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Abstract. To reveal the dynamics of magnetised plasma, it is essential to know the geometrical structure of the magnetic field, 

which is closely related to its linear and quadratic gradients. Estimation of the linear magnetic gradient requires at least four 10 

magnetic measurements, whereas calculation of the quadratic gradients of the magnetic field generally requires at least ten. 

This study is therefore aimed at yielding linear and quadratic gradients of the magnetic field based on magnetic measurements 

from nine-spacecraft HelioSwarm or seven-spacecraft Plasma Observatory constellations. Time-series magnetic measurements 

and transfer relationships between different reference frames were used to yield the apparent velocity of the magnetic structure 

as well as the components of the quadratic magnetic gradient along the direction of motion, while simultaneously elucidating 15 

the linear gradient and remaining components of the quadratic magnetic gradient using the least-squares method. Calculation 

via several iterations was applied to achieve satisfactory accuracy. The tests for the situations of magnetic flux ropes and dipole 

magnetic field have verifies the validity and accuracy of this approach. The results suggest that using time-series magnetic 

measurements from constellations comprising at least seven spacecraft and nonplanar configurations can yield linear and 

quadratic gradients of the magnetic field.  20 

 

Key Points: 

An iteration algorithm for the quadratic magnetic gradient based on measurement with constellations comprising at least seven 

spacecraft is presented. 

Magnetic flux ropes and dipole magnetic field testing verifies the validity and accuracy of the approach. 25 

Constellations containing at least seven spacecraft with nonplanar configurations are required for the approach. 

 

Key Words: Multiple Spacecraft Measurements, Space Plasmas, Magnetic field, Quadratic Magnetic Gradient, Least Squares 

Method  
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1 Introduction 

 35 

Multi-spacecraft constellations offer unique opportunities to observe plasma processes at various spatiotemporal scales 

simultaneously. Magnetic measurements in situ with multi-spacecraft constellations, in particular, allow the deduction of 

magnetic gradient such that fine magnetic structures, current densities, and magnetic geometries can be investigated. In general, 

magnetic measurements from constellations comprising at least four spacecraft forming a nonplanar configuration are required 

to deduce the three-dimensional linear gradient of a magnetic field (Harvey, 1998; Chanteur, 1998; Chanteur and Harvey, 40 

1998; Shen et al., 2003; De Keyser, et al., 2007; De Keyser, 2008; Hamrin et al., 2008; Shen et al., 2012). Cluster (Escoubet 

et al., 1997, 2001) and Magnetospheric MultiScale (MMS; Burch et al., 2015) are four-spacecraft constellations that form 

tetrahedral configuration. Using the magnetic measurements of such the missions allows the linear gradient of the magnetic 

field, e.g., the current density distribution, to be estimated and the topology of the magnetic field to be further derived (Dunlop 

et al., 2002b; Shen et al., 2003, 2008, 2012, 2014; Shi et al., 2005; Runov et al., 2006; Shi et al., 2010; Zhang et al., 2011; 45 

Rong et al., 2011; Burch and Phan, 2016; Dong et al., 2018; Pitout and Bogdanova, 2021; Haaland et al., 2021). Furthermore, 

four-point magnetic field measurements can also be applied to determine the orientation and motion of planar discontinuities 

(Russell et al., 1983; Dunlop et al., 2002a; Sonnerup et al., 2004), as well as the geometry of curved boundary layers (Shen et 

al., 2020). For a planar constellation or a constellation comprising three spacecraft, only a two-dimensional linear magnetic 

gradient in the constellation plane can generally be derived (Vogt et al., 2009, 2013; Shen et al., 2012). Nevertheless, for 50 

certain structures such as one-dimensional and force-free structures, magnetic measurements from planar constellations or 

even  Double Star constellations can also be reduced to a three-dimensional linear magnetic gradient (Vogt et al., 2009, 2013; 

Shen et al., 2012). 

