morel et al., 2019; Salmon et al., 2022). Among the 3 pathways of methane transport

in wetlands, including diffusion, ebullition and plant-mediated transport, plant-mediated transport is the dominant one (Ge

et al., 2024). Ge et al. (2024) have recently published a comprehensive review of the role of plants in methane fluxes, showing

their influence not only on methane transport but also on methane production and oxidation. Feron et al. (2024) also show455

that trends in methane flux changes at the site level depend on ecosystem and vegetation type. Accounting for the different

vegetation classes therefore appears to be a possible improvement to our simplified approach.

A simple way to account for this in the SatWetCH4 model at a first order would be to fit the scaling factor k and/or Q0
10

as a function of vegetation class or wetland type. Indeed, Q10 was found to depend on ecosystems (Chang et al., 2021).

We performed such calibration tests, taking into account the wetland classification. However, the cost function either did460

not converge due to the small number of sites per category, or the result was highly dependent on few sites, thus overfitting

results. In fact, eddy covariance flux towers measuring methane emissions are not evenly distributed around the globe and

their distribution is highly skewed, as discussed in part 2.2. Some wetland categories are poorly represented, for example,

there are only two mangrove sites. This scarcity of data makes this type of calibration highly uncertain. However, we can

expect an improvement in the coming years, as in situ methane measurement is a rapidly growing field, as shown by the465

increasing number of flux towers along the years in the Supplementary Table S1. Future data, especially in the tropics, will be

essential to better constrain the models and to include more processes into account. Some refinement of the Q10 function (here
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Q10(T ) =Q0
10

T 0/T according to Gedney (2004)) could be envisioned, such as the incorporation of a hysteresis (Chang et al.,

2021).

Despite the impossibility of analyzing temporal variation due to WAD2M issues, Fig. 9 informs us that the temporal varia-470

tions of SatWetCH4 are more similar to GMB LSMs than UpCH4. This is consistent with the fact that SatWetCH4 is a - highly

simplified - process-based equation, whereas UpCH4 relies on empirical flux upscaling using random forest. SatWetCH4 and

UpCH4 approaches both provide new independent estimates of wetland emissions, while offering distinct perspectives. A

deeper comparison of the fluxes modelled by SatWetCH4 and UpCH4 at the site level could serve understanding differences

between the simplification of complex processes represented by a fixed process equation (SatWetCH4) versus a pure ma-475

chine learning data-driven approach (UpCH4). In addition, running both SatWetCH4 and UpCH4 with another wetland extent

database would also serve to assess uncertainties and errors associated with WAD2M product and a better comparison of global

methane emissions trends estimated by SatWetCH4 and UpCH4. Both methods are currently limited by the scarcity of eddy

covariance flux data (McNicol et al., 2023), especially over important wetland methane emitting regions of the world, e.g., in

the tropics (Congo, Sudd, Amazon) and Russia (Siberian lowlands).480

5 Conclusions

SatWetCH4 model was developed to simulate global wetland methane emissions at 0.25°x0.25° with a monthly time resolution.

This data-driven approach was calibrated with 58 sites of eddy covariance flux data, allowing an approach independent of other

estimates. Most of SatWetCH4 model input variables are derived from satellite observational products. In particular, a new

estimate of the substrate availability was derived using MODIS-derived NPP. This product, called Csubstrate, appears to be a485

more realistic approach than previous studies that considered all SOC as available carbon.

At the site level, the SatWetCH4 model
::::::::
calibration

:
reproduces well the boreal fluxes and most of the temperate fluxes,

but poorly the emissions seasonality of the tropical sites. This could possibly be improved in future studies by adding high

resolution information on local water availability (SWC). Another important improvement would be a calibration per wetland

type, which would allow the influence of vegetation to be taken into account as major transport pathways. For this, more490

eddy covariance flux measurements in the tropics are essential to gain a deeper insight into the processes governing temporal

variations in this latitudinal band, and to develop and calibrate this one-step model.

