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resulting in G
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constellation must be nonplanar to achieve this result. This
is verified as follows.

Following Zhou and Shen (2024), in order for the solution
to exist, it is expected that the position of all the spacecraft in5

the constellation must not obey the following formula:
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where ars (r,s = 1,2) is a set of fixed coefficients. The above
equations can be rewritten as follows:

a11

(
x1
(α)/x

2
(α)

)2
+ 2a12

(
x1
(α)/x

2
(α)

)
+ a22 = 0, (14)10

which reduces to x1
(α)/x

2
(α) = constant. It means that all the

spacecraft are in the plane parallel to the x3 axis or the mo-
tion direction. Therefore, it is necessary to have the constella-
tion not be planar in order to deduce the quadratic magnetic
gradients as well as the linear magnetic gradient. The next15

iterations would also require this condition.

2.2.2 First-order iteration
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if δS = 0, then20
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i.e., the following applies:
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Therefore, the first magnetic gradient is
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Using Eq. (3), it is now possible to obtain the corrected ap- 35

parent velocity V (1) of the magnetic structure and the longi-
tudinal components of the corrected quadratic magnetic gra-
dient (∂3∇B)(2)

(
(∂3∂iB)

(2)) as in the zeroth iteration.
The least-squares method is then used to obtain the re-

maining nine components of the corrected quadratic mag- 40

netic gradient.
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thenG(2)pq (p,q = 1,2) can be obtained using the same proce-
dure as that used for the zeroth iteration so that all the compo- 45

nents of the corrected quadratic magnetic gradient (∇∇B)(2)

are obtained.
Similarly, two or more iterations can be performed until

stable linear and second-order magnetic gradients are ob-
tained. 50

This algorithm requires that the constellation be com-
posed of at least seven spacecraft and that its configuration
be nonplanar. Because both the 9S/C HelioSwarm and 7S/C
Plasma Observatory satisfy these requirements, the linear
and quadratic magnetic gradients can be readily obtained. 55

The curlometer technique (Dunlop et al., 2002b) is used
to calculate the current density based on multiple spacecraft
magnetic measurements, with the relative error estimated by

Gang Zeng
高亮
Changing the superscripted (0) to (1) is just due to a writing error, and did not change the nature of the formula. The Eq. (19) is derived from Eq. (15) by taking the derivative. So the superscripted in Gij should maintained to be (1) as in Eq. (15). Similarly, in Eq. (20) to (22), the following equation is derived from the former one, and the superscripted in Gij should maintained to be (1).
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