To obtain high-order gradients in the magnetic field, magnetic measurements from a constellation with more spacecraft are 

required. For the quadratic gradient of the magnetic field, which contains 18 components in total, a constellation with at least 55 

ten spacecraft is required to solve the system of equations (Chanteur, 1998; Shen et al., 2021b), with the limitation that not all 

spacecraft are simultaneously within the same quadratic surface (Zhou and Shen, 2024). Nevertheless, the quadratic gradient 

of a magnetic field can still be estimated from four-spacecraft constellations if additional current density measurements 

deduced from electron and ion measurements and certain physical constraints such as Ampère's law and Magnetic Gauss's law, 

are utilised (Liu et al., 2019; Torbert et al., 2020; Shen et al., 2021a). Utilising the linear and quadratic gradients of the magnetic 60 

field means that the complete geometry of a magnetic field can be determined (Shen et al., 2021a). 

The HelioSwarm mission is a nine-spacecraft constellation consisting one hub (mothercraft) and eight nodes (daughtercraft) 

planned to be launched in 2029 by NASA. The swarm of nine spacecraft will allow for the first time simultaneous cross-scale 

observations of turbulent solar-wind plasmas in the vicinity of Earth. Specifically, each spacecraft of HelioSwarm will be 
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equipped with a Fluxgate magnetometer and a Search-Coil magnetometer, allowing comprehensive measurements of magnetic 65 

fields at 9 points simultaneously. Plasma Observatory is an ESA’s new mission with a seven-spacecraft constellation in the 

Solar-Terrestrial environments, currently under Phase-A study. One important topic for these two new multi-spacecraft 

constellations is to ascertain how the linear and quadratic gradients of the magnetic field can be drawn from seven- or nine-

point magnetic measurements, allowing the fine, nonlinear structures of the magnetic field in a space plasma to be identified. 

In this study, a new algorithm for calculating the linear and quadratic gradients of the magnetic field from seven- or nine-point 70 

magnetic measurements was derived using the least-squares method as well as an iterative approach that considers the reference 

frame transformation of the magnetic field. 

The remainder of this paper is as follows. The new algorithm for calculating the linear and quadratic magnetic gradients from 

7- or 9-point magnetic measurements is presented in Section 2; a description of the tests conducted for two typical magnetic 

structures: a cylindrical force-free flux rope and a dipole magnetic field, which were utilized to check the validity and accuracy 75 

of the new algorithm is given in Section 3; the error of the algorithm is evaluated in section 4; and finally, the conclusions are 

presented in Section 5.  

 

2. Method 

2.1 The scheme 80 

Calculation of the linear and quadratic gradients of a magnetic field generally requires magnetic measurements from at least 

ten spacecraft; thus, using the magnetic measurements of nine-spacecraft (9S/C) HelioSwarm or seven-spacecraft (7S/C) 

Plasma Observatory constellation means that additional constraints are required. The transfer relationships between different 

references are the proper limitations used for completely determining the linear and quadratic gradients of magnetic field.   

 85 
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Figure 1. Schematic plot showing observation of a magnetic structure by the Plasma Observatory Constellation, which is composed 

of seven spacecraft. Barycentric coordinates are adopted; thus, the centre C of the constellation overlaps with the origin O of the 

Cartesian coordinates (x1,x2,x3) the magnetic structure is assumed to be moving at velocity V relative to the constellations, and the 90 
x3 axis is presumed to be anti-parallel to V. 

 

The Taylor expansion of the magnetic field within two orders is expressed using:  

             ( ) ( ) ( ) ( )c c c c c c

1
t, t, + - t, + - - t,

2
=  B r B r r r B r r r r r B r( ) ( )( )                                               (1) 

While the Taylor expansion of each component of the magnetic field is:             95 

( ) ( ) ( ) ( ) c ( ) ( ) ( )

1 1
+ ( ) ( ) +

2 2

i i j i i j

c i c i j c i ijf f x f x x f f x g x x G      =  +   = +                                       (2) 

Where f represents any one of the three components 
1 2 3, ,B B B  in the magnetic field B. The first order gradient is denoted 

( )i i cg f  where (i=1, 2, 3) and the second order gradient ( )ij i j cG f   where (i, j=1, 2, 3). 

Conventionally, ten-point measurements are necessary to draw both the first- and second-order gradients of a physical quantity 

(Chanteur, 1998; Shen et al., 2021b); thus, additional physical constraints are required to obtain such measurements with the 100 

9S/C HelioSwarm and 7S/C Plasma Observatory. 