This
::::::::::
SatWetCH4 simple formulation allows fast (within a few seconds)

:::::
global

:
simulations over decades. Compared to the

Global Methane Budget (GMB, Saunois et al. (2020)) LSMs, the SatWetCH4 model shows consistent spatial patterns and

seasonal variations. However, it is below the range of the GMB LSMs in terms of budget: 86 Tg CH4 yr−1 (estimated with495

WAD2M wetland extent) and 70 Tg CH4 yr−1 (estimated with TOPMODEL wetland extent), while the LSMs show a global

range of 102-182 Tg CH4 yr−1. This underestimation is partly due to the scarcity of eddy covariance datain the tropics, leading

to an underrepresentation of high emitting tropical sites.
:
,
::::
using

:::::::
satellite

:::::::::::
observations

::
as

::::
input

:::::
data. Although the total methane

emission estimates from SatWetCH4 are lower than those reported in the literature (Saunois et al., 2020; McNicol et al., 2023),

they are useful
::::::::::
SatWetCH4

:::::
shows

::::
that

:
it
::
is

::::
able

::
to

::::::::
reproduce

:::::
large

:::::::::::::
spatio-temporal

::::::::
variations

::
at

:::::
0.25°,

::::::
which

:::::
makes

::
it
:
a
::::::
useful500
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:::
tool

:
to study methane emissions inter-annual trends. Thus, SatWetCH4 model benefit from independent remote sensing data

and from process-based model approach since it is calibrated using in situ site observations.
:

Finally, we found some inconsistencies in the widely used WAD2M surface wetland extent. A new wetland map is currently

being produced (Bernard et al., in prep.), based on GIEMS-2 (Prigent et al., 2020) observations, which provide a seamless

estimate of inundated areas with realistic inter-annual variability (Bernard et al., 2024). Applying SatWetCH4 model with this505

new dataset would allow the study of annual variability and trends in emissions.

Another perspective is the coupling of SatWetCH4 with atmospheric inversions. Indeed, one way to overcome the challenges

associated with calibration using surface flux data is to incorporate this simple model into an atmospheric inversion model.

This would allow the optimization of both parameters k and Q100 in the inversion equation using atmospheric concentrations

(more numerous than methane fluxes data, especially with satellite data), rather than just the optimization of the methane flux510

value, as is usually done in inversion models.
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A Information about in situ fluxes and ancillary data

Table S1. Methane eddy covariance flux data sources

Source Data access Accessed

FLUX-NET CH4 https://fluxnet.org/data/fluxnet-ch4-community-product/ 1rst August 2022

AmeriFlux https://ameriflux.lbl.gov/sites/site-search/ 3rd October 2022

EuroFlux http://www.europe-fluxdata.eu/home/data/request-data Novembre 2022

P. Gnanamoorthy Personal exchanges 29th Octobre 2022

C. Helfter
https://catalogue.ceh.ac.uk/documents/d366ed40-af8c-42be-86f2-bb90b11a659e

https://catalogue.ceh.ac.uk/documents/2170ebd0-7e6f-4871-97d9-1d42e210468f
10th October 2022

Table S2: List of methane eddy covariance flux sites used in this study

site ID data source lat lon start end
monthly

data
DOI

US-A10 FLUXNET 71.3 -156.6 2012 2018 21 https://doi.org/10.18140/FLX/1669662

US-Beo FLUXNET 71.3 -156.6 2013 2014 16 No DOI available

US-Bes FLUXNET 71.3 -156.6 2013 2015 27 No DOI available

US-NGB FLUXNET 71.3 -156.6 2012 2018 39 https://doi.org/10.18140/FLX/1669687

RU-Cok FLUXNET 70.8 147.5 2008 2016 21 https://doi.org/10.18140/FLX/1669656

US-A03 FLUXNET 70.5 -149.9 2015 2018 28 https://doi.org/10.18140/FLX/1669661

US-Atq FLUXNET 70.5 -157.4 2013 2016 27 https://doi.org/10.18140/FLX/1669663

RU-Ch2 FLUXNET 68.6 161.4 2014 2016 26 https://doi.org/10.18140/FLX/1669654

US-ICs AmeriFlux 68.6 -149.3 2007 2021 52 https://doi.org/10.17190/AMF/1246130

US-Ivo FLUXNET 68.5 -155.8 2013 2016 41 https://doi.org/10.18140/FLX/1669679

SE-St1 EuroFlux 68.4 19.1 2012 2019 70 No DOI available

FI-Lom FLUXNET 68 24.2 2006 2010 60 https://doi.org/10.18140/FLX/1669638

US-Uaf FLUXNET 64.9 -147.9 2011 2018 48 https://doi.org/10.18140/FLX/1669701

US-NGC FLUXNET 64.9 -163.7 2017 2018 8 https://doi.org/10.18140/FLX/1669688

US-BZF AmeriFlux 64.7 -148.3 2011 2022 56 https://doi.org/10.17190/AMF/1756433
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US-BZB AmeriFlux 64.7 -148.3 2011 2022 59 https://doi.org/10.17190/AMF/1773401

US-BZo AmeriFlux 64.7 -148.3 2018 2022 30 https://doi.org/10.17190/AMF/1846662

SE-Deg EuroFlux 64.2 19.6 2014 2020 76 No DOI available

FI-Si2 FLUXNET 61.8 24.2 2012 2016 34 https://doi.org/10.18140/FLX/1669639

FI-Sii EuroFlux 61.8 24.2 2008 2020 130 No DOI available

CA-SCB FLUXNET 61.3 -121.3 2014 2017 30 https://doi.org/10.18140/FLX/1669613

US-KPL AmeriFlux 60.5 -150.5 2021 2021 7 https://doi.org/10.17190/AMF/1865478

DE-Hte FLUXNET 54.2 12.2 2011 2018 85 https://doi.org/10.18140/FLX/1669634

DE-Zrk FLUXNET 53.9 12.9 2013 2018 63 https://doi.org/10.18140/FLX/1669636

DE-UtM EuroFlux 52.5 8.8 2016 2017 19 No DOI available

CA-DBB AmeriFlux 49.1 -123 2014 2020 58 https://doi.org/10.17190/AMF/1543378

CA-DB2 AmeriFlux 49.1 -123 2019 2020 13 https://doi.org/10.17190/AMF/1881564

DE-SfN FLUXNET 47.8 11.1 2012 2014 29 https://doi.org/10.18140/FLX/1669635

US-Los AmeriFlux 46.1 -90 2000 2022 91 https://doi.org/10.17190/AMF/1246071

US-ALQ AmeriFlux 46 -89.6 2015 2022 35 https://doi.org/10.17190/AMF/1480323

JP-BBY FLUXNET 43.3 141.8 2015 2018 40 https://doi.org/10.18140/FLX/1669646

US-WPT FLUXNET 41.5 -83 2011 2013 34 https://doi.org/10.18140/FLX/1669702

US-MRM FLUXNET 40.8 -74 2012 2013 21 No DOI available

US-ORv FLUXNET 40 -83 2011 2015 50 https://doi.org/10.18140/FLX/1669689

US-StJ AmeriFlux 39.1 -75.4 2014 2017 31 https://doi.org/10.17190/AMF/1480316

US-Hsm AmeriFlux 38.2 -122 2021 2022 10 https://doi.org/10.17190/AMF/1890483

US-Srr FLUXNET 38.2 -122 2014 2017 43 https://doi.org/10.18140/FLX/1669694

US-Tw1 AmeriFlux 38.1 -121.6 2011 2020 115 https://doi.org/10.17190/AMF/1246147

US-Tw5 AmeriFlux 38.1 -121.6 2018 2020 22 https://doi.org/10.17190/AMF/1543380

US-Tw4 AmeriFlux 38.1 -121.6 2013 2021 93 https://doi.org/10.17190/AMF/1246151

US-Myb AmeriFlux 38 -121.8 2010 2021 133 https://doi.org/10.17190/AMF/1246139

US-Sne FLUXNET 38 -121.8 2016 2018 32 https://doi.org/10.18140/FLX/1669693

US-EDN AmeriFlux 37.6 -122.1 2018 2019 20 https://doi.org/10.17190/AMF/1543381

ES-Pdu EuroFlux 37 -3.6 2014 2017 38 https://doi.org/10.1029/2019JG005169

US-NC4 AmeriFlux 35.8 -75.9 2009 2021 39 https://doi.org/10.17190/AMF/1480314

US-HB1 AmeriFlux 33.3 -79.2 2019 2021 12 https://doi.org/10.17190/AMF/1660341

US-LA2 FLUXNET 29.9 -90.3 2011 2013 22 https://doi.org/10.18140/FLX/1669681

US-LA1 FLUXNET 29.5 -90.4 2011 2012 15 https://doi.org/10.18140/FLX/1669680
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US-DPW FLUXNET 28.1 -81.4 2013 2017 40 https://doi.org/10.18140/FLX/1669672