The following transformation relationship is used for the magnetic measurements: 

t = − B V B ， t =  − B V B ,                                                                     (3) 
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This relationship allows both the apparent velocity V of the magnetic structure and the nine components of the quadratic 

magnetic gradient along the direction of motion, ˆ V B  to be obtained (Shen et al., 2021a). The errors in formula (3) are on 105 

the order V/c. 

 

2.1.1 The zeroth iteration 

The temporal variation rate 
t B  and first-order magnetic gradient ( )

(0)
B  can readily be obtained from seven- or nine-point 

magnetic measurements, and the apparent velocity V of the magnetic structure and the longitudinal components of the second-110 

order magnetic gradient, 
3

1ˆ
V

  V B = B , can be deduced from the transformation relationship (3). Finally, the 

remaining nine components of the second-order magnetic gradient (i.e., the transverse components 
( ) ( )

(11

rs r sG = f 
）

 where 

(r, s =1, 2)) can be determined from the seven- or nine-point magnetic measurements using the least squares method, allowing 

a first-order quadratic magnetic gradient ( )
(1)

B  to be obtained. 

2.1.2 The first order iteration 115 

Provided with the zero-order quadratic magnetic gradient ( )
(1)

B  , the corrected first-order magnetic gradient ( )
(1)

B  can 

be found using the least-squares method. Furthermore, the corrected apparent velocity (1)V  of the magnetic structure and the 

longitudinal components of the second-order magnetic gradient ( )
(2)

ˆ V B  can be obtained from the transformation 

relationship (3). Again, the corrected transverse components of the quadratic magnetic gradient 
( ) ( )( )2

, 1, 2rsG r s =  are 

obtained using the least-squares method, allowing a first-order quadratic magnetic gradient ( )
(2)

B  to be obtained. 120 

The iterations are performed repeatedly until satisfactory results are achieved. 

For the 7S/C Plasma Observatory, the seven-point magnetic measurements yield 7 × 3=21 independent parameters, while the 

reference frame transformation provides nine constraints, resulting in 21+9=30 input parameters in total. The objective is to 

determine the magnetic field (three parameters), first-order gradient (nine parameters), and quadratic magnetic gradient (18 

parameters) at the mesocentre of the constellation, a total of 3+9+18=30 parameters. Therefore, this scheme is reasonable. 125 

Clearly, the 9S/C magnetic measurements of HelioSwarm are sufficient to draw first-order and quadratic magnetic gradients 

using this method. These results indicate that the developed method is suitable for constellations comprising at least seven 

spacecraft. 
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2.2 Specific (operational) steps of the algorithm 130 

 

Details of the steps used are given below. 

 

2.2.1 The zeroth iteration: 

Assume a linear approximation in space and let 
( )0

0ijG = . The magnetic field 
(0)

cB  and its linear gradient ( )
(0)

B  at the 135 

mesocentre of the constellation can then be obtained using the following formulas (Harvey, 1998; Shen et al., 2003): 

( )0

1

1 N

ci iB B
N


=

=  ，                                                                         (4) 

( )
( )0

1

1

1 N

i j i k kjc
B B r R

N
 



−

=

 =  .                                                                  (5) 

where the volume tensor is 

N

kj k j

1

1
R r r

N
 

=

=   or 

N

1

1

N
 

=

 R r r , where N is the number of spacecraft within the 

constellation, and 
1

kjR−
  s the inverse of the volume tensor kjR . The determinant of the volume tensor is required to be nonzero，140 

i.e., ( )R det 0kjR=  . This is equivalent to that the constellation is non-planar. 

The temporal variation rate ( )
(0)

t c
 B  is readily obtained using time-series magnetic observation. 

Now the frame transformation relationships (3) are reduced to the apparent velocity 
(0)

V  of the magnetic structure and the 

longitudinal components of the quadratic magnetic gradient ( )
(1)

3 B . 

First, the zeroth approximation of the apparent velocity of the magnetic structure 
(0)

V   can be found using the frame 145 

transformation relationship: 

( ) ( )
(0) (0)(0)

t = −  B V B ,                                                                      (6) 

 

Then, using the relationship: 

( )
( ) ( ) ( )

( )0 10

t =  −  B V B ,                                                                  (7) 150 

the longitude components of the quadratic magnetic gradient at first order can be drawn as: 

https://doi.org/10.5194/egusphere-2024-1330
Preprint. Discussion started: 17 May 2024
c© Author(s) 2024. CC BY 4.0 License.



7 

 

( )
( )

( )( )
( )01

3

1
,t cc

t
V

  =  B B r ,                                                               (8) 

which are just 
( ) ( ) ( )( )1 1 1

31 32 33, ,G G G .  

The remaining components of the quadratic magnetic gradients can be deduced using the least-squares method. 

Assuming that: 155 

( )
( )

( )
( ) ( )

( )
( )

2

0 0 1

1

1 1

2

N
i i j

c i ijS = f x g x x G f
N

   
=

 
+ + − 

 
 ,                                                   (9) 

which can also be written as: 

( )
( )

( )
( ) ( ) ( )

( )
( ) ( )

( )
2

0 0 1 13

3

1

1 1 1

2 2

N
i i p q

c i i3 i pqS= f x g f - x x G x x G
N

     



=

  
+ − + +  

  
 1 .                             (10) 

 

If 0S = , then  160 

( )
( )

( )
( ) ( ) ( )

( )
( ) ( )

( )
( ) ( )

0 0 1 13

3

1

1 1 1
2 0

2 2

N
i i p q p q

c i i3 i pq

pq

S
f x g f - x x G x x G x x

G N
       




=

   
= + − + +  =     

 1 .              (11) 

which reduces to: 

( )
( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )
( )

0 0 13

3

1 1 1 1

1

1

1

2

1
0

2

N N N N
p q i p q p q i p q

c i i3 i

N
r s p q

rs

f x x x x x g f x x - x x x x G

           x x x x G

           
   

   



= = = =

=

 
+ − +  

 

+ =

   



1

                                       (12) 

Resulting in ( ) ( )1
, 1,2rsG r s = ，i.e., 

( ) ( ) ( )( )1 1 1

21 22 11, ,G G G . 

The constellation must be nonplanar to achieve this result. 165 

2.2.2 First order iteration 

Assuming that: 

( )
( )

( )
( ) ( )

( )
( )

2

1 1 1

1

1 1

2

N
i i j

c i ijS = f x g x x G f
N

   
=

 
+ + − 

 
 .                                           (13) 

 

If 0S = , then: 170 

https://doi.org/10.5194/egusphere-2024-1330
Preprint. Discussion started: 17 May 2024
c© Author(s) 2024. CC BY 4.0 License.



8 

 

( )1
0

c

S

f


=


，

( )1
0

i

S

g


=


.                                                                        (14) 

 

 

From 
( )1

0
c

S

f


=


, it can be assumed that: 

( )
( )

( )
( ) ( )

( )
( )

1 1 1

1

1 1
0

2

N
i i j

c i ijf x g x x G f
N

   
=

 
+ + − = 

 
 .                                           (15) 175 

                      

Meaning that: 

( )
( ) ( ) ( )

( )
( )

( )1 1 1

1 1 1

1 1 1 1

2 2

N N N
i j ij

c ij ijf f x x G = f R G
N N N

      

   
  = = =

= − −  
.                               (16) 

 

.                  180 

If 
( )1

0
i

S

g


=


, this can be reduced to: 

( )
( )

( )
( ) ( )

( )
( ) ( )

1 1 0

1

1 1
0

2

N
i i j k

c i ijf x g x x G f x
N

    
=

 
+ + − = 

 
 ,                                  (17) 

 

i.e., 

 
( ) ( )

( )
( ) ( ) ( )

( )
( ) ( )

1 0

1 1 1

1 1 1 1
0

2

N N N
k i k i j k

i ijx x g x x x G f x
N N N

      
  = = =

+ − =   .                        (18) 185 

The tensor ( ) ( ) ( )
1

1 N
kij k i jR x x x

N
  

=

=  is then defined, resulting in: 