HK-MPM FLUXNET 22.5 114 2016 2018 34 https://doi.org/10.18140/FLX/1669642

IN-Pic P. Gnanamoorthy 11.4 79.8 2018 2020 8 No DOI available

MY-MLM FLUXNET 1.5 111.1 2014 2015 19 https://doi.org/10.18140/FLX/1669650

ID-Pag FLUXNET -2.3 113.9 2016 2017 12 https://doi.org/10.18140/FLX/1669643

PE-QFR AmeriFlux -3.8 -73.3 2018 2019 10 https://doi.org/10.17190/AMF/1671889

BR-Npw FLUXNET -16.5 -56.4 2013 2016 30 https://doi.org/10.18140/FLX/1669368

BW-Gum C. Helfter -19 22.4 2018 2020 26
https://doi.org/10.5285/d366ed40-

af8c-42be-86f2-bb90b11a659e

BW-Nxr C. Helfter -19.5 23.2 2018 2020 12
https://doi.org/10.5285/2170ebd0-

7e6f-4871-97d9-1d42e210468f

NZ-Kop FLUXNET -37.4 175.6 2012 2015 48 https://doi.org/10.18140/FLX/1669652
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C Comparison of ERA5 data with in situ data

C.1 Temperature

We study the variable Soil temperature level 2 (lay2) from ERA5, which represents soil temperature in 7-28 cm soil layer.5

We compare it to soil temperature measurements available at the sites. Out of the 58 sites, 42 are equipped with temperature

probes. If multiple probes are available, we choose the one closest to the surface. For ERA5, we select the nearest pixel to the

site.

ERA5 lay2 temperature is consistent with in situ measurements. The comparison is shown in Fig.S2. Each site is represented

by a point. In Fig.S2.a., the temporal correlation between ERA5 temperature and observations is strong: r is bigger than 0.910

for 37 out of 42 sites. A RMSD lower than 2 °K is shown for 39 out of 42 sites on Fig.S2.b. ERA5 temperatures have a good

spatial correlation on average with observations, as Fig.S2.c. shows a linear relationship between mean in situ temperatures

and mean ERA5 lay2 temperatures. There is an RMSD of 1.8 °K between the observation and ERA5 means. Finally, Fig.S2.d.

indicates a good reproduction of the seasonal variations for ERA5 lay2: the RMSD between the sites standard deviations of

observations and ERA5 is 1.2 °K.15
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Figure S2. Comparison of 0.25° ERA5 lay2 temperature with in situ temperature measurements. ERA5 data consistently match local in situ

measurements. Each point represents a site. a. Temporal correlation coefficient between ERA5 lay2 temperature and in situ data. b. RMSD

of ERA5 data compared to observations. c. Spatial pattern: mean in situ temperature for each site compared to mean of ERA5 estimates. d.

Amplitude comparison: standard deviation of in situ temperature for each site compared to standard deviation of ERA5 estimates.
::
In

::
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:::
and

::
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::::
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::::
point

:::::::
represents

::
a
:::
site.

C.2 Soil Water Content (SWC)

We study the variable SWC level 2 from ERA5, which represents Soil Water Content (SWC) in 7-28 cm soil layer. We compare

it to SWC measurements available at the sites. Out of the 58 sites, 14 are equipped with SWC probes. For ERA5, we select the

nearest pixel to the site.
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ERA5 SWC 0.25° data do not consistently match local in situ measurements. Indeed, Fig.S3.a. shows an unclear temporal20

correlation between in situ SWC and ERA5 SWC. Fig.S3.b. indicates high RMSDs (0-30% for values around 40%) between

ERA5 and local SWC measurements. Moreover, ERA5 tends to underestimate the mean SWC compared to local measurements

as shown in Fig.S3.c. ERA5 highlights a significant underestimation of SWC variation amplitude by ERA5 compared to

observations (Fig.S3.d.).
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Figure S3. Comparison of 0.25° lay2 ERA5 Soil Water Content (SWC) with local in situ SWC observations. ERA5 data does not consistently

match local in situ measurements. Each point represents a site. a. Temporal correlation between in situ SWC and ERA5 SWC. b. RMSD

between ERA5 SWC and observed local SWC. c. Spatial pattern: mean in situ SWC for each site compared to mean of ERA5 SWC. d.

Amplitude comparison: standard deviation of in situ SWC for each site compared to standard deviation of ERA5 estimates.
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D Land surface models detailed outputs25

Figure S4. Emissions monthly mean for 2003-2018 of Land surface Models run with WAD2M for GMB (Saunois et al., 2020). Spatial

patterns and intensity show considerable variability between the different GMB Land Surface Models, especially in Canada, subequatorial

Africa, Siberian Lowland, and Australia.
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Figure S5. Methane emissions from different basins (Ob, Amazon and Congo) from the mean of the GMB LSM models diagnostic (black),

our simulations (red), and each LSM from GMB diagnostic runs (grey). The Wetland Extent (WE) used for the runs is WAD2M and is shown

in the lower graphs.
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