 ( ) ( )
( ) ( )

1 0

1

1 1
0

2

N
ki kij k

i ijR g R G f x
N

 
=

+ − = .                                                           (19) 

Therefore, the first magnetic gradient is: 

 ( ) ( ) ( ) ( ) ( ) ( )
1 01 1

1

1 1

2

N
k k

kij k

ijg R R G R f x
N

 


− −

=

= − +   .                                     (20) 
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Using equation (3), it is now possible to obtain the corrected apparent velocity 
(1)V  of the magnetic structure and the 190 

longitudinal components of the corrected quadratic magnetic gradient ( ) ( )( )(2) (2)

3 3 i   B B , as in the zeroth iteration. 

The least-squares method is then used to obtain the remaining nine components of the corrected quadratic magnetic gradient. 

If: 

 

( )
( )

( )
( )

( ) ( )
( )

( )

( )
( )

( )
( ) ( ) ( )

( )
( ) ( )

( )

2

1 1 2

1

2

1 1 2 23

3

1

1 1

2

1 1 1

2 2

N
i i j

i ijc

N
i i p q

c i i3 i pq

S = f x g x x G f
N

   = f x g f - x x G x x G
N

   


     




=

=

 
+ + − 

 

  
+ − + +  

  



 1

                   (21) 

Then 
( ) ( )2

, 1,2pqG p q =  can be obtained using the same procedure as that used for the zeroth iteration. So that all the 195 

components of the corrected quadratic magnetic gradient ( )
(2)

B  are obtained. 

Similarly, two or more iterations can be performed until stable linear and second-order magnetic gradients are obtained. 

This algorithm requires that the constellation be composed of at least seven spacecraft and that its configuration is non-planar. 

Because both the 9S/C HelioSwarm and 7S/C Plasma Observatory satisfy these requirements, the linear and quadratic magnetic 

gradients can be readily obtained.  200 

The Curlometer technique (Dunlop et al., 2002b) is used to calculate the current density based on multiple spacecraft magnetic 

measurements, with the relative error estimated by the ratio between the divergence and curl of the magnetic field, i.e., 





B

B
. If the length and the magnetic field are normalized by the characteristic distance and magnetic strength ( )0,D B , 

the equation becomes 
1

 
 = 



B B
B

B
. Therefore, the dimensionless divergence of the magnetic field calculated 

with observation data can be regarded a reasonable measure of the relative error within the linear magnetic gradient. Similarly, 205 

the dimensionless ( )
c

 B  can be used as a measure describing the relative error in the quadratic magnetic gradient 

derived using the method. 

 

3. Comparison of new method with analytical modelling 

In this section, the new method is applied to two analytical magnetic field models: a cylindrical force-free flux rope and a 210 

dipole magnetic field, to evaluate its validity and accuracy. The applicability of this approach was tested on the 7S/C Plasma 
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Observatory (N=7) under the assumption that the seven-spacecraft cluster crosses a magnetic field structure (as illustrated in 

Figure. 1) by comparing the linear and quadratic gradients of the magnetic field obtained by the new method with those 

obtained by accurate modelling. 

The positions of the seven spacecrafts in the barycentric coordinate system were generated randomly with Cartesian 215 

coordinates between -0.02 and 0.02 RE, as seen in Table 1. The 7S/C array is illustrated in Figure. 2. 

 

Table 1. Coordinates of the seven spacecraft in the barycentre coordinate system, with α denoting spacecraft number. 

α x(α) (RE) y(α) (RE) z(α) (RE) 

1 0.0105 0.0016 0.0100 

2 0.0135 0.0153 -0.0119 

3 -0.0124 0.0155 -0.0026 

4 0.0138 -0.0114 0.0139 

5 0.0044 0.0157 0.0097 

6 -0.0134 0.0152 0.0153 

7 -0.0074 -0.0005 0.0052 

 

 220 

Figure 2. Configuration of the 7-S/C constellation. 

The characteristic configuration of the spacecraft is described using several parameters. The three eigenvalues of the volumetric 

tensor Rij are represented by w1, w2, and w3 (where 1 2 3w w w  ) (Harvey, 1998), with their square roots representing the 

characteristic half-widths of the S/C in the three orthogonal directions along the corresponding eigenvectors (Harvey, 1998). 

The characteristic size of the S/C is twice the square root of the maximum eigenvalue, 12L w=  (Robert et al., 1998; Shen 225 

et al, 2012). For the seven S/Cs in the cluster in this section, the three eigenvalues are 
2

1 0.1643 Ew R= , 
2

2 0.1104 Ew R= , 

and 
2

3 0.0341 Ew R= , and the characteristic size is 12 0.0256 163.33 kmEL w R= = = . 
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3.1 Flux Rope 230 

The flux rope was assumed to be force-free and cylindrically symmetrical. The magnetic field of the flux rope can be described 

using the Helmholtz equation, for which Lundquist (1950) provided analytical solutions in terms of the Bessel functions. 

0rB = , ( ) ( )0 1B r B J r = , ( ) ( )0 0zB r B J r=  

where r is the radial distance from the centric axis; α is a constant, with 1/α representing the characteristic scale of the flux 

rope; B0 is the peak axial field intensity; and J0 and J1 are the zeroth- and first-order Bessel functions of the first kind, 235 

respectively. For this test, we set B0=60 nT and α=1/RE. 

The 7-S/C array was assumed to cross the flux rope in a straight line at uniform velocity. The array is represented by the 

barycentre with the red dot in Figure. 3, and moves from (-2, 0, 0) RE to (2, 0, 0) RE along the x-axis over a time interval of 

100 s. The resolution of the magnetic field measurement was set to 1 s for the time-series observations, and the characteristic 

size of the 7-S/C array was set to L=0.0256 RE for the gradients of the magnetic field at the barycentre along the trajectory to 240 

be obtained. 

 

Figure 3. The cylindrical force-free flux rope crossing by  the 7-S/C constellation as viewed from the axial direction. Trajectory of 

the barycentre of the constellation from (-2, 0, 0) RE to (2, 0, 0) RE over 100 s is shown by the red dotted line. Blue lines represent 

magnetic field lines. 245 

The linear gradient of the magnetic field ( i kB ) has nine components, while the quadratic gradients ( i j kB ) comprise 27 

components. According to the analytical flux-rope model and symmetry of the quadratic gradients, only five independent 
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components of the quadratic gradients; 1 2 1B  , 1 1 2B  , 2 2 2B  , 1 1 3B , and 2 2 3B  , and three components of the 

linear gradients 2 1B , 1 2B , and 1 3B  are nonzero points on the x-axis when using Cartesian coordinates, simplifying the 

comparison between the gradients derived from the proposed method and the analytical model. 250 

The impact of iteration on the results was investigated first, with the results at two different points used to demonstrate the 

variation in the relative errors under iteration, as illustrated in Figure. 4. The relative error is defined as 

( ) 100%algorithm accurate accurateX X X−  , where Xalgorithm and Xaccurate represent the algorithm gradients derived using the 

new method and accurate values from the analytical model at the barycentre, respectively. As shown in Figure. 4(a) and 4(c), 

the linear gradients converged to certain values within 50 iterations, and the final relative errors were less than 0.02%. Figure 255 

4(b) and 4(d) also indicate that the quadratic gradients converge. However, some quadratic gradients converged faster than 

others with fewer relative errors, and final relative errors of no more than 1.5% were obtained after 100 iterations. The 

maximum number of iterations was set to 100; thus, the gradients could be derived with good accuracy. 
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Figure 4. Relative errors in the nonzero components of the linear and quadratic gradients with different iteration numbers at 260 
different barycentre. 
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Figure 5. Time series showing nonzero components of the linear and quadratic gradients. Circles and solid lines represent the results 

obtained using the algorithm and accurate modelling, respectively. 265 

 

Figure 5 shows a comparison of the nonzero linear and quadratic gradients at the barycentre derived from our method with 

those derived from the analytical model. The algorithm gradients are consistent with the accurate gradients, indicating that the 

proposed method is effective and precise when used with flux ropes. 
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 270 

Figure 6. Relative errors in the nonzero components of the linear and quadratic gradients along the crossing path. 

 

The relative errors of the gradients at points along the trajectory are shown in Figure. 6. All the relative errors of the linear 

gradients were less than 0.1%, and the vast majority of the relative errors for the quadratic gradients did not exceed 5%. It 

should be noted that the barycentre is at (0,0,0) at 50 s and that the nonzero components of the linear and quadratic gradients 275 

do not exist at (0,0,0). The barycentre is at (-0.04,0,0) RE at 49 s, when accurate modelling and algorithm values for the 

quadratic gradient 2 2 2B   of 0.3 and 0.1570
2nT RE , respectively. The relative error approaches 50%; however, the 

absolute error is low. Symmetrically, the situation described is the same as it would be if the barycentre were at (0.04,0,0). 

 

3.2 Dipole field 280 

The proposed method was also tested and verified using a magnetic dipole field. The geomagnetic dipole field is 

mathematically expressed as: 
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where B0 is the magnetic field at the Earth’s equator and is defined by
0

0 3
30008 nT

4 E

M
B

R




= = ; 

22 27.76 10 A mM =  

is the geomagnetic moment, with its direction set anti-parallel to the z-axis; x, y and z are the coordinates of the field points 285 

measured by RE, and 
2 2 2r x y z= + + is the radial distance from the origin measured by RE. 

The 7-S/C array was assumed to cross the dipole field in a straight line at constant velocity, with the barycentre parallel to the 

x-axis and moving from (-5, 0, 5) RE to (5, 0, 5) RE over 125 s, as illustrated in Figure. 7. The resolution of the magnetic field 

measurement was set to 1 s and the characteristic size of the 7-S/C array was set to 0.0256 RE, which is the same as that of the 

flux-rope case, for the gradients of the magnetic field at the barycentre along the trajectory to be obtained. 290 

 

Figure 7. The magnetic dipole field crossed by the 7-S/C array. Trajectory of the barycentre of the 7-S/C array is from (-5, 0, 5) RE 

to (5, 0, 5) RE over 126 s as shown by the red dotted line. Blue lines represent magnetic field lines. 

Only nonzero independent components are displayed, similar to the flux rope case. In view of the mathematical expression of 

the dipole field, ten independent components of the quadratic gradients and four independent components of the linear 295 

gradients were nonzero along the crossing path. 
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Figure 8. Relative errors in the nonzero components of linear and quadratic gradients with different iteration numbers at different 

barycentre. 

Figure 8 shows the variation in the relative errors under iteration at two different points. As shown in Figure. 8(a) and 8(c), 300 

the linear gradients converged to certain values within 60 iterations, with final relative errors of less than 0.02%. Figure 8(b) 

and 8(d) show that the quadratic gradients also converge to low errors. After 100 iterations, most of the relative errors of the 

quadratic gradients were less than 1%, and the largest relative error was no more than 6%. These results suggest that it is 

reasonable to set the maximum number of iterations to 100 for the gradients to be derived with good accuracy in this case. 
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 305 

Figure 9. Time series showing nonzero components of the linear gradients. Circles and solid lines represent the results obtained 

using the algorithm and accurate modelling, respectively. 
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Figure 10. Time series showing nonzero components of the quadratic gradients. Circles and solid lines represent the results obtained 

using the algorithm and accurate modelling, respectively. 310 

Figure 9 shows a comparison of the nonzero linear gradients derived from our method with those derived from the analytical 

model. A comparison of the nonzero quadratic gradients derived from the different sources is shown in Figure. 10. Both Figure. 
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9 and 10 indicate that the algorithm gradients are entirely consistent with those obtained from the accurate model, suggesting 

that the developed method is effective and precise for use with the dipole field. 

 315 

Figure 11. Relative errors in the nonzero components of the linear and quadratic gradients along the crossing path. 

 

Figure 11 shows the relative errors of the gradients at the measured points along the crossing path. All the relative errors for 

the linear gradients were less than 0.25 %, and most of the relative errors in the quadratic gradients were less than 5%. It should 

be noted that the barycentre is at (2.92, 0, 5) RE at 100s, and the accurate and algorithm quadratic gradients 3 3 3B   are -320 

1.2584 and -0.6461 
2nT RE , respectively. The relative error approaches 50%; however, the absolute error is low. The 

barycentre is at (-0.04, 0, 5) RE at 63 s and (0.04, 0, 5) RE at 64 s. Similarly, the absolute errors in the quadratic gradients 

2 2 1B   and 3 3 1B   were no more than 1 
2nT RE , whereas the relative errors were approximately 30%. 

 

4. Errors 325 

In Section 3, relative error is used to evaluate the truncation error of the proposed method. However, in some cases, evaluation 

with the relative error is not effective, while the gradient obtained from the accurate model is very small. Furthermore, the 

truncation error was evaluated under divergence-free magnetic field conditions. 
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In theory, the divergence of the magnetic field and the gradient of the magnetic field divergence are both exactly zero, as 

shown by 0B =  and ( ) 0B  = . To offer a uniform standard for evaluation, the divergence and gradient of 330 

divergence were non-dimensionalized with the corresponding characteristic quantity. The length was calibrated with the spatial 

characteristic scale of the magnetic structure D, and the magnetic field was calibrated with the characteristic magnetic field at 

the barycentre Bc. Therefore, two evaluation indices were introduced, represented by ( )
c

B  and ( )
c

B   . The values 

of the two indices can be used to evaluate the accuracies of the linear and quadratic gradients derived using the proposed 

method. 335 

 

Figure 12. Dimensionless divergence and gradient of divergence for magnetic field along the flux rope crossing path with different 

characteristic S/C sizes (L). 
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Figure 13. Dimensionless divergence and gradient of divergence for magnetic field along the dipole field crossing path with different 340 
characteristic S/C sizes (L). 

The algorithm gradients were utilized to calculate the dimensionless divergence and the gradient of divergence for magnetic 

field at the barycentre along the crossing path with different characteristic S/C sizes, with the results for the flux-rope and 

dipole-field cases shown in Figure. 12 and 13, respectively. Figure 12 (a) and 13 (a) show that the dimensionless divergence 

( )
c

B  at the barycentre is in the order of ten to the minus fourth, while L varies from 0.0032 to 0.0513 RE. The 345 

dimensionless gradient of the divergence ( )
c

B    for the flux-rope case was less than 0.02 with L=0.0513 RE, as shown 

in Figure. 12 (b). Similarly, Figure. 13 (b) shows that ( )
c

B    was less than 0.4, with L=0.0513 RE, for the dipole field. 

Meanwhile, that ( )
c

B    decreased with decreasing L in both cases. These results confirm the accuracy of the proposed 

method. 

 350 
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5. Conclusions 

In this study, a new algorithm was derived to estimate the linear and quadratic gradients of the magnetic field from 7- or 9-

point magnetic measurements to obtain the fine structure of the magnetic field and the magnetic field geometry, allowing 

elucidation of whether the 7-spacecraft Plasma Observatory and the 9-spacecraft HelioSwarm missions could be utilized for 

such measurements. By inputting 7–9 point magnetic measurements and using the reference frame transformation relationships 355 

of the magnetic field as well as the least-squares method, the new algorithm performs several iterations to finally derive the 

convergent magnetic linear and quadratic gradients. 

The developed algorithm requires fewer restrictions on the spatial configuration of the constellations and only demands that 

the constellations are non-planar. Actual operating constellations can easily satisfy this constraint. Only magnetic 

measurements are required, with no other physical measurements needed, and the only physical constraint of the algorithm is 360 

the reference-frame transformation relationship of the magnetic field. Divergence-free magnetic field conditions were not 

required to calculate the magnetic gradient. Alternatively, in the algorithm, the magnitudes of the magnetic divergence and its 

gradient were used to evaluate the truncation errors of the linear and quadratic magnetic gradients, respectively. The proposed 

algorithm was verified using a cylindrical force-free flux rope and a dipole magnetic field, with results showing that the 

iterations effectively converged and that the magnetic gradients can reach reasonable accuracy. The results of this study can 365 

thus be applied to the analysis of magnetic field data from multi-spacecraft constellations (e.g., the Plasma Observatory and 

HelioSwarm) as well as to the design of future constellation missions. 